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Proteome analysis by data-independent acquisition (DIA) has become a
powerful approach to obtain deep proteome coverage, and has gained
recent traction for label-free analysis of single cells. However, optimal
experimental design for DIA-based single-cell proteomics has not been fully
explored, and performance metrics of subsequent data analysis tools remain
to be evaluated. Therefore, we here formalize and comprehensively
evaluate a DIA data analysis strategy that exploits the co-analysis of low-
input samples with a so-called matching enhancer (ME) of higher input, to
increase sensitivity, proteome coverage, and data completeness. We assess
the matching specificity of DIA-ME by a two-proteome model, and demon-
strate that false discovery and false transfer are maintained at low levels
when using DIA-NN software, while preserving quantification accuracy.

We apply DIA-ME to investigate the proteome response of U-2 OS cells to
interferon gamma (IFN-y) in single cells, and recapitulate the time-resolved
induction of IFN-y response proteins as observed in bulk material. Moreover,
we uncover co- and anti-correlating patterns of protein expression within
the same cell, indicating mutually exclusive protein modules and the co-
existence of different cell states. Collectively our data show that DIA-ME

is a powerful, scalable, and easy-to-implement strategy for single-cell
proteomics.

The increased awareness of biological heterogeneity within cell
populations, evidenced by profound differences in gene transcription
among individual cells'™ has changed our understanding of the con-
fines of what is regarded as the same cell type*®. This phenomenon
helped to explain biological transitions as a continuous process rather
than a collection of discrete steps and could also have important
implications for understanding and treating diseases’. However, a
description only at the transcriptomic level lacks information about
post-transcriptional regulation that translate into functional pro-
teomic changes®'°, therefore requiring techniques for the proteomic
investigation of individual cells. While single-cell RNA sequencing
has become routinely accessible, single-cell proteomics (SCP) has

undergone a more recent but steep development, benefitting from
increased sensitivity offered by novel sample preparation workflows
and mass spectrometric instrumentation'®™2,

Yet, SCP still suffers from several limitations in proteomic depth
and throughput. Since the material from individual cells is
scarce, several studies focused on reducing losses during sample
preparation by process miniaturization®* and avoiding surface
adsorption™". As one important example, the SCOPE-MS (single-cell
proteomics by mass spectrometry) methodology uses sample multi-
plexing via TMT-labeling to concomitantly increase analyte
concentration and throughput””, However, recent reports
propose that the inclusion of carrier channels in this method can
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compress reporter ion ratios, jeopardizing the accuracy of protein
quantification2. For this reason, label-free approaches have become
a popular alternative, where in particular the use of collective pre-
cursor isolation in MS via data-independent acquisition (DIA) showed
enhanced sampling depth in shorter time compared to data-
dependent acquisition (DDA)*. Nevertheless, DIA produces chimeric
MS/MS spectra containing highly convoluted mixtures of simulta-
neously fragmented precursors and their fragment ions, thus
demanding special ways of data analysis. Here, the introduction of
diaPASEF was pivotal, enhancing the signal-to-noise ratio by excluding
singly charged ions before MS/MS acquisition®. Still, to cope with the
complexity of the resulting spectra, pre-generated libraries compris-
ing unambiguous information on peptides and their fragments
remained inevitable”?*', Particularly, this poses challenges in SCP as
library-based analyses require time-intensive data collection from
preceding runs, varying with instruments and projects, and they
demand higher sample input even if cell types are scarce. Novel
software tools have partly overcome these constraints by direct (i.e.
library-free) analysis of DIA spectra, of which Spectronaut® and DIA-
NN?® are the most widely used. Although these tools handle data in
slightly different manners, e.g. either utilizing a peptide-centric (DIA-
NN) or spectrum-centric approach (Spectronaut), both consist of a
two-step process, in which the initial assignment is followed by stor-
ing the information in an internal library that is subsequently used to
re-analyze the data®?. This procedure shares a conceptual resem-
blance with the match-between-runs (MBR) algorithm that is com-
monly used in DDA approaches, as it aims to recover unidentified
features to mitigate missing values across experiments. Since high
data completeness is crucial when analyzing large sample cohorts, as
is usually the case in single-cell studies, MBR has frequently been
applied in DIA workflows"°?¢, In some of these studies, it has been
empirically shown that inclusion of higher input samples conveniently
leads to better data coverage, however, the performance character-
istics and optimal experimental conditions have not been formally
addressed. Therefore, we here performed a systematic evaluation of
such an approach, with the specific aim to use its huge potential to
establish an optimized workflow for label-free proteomics of single-
cells. The core concept of the approach is that low-input samples of
interest are co-analyzed with high-input samples, that we here term
matching enhancers (MEs), and that serve to increase sensitivity by
identifying equivalent features during the matching step in DIA data
analysis. Hence, we hereby call this method DIA-ME as an experi-
mental strategy that improves proteome coverage and data com-
pleteness in low-input DIA data. In this study, we assessed the quality
of matching in DIA-ME, and determined if diminished signal intensity
in low-input data leads to false feature matching or skewed quanti-
tative precision. In addition, by employing a benchmark dataset of a
two-species model system, we evaluated how quality of matching
depends on the peptide amount used in the donor data set and how
FDR-control can be preserved in this process. At the same time, we
assessed differences in performance of DIA-ME when using Spectro-
naut and DIA-NN as data processing suites, and provide guidelines
how data quality can be maintained when using these tools. While
spectral libraries are frequently used in SCP to achieve higher
sensitivity'***%, we show that DIA-ME effectively circumvents this
requirement by considerably increasing proteomic depth in library-
free searches. Using injection amounts as small as that of a single cell
(200 pg), we demonstrate that DIA-ME improves proteome coverage
with high quantitative accuracy compared to conventional data ana-
lysis, resulting in the characterization of the IFN-y-responsive pro-
teome that was highly similar to that obtained by a bulk analysis.
Finally, we highlight the DIA-ME-assisted analysis of 143 U-2 OS cells,
which revealed oppositely regulated proteome programs, pointing to
mutually exclusive protein expression and the co-existence of differ-
ent cell states within the same population.

Results

The principle of enhanced matching in DIA-ME

A key principle to achieve high data completeness in DIA data is the
transfer of peptide information across multiple samples in the same
set. This functionality is at the core of Spectronaut® and DIA-NN*, and
we endeavored to further exploit its capabilities in low-input proteomic
data, which usually suffers from missing values and limited sensitivity.
Specifically, both tools handle DIA data in a 2-step procedure (despite
fundamental differences in their architecture), storing information on
precursor and fragment ions in an internal spectral library after the
initial identification step, which is then used in a second pass to spe-
cifically extract elution profiles from other runs that are analyzed in
parallel. This last step considerably reduces missing values across
samples, and in the following we refer to it as “MBR” (match-between-
runs), although this has been originally coined for DDA data. We
speculated that expanding the resources of the internal library could
help to concomitantly improve sensitivity and data completeness of
proteomic experiments, especially when data are sparse as in single-cell
analyses. To this end, we here formalize and evaluate this concept,
wherein files with low-input runs are jointly analyzed with runs from
higher sample input, effectively serving as a reference database. We
termed the files from higher input samples “matching enhancers”
(MEs), as they contribute to the creation of an enlarged internal library
that is used to extract similar signals from low-input runs to improve
sensitivity of the analysis (Fig. 1A), and we refer to the overall approach
as DIA-ME. DIA-ME is easy to implement in existing proteomic work-
flows, as it only requires running a few MEs together with a series of
low-input samples, followed by analyzing the collective data in existing
software tools. In this work, we aimed to critically assess the perfor-
mance of DIA-ME, and apply it to the investigation of single cells.

DIA-ME expands proteomic coverage from low-input data
Having conceptualized the DIA-ME workflow, we aimed to assess the
gain in proteome coverage that can be achieved, to determine the
optimal size of the ME samples, and to evaluate potential false
matching events between MEs and low-input samples. To benchmark
this, we generated a ME sample set that consists of mixed HeLa and
Escherichia coli (E.coli) peptides, where the former serve as a “donor”
for feature matching to a low-input human “acceptor” sample, while
the latter introduce features that are used to assess false transfers.
Specifically, we prepared samples of HeLa digests spiked with different
ratios of E.coli peptides (5-20%), and adding up to different total
peptide amounts of 1-100 ng (Fig. 1B). We used an active LC gradient of
15 min for LC-MS analysis, and acquired data on a Bruker timsTOF Pro
instrument in diaPASEF mode (Supplementary Fig. 1A). Analysis of ME
samples in DIA-NN led to the identification of approx. 8000 and 3500
protein groups in 100-ng and 1-ng samples, respectively (Supplemen-
tary Fig. 1B). As we intended, E.coli peptide intensities increased by
more than two orders of magnitude, thereby scaling with the amount
of spiked E.coli peptides (Supplementary Fig. 1C, D). Consequently, our
two-proteome samples contained highly variable records of E.coli
features ranging from around 500 to 6000 identified peptides, making
it a suitable system to evaluate correct matching in low-input data.
Next, we analyzed a set of 1-ng (non-spiked) HeLa peptide samples
under the same LC-MS conditions (Supplementary Fig. 2) and inves-
tigated the effect of different processing methods (Fig. 1B) (Supple-
mentary Data 1). Conventional library-free analysis via DIA-NN
identified on average 2800 proteins, which was increased to 3300
when applying MBR (2600 and 3100 proteins, respectively, when using
Spectronaut), confirming the benefit of activating this function
(Fig. 1C). Remarkably, co-analysis of HeLa with ME samples drastically
improved proteome coverage even further, reaching up to approx.
4650 proteins in 1-ng HeLa samples when analyzed along with 10-ng
MEs (i.e. 10x ME) by either DIA-NN or Spectronaut (Fig. 1C). This
improvement corresponds to an increase of around 60% and 70% in
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Fig. 1| DIA-ME enables ultra-high sensitivity and data completeness. A DIA-ME
principle: prevalent DIA data analysis is based on a two-step process. Peptides are
identified and stored in an internal library, before their information is used to re-
analyze (match) runs that are searched in parallel. Providing a high-input sample
(Matching enhancer: ME) to the first search, more information can be gathered in
the library, which aids to identify low-abundance signals in the low-input runs
during matching. B Mixed-species experiment to evaluate DIA-ME data analysis
(top). Two types of samples: seven low-input replicates containing H.sapiens pro-
teome (HeLa, green) and twelve sets of H.sapiens samples spiked with E.coli K12
proteome (blue). Proteomic mixtures differed in their spiking ratio (5-20%) and
total peptide amount (1-100 ng). Resulting files of spiked samples were used to
evaluate the DIA-ME data analysis (bottom): low-input H.sapiens samples (green)
were analyzed with a triplicate of spiked 5-ng (5x ME), 10-ng (10x ME) or 100-ng
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(100x ME) runs (blue). C Average and total (light) protein groups in the seven non-
spiked 1-ng replicates by DIA-NN (blue) and Spectronaut (brown) using different
analysis strategies (see B). Indiv: individual raw file analysis. MBR: Collective raw
files analysis with activated matching. 1:1: Co-analysis with seven spiked 1-ng
replicates. Results only shown for analyses involving a spiking ratio of 10%.

D Heatmap of ranked protein group (PG) intensities for individual, MBR and 10x
DIA-ME analysis of 1-ng HeLa replicates (R1 - 7). Six bins (divided by dashed lines)
indicate the obtained data completeness in the respective intensity segment per
analysis. E Upper left: ranked median protein intensities in different data analyses.
Others: ranked protein intensities in 1-ng replicates (R1 - 7) after 10x DIA-ME ana-
lysis. Three high- and medium-abundance cytoskeleton proteins (yellow) and three
low-abundance cell cycle-related proteins (red) shown, the latter only identified in
DIA-ME analysis. Source data are provided as a Source Data file.

comparison to the initially performed individual analysis in DIA-NN
and Spectronaut, respectively, and was primarily caused by the re-
extraction of features that were additionally identified from ME files
(Supplementary Fig. 3). We ranked protein groups based on their
reported intensities and demonstrated that additional ME-derived
identifications also considerably contributed to an improved data
completeness in DIA-ME analysis (Fig. 1D). Dividing the abundance
range into equally sized bins, we further revealed that newly identified
proteins were found across the entire scale, but mainly helped to
reduce missing values in the low intensity area, thereby increasing data
completeness in the two lowest bins from 35.0% to 77.2% and from 8.1%
to 52.8%, respectively (in comparison to MBR alone). Moreover, DIA-
ME-enabled identification of low-abundance proteins led to an
expansion of the protein dynamic range by a full order of magnitude
(Fig. 1E). This observation was accompanied by the consistent quan-
tification of several low-abundance cell cycle-dependent proteins that
were not identified using MBR alone. Notably, we recognized that the
average number of identified proteins saturated for the DIA-ME ana-
lysis at 10-ng (i.e. 10x MEs) in DIA-NN (Fig. 1C), which suggests that
identifications cannot be increased infinitely, and that identity transfer

does not occur randomly (explored in more detail below). Analysis of
the same data by Spectronaut showed very similar trends, although
overall identifying fewer proteins (Fig. 1C). Here, the most notable
observation was the drop in protein identifications when using 100x
DIA-ME. We did not further investigate this phenomenon, but assume
that feature matching might be impeded in this software due to the
large differences in signal intensities. Collectively, our results show
that the concept of extensive feature matching in DIA-ME benefits low-
input data by decreasing missing values, augmenting sensitivity, and
resulting in enhanced proteome coverage.

DIA-ME improves qualitative reliability in low-input data
Encouraged by these results, we aimed to assess the reliability of
protein identification and feature matching in DIA-ME. Since the vast
majority of E. coli peptides are not shared with the human proteome,
we evaluated coverage of species-specific proteomes in non-spiked 1-
ng samples before and after they were co-analyzed with E. coli-con-
taining ME samples. In this way, we used the E. coli peptides in ME
samples as a matching resource to estimate erroneous feature
assignment (Supplementary Data 2 and 3).
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Fig. 2 | Low FPR and reliable feature matching in DIA-ME. A False positive rate,
i.e. percentage of detected E.coli peptides, in non-spiked 1-ng H.sapiens samples
(N=7) for different types of data analysis and DIA software. Analyses without
spiked samples, i.e. without entrapped matching, are indicated in green and grey
(light-: without MBR, dark-: MBR), while co-analyses with spiked samples are indi-
cated in blue and brown for DIA-NN and Spectronaut, respectively. The shade of the
color indicates the E.coli spiking ratio. Error bars are shown as mean + sd.

B Receiver operating characteristics (ROC) of default g-value filters in DIA-NN (left)
and Spectronaut (right) for data analyses involving spiked ME samples with 10%

spiking ratio (DIA-NN: light blue (1:1) to dark grey (100x DIA-ME), Spectronaut: light
brown (1:1) to black (100x DIA-ME)). Areas under ROC (AUROC) are indicated in
parentheses, while the diagonal line represents a random classification. C False
transfer rate, i.e. percentage of E.coli peptides among identifications that were
transferred by matching, in non-spiked 1-ng H.sapiens samples (N = 7) for different
types of data analysis and DIA software. Rate was set to 100% when fewer H.sapiens
peptides but more E.coli peptides were identified after matching. Color-coding as in
(A). Error bars are shown as mean + sd. Source data are provided as a Source
Data file.

We first assessed species-specific identifications in the previous
analyses and determined the collective false-positive rate (FPR) of
E.coli peptides (Fig. 2A). Using an entrapment approach by combining
a human and E.coli fasta file, we found reasonably low FPRs of 0.2% and
0.06% in DIA-NN and Spectronaut, respectively, for the library-free
analysis of individual raw files. While samples in this analysis did not
contain E.coli peptides, the number of false positives increased when
they were co-analyzed with spiked samples. In the experiment of
equivalent input amounts (i.e. 1:1), this led to the FPR reaching up to
0.57% in Spectronaut (Fig. 2A), which corresponded to around 1.4%
false positives on protein level (Supplementary Fig. 4A). This obser-
vation has important practical implication as it represents the error
susceptibility of matching among multiple low-input samples, which is
standard in most studies. Furthermore, Spectronaut’s ability to cor-
rectly assign features was dependent on the data provided for
matching, since the FPR scaled with the spiking ratio (Fig. 2A). In
practice, this might lead to problems if the proteome composition
differs substantially between experimental conditions, e.g. when
comparing different cell types. In contrast, DIA-NN displayed con-
sistently low levels of false-positive identifications on peptide and
protein level (Fig. 2A and Supplementary Fig. 4A). Remarkably, the
application of DIA-ME did not lead to an increased FPR and showed a
maximum of 0.19%, irrespective of the ME ratio (Fig. 2A). Especially in
comparison to individual analysis of raw files (restricted to first pass),
these observations suggest that the underlying matching process
(second pass) is considerably less controlled in Spectronaut than in

DIA-NN. Moreover, it underscores that joint analysis of low-input and
higher peptide amount samples does not compromise protein iden-
tification quality in the context of DIA-NN. Here, default filtering suf-
ficed to obtain protein-level FPR below 1% using DIA-ME
(Supplementary Fig. 4A), while Spectronaut’s FDR control was affected
upon the presence of ME samples, and we therefore reinforced the
run-specific protein g-value cutoff from 5% to 1% to account for the
biased global g-value (PG.Qvalue) (Fig. 2B). However, we still observed
more than 1% false positives for the application of DIA-ME, which might
be further addressed by changing the filter of the peptide-level PEP
score in this software (Supplementary Fig. 5). Interestingly, we did not
observe a similar effect on the respective global g-values (Lib.Q.Value
& Lib.PG.Q.Value) in DIA-NN (Fig. 2B), however, a moderate cutoff for
the run-specific protein g-value (PG.Q.Value; not default) might further
reduce false-identifications without sacrificing true positives (sensi-
tivity) (Supplementary Fig. 4B). To estimate the resulting rate of
erroneous feature matching in DIA-ME, we assessed the proportion of
E.coli peptides among newly identified peptides in HeLa samples after
matching (false-transfer rate (FTR)) (Fig. 2C). Using Spectronaut, we
found elevated FTR, incorrectly transferring between 0.7 and 1.3% of
peptides in conventional co-analysis of equal input amounts (i.e. 1:1)
(Fig. 2C), which translated to up to 9% of transferred protein identifi-
cations (Supplementary Fig. 4B). In comparison, DIA-NN displayed
consistently moderate FTRs of 0.1-0.45% in 1:1 and only up to 0.2%
across DIA-ME analyses (Fig. 2C). The observation that this is the case
even when matching the 1-ng HeLa sample to 100-ng ME samples that
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contain 20% E.coli peptides indicates high specificity in the matching
process that is resilient to the presence of highly abundant interfering
peptides. Contrarily, the majority of transferred peptides falsely ori-
ginated from the E.coli proteome for 100x DIA-ME in Spectronaut
(Fig. 2C), even though the total number of matched features were
minor in this analysis (Fig. 1C). Hence, the addition of MEs in Spec-
tronaut needs to be carefully limited to 10x DIA-ME to achieve optimal
proteome coverage and high matching confidence. Interestingly,
however, we observed an apparent decline in FTR when employing up
to 10x DIA-ME in both software tools (Fig. 2C). Reduced FTR implies
that the better spectral quality in MEs potentially facilitates matching
in low-input data when compared to regular MBR among equal inputs.
Hence, we not only established that DIA-ME leads to an expanded
proteome coverage, but also enhances the fidelity of feature matching
in low-input data when co-analyzed with MEs.

Precise and accurate quantification with DIA-ME

After successfully showing confident protein identification driven by
DIA-ME, we next probed the quality of protein quantification using this
concept in DIA-NN. Since normalization is crucial for reliable

quantification by compensating for differences between injected
peptide amounts, we removed rows from the DIA-NN report that
contained peptides identified in ME samples before re-normalizing our
datasets. Next, we examined different ways of data normalization for
low-input DIA data, including MaxLFQ from the R package of DIA-NN?°,
ig normalization® and the recently published directLFQ package in
Python*’. Remarkably, utilizing the output of DIA-NN resulted in
insufficient quantitative results for low-input data, while directLFQ
showed the highest accuracy among the tested normalization strate-
gies (Supplementary Fig. 6A) and it was therefore selected for the
following analysis.

To evaluate the resulting protein quantities, we calculated the
coefficient of variation (CV) of protein groups as a measure of the
variability within different experiments (Fig. 3A). Using directLFQ
normalization, we found similar distributions in conventional MBR
and DIA-ME analysis with median CV values between 0.16 and 0.19.
The slightly higher CVs in DIA-ME experiments may be attributed to
the additionally identified proteins, which are generally of lower
intensity and are therefore more difficult to quantify precisely
(Fig. 3B). However, reassuringly, CVs of newly identified proteins
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Fig. 3 | Stable precision and accuracy in protein quantification using directLFQ
normalization. A Violin plot of human protein CVs in 1-ng samples (N=7) with
(dark green) and without MBR (light green) on the left and after matching against
1-ng (1:1), 5-ng (5% ME), 10-ng (10x ME) and 100-ng (100x ME) samples on the right.
Violins are colored in blue shades according to the spiking ratio in ME samples.
Black boxes in the violins show the dispersion of values between the first and third
quartile with the white line representing the median of the dataset. Whiskers and
violins show the entire range from the minimum to the maximum data point.
Number of proteins in each analysis indicated beneath violins. B Scatter plot of
human protein CV values across 1-ng replicates (N = 7) dependent on their reported
abundance for different types of data analysis (only shown for 10% spiking). White:
proteins already identified in MBR analysis; blues and dark grey: proteins

Deviation Deviation

exclusively found using DIA-ME. Number n of proteins per analysis indicated.

C Pearson correlation heatmap within and among different types of data analysis.
Correlations to conventional MBR analysis are framed. Range of observed corre-
lations in DIA-ME analyses highlighted on the top. D Principal component analysis
localizing individual replicates from all performed searches in a two-dimensional
coordinate system. Data analysis with and without MBR (light-) colored in green,
and DIA-ME analyses illustrated in blue shades and dark grey. E Density plot
showing the deviation from expected ratios in MBR and DIA-ME analyses for
H.sapiens (blues, inverted density) and low-abundance E.coli proteins (greens).
Total number n of proteins with at least one ratio in the respective analysis indi-
cated. Source data are provided as a Source Data file.
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scaled very similar with their abundance when compared to proteins
that were already identified by conventional MBR, testifying to
equivalent consistency in the quantification process. As anticipated,
Pearson correlations of protein quantities across all previously per-
formed experiments showed enhanced quantitative correlation with
activated matching, surpassing individual analyses (Fig. 3C). Inter-
estingly, the application of DIA-ME with varying ME input amounts
did not alter this observation and consistently displayed outstanding
replicate correlations ranging from 0.95 to 0.99. Moreover, DIA-ME
results exhibited strong inter-correlations and aligned with MBR
results (indicated by the framed column in Fig. 3C). This finding is
further substantiated by the results of the principal component
analysis (PCA), revealing cohesive clustering of replicates from the
same experiment and with results from MBR analysis (Fig. 3D).
Low quantitative variation and remarkably strong correlation both
suggest that highly precise protein quantification is maintained
in DIA-ME.

To investigate whether DIA-ME affects quantitative accuracy, we
assessed if E.coli spiking ratios were reflected by relative protein
quantification within our spiked 1-ng samples (Supplementary Data 4).
Using maxLFQ intensities from DIA-NN, we noticed that protein
quantities were estimated inaccurately already when analyzed by
conventional MBR (Supplementary Fig. 6A), while protein intensities
increased uniformly when samples were co-analyzed with higher input
ME samples (Supplementary Fig. 6B). Once we used raw peptide
intensities and performed protein quantification in the DIA-NN R
package, this effect was reversed, indicating that it is caused by the
internal peptide normalization in DIA-NN, however, did not lead
to accurate quantification (Supplementary Fig. 6A). Meanwhile, re-
normalizing peptides by directLFQ solved both issues and resulted in
relative E.coli quantities that aligned with their expected ratios after
MBR analysis (Supplementary Fig. 6A, B). Remarkably, using this nor-
malization, we found that median accuracy was unaffected even for
the quantification of +34% human and +43% E.coli newly identified
proteins after 10x DIA-ME analysis (Fig. 3E), testifying the validity of
this method. Not surprisingly, however, we also noticed an increased
dispersion around the expected value, resulting from the low abun-
dance of additional identifications. Hence, our findings emphasize the
importance of normalization for the analysis of low-input DIA data in
general, but also for the co-analysis of samples of different input
amounts. Consequently, we recommend removing peptides that were
identified in ME samples from the DIA-NN report before performing
directLFQ normalization as a downstream procedure after DIA-ME
analysis (workflow illustrated in Supplementary Fig. 6C). Collectively,
the quantitative analysis of the DIA-ME approach has verified that
precision and accuracy can be maintained in the presence of higher
input samples, while obtaining significant improvement in proteome
coverage.

DIA-ME enables in-depth analysis of single-cell-like input U-2 OS
cells upon IFN-y treatment

Having thoroughly tested the performance of DIA-ME in defined
benchmark samples, we next aimed to evaluate its benefits for low-
input quantities that are equivalent to single cells, and in particular, to
investigate if DIA-ME improves the ability to detect proteome differ-
ences between such samples. To this end, we evaluated if DIA-ME can
recapitulate the effect in human osteosarcoma cells (U-2 OS) that were
treated with Interferon gamma (IFN-y), an extensively characterized
model to study cellular immune response via JAK/STAT signaling
(reviewed in refs. 41-43).

As a starting point, we first generated a reference dataset in a
conventional bulk proteomics analysis using 200-ng peptide
injections from U-2 OS cells at four time-points during IFN-y treat-
ment (Supplementary Data 5). Among more than 5,000 identified
proteins (Supplementary Fig. 7A) that were quantified with high

reproducibility (Supplementary Fig. 7B), we found several proteins to
be differentially regulated at distinct time-points (Supplementary
Fig. 7C). While the overall effect of IFN-y on U-2 OS cells was modest,
several proteins indicated strong responses to the treatment with the
most pronounced effect on the proteome after 18 h (Supplementary
Fig. 7B) and clear distinction between treated and control samples in
PCA analysis (Supplementary Fig. 7D). Cluster analysis revealed
multiple known IFN-y-responding proteins, showing gradual and
strong upregulation over 24 hours of treatment (Supplementary
Fig. 7E). For instance, this cluster contained PMSBS, PSMB9 and
PSMBI10, the three distinguishing members of the IFN-y-induced
immunoproteasome***¢, as well as TAP1/2 and TAPBP that translo-
cate peptides produced by the immunoproteasome to the endo-
plasmic reticulum (ER) for loading onto the nascent MHC class |
receptor (B2M and HLAs) (Supplementary Fig. 7F). Moreover, the
immunological reaction was reflected by rapid induction of JAKI and
STAT1 (but not STAT2) (Supplementary Fig. 7G), while other path-
ways, such as mTOR-mediated signaling, are usually activated at a
later stage of an interferon treatment*. Consequently, over-
representation analysis of upregulated proteins after 24 h showed a
clear enrichment of immunologically related processes, including
response to IFN-y (Supplementary Fig. 7H). Hence, these data show
that the mild proteome response of U-2 OS cells to IFN-y is detectable
in a bulk experiment, identifying known players of the antigen pro-
cessing and presentation pathway.

We next repeated the IFN-y treatment experiment, however now
using the equivalent of single-cell inputs in a DIA-ME approach. To this
end, we collected cells at six time-points during IFN-y treatment over
the course of 24 h from three independent cell cultures (Fig. 4A), and
used triplicate injections of 200 pg per sample, the estimated protein
amount of a single U-2 OS cell. For matching purposes, we moreover
performed single-shot injections of all six time-points and cultures
with peptide input amounts of 1, 2 and 10 ng (i.e. 5%, 10%, and 50x MEs),
respectively, which we then co-analyzed with our 200-pg samples
using DIA-NN.

We used the two extreme time-points (0 h+24 h) as matching
resource for the following analysis (Supplementary Data 6), and
increased the average number of identified proteins per 200-pg
sample from 1,872 in conventional MBR to 2,594 using DIA-ME
(+39%) (Fig. 4B), while using other ME time-point samples did not
further improve this result (Supplementary Fig. 8A). Interestingly,
this was achieved with 10x ME samples and did not further increase
with 50x MEs. Since we similarly observed saturation with the 10x ME
samples in the previous experiment (Fig. 1C), we conclude that the
optimal amount of MEs is ratio-dependent rather than being deter-
mined by the absolute protein amount in the MEs. Analysis of 200-pg
samples with 10x DIA-ME comprised a total of approx. 4,200 protein
identifications (Fig. 4B), among which 75% were found in at least
one replicate per time-point (Supplementary Fig. 8B)), indicating
improved proteome coverage and data completeness. The resulting
dataset contained more than 99% of the identifications that were also
found in MBR, while MBR covered only 53% of proteins identified by
DIA-ME (Fig. 4C), effectively leading to an expansion of the dynamic
range (Fig. 4D). Crucially, DIA-ME also dramatically increased the
number of peptides per protein (Fig. 4E, Supplementary Fig. 8C and
D), providing a stronger basis for protein quantification. Indeed, the
DIA-ME dataset displayed great quantitative alignment, exhibiting
Pearson correlations between 0.88 and 0.99 across time-point and
biological replicates (Fig. 4F), while detecting slightly better corre-
lation among earlier and later time-points. This observation is also
reflected by the identification of two distinct clusters of earlier and
later time-points by PCA analysis (Fig. 4G), indicating changes in the
proteome composition over the course of the experiment. Taken
together, these data show that DIA-ME provides enhanced proteome
coverage in single cell-like (200 pg) samples, benefiting from ME
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Fig. 4 | DIA-ME improves proteome coverage in IFN-y treated U-2 OS cells.

A Experimental scheme of IFN-y treatment and bulk preparation of U-2 OS cells in
the DIA-ME workflow. Six time-points from three biological replicates were col-
lected and samples were diluted to the indicated injection amounts. Three 200-pg
injections (blue) and single-injections of 1-10 ng (ME samples, green) per time-
point and biological replicate resulted in 108 runs. Obtained files were co-analyzed
by DIA-ME in DIA-NN. B Total (greys) and average protein groups (blues) identified
in 200-pg samples after co-analysis with 1-ng,% 2-ng'® and 10-ng*>* MEs compared
to MBR analysis without references samples. Individual protein identifications per
sample indicated as grey dots. MEs were derived from control samples before

(0 hours) and after 24 h treatment. C Venn diagram of identified protein groups in
MBR (light blue) and 10x DIA-ME analysis (blue). Overlap (Szymkiewicz-Simpson)

and Jaccard index are given as a measure of the similarity of both populations (see
methods). D Ranked median protein group intensities for MBR (white) and DIA-ME
analysis (blue). E Joint plot (center) of histogram distributions (top and left) of
average peptides per protein identified in MBR (y-axis, light blue) and DIA-ME
analysis (x-axis, blue). The scatter represents proteins identified in both analyses
with their color showing the ratio of identified peptide numbers, indicating higher
identifications in MBR (blue) or in DIA-ME (red). Peptide number equality (ratio of 1)
shown as black line. F Pearson correlation heatmap of time-point samples (R1-R3:
biological origin), showing correlations from yellow (low) to dark blue (high).

G Principal component analysis of time-point samples after 10x DIA-ME analysis.
Control samples (0 h) shown in light green and treated samples shown in blue
shades. Source data are provided as a Source Data file.

samples that are as small as two nanogram, while exhibiting highly
reproducible quantification.

To reveal the specific effect of IFN-y and compare the findings to
our reference dataset (Supplementary Fig. 7), we investigated differ-
ential protein expression at a depth of more than 3,000 proteins per
time-point and detected significant up-regulation of multiple proteins
after 24 h (Fig. 5A). As in the bulk (200-ng) samples (Supplementary
Fig. 7C), this comprised STATI, showing the induction of JAK/STAT-
mediated signal transduction, and the MHC class | molecules HLA-A/B/
C and B2M. Remarkably, the consistent quantification in DIA-ME ana-
lysis resulted in similar p-values compared to MBR results (Supple-
mentary Fig. 8E), while it enabled the quantification of 33.5% proteins
of the total dataset and of 22.9% of known IFN-y responders (increase
of around 50% and 30%, respectively) (Fig. 5A, C). In this way, DIA-ME
allowed the additional identification of low-abundance proteins with
high significance, thereby covering the induction of TAP2 and mTOR
(Fig. 5A). Notably, the proteins whose expression could now be quan-
tified over time (Fig. 5D, E), showed great similarity with our findings
from 200-ng sample analysis (Supplementary Fig. 7F). For instance, we
observed gradual upregulation of TAP1/2, TAPBP and STATI, which
also grouped together with HLA-A and -C in a hierarchical cluster
analysis (Fig. 5B). This cluster also contained calreticulin (CALR), a
chaperone described to mediate the peptide loading process of TABP
to the MHC class 1 complex” and the transmembrane protein
CD40, which acts a mediator in the interaction of antigen-presenting
cells with various immune cells**. Furthermore, one of the strongest

upregulated proteins was WARSI (Fig. 5A), a tryptophanyl-tRNA syn-
thetase that is known as a target of IFN-y signaling'™.
We also recognized changes in the proteasome and found, as in the
bulk data, the apparent restructuring of the 20S core particle by down-
regulation of PSMB5 to PSMB7, and concomitant upregulation of their
alternative subunits PMSB8 to PSMBIO that characterize the
immunoproteasome* ¢ (Supplementary Fig. 8F). Accordingly, over-
representation analysis of upregulated proteins revealed the sig-
nificant enrichment of several immuniologically relevant processes,
including the signaling of IL6/JAK/STAT3, DNA repair and the under-
lying response to IFN-y (Fig. 5F). Strikingly, DIA-ME analysis increased
the size of enriched terms covering more proteins from the same
processes than in MBR. It even enriched new terms that were present in
our previous bulk analysis (cf. Supplementary Fig. 7H), leading to an
overall set that was much more similar to that of the higher input
sample. This finding complements our previous result that quantitative
accuracy of additional identifications is maintained in DIA-ME analysis
(Fig. 3C), therefore showing that their gain contributes the information
retrieval to make biological inferences. Collectively, these data
demonstrate that DIA-ME not only improves proteome coverage in
samples of exceedingly low input, but especially that it allows quanti-
fication of proteins that underlie the biological process at stake. Of
note, these proteins were quantified from a 1000-times lower input
(200 pg) than the bulk experiment (200 ng), yet from a proteome
whose coverage was only reduced by less than half (cf. Fig. 4B and
Supplementary Fig. 7A).
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Fig. 5 | Exploration of IFN-y-induced immune response from the enhanced
analysis of 200-pg samples. A Volcano analysis of two-sided Student’s t-test
results from 200-pg time-point samples after IFN-y treatment and the respective
0 h control. Number n of differentially expressed proteins indicated. Proteins
whose expression could only be observed in DIA-ME analysis are highlighted in
blue, proteins described in IFN-y-response are encircled in yellow. B Heatmap of
known IFN-y-responsive proteins after hierarchical clustering by Euclidean dis-
tance. Missing values were imputed by k-nearest neighbors. Colors indicate the
quantitative changes compared to the protein’s median across all samples by
Z-score. The black box outlines a cluster that shows gradual increasing Z-score over
time. C Pie charts showing the proportional origin of differentially expressed
proteins from A. Proteins already identified by MBR shown as dark grey wedges and
exclusive identifications by DIA-ME shown as blue wedges. The small pie displays

MAPK3;MAPK1

the respective proportions for known IFN-y-responsive proteins. D Heatmap of
significantly up- and down-regulated proteins from panel A (p-value < 0.05, log,
fold change > 0.95), showing their regulation over the course of treatment. Proteins
indicated in blue were only found in DIA-ME analysis. E Line plot of selected pro-
teins from D, showing their collective up-regulation over the course of treatment.
F Gene set enrichment analysis of proteins up-regulated after 24 hours (log, fold
change > 0.58) using MSigDB hallmarks. Bars on the right represent the enrichment
degree, while their colors specify the enrichment’s FDR. Bars on the left overlay the
size of the enriched term and are depicted for MBR (white) and DIA-ME (blue)
analysis with numbers indicating the additional contribution of DIA-ME. Bold terms
indicated equivalent enrichment from the 200-ng bulk analysis (see Supplementary
Fig. 7H). Source data are provided as a Source Data file.

Single-cell proteomic analysis by DIA-ME reveals protein co-
expression and co-existence of cell states

Observing the benefit of DIA-ME for low-input proteomics, we next
aimed to assess its performance in the analysis of actual single cells. We
therefore used 24 hours IFN-y-treated and control U-2 OS cells, and
obtained a total number of 143 individual cells by FACS sorting. In
addition, we collected instances of 10 cells to serve as ME samples
during subsequent data analysis (Supplementary Data 8).

According to our explanation of the operating principle of DIA-ME
(Fig. 1A), a small number of MEs should provide sufficient peptide
information to the search to analyze in theory an unlimited number of
single cells. To verify this hypothesis, we analyzed different numbers of
single cells with a constant number of 10-cell samples, and found
consistent protein identifications per cell irrespective of how many
cells were involved in the search (Supplementary Fig. 9A), confirming
the scalability of the DIA-ME approach. When we involved all 143 cells,
analogous to our findings from bulk samples, co-analysis with 10-cell
samples improved the proteomic depth from 496 to 575 median
protein groups per individual cell (+16%) (Fig. 6A) and identified a total
of 1553 proteins (+41%) (Supplementary Fig. 9B). Although proteome
coverage was modest on an absolute scale, as sample preparation was

conducted in-plate without further optimization, it fully served to
demonstrate the benefit of DIA-ME, causing an expansion of the
detected dynamic range in comparison to what would have been
possible by conventional MBR analysis (Fig. 6B). In particular, DIA-ME
also led to a higher peptide coverage per protein (Fig. 6C, D), facil-
itating their quantification and underpinning the advantage of this
analysis for individual cells. Most important for the analysis of such low
input amounts, we did not identify a single protein from the equivalent
preparation of empty FACS droplets, nor in the blank runs in between
single-cell measurements (Supplementary Fig. 9C), testifying the
absence of contaminations and carryover in this experiment.

To investigate the proteome effect of IFN-y and reduce the pre-
sence of missing values, we only retained data where at least 500
proteins per cell were identified after DIA-ME analysis (90 cells
remained). Performing a differential expression analysis, we found that
several of the IFN-y-induced proteins observed in bulk and low-input
samples were also significantly upregulated in single-cell data (Sup-
plementary Fig. 9D). This comprised TAP1, TAPBP, HLA-A and HLA-C,
which drove the cluster separation between untreated and treated
cells in PCA analysis along the principal component 2 (Fig. 6E).
Accordingly, these proteins displayed higher expression levels in
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Fig. 6 | DIA-ME-assisted analysis of individual U-2 OS cells reveals co-existence
of metabolic states. A Protein groups identified per individual cell in control (left)
and 24 h IFN-y-treated cells (right). Data were analyzed using conventional MBR
(white) or DIA-ME (blue) using 10-cell MEs. The number N of single cells per con-
dition are indicated. B Histogram of protein intensities for MBR (white) and DIA-ME
analysis (blue). Curves calculated by Kernel density estimation. C Histogram of total
identified peptides per protein for both analyses (white: MBR; blue: DIA-ME).

D Scatter plot of log,-transformed average peptide numbers per protein identified
in MBR (y-axis) and DIA-ME analysis (x-axis). Colors represent the ratio of peptide
identifications between the two analyses, effectively showing higher protein
sequence coverage in MBR (blue) or in DIA-ME (red). Equal peptide numbers (ratio
of 1) represented by a black line. E Principal component analysis (PCA) of control

and IFN-y-treated cells after DIA-ME analysis based on known IFN-y-responsive
proteins (left). The two main principal components can be explained by the indi-
cated processes on the right (Orange: PC1 - oxidative stress response proteins;
Blue: PC2 - IFN-y response proteins). Colors specify the degree of expression per
cell ranging from blue (low) to red (high) for each of the indicated proteins. F Left:
hierarchical cluster by Euclidean distance among individual cells (columns) and
known IFN-y-responsive proteins (rows). Colors in the heatmap indicate quantita-
tive changes compared to the protein’s median value across all cells by Z-score.
Frames show two identified clusters (C1, C2), enlarged on the right. Color bar on the
bottom indicates whether the column originates from a control (blue) or IFN-y-
treated cell (orange). Source data are provided as a Source Data file.

treated cells, however, we observed a notable disparity in protein
expressions within each condition, resulting in an almost 10-fold range
of abundances among treated cells in case of TAP1 and TAPBP (Sup-
plementary Fig. 9E). Interestingly, protein levels in some of the cells
were as low as in untreated cells, suggesting differences in their
responsiveness, or that the attained expression levels depend on the
initial level in the untreated cell.

To discern the distinct patterns of protein expression among the
individual cells, we conducted a hierarchical clustering analysis. We
found two protein clusters, one of which comprised structural and
catalytical subunits of the 20S proteasome and metabolic enzymes like
catalase (CAT) and GAPDH (cluster C1), while the other contained

proteins of the antigen presentation pathway, such as TAP1/2, TAPBP
and HLA-C (cluster C2) (Fig. 6F). As expected from the previous ana-
lyses, cells in cluster C2 grouped together according to their experi-
mental condition, showing upregulation of the respective proteins in
treated cells, however, we observed that proteins in cluster C1 divided
into two groups regardless of the treatment. Interestingly, the reg-
ulation of these proteins turned out to drive the principal component 1
of our initial PCA analysis (Fig. 6E) that constitutes the main process to
separate the cells. Since these proteins are e.g. involved in oxidative
stress response (GAPDH, CAT, ARGI) this observation indicates that
cells with different metabolic activity co-exist in the initial cell popu-
lation, yet such diversity does not dictate the responsiveness to IFN-y.
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Moreover, these data show that GAPDH differed 8-fold in expression
between individual cells (Fig. 6E), calling into question its conventional
status as a housekeeping protein. Indeed, it was found that GAPDH
drastically differs in expression between cell types, both on protein®
and transcript level®, and has even been shown to be heterogeneously
expressed among individual cells using single-cell RNA analysis™**.
As we aimed to further explore the existence and degree of pro-
tein co-expression within the same cell, we performed a co-variation
analysis across proteins that were identified in >20 cells, irrespective of
the treatment with IFN-y. This has the potential to provide insight into
the correlation in function or regulation of expression that cannot be
obtained from bulk populations and that is unique to single-cell ana-
lysis. Among 570 x 570 protein pairs, this revealed two clusters that
showed high correlation within each cluster while showing inversed
correlation between them (Fig. 7A), encompassing 111 proteins (Sup-
plementary Fig. 10A and Data 9). The strongest co-varying proteins
(Supplementary Fig. 10B) include several complex-forming proteins,
comprising the 20S proteasome subunit (PSMA4/5/6), the prohibitin
complex (PHB1/2), ATP synthase F1 subunit (ATP5F1A/B), and the
Hsp60-Hspl0 chaperonin complex (HSPD1/E1), but also functionally
related proteins, e.g. the peroxiredoxins PRDX1/2, and the adherens
junction proteins JUP and DSP (Fig. 7B). Moreover, we observed strong
anti-correlation between various protein pairs of diverse function

(Supplementary Fig. 11), suggesting mutually exclusive expression.
Overrepresentation analysis of the two clusters revealed com-
plementary cellular functions, showing the specific enrichment of
degradative processes in cluster Cl, such as the proteasome, DNA
damage response and apoptosis, and proliferative processes in cluster
C2, including glucose metabolism, TCA cycle, regulation of the mitotic
cell cycle and formation of ATP (Supplementary Fig. 10C). Given their
inverse correlation, this suggests the co-existence of cells in two
mutually exclusive metabolic states. Using network analysis, we fur-
ther demonstrate that a hub of proteasome proteins drives the cluster
harboring degradative processes, while the inversely related proteins
that connect both clusters may provide interesting examples to infer
novel functional relationships (Fig. 7C). For instance, GAPDH (glycer-
aldehyde 3-phosphate dehydrogenase) appeared to be the hub protein
in the network linking the mutually exclusive association between
specific proteins involved in glycolysis, TCA cycle, oxidative stress and
mitochondrial activity. GAPDH is a crucial enzyme in glycolysis, how-
ever, has recently been described to divert glycolytic flux into the
pentose phosphate pathway upon oxidation by intracellular hydrogen
peroxide (H,0,)*>*¢, making the cells tolerant to oxidative stress®.
Our data may thus be explained by the interplay between these
physiological processes including co-expression of GAPDH and PKM
(pyruvate kinase M1/2) with oxidative response proteins, such as CAT
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Fig. 7 | Focused analysis of protein correlation modules in single cells. A Co-
expression analysis by Pearson correlation of proteins identified in >20 cells
(n=570). Two identified clusters (C1 and C2) with strong internal correlation but
mutual anti-correlation are highlighted. B Individual expression levels per cell for
pairwise positively correlated proteins JUP (x-axis) and DSP (y-axis) (left panel), and
negatively correlated proteins PSMA6 (x-axis) and PHB2 (y-axis) (right panel).
Colors indicate control (blue) and IFN-y-treated cells (dark blue). Linear regression
by Pearson shown as dashed line with the respective correlation factor r indicated.
C Protein-protein interaction and protein-pathway interaction network, showing

relations within and between clusters C1 and C2 of A. The nodes of the network
represent the terms associated with indicated proteins (Red: cluster C1; Dark red:
cluster C2), and (undirected) edges represent interactions between proteins. Nodes
represent significantly enriched pathways, while nodes of similar function are
grouped by their color. D Co-expression analysis of proteins selected from (C)
showing inversely correlated expression of metabolic proteins between cells.
Proteins were assigned to processes by manual annotation as indicated. Source
data are provided as a Source Data file.
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and the peroxiredoxins PRDX1/2, resulting in reduced TCA and
mitochondrial activity (Fig. 7D), and could be the consequence of
detachment of cells, which is known to elevate endogenous oxidant
levels®®=®, In a related context, we observed that the expression of
cytosolic peroxiredoxin (PRDX)-1 and 2 anti-correlated with mito-
chondrial PRDX3 (Fig. 7D), showing different modes of expression
regulation of these isoforms, potentially related to their com-
plementary functionality in their respective sub-cellular locations.
Other examples are serine proteases SERPINAIL, -B3 and -B12 that
negatively correlate with SERPINH1 (Fig. 7C), suggesting mutually
exclusive expression to possibly regulate collagen formation. In
addition, we found that proteasomal proteins negatively correlate
with several dozens of other proteins (Fig. 7C), potentially indicating
enzyme-substrate relationships. These and many other observations
from co-expression analysis exemplify hypotheses enabled by single-
cell proteome analysis, opening exciting novel avenues to investigate
causality of these interactions.

In conclusion, we applied DIA-ME to successfully explore pro-
teome dynamics in single cells upon IFN-y treatment, using 10-cell
samples as matching resource to improve proteome coverage. The
concept is readily scalable to larger cell numbers, and is extendable to
any other cell types and treatments to investigate proteome response
and protein co-variation in other biological contexts.

Discussion
In this study, we introduced DIA-ME as an experimental approach to
increase proteome coverage and completeness in low-input and
single-cell proteomics. DIA-ME employs a higher-input reference
sample that is co-analyzed with low input samples of interest, and was
designed to exploit the capabilities of DIA analysis tools such as DIA-
NN and Spectronaut. In particular, we refer to the reference sample as
matching enhancer because it serves to generate an augmented
internal library in DIA analysis software for improved matching to
features from low-input data, resulting in an increased number of
protein identifications. This approach is easy to implement in existing
proteomic pipelines as it just requires the analysis of a small set of
higher input amounts along with the samples of interest. We deter-
mined that an ME sample containing 10x higher input (e.g. 10 cells
along with single-cell samples) suffices to considerably increase pro-
teome coverage and data completeness. In this regard, DIA-ME is
advantageous over library-based DIA applications that require time-
intensive generation of spectral libraries. Furthermore, DIA-ME makes
economic use of potentially scarce biological material since only a few
ME samples need to be analyzed along with any desired number of low
input samples. Conceptually even one ME sample would be sufficient
to introduce an adequate number of additional features to the search,
however, slightly more replicates could be used to account for
potential missing values, as we did in this study. In this sense, MEs of
extreme time-points during IFN-y treatment resulted in higher pro-
teome coverage than MEs of individual time-points, with equivalent
results when all time-points were used (Supplementary Fig. 8A). This
emphasizes that only a few MEs are required to cover the detectable
peptide space, in theory along with a limitless number of single cell
samples, making DIA-ME a highly scalable approach (Supplementary
Fig. 9A). This contrasts with the concept of carrier channels in TMT-
experiments, where a sample at 20-100x the amount of a single-cell
proteome should be added to every plex of 8 or 16 single cells.
Moreover, the amount needs be carefully tuned to account for ratio
compression and collection of sufficient number of ions to allow for
appropriate peptide quantification’. Thus, DIA-ME will be particularly
advantageous in scenarios where cells of interest are scarce or hard to
obtain, e.g. in clinical proteomics or developmental biology.

A crucial element of DIA-ME is its reliance on the feature matching
functionality as implemented in DIA data analysis tools, and therefore
we extensively evaluated the degree of false transfers, particularly in

scenarios where low and high input samples are co-analyzed (Fig. 2).
To this end, we used a two-proteome model and analyzed non-spiked
and spiked samples together to assess the fidelity of the MBR function,
as has been done previously for DDA in MaxQuant™. This revealed that
the quality both of precursor identification and identity transfer was
not affected in DIA-NN (FPR < 0.2% and FTR < 0.2%, respectively), even
when co-analyzing a 1-ng human sample with a 100-fold excess ME
sample that contains 20% (i.e. 20ng) E.coli peptides. Counter-
intuitively, FTRs even improved with increased size of the ME sample
(Fig. 2C), which we hypothesize is the result of better spectral quality
that enhances the matching process. Although we did not investigate
this further, spectral data obtained from MEs may be much more
similar to the data in low-input samples than to higher-input or even
deep-fractionated libraries®®®, which has been reported to promote
false discoveries due to the large query space®**. Indeed, we observed
that the average number of proteins does not increase with extensive
database size beyond 10x DIA-ME (Fig. 1B and Fig. 4B). Collectively,
these data show that the matching process in DIA-NN is resilient to the
presence of highly abundant interfering peptides, while effectively
discriminating false- and true-positive identifications. DIA-NN out-
performed Spectronaut in both aspects, which might be attributed to
an affected FDR control (Fig. 2B) and the lenient default filtering in
Spectronaut in case of low sample inputs and in the context of DIA-ME
(Supplementary Fig. 5). Meanwhile, it will be interesting to identify the
specific determinants in DIA-NN contributing to this observation, and
to potentially improve its performance even further by tuning para-
meters especially for single-cell applications, e.g. with regard to the
role of the TIMS dimension in diaPASEF data for the matching
algorithm?*, Until then, and as a practical implication, we found that
the (non-default) run-specific g-value in DIA-NN offered high specifi-
city discriminating false from true identifications (Supplementary
Fig. 4B) and we therefore suggest filtering low-input data additionally
at a moderate cutoff of e.g. 5%. Moreover, we recommend the use of
10x ME samples as they provide a good balance between increased
proteome coverage and consistent identifications, even though the
exact ratio may require further investigation.

With the notion that single-cell proteomics is still in its infancy,
applications are diversifying from analytical studies that verify the
ability to distinguish different cell types'®303*335% to experiments
that explore proteome changes induced by potent treatments such as
LPS stimulation®** or that investigate more subtle effects e.g. during
cell cycle* or in stem cell populations®. Herein, we applied DIA-ME to
investigate the proteome response to IFN-y, which only induces a mild
effect in U-2 OS cells as determined in a bulk experiment not limited by
sample input (Supplementary Fig. 7). When using low-input sample
amounts either from diluted cell extracts (200 pg peptides) or from
single cells, DIA-ME recapitulated the main observations of the bulk
experiment by quantifying the up-regulation of known IFN-y response
proteins, showing very similar time-resolved expression profiles (cf.
Supplementary Fig. 7G and 5E) and enriched gene sets (cf. Supple-
mentary Fig. 7H and 5F). This indicates that DIA-ME can detect biolo-
gically relevant consequences of mild treatments in single cells. Of
note, these results were reliant on proper normalization to ensure
unaffected protein quantification, where the recently published
directLFQ algorithm*® showed the best quantitative accuracy among
several tested normalization strategies (Supplementary Fig. 6A). The
ability of DIA-ME to study biological processes at the single cell level is
likely to be more pronounced with increased proteomic depth, e.g.
when using sample preparation protocols optimized for single cells,
and using more sensitive mass spectrometry technologies than those
used here.

Finally, in our data we observed many examples of proteins whose
expression was co- or anti-correlated within the same cell, indicating
the co-existence of different cell states within the population of U2-0S
cells (Fig. 7 and Supplementary Fig. 10). The ability to obtain such
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patterns of co-varying proteins is a major perspective of single-cell
proteomics to elucidate fundamental aspects that underlies hetero-
geneity within cell populations, to reveal regulatory processes in
protein expression, or to infer other functional relationships between
proteins’. This concept has been successfully used in bulk proteomics
to reveal novel functions of uncharacterized proteins”, but it has
greater potential when performed at the single-cell level, which does
not suffer from masking effects due to heterogeneity of cell popula-
tions. Indeed, this has begun to be explored in recent single-cell stu-
dies, observing co-regulation of proteins that can be rationalized from
their interaction in complexes’ or their complementary involvement
in energy metabolism®. In our data, we observed many instances of
proteins with inverse expression patterns, but with similar functions
(e.g. in glycolysis, oxidative stress, proteases), suggesting mutually
exclusive or complementary functionality. Although our data cannot
infer causality of these relationships, they provide novel hypotheses
that can be tested in future studies. From a systems perspective, it will
be interesting to understand if modules of co- and anti-correlated
proteins are maintained across different states of the same cell type, or
across different cell types. DIA-ME should provide a powerful
approach to conduct such studies in the future to increase our
understanding of proteome regulation at the single-cell level.

Methods

Preparation of E.coli peptides

Lyophilized E.coli K12 sample (Bio-Rad) was reconstituted in 50 mM
triethylammonium bicarbonate (TEAB, pH 8.5, Sigma-Aldrich) buffer
to a stock concentration of 1 ug/uL. 100 pg were incubated at 95 °C for
5min and subsequently worked-up by SP3”: a mixture of 50:50
carboxylate-modified Sera-Mag SpeedBeads type A and B (Cytiva) were
washed three times with ddH,0 (Barstead GenPure, Thermo Scientific)
on a magnetic rack and 1 mg of combined beads were added to the
E.coli sample. For protein aggregation, the suspension was filled up
with acetonitrile (ACN, Biosolve Chimie) to a concentration of 75% (v/
v) and incubated at RT and 800 rpm for 20 min. Afterwards beads were
rinsed twice with 1 mL 80% (v/v) ethanol (EtOH, VWR) and once with
800 uL ACN. During washing steps the suspension was homogenized
to ensure adequate bead-solvent interaction. In the end, beads were
air-dried for 2 min to get rid of ACN leftovers and resuspended in 30 uL
digestion buffer (50 mM TEAB, pH 8.5 +2 mM CaCl, (Sigma-Aldrich)).
Disulfide-bonds were reduced by 10 mM final concentration dithio-
threitol (DTT, Biomol) and incubation at 37 °C and 600 rpm for 45 min.
Next, bare cysteine residues were alkylated with 55mM final chlor-
oacetamide (CAA, Sigma-Aldrich) at RT and 600 rpm in the dark for
30 min. Finally, proteins were digested overnight at 37 °C and 800 rpm
using sequencing-grade modified trypsin (Promega) at a protein-
enzyme-ratio of 50:1. On the next day, the supernatant was transferred
to a fresh tube and the beads were additionally washed with 50 L 1%
(v/v) trifluoroacetic acid (TFA, Biosolve Chimie) in ddH,O at RT and
800 rpm for 5 min to improve peptide recovery. The obtained peptide
solution of pooled supernatant and washing fraction was subsequently
cleaned-up on SepPak cartridges (Waters). The column was prepared
according to the instructions of the manufacturer using 1 mL of ACN,
solvent B (50% (v/v) ACN in ddH,O + 0.1% (v/v) formic acid (FA, Bio-
solve Chimie)) and solvent A (ddH,0 + 0.1% (v/v) FA), respectively.
Peptides were loaded on top of the column and washed twice with1 mL
solvent A before being eluted twice in 200 pL solvent B. Purified pep-
tides were frozen at —80 °C, lyophilized in a freeze-dryer and after-
wards reconstituted in solvent A. The resulting peptide concentration
was determined in a colorimetric assay using bicichoninic acid (BCA)
(Pierce, Thermo Scientific).

Generation of two-species proteome model
Commercial HeLa S3 protein digest (Pierce, Thermo Scientific)
was reconstituted in ddH,O +0.1% (v/v) FA by gentle vortexing. For

preparation of spiked human samples, defined amounts of the HelLa
peptide standard were mixed with 5%, 10% and 20% (w/w) of prepared
E.coli peptides to final concentrations of 0.5ng/uL (N=7), 2.5 ng/uL
(N=3), 5ng/uL (N =3) and 50 ng/uL (N = 3) per spike ratio. In addition,
pure Hela peptide standard was diluted in ddH,0 + 0.1% (v/v) FAto a
final concentration of 0.5 ng/uL (N=7) (human-only).

Cultivation of U-2 OS cells and Interferon-gamma treatment
Human osteosarcoma epithelial cells (U-2 OS cell line) were cultivated
in DMEM high glucose medium (Gibco), supplemented with 2 mM L-
glutamine, 10% (v/v) fetal bovine serum (Gibco), and an additional
2mM GlutaMAX (Gibco). For the exploration of interferon gamma
(IFN-y) stimulation effects, U-2 OS cells underwent treatment with
50 ng/mL recombinant IFN-y (Cell Signaling). The cytokine was diluted
in 0.5% (w/v) bovine serum albumin (BSA, Serva).

In the context of preparing the time series experiment, cells were
cultured in 10-cm dishes in three biological replicates, and IFN-y
treatments were administered when the cell confluence reached 70%.
Cells were kept with the treatment for durations of 2 hours, 6 hours,
18 hours, and 24 hours. Additionally, distinct O-hour and 24-hour time
points were collected as controls.

After the respective incubation periods, the culture medium was
carefully aspirated, and the cells underwent two rounds of washing
with pre-warmed phosphate buffered saline (PBS, Sigma-Aldrich).
Adherent cells were detached by gentle scraping in 5 ml of PBS, and
subsequently centrifuged at 500 x g for 10 min. The resulting cell
pellets were collected, rapidly frozen, and stored at =80 °C, preserving
their integrity until their following preparation.

Preparation of proteomic samples

For bulk analyses of 200-pg and 200-ng injections, U-2 OS cells
obtained from cell culture (N=3) were thawed and lysed in 50 mM
TEAB, pH 8.5 (Sigma-Aldrich) buffer + 2% (v/v) Sodium dodecyl sulfate
(SDS, Bio-Rad). Proteins were denatured at 95°C and 600 rpm for
10 min before adding a final concentration of 2% (v/v) TFA (Biosolve
Chimie) to the lysate. The reaction was quenched after 1 min by neu-
tralizing pH with 3M tris(hydroxymethyl)aminomethan (Tris, Appli-
Chem) solution. Afterwards the lysate was sonicated for 15 cycles of
30 s ON/OFF at 10 °C using a Bioruptor (Diagenode) and subsequently
frozen at —80 °C. Prior to protein clean-up, the sample was thawed,
centrifuged at 18,000 x g to separate remaining cell debris and trans-
ferred to a fresh tube. A total of 20 ug protein per sample (determined
by BCA, Pierce Thermo Scientific) were employed in the SP3 protocol
described above using 200 g Sera-Mag SpeedBeads (Cytiva) and
200 uL of respective washing solutions. After digestion and sub-
sequent bead washing, the acidified peptide solution was cleaned-up
on self-packed StageTips™* accommodating four discs of Empore CI18
material (Merck Supelco). The material was prepared by consecutive
application of pure ACN (Biosolve Chimie), solvent B (50% (v/v)
ACN + 0.1% (v/v) FA (Biosolve Chimie) in ddH,0) and solvent A (0.1% (v/
v) FA in ddH,0). Peptides were loaded on top of the column and
washed twice with 1 mL solvent A, followed by elution in 100 pL solvent
B. Purified peptides were frozen at —80 °C, lyophilized in a freeze-dryer
and afterwards reconstituted in solvent A. The resulting peptide con-
centration was determined by BCA assay (Pierce, Thermo Scientific).

FACS sorting and preparation of individual cells

For our single-cell proteomics experiment, we utilized 24 hours
control and IFN-y-treated U-2 OS cells from the previously obtained
pellets. Cells were prepared by gentle trypsin digestion (0.25%) to
establish a homogeneous population of singularized cells. Approxi-
mately one million cells were diluted in 1.5 mL PBS (Sigma-Aldrich) and
immediately administered to the cell sorting via a BD FACSAria IlI
instrument (BD Biosciences), utilizing a 384-well plate configuration.
Default settings for optical filters and mirrors were employed to
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facilitate the detection of the scattered signals. Parameters such as
laser power, PMT-voltage settings, and gating were maintained at
constant level throughput the entire experiment. Single cells were
subjected to the sorting event using forward and side gating, while
non-viable and dimerized cells were excluded (FACS gating shown in
Supplementary Fig. 12). The sorting procedure was conducted at
ambient room temperature. Sorted single and ten cells were directly
collected in 2 uL of lysis buffer (50 mM TEAB, pH 8.5 + 0.025% (w/v) n-
dodecyl-B-D-maltoside (DDM) (Sigma-Aldrich)) per well, immediately
transferred to a chilled environment (ice-box), and subsequently pre-
pared by the following in-plate protocol: cellular proteins were dena-
tured at 70 °C and 600 rpm for 30 min, before adding 2 uL of 0.5 ng/uL
trypsin (Promega) in digestion buffer (50 mM TEAB, pH 8.5) to the
wells. Samples were incubated at 37°C and 600 rpm for 1h and
afterwards acidified by 2uL 0.5% (v/v) FA. The resulting volume of
around 5 pL was transferred to a 96-well autosampler plate and sub-
sequently injected into MS.

Data acquisition (LC-MS/MS)

Injections were performed in seven technical replicates for 1-ng sam-
ples (spiked and non-spiked) and three technical replicates for 5-ng,
10-ng and 100-ng spiked ME samples in the DIA-ME evaluation
experiment (total of 55 injections). For the 200-pg IFN-y experiment,
time-point samples® of individual cell cultures (N=3) were each
injected in three technical replicates, while 1-ng, 5-ng and 50-ng ME
samples were injected once per time-point (total of 108 injections).
The bulk 200-ng IFN-y experiment comprised four time-points from
three individual cell cultures, respectively, which were injected in one
technical replicate (total of 12 injections).

Desired peptide amounts were injected in 2L volume onto an
analytical column (lonOpticks Aurora Series, 25 cm x 75 um i.d. + CSI,
1.6 um C18) using an EASY-nLC 1200 system (Thermo Scientific). Pep-
tides were separated across a 15 min active gradient starting from 3.2%
(v/v) ACN concentration in ddH,O (Biosolve Chimie) + 0.1% (v/v) FA to
13.6% (v/v) in 7.5 min to 20.0% (v/v) in 3.5 min to 28.0% (v/v) in 4 min at
a flow rate of 300 nL/min and a temperature of 50 °C maintained by a
column oven (Sonation). The LC system was connected to a timsTOF
Pro mass spectrometer (Bruker Daltonics) via a nano-flow electrospray
ionization (nano-ESI) source (Captive Spray, Bruker Daltonics). Ana-
lytes were ionized at 1,500 V capillary voltage, 3.0 L/min dry gas and
180 °C dry temperature. MS data was acquired in diaPASEF mode. In
the TIMS, ions were accumulated to an IM constant 1/K of 1.7 V*s/cm?
and sequentially ramped from 1.3 to 0.75V*s/cm? over 100 ms in a
locked duty cycle. Subsequent MS1 scans were performed from 200 to
1,700 m/z, while only precursors with a mass ratio of 475 to 1,000 m/z
were considered for DIA window isolation. The range of 525 m/z was
covered by equally sized windows of 25 Th width and 0.15 V*s/cm?
heights, which were combined to a total of 8 DIA scans (Supplementary
Fig. 1A) and resulted in 0.95 s cycle time. Precursor fragmentation was
induced by IM-dependent collisional energies from 45eV at 1/K, of
1.3 V*s/cm? to 27 eV at 0.75 V*s/cm?. The following ion detection was
performed in high sensitivity mode for samples containing <50 ng
peptide amount. In case of the analysis of single cells (V=143) and 10-
cell ME samples (N =15), data was acquired from an injection volume of
5uL (entire sample) using the described method, but utilizing a flow
rate of 200 nL/min (total of 158 injections).

The analysis of conventional bulk samples (200 ng) was per-
formed on an Orbitrap Fusion Tribrid MS (Thermo Scientific) con-
nected to an EASY-nLC 1200 system (Thermo Scientific). This LC
system was configured in a trapping setup, comprising a Acclaim
PepMap 100 trapping column (2cm x100um i.d., 5pm 100A CIS,
Thermo Fisher Scientific) and a consecutive nanoEase M/Z Peptide
BEH analytical column (25 cmx 75 um i.d., 1.7 um 130 A C18, Waters).
Peptides were loaded onto the trapping column at constant pressure
of 800 bar, utilizing a total volume of 22yl ddH,0 +0.1% (v/v) FA.

Subsequently, peptides were separated in the analytical column along
a 87 min gradient starting from 2.4% (v/v) ACN concentration in
ddH,0 + 0.1% (v/v) FA to 6.4% (v/v) in 4 min to 8.0% (v/v) in 2 min to
25.6% (v/v) in 68 min to 40.0% (v/v) in 12 min to 80% (v/v) in 1min at a
constant flow rate of 300 nL/min and a temperature of 45°C main-
tained by a column oven (MonoSLEEVE, Analytical Sales and Services).
Peptides were introduced into MS via a Nanospray flex ion source
(Thermo Fisher Scientific) utilizing a Sharp Singularity nESI emitter
(ID=20 pm, OD =365 pm, L =7 cm, a =7.5°, Fossiliontech) connected
to a SIMPLE LINK UNO-32 (Fossiliontech). The emitter maintained a
spray voltage of 2.5kV, and the ion transfer tube capillary temperature
was set to 275 °C. Data was acquired in DDA mode using MS1 full scans
between 350 and 1500 m/z at a resolution of 120,000, and a maximum
injection time (IT) of 32ms with automatic gain control (AGC) of
3.0 x10°% The top 20 most abundant precursors were isolated for
fragmentations utilizing an isolation window of 2.0 m/z in the quad-
rupole, only allowing determined charges of 2-5. Dynamic exclusion
was to set 40 sec with a mass tolerance of 10 ppm. For MS2 acquisi-
tion, higher-energy collisional dissociation (HCD) was employed at 25%
and the resulting fragments were acquired with an AGC target of
1.0 x 10° or a maximum IT of 50 ms, covering a scan range from 200 to
2000 m/z in centroid mode.

Raw data processing

After MS acquisition, DIA raw data was processed using library-free
analysis in DIA-NN 1.8.0 or Spectronaut 18. We used a UniProtKB
sequence table (fasta-file) of Homo sapiens (downloaded in September
2021, 20,386 reviewed proteins) for in-silico digestion and added an
Escherichia coli K12 database (downloaded in April 2022, 4,529
reviewed proteins) in case of E.coli-spiked data. Configurations and
compositions of DIA raw data analysis are summarized in Supple-
mentary Data 1.

For analyses in DIA-NN, we used deep learning-based prediction of
spectra, retention times and ion mobilities and allowed a maximum of
two missed cleavage sites (one for single-cell analysis) per peptide. We
set peptide length range to 7-50 and precursor charge range to 2-4.
Protein isoforms were grouped according to their protein names from
fasta-files and we selected “any LC (high precision)” for precursor
quantification. In case of the analysis of single cells, we moreover set
the algorithm’s scan window to a value of 5 and MS1/Mass accuracies to
1.5e-05. For DIA-ME experiments, we combined raw files from low-
input samples and MEs in the search and activated the match-between-
runs (MBR) function. Analyses that are indicated as “MBR” did not
contain ME samples, however, also have the MBR setting activated,
whereas in analyses indicated as “Indiv”, raw files were searched indi-
vidually without allowing feature matching. All other settings
remained default, including data filtering at 1% precursor FDR.

For DIA-ME analyses in Spectronaut, we equivalently combined
raw files from low-input samples and MEs in the search. Since Spec-
tronaut matches features among samples by default, “MBR” refers to a
search with unchanged settings without the addition of ME samples.

Analysis of DDA bulk data was performed in MaxQuant (v2.0.3.0)
using a canonical Homo sapiens database (downloaded in November
2021, 20,394 reviewed proteins). Trypsin was specified as digestion
enzyme, allowing up to 2 missed cleavage sites. Variable modifications
included Oxidation (M), Acetyl (Protein N-term), and deamidation
(NQ), while carbamidomethyl (C) was set as a fixed modification. For
protein identification, the minimum unique peptides were set to 1, and
peptide and protein hits were filtered at a 1% false discovery rate (FDR),
with a minimum peptide length of 7 amino acids. The reversed
sequences of the target database served as decoy for FDR calculation.
The second peptide search option was activated. The MBR function
was enabled with a matching time window of 0.4 min and an alignment
time window set to 20 min. The “dependent peptides” function was
deactivated. We activated label-free quantification and utilized unique
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and razor peptides for quantification. All other MaxQuant settings
were maintained at their default configurations.

Data analysis

Analysis of proteomic data was performed using Python code (version
3.9.12) in the Jupyter Notebook environment (v6.4.8)” that can be
accessed via a GitHub repository (https://github.com/krijgsveld-lab/
DIA-ME). We relied on the Pandas (v1.4.2) and NumPy (v1.21.6) packages
for data handling, and used the Matplotlib (v3.5.1) and Seaborn (v0.11.2)
packages for data plotting. Further statistical calculations, such as Stu-
dent’s t-tests, hierarchical clustering and Gaussian approximation to
model extracted ion chromatograms, were conducted by the SciPy
(v1.7.3) package, while ROC curve calculation, dimensional reduction
and data imputation were performed using Scikit-learn (v1.0.2). Speci-
fically, we computed ROC data for all relevant g-values in Spectronaut
and DIA-NN. Moreover, we performed the UpSet analysis using the
UpSetPlot package (v0.6.1). For normalization of DIA-NN data, we
employed the directLFQ package (v0.2.8)*° after excluding ME samples
from the report table and performing default filtering on precursor level
using run-wise (Q.Value < 0.01) and global g-values (Lib.Q.Value < 0.01)
and on protein level using the global g-value (Lib.PG.Q.Value < 0.01).
Furthermore, to evaluate the performance of data normalization, we
applied the DiaNN (v1.0.1)*® and ig (v1.9.6)*° packages in R Studio using
the same filter criteria and compared it to results from directLFQ. Gene
set enrichment analysis (GSEA) was conducted utilizing the R package
clusterProfile (v3.12.0)” based on the “fgsea” algorithm. Finally, illus-
trations in Figs. 1A, 1B, 4A and Supplementary Fig. 6C were created with
BioRender.com, released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.

For the assessment of erroneous feature assignment in DIA-NN
and Spectronaut, we used the following calculations per replicate of
non-spiked HeLa proteome (peptides that are present in H.sapiens and
E.coli proteins were excluded from the analysis):

False-positive rate:

IDSE cosi
FPR = E.coli
lDSTotal ®

with E.coli identifications /Ds .,;; and total identifications IDSy,;4;-
False-transfer rate:

_ IDsg coiimer — IDSE coti indiv
FTR= @)
lDSTotaI,MBR - lDSTotal,lndiv

with E.coli identifications with and without activation of “MBR”
IDSg co1i mpr ANd IDSE o1; 1nqiy» @nd total identifications with and without
activation of “MBR” IDS 1,4 par @Nd IDST o001 indiv-

For the similarity evaluation of DIA-ME and MBR data sets, we
used following calculations:

Overlap (Szymkiewicz-Simpson) coefficient

_ |MBR N DIAME |
overlap(MBR,DIAME) = min(MBR|, [DIAME]) 3)
Jaccard similarity coefficient:
| MBR N DIAME |
=L oo AV 4
J(MBR,DIAME) | MBR U DIAME | “)

For the single-cell dataset, we performed co-variation analysis by
calculating the Pearson correlation between all identified proteins,
tolerating a minimum of 20 pairwise observations (Supplementary
Data 9), and clustering the resulting correlations based on Euclidean
distance. We identified two clusters and subsequently created a
protein-protein interaction network using the Cytoscape software

(v3.9.1)7, leveraging the KEGG database for pathway information and
the ClueGO plug-in for functional annotation. The interaction network
was constructed by importing the protein list of both co-expression
clusters and enriching it with relevant pathway information utilizing
the KEGG database. Further, we employed the ClueGO plug-in to
functionally annotate and highlight enriched pathways within the
network. To ensure robustness of the enrichment procedures, a sig-
nificance threshold (p-value < 0.01) was applied. The resulting network
was directly visualized in Cytoscape.

Data annotation, filtering and imputation

For the analysis of IFN-y-treatment experiments (dilution and single-
cells), we filtered the protein intensity table on a contaminants list that
we extracted from MaxQuant (v2.0.1). Afterwards we annotated pro-
teins when they were previously described to be responsive to IFN-y.
This list was retrieved from STRING database (https://string-db.org/)
using IFN-y-related signaling keywords, and extracting protein-protein
interactions with confidence > 0.7 interaction score’®. Likewise, the
Gene Ontology Consortium (http://geneontology.org/) provided
annotations for relevant molecular functions and biological processes
related to IFN-y signaling. The extracted data from both sources were
integrated based on common identifiers, and proteins identified in
both databases were cross-referenced to ensure consistency (Supple-
mentary Data 7).

For the 200-pg dilution experiment, the obtained protein data
was filtered on proteins that were identified in at least three replicates
per time-point and imputed the remaining missing values using the
k-nearest neighbors function before conducting hierarchical cluster-
ing. Furthermore, principal component analysis was performed solely
on proteins that showed full data completeness.

Following the DIA-ME analysis of single-cells, we determined the
number of protein groups per individual cell and filtered for those cells
that showed more than 500 identified proteins. The remaining data
was used for the differential expression and co-variation analysis.
Moreover, we excluded proteins that were identified in less than 30%
of cells for principal component analysis and hierarchical clustering of
known IFN-y-responsive proteins and imputed missing values by the
lowest intensity value present in the dataset.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The acquired raw LC-MS/MS data and processed report files generated
in this study have been deposited in the ProteomeXchange Consortium
via the PRIDE partner repository under the accession codes PXD053462
(E.coli-spiked experiment), PXD048162 (bulk IFN-y experiment),
PXDO053473 (low-input IFN-y experiment) and PXD053464 (single-cell
experiment). In addition, we uploaded SDRF metadata with our eva-
luation data set (E.coli-spiked experiment). All data generated in this
study are provided in the Supplementary Information and in the Source
Data file. Source data are provided with this paper.

Code availability

All relevant code used for the analysis of data in this work is stored in a
GitHub repository that can be accessed via https://github.com/
krijgsveld-lab/DIA-ME.
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