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Potent pollen gene regulation by DNA
glycosylases in maize

Yibing Zeng1,4, Julian Somers1,4, Harrison S. Bell2, Zuzana Vejlupkova 2,
R. Kelly Dawe 1,3, John E. Fowler2, Brad Nelms3 & Jonathan I. Gent 3

Although DNA methylation primarily represses TEs, it also represses select
genes that are methylated in plant body tissues but demethylated by DNA
glycosylases (DNGs) in endosperm or pollen. Either one of two DNGs,
MATERNAL DEREPRESSION OF R1 (MDR1) or DNG102, is essential for pollen
viability inmaize. Using single-pollenmRNA sequencing on pollen-segregating
mutations in both genes, we identify 58 candidate DNG target genes that
account for 11.1% of the wild-type transcriptome but are silent or barely
detectable in other tissues. They are unusual in their tendency to lack introns
but even more so in their TE-like methylation (teM) in coding DNA. The
majority have predicted functions in cell wall modification, and they likely
support the rapid tip growth characteristic of pollen tubes. These results
suggest a critical role for DNA methylation and demethylation in regulating
maize genes with the potential for extremely high expression in pollen but
constitutive silencing elsewhere.

In angiosperms, a single pollen grain is made up of a pollen vegeta-
tive cell that encapsulates two sperm cells. After release from the
anther and contact with a stigma, the pollen vegetative cell germi-
nates into a pollen tube that rapidly elongates through the trans-
mitting tract until it reaches the ovary and delivers one sperm to the
egg cell to form the zygote and one to the central cell to form the
endosperm1. Like unicellular root hairs, moss protonema, and fungal
hyphae, the pollen tube elongates by tip growth. Also like fungal
hyphae, it grows invasively, that is through cellwalls and extracellular
matrices2. In doing so, it secretes proteins that loosen or modify cell
walls, including expansins, pectinases, pectin methylesterases, and
rapid alkalinization factors (RALFs)3. In theory, these factors could
act on the tube tip, on stigmatic epidermal cells, or on the extra-
cellular matrix within the transmitting tract. Development of the
pollen grain itself involves a complex process of building a multi-
layered cell wall in coordination with the surrounding tapetal cells4.
In maize, the pollen tube is among the fastest-growing eukaryotic
cells and can reach a rate of 1 cm/h as it travels through a style (silk)
that can be 30 cm long5,6. In comparison, the rate of fast-growing
hyphae is on the order of 1.3mm/h7.

The extreme growth rate of the pollen tube raises the possibility
that the pollen transcriptome would be highly specialized. Indeed,
pollen transcriptomes differ considerably from the transcriptomes of
other plant tissues, appearing removed from others in multi-tissue
analyses8. While some transposable elements (TEs) are known to have
enriched mRNA expression in pollen9–11, repression of TEs is generally
maintained in pollen in spite of increased chromatin accessibility
because of multiple overlapping mechanisms of repression12,13. Some
TEs are also hypothesized to be transcribed in the pollen vegetative
nucleus in order to produce siRNAs that are transmitted to sperm
nuclei to reinforce repression in the next generation10,11,14,15. Consistent
with robust TE repression in pollen, both sperm and vegetative nuclei
have similar or higher DNA methylation levels than other cell types in
Arabidopsis16. There are notable locus-specific differences though,
where the vegetative nucleus is demethylated relative to sperm. DNA
demethylation occurs passively, through DNA replication, or actively,
by specific replacement of methylated cytosines with unmethylated
cytosines.

In plants, active DNA demethylation is accomplished by DNA
glycosylases (DNGs), of the same type that function in base excision
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repair17. These enzymes are essential for endosperm development in
diverse angiosperms including Arabidopsis, rice, and maize, where
they demethylate maternally imprinted genes (initiating demethyla-
tion in the central cell before fertilization18,19). In addition, they
demethylate thousands of other loci, most of which do not overlap
genes at all10,20–22. The same DNGs that demethylate DNA in the central
cell and endosperm also demethylate overlapping sets of thousands of
loci in the pollen vegetative nucleus, as evidenced by comparisons of
wild-type andmutantmethylomes10,15,23. In Arabidopsis, mutants of the
DNG DEMETER have a weak and background-specific defect in pollen
tube growth, but double mutants lacking DEMETER and another DNG,
ROS1, have a stronger phenotype in which pollen tubes growth is
disoriented24. A DNG in rice, called DNG702 or ROS1A, is also impor-
tant for pollen fertility, and itsmutant has earlier defects inmicrospore
morphology25,26. In Arabidopsis, 27 genes have been identified that are
demethylated by DNGs in pollen and transcriptionally activated. Likely
consistent with the disoriented pollen tube growth in DNG mutants,
these genes are strongly enriched for kinases predicted to be involved
in protein signaling24,27. Maize has four DNGs in three subtypes20. The
subtype that is highly expressed in endosperm has two paralogous
genes,mdr1 (also known as dng10128 and zmros1b22) and dng102 (also
known as zmros1d22). Mutations in both mdr1 and dng102 can be
transmitted through the maternal gametophyte simultaneously, but
the resulting seeds abort early in development20. Maternal transmis-
sion of either single mutant produces healthy seeds, as does paternal
transmission. They cannot both be paternally transmitted together,
however, indicating an essential function of these DNGs in the male
gametophyte.

Understanding functions for DNA methylation in gene regulation
in plants has proven difficult. Part of the difficulty is due to the com-
plexity of DNA methylation and part to the complexity of genes
themselves. For example, methylation that silences TEs located in
introns has different effects thanmethylation located in cis-regulatory
elements. In cases where regulatory regions contain TEs or tandem
repeats, it is difficult to distinguish genome defensemechanisms from
normal developmentally or environmentally responsive gene regula-
tion. The Arabidopsis genes FWA and SDC and the maize genes b1 and
r1 provide a few of the many examples where gene regulation can be

strongly affected by TE-related DNA methylation due to TEs or other
repeats in their cis-regulatory elements29–32. Exons are frequently
methylated in the CG context alone, referred to as gene body methy-
lation (gbM)33. This is a common feature of broadly expressed genes,
including in the cells where they are highly transcribed. TE-like
methylation (teM), where CG methylation (mCG) and CHG methyla-
tion (mCHG) together, can also occur in exons and is associated with
transcriptional repression. CHH methylation, which is associated with
RNA-directed DNA methylation in maize, can also be grouped under
teM but is negligible compared with mCHG.

In a recent survey of methylation patterns in maize genes, we
identified a large set of genes with teM, as defined by the methylation
of codingDNA in the leaf. These genesmakeupmore than 10% of gene
annotations across diverse maize genomes34. Closer inspection
revealed that the vast majority are poorly expressed, not conserved
even between cultivated maize stocks, and frequently overlap TE
annotations. Intriguingly, a subset of the remaining genes with teM in
the leaf is highly expressed in the endosperm or in anthers and
tassels34. Since tassels and anthers contain pollen, the subset of genes
with both teM in the leaf and high expression in anther are good
candidates for function in pollen, dependent on developmentally
specific demethylation. Together with the requirement for mdr1 and
dng102 in pollen fertility, these observations led us to explore rela-
tionships between DNGs, genes that are repressed by teM in the plant
body (sporophyte), and pollen development.

Results
High expression of genes with TE-like methylation in pollen
To better quantify the number of expressed, non-TE genes with teM,
we enriched for high-confidence gene annotations by including only
those encoded at syntenic positions in B73 and 25 other diverse maize
genomes that are founders for the nested association mapping (NAM)
population (i.e., part of the defined core gene set35) and whose coding
DNA sequence (CDS) did not overlap with TE annotations. For each of
the ten diverse tissues assessed by RNA-seq in the prior study35, we
counted the number of these high-confidence genes with teM
expressed at increasing TPM thresholds (Fig. 1a and Supplementary
Fig. 1). The two pollen-containing tissues, anther and tassel, clearly

Fig. 1 | Evidence for DNG function in pollen and summary of experimental
approach. a Expression of genes with teM in anther and tassel. The X-axis indicates
the number of genes in each of the ten tissues of ref. 34 which have teM and TPM
values of at least 100. This analysis only includes high-confidence genes defined as
genes that do not overlap with TE annotations and are part of the “core gene” set35.
b Top panel, pollen from an mdr1 /Mdr1 dng102/Dng102 double heterozygous
plant, segregating four haploid genotypes. The bottom panels show large and
small pollen grains from a representative plant. Pollen from all six double hetero-
zygous plants imaged exhibited a small pollen (sp) phenotype (Supplementary

Fig. 2). Size bar = 100μm. c Schematic of single-pollen mRNA-seq method. Indivi-
dual libraries were prepared and sequenced for each pollen grain. Capital indicates
WT allele, lowercase mutant, red double mutant. d Unsupervised clustering of
single-pollen transcriptomes basedonPearson correlation across the entire dataset
(all by all). Warmer colors indicate stronger correlations between transcriptomes.
The top two rows indicatemdr1 anddng102 genotypes inferred fromSNPs linked to
the two loci derived from RNA-seq data, which were scored independently of the
transcriptome correlation analysis. Genotypes: black is mutant, light gray is wild-
type, and dark gray is ambiguous.
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stood out. With a moderate threshold (TPM ≥ 100), 45 genes with teM
were expressed in anther and 41 in tassel (37 overlapped). No other
tissue hadmore than three expressed genes with TPMs of at least 100,
and none overlapped with the 45 in anther.

A small pollen (sp) phenotype associated withmdr1 and dng102
These results pointed toward active pollen expression of genes with
teM in the plant body, potentially targetedbyDNGs for demethylation.
We established previously that mdr1 and dng102 loss-of-function
mutants could not be transmitted together through pollen (<0.005%
transmission20), indicating that these two genes are redundantly
essential in pollen. To evaluate the function of MDR1 and DNG102, we
visually examined pollen from plants that were heterozygous for both
mdr1 and dng102 mutations to assess whether any strong morpholo-
gical defect would show up in ¼ of the haploid pollen (Fig. 1b, c).
Although there was no conspicuous increase in qualitative morpho-
logical defects in these populations of pollen, quantitative analysis of
two-dimensional pollen area from microscope images revealed a
bimodal distribution of pollen fromdoublemutant but not from single
mutant or wild-type plants, i.e., segregation of sp phenotype (Sup-
plementary Fig. 2A). The size of the secondary peak of pollen areaswas
consistent with an sp phenotype in ¼ of the pollen and a ~35%
reduction in area, corresponding to a ~50% reduction in volume.
Moreover, the sp phenotype was also present in pollen populations
derived from plants carrying a second, independent mdr1 allele
alongside the dng102mutant, co-segregating in sibling plants with the
parental double mutant heterozygous genotype (Supplemen-
tary Fig. 2B).

Single-pollen RNA sequencing of mdr1 dng102 double mutants
We next sought to determine how gene expression was affected in the
mdr1 dng102 double mutant pollen. The inability to generate plants
homozygous for both mdr1 and dng102 makes traditional bulk
expression analysis infeasible. We overcame this by directly sequencing
RNA from individual pollen grains36,37, making it possible to compare
double mutant to single mutants and wild-type sibling pollen grains
(Fig. 1c). We obtained transcriptomes from 26 individual pollen grains
collected from an mdr1/Mdr1 dng102/Dng102 double heterozygous
plant, detecting ameanof 549,559mRNA transcripts (UniqueMolecular
Identifiers; UMIs) and 9396 expressed genes per pollen grain.

To determine the individual pollen genotypes, we reasoned that
expressed SNPs linked tomdr1 and dng102would allow us to infer the
genotype of each pollen grain directly from its transcriptome. Mutant
alleles for both genes were originally isolated in a B73 stock but then
back-crossed into W22 for five generations20; as a result, these plants
were predominantly W22 but had several Mb regions of the
B73 sequence surrounding eachmutant allele.We analyzed SNPs in the
single pollen RNA-seq data to determine whether transcripts for genes
neighboringmdr1 and dng102 were from the W22 or B73 alleles (mdr1
and dng102 were expressed at too low a level to genotype directly).
Genotypes were assigned for bothmdr1 and dng102 in 23 of 26 pollen
grains (Supplementary Fig. 3); the remaining 3 pollen grains were
ambiguous for either mdr1 or dng102 due to recombination between
the linked genes used for genotyping (Supplementary Fig. 3E, F). In
total, we found 4, 7, 6, and 6 pollen grains with theMdr1 Dng102,mdr1
Dng102, Mdr1 dng102, and mdr1 dng102 genotypes, respectively,
consistent with expectations for random segregation of both mutant
alleles (p =0.843; chi-squared test).

Identification of DNG targets by differential gene expression
Unsupervised hierarchical clustering of the single-pollen tran-
scriptome data, including the three pollen transcriptomes with
ambiguous genotypes, produced two distinct clusters, one with 19
pollen grains and one with 7 (Fig. 1d). These clusters perfectly sepa-
rated pollen with the double mutant mdr1 dng102 genotype from all

others (Fig. 1d), showing that therewas a strong and reproducible gene
expression change in the double mutant. In contrast, there was no
separation of mdr1 or dng102 single mutant pollen grains from wild-
type or from each other, indicating relatively less transcriptional
change in the single mutants. To identify genes that were mis-
expressed in the double mutant pollen, we used DESeq2 to assess
differential expression relative to wild-type and single mutant pollen
grains. One hundred and six genes were differentially expressed with
moderate cutoffs (adjusted p-value ≤0.05; ≥ 2-fold change in expres-
sion), with 58 exceeding very strong criteria for differential expression
(≥8-fold change in expression; mean UMIs≥ 10). All 58 of these
strongly differentially expressed genes (DEGs) were downregulated in
the double mutant pollen, with a median decrease of 124.1-fold
(Fig. 2a). The 58 DEGs made up 11.1% of all detected mRNA transcripts
inWTpollen (Fig. 2b), representing someof themost highly expressed
genes. In contrast, these genesmade up only 0.3% of transcripts in the
double mutant. This is consistent with a model where MDR1 and
DNG102 are required to demethylate a set of strong pollen-expressed
genes so that they can be properly expressed. There was also a mild
reduction in the expression of the DEGs in both mdr1 and dng102
single mutant pollen grains, suggesting a slight expression defect in
the single mutants; however, these changes were too weak to detect
without knowledge of the potential target genes (Fig. 2b and Supple-
mentary Fig. 4), and so it is unsurprising that both single mutants can
be readily transmitted through pollenwhile the doublemutant cannot.

Characteristics of DEGs
Many of the DEGs shared similar genomic features. Half (28 genes)
occurred in six clusters of two to eight differentially expressed copies
(Supplementary Data 1 and Fig. 2c, d). The clusters were not simple
head-to-tail gene arrays, but included variable amounts of DNA
between genes. Some of the clusters also carried additional gene
copies that were not detected as DEGs. There was also a strong trend
for the DEGs to have only one or two exons.Of the genes in clusters, 27
were annotated with a single exon in the canonical transcript and one
with two exons. Of the other 30 DEGs, ten have single exons and five
have two exons. Four of the six clusters encode expansins (one alpha
type, four beta types), and one encodes polygalacturonases (pecti-
nases). When secreted into the apoplast, expansions, and pectinases
loosen cell walls38,39. The sixth cluster encodes two uncharacterized
proteins of 69 and 76 amino acids with homologs across the grass
family (Supplementary Fig. 5). The closestmatches to these proteins in
Arabidopsis are the arabinogalactan protein AGP11 and its homolog
APG6, with the two maize AGP-like proteins showing 23% aa identity
match to the first 74 aa of the 136-aa of AGP11. Although themolecular
functions of AGP11 and AGP6 are unknown, they localize to cell walls,
and inhibiting their function is associated with defects in the nexine
layer of the pollen grain wall and in pollen tube growth40,41. The 30
singleton DEGs include two beta expansins, two polygalacturonases,
one pectin methylesterase inhibitor, and one pectin methylesterase.
The pectin methylesterase is part of another cluster of multicopy
genes that has a role in overcomingmaternal barriers to fertilization as
part of the Ga2 unilateral cross incompatibility system42. The other
three gene copies in the Ga2 cluster were not detected as DEGs. The
highest expressed of the DEGs were two more AGP-like unlinked
paralogs encoding 70-aa and 72-aa proteins with about 26% aa identity
with the two clustered AGP-like DEGs and about 29% aa identity with
the first 74-aa of the Arabidopsis AGP11 protein (Supplementary Fig. 5).
Two other DEGswere paralogs encoding vesicle-associatedmembrane
proteins, one of which, VAMP726, has been shown to influence lignin
content in the maize pollen cell wall43. In total, 38 of the 58 DEGs are
predicted to have cell wall-related functions, and 32 of those are
expansins and proteins related to pectin degradation or modification,
likely involved with pollen tube growth. Another gene with potential
function in rapid growth is an actin-binding villin protein.
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The remaining 17 DEGs did not show any clear trends in terms of
predicted function.

Gene expression time course in pollen precursors
To determine when the DEGs were first expressed during pollen
development, we examined an expression time course that covers the
beginning of meiosis through mature pollen36. The DEGs showed
undetectable or very little expression duringmeiosis and early haploid
stages, butwere then up-regulated to varying degrees at pollenmitosis
I (Fig. 3a and Supplementary Fig. 6) corresponding to the major wave
of haploid (gametophyte) genome activation inmaize36. This coincides
with peak expression of mdr1 and dng102 (Fig. 3b), but unlike their
potential targets, both DNGs were also detectably expressed
throughout meiosis and early pollen development. Altogether, this
suggests that MDR1 and DNG102 act on their target genes sometime
before or shortly after pollen mitosis I. While the earliest-expressed
DEGs were upregulated at pollen mitosis I, most were not strongly
expressed until the mature pollen stage. This might suggest a second
waveofMDR1/DNG102 activity, but could also be explainedby a single,
earlier period of DNA demethylation followed by a later increase in
transcription.

Fig. 3 | Expression time course of DNGs and targets. a Expression timecourse of
DEGs. The bold line represents the average expression profile across all DEGs. UM
unicellular microspore, BM bicellular microspore. Data are from B73/A188 hybrids,
normalized to the mean transcript abundance in pollen36. The time course spans
349 pollen grains and precursors, here reported as a rolling weighted average by
pollen precursor stage (see “Methods”); a heatmap without averaging is visible in
Supplementary Fig. 6. The variation seen in mature pollen for two genes in parti-
cular is consistent with random noise and not statistically significant. Gray to red
color scale indicates the expression level at the bicellular stage, as quantified in the
inset. b Expression timecourse of the four maize DNGsmdr1, dng102, dng103, and
dng105 using the same data as in (a). Low expression of these genes makes them
unsuitable for the graphical representation used in (a). Instead, bar heights indicate
average TPM values from individual pollen and pollen precursors, and error bars
indicate standard errors. N = 119, 22, 175, 11, and 15 single cells or pollen grains for
meiosis, tetrad, UM, BM, and pollen, respectively.
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Fig. 2 | Identification of candidate DNG target genes. aWT and single mutant vs
doublemutant gene expression.Dots correspond to individual genes. Axes indicate
mean TPM values for each set of transcriptomes. The strong DEGs (red dots) have
≥8-fold change in expression in double mutant and an average of ≥10 UMIs in the
WT and single mutant. An additional 48 genes (weak DEGs, gray dots) showed
evidence of differential expression by less stringent criteria (adjusted p-value ≤
0.05; ≥2-fold change in expression). Raw (unadjusted) p-values were calculated
using DESeq2 and then adjusted for multiple hypothesis testing using Holm’s
method.b Total expression of the 58 DEGs as a percent of all measured transcripts.
Boxplots indicate the median (horizontal dark line), interquartile range (box), and
range (vertical lines) of themeasured values. Letters indicate statistical significance:
groups not sharing a letter have a significantly different mean (p ≤0.05; Tukey’s
honest significant difference test). See “Statistics and reproducibility” in the
“Methods” section for individual p-values. c Expression patterns of DEGs in each
pollen grain. Each row represents a single gene, and each column a pollen grain,
organized by genotype. Rows are sorted by chromosome, position, and TPM, with
genes in clusters listed above singletons. d MaizeGDB browser image of an
approximately 30Kb part of a beta expansin gene cluster on chromosome 5.
Included are publicly available DNAmethylation tracks and anther gene expression
tracks35.
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Identification of DNG targets by methylation and expression
Since a major motivation for this study was our observation that a
set of genes with teM has high expression in pollen-containing tis-
sues, we asked whether that set overlaps with the candidate DNG
target genes we identified as DEGs in the mdr1 and dng102 mutant
pollen. To answer this quantitively, we identified genes with teM
and syntenic conservation in maize that had at least tenfold more
expression in anthers than in the eight other non-pollen-containing
plant tissues accessed by RNA-seq in the same study. This produced
a set of 56 genes, which we refer to as methylated pollen genes
(MPGs) for brevity. While we required only a tenfold increase in
gene expression relative to each of the other eight tissues, the
average fold change for MPGs was actually far greater because
MPGswere either undetectable or barely detectable in these tissues.
The MPGs were identified with methylation and expression data
from a B73 stock yet strongly overlapped (36 of 56) with the inde-
pendently identified DEGs from aW22 stock (Fig. 4a, b). The genetic
differences between W22 and B73 would be expected to reduce the
amount of overlap between gene sets. Consistent with this, an
additional 12 MPGs were in the same seven clusters as DEGs, and
threemore were unlinked paralogs of DEGs (Supplementary Data 1).
The five MPGs that were neither in clusters nor paralogs of DEGs
encoded an RNA binding protein; an oxalidate oxidase; two WEB
domain paralogs implicated in actin-mediated plastid movement;
and most striking because of its high expression in pollen, ralf1, a
member of the rapid alkalinization factor family of secreted small
proteins that influence the cell wall via interaction with receptors
and other apoplastic molecules3,44.

Evidence for conservation in rice
Including ralf1, 46 of the 56MPGs are implicated in cell wall functions.
These results raise the question of whether cell wall genes are con-
served targets of DNGs. The two largest categories we identified,
expansins andpolygalacturonases, are commongrasspollen allergens.
In rice, four genomic clusters containing a total of 19 pollen allergen
genes have been identified: three clusters of single-exon expansin
genes and one cluster of two-exon polygalacturonase genes45. Of these
19 genes, 15 haveDNApublicmethylation data frommethylC-seq reads
in rice leaf46. All 15 have teM in their coding DNA like their maize
homologs, as expected for conserved pollen-specific activation by
DNGs (Supplementary Fig. 7).

Expression of dng105 in pollen and precursors
Assuming the stable expressionof someMPGs like ralf1 inmdr1 dng102
double mutant pollen is biologically meaningful and not a technical
artifact of comparing data derived from W22 to B73, a theoretical
explanation is that the more distantly related DNG, dng10520, is also
expressed in pollen and pollen precursors (Fig. 3b). In the absence of
MDR1 and DNG102, DNG105 might act redundantly on a subset of
genes to activate gene expression. Conversely, DEGs with little or no
teM in their codingDNA (Fig. 4b) could beexplainedby indirect effects
of demethylation of other genes or by demethylation of their cis-
regulatory elements rather than coding DNA. Regardless, the clear
pattern is that genes with teM in the leaf and high expression in pollen
tend to be dependent on the DNGs MDR1 and DNG102.

Demethylation of DNG targets in pollen
As illustrated in Fig. 4c, these results are consistent with a repressive
function of TE-like DNA methylation in cis-regulatory elements in the
plant body, which is removed by DNGs during pollen development to
license gene expression. An alternative hypothesis is that DNGs could
function to activate gene expression in pollen without demethylating
DNA, e.g., by binding to methylated cytosines and recruiting other
transcriptional activators. Assaying DNA methylation in pollen is pro-
blematic because there are two copies of sperm DNA for each copy of
vegetative cell DNA. Assuming maize is like rice and Arabidopsis where
demethylation is restricted to vegetative cell DNA only15,47, then one-
third of pollen EM-seq reads are expected to show evidence of deme-
thylation. In addition, constraints on mapping short reads limit the
accuracy ofmethylation quantification atmulticopy loci. Nonetheless, a
subtle decrease in mCG of MPGs was detectable in EM-seq libraries
prepared from whole W22 pollen, especially in promoters (Fig. 5a). As
an alternative way to quantify differences in mCG between tissues, we
measured the average mCG value of the whole gene for each MPG and
its 600-bp upstream region (promoter) (Supplementary Fig. 8). The
mean per gene mCG value decreased 7% in pollen relative to embryo.
For promoters, it decreased by 17% relative to embryos. While these
decreases were small, they were statistically significant (p =0.0007 for
genes, p =0.001 for promoters; one-tailed Wilcoxon signed-rank test).

mCHG appeared unaffected in MPGs in pollen. However, the
baseline mCHG level in the rest of the genome was elevated in pollen
relative to embryo (Fig. 5b). Given the context of a higher mCHG
baseline in pollen relative to embryo, the similar mCHG level in MPGs

Fig. 4 | Synthesis of methylation and transcriptome-based results. a The teM
character mapped onto the differential expression analysis comparing WT and
single mutant vs double mutant gene expression. Axes indicate the mean TPM
values for each set of transcriptomes. MPGs have teM and at least tenfold higher
expression in anther than in eight vegetative tissues inB73.Only coregenes that are
annotated in theW22genomeand in all 26of theNAMfounder genomes andwhich
have sufficient coverage of EM-seq reads were included in this analysis. b mCG vs

mCHG for the same sets of genes displayed in (a).Methylation values aremeasured
in CDS only, as a proportion of methylated cytosines to total cytosines, and range
from 0 to 1. c Amodel for DNAmethylation in pollen gene regulation, requiring an
initial licensing step by DNGs removing methylation (gray lollipops), before tran-
scription at high levels via gene-specific activating factors (not shown) recruiting
RNA polymerase II.
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could be consistent with partial CHG demethylation limited to one-
third of nuclei in pollen. Weaker CHG demethylation compared to CG
demethylation could be explained by either a preference of DNGs for
mCGorby competing actionofCHGmethyltransferases addingmCHG
in pollen. Likely unrelated to DNGs, mCHH in pollen was unusual in
remaining elevated in intergenic regions rather than the usual pattern
of rapidly decreasing further from genes.

Demethylation of DNG targets in endosperm
Several pieces of evidence suggest thatmdr1 and dng102may function
similarly in pollen and in central cells or endosperm (maternal genome
specific). Both genes are highly expressed in pollen and central cells in
rice and Arabidopsis, and overlapping sets of loci are demethylated in
pollen and endosperm/central cells in rice and Arabidopsis10,15,23. To
test whether maize pollen DNG targets show evidence for demethy-
lation in the endosperm,we analyzed published EM-seq data fromW22
endosperm and compared it with an embryo. Indeed, MPGs exhibited
a stronger reduction in mCG in endosperm than in pollen (Fig. 5a),
which is consistent with endospermcarrying two demethylated copies
(maternally inherited) for each paternal copy (paternally inherited).

Strong demethylation in a subset of DNA molecules in pollen
Apredictionof demethylationbeing limited toonenucleus inpollenor
tomaternal DNA in the endosperm is that EM-seq reads should exhibit
a bimodal distribution of methylation rather than a gradient of inter-
mediate values. To test this, we took advantage of the fact that each

read originates from a single DNAmolecule but can report onmultiple
cytosines. We counted the number of methylated and unmethylated
(UM) CGs for reads that overlapped with the 100 bp regions upstream
of MPGs. Since methylation data was from W22 but MPGs were iden-
tified in B73, we limited this single-read analysis to gene annotations
that were conserved in both genomes and which had EM-seq reads
covering promoters and showing evidence for methylation in theW22
leaf. We focused onmCG because it provides the clearest methylation
signal (often fully methylated or fully UM). As controls we examined
EM-seq reads from three plant body tissues: embryo, developing leaf,
and developing tassel. Only pollen and endosperm showed a bimodal
distribution ofmCG (Fig. 5c). In contrast, the coreW22 genes showed a
similar distribution of mCG across all five tissues (Fig. 5d).

A limitation of the single-read analysis applied to groups of genes
is that it does not rule out the possibility that the bimodal distribution
couldbeexplainedby somepromoters remaining fullymethylated and
some being fully demethylated in pollen, regardless of whether the
EM-seq reads come from sperm or vegetative DNA. To test this, we
selected four individualMPGswith read coverageover their promoters
for single-readmethylation analysis (anAGP-like gene, a beta expansin,
a polygalacturonase, and a pectin methylesterase). We extracted all
reads and segments of reads that overlapped with the 600 bp
upstream regions of each of these genes, and we defined UM reads as
oneswith nomore thanoneoffiveCGsper read beingmethylated. The
distribution of mCG for each of these four genes in pollen was con-
sistent with one-third of reads being UM and two-thirds methylated

Fig. 5 | DNA demethylation in pollen and endosperm. a Metagene methylation
profile for MPGs in the W22 genome. These are the 44 of 56 MPGs present in both
the W22 and B73 genome annotations. Profiles are centered on transcription start
sites and polyadenylation sites (polyA). Values are derived from 100-bp intervals,
but the curves were smoothed using moving averages over three 100-bp intervals.
Each biological replicate is shown separately (two for pollen, three for endosperm
and embryo).b Same as (a) except all core geneswere included in the analysis. Core

genes are annotated at syntenic positions in W22, B73, and the 25 other NAM
founder genomes. c Single-read mCG calls from MPG promoters. Only genes with
EM-seq coverage fromW22 leaf andmCG values of at least 0.4 in the first 100bp of
their promoters are included. Only pollen and endosperm had a distribution of
mCG values that differed significantly from leaf (p-value < 0.00005, two-sample
Kolmogorov–Smirnov test). d Single-read mCG calls from core gene promoters.
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(Supplementary Fig. 9). In endosperm, the ratio of UM reads was
higher, close to two-thirds UM and one-third methylated, which mat-
ches the expected ratio for demethylation of the two maternal copies
but not of the single paternal copy. One of the three genes, the poly-
galacturonase, was an exception and appeared fully methylated in the
endosperm. For each of the four genes, the control tissues had fewer
UM reads than either endospermor pollen, though the read counts for
individual genes were too low for statistical significance. The percent
UMreadsobtained fromcombining all four genes togetherwas 33% for
pollen, 47% for endosperm, 1% for embryo, 9% for leaf, and 6% for
tassel. For embryo, leaf, and tassel, these numbers are significantly
lower than 33% (p-value < 0.005, one-tailed, one-proportion z-test).
Since we defined MPGs in part by tenfold higher expression in anther
than in endosperm, the fact that at least some of the same loci are
demethylated in endosperm also indicates that DNA demethylation
alone is not sufficient for high expression, and other factors that are
lacking in endosperm are also required for their expression in pol-
len (Fig. 4c).

Discussion
Two different approaches converged on similar sets of genes—espe-
cially genes that are highly expressed in pollen, encoded in one or two
exons and are predicted to modify cell walls. One approach identified
genes based on differential gene expression in DNA glycosylase
mutants known to be essential for pollen function. The other identified
genes are based on TE-like DNAmethylation in the leaf and on anther-
specific gene expression. Combined with prior evidence for DNGs in
the pollen vegetative nucleus driving gene expression needed for
pollen fertility in Arabidopsis and rice, these results indicate that DNG-
mediated gene regulation in pollen is widely conserved in angios-
perms. While the methylation of expansins and polygalacturonase
gene clusters in rice leaf suggests similar genes are activated by DNGs
as in maize, the data from Arabidopsis DNG mutants suggest an
enrichment for genes involved in cell signaling controlling orientation
of growth24,27. An earlier study in Arabidopsis, however, also noted that
pollen-expressed genes with teM (in leaf and mixed-stage inflores-
cence) were enriched for functions in cell walls48. (That study used the
term “RdDM targets” as the term “teM” had not been adopted yet).
These differences in target genes between the two speciesmay explain
differences in phenotypic effects caused by loss of DNG function—
complete pollen infertility in maize vs a mildly reduced transmission
(with aberrant pollen tube growth orientation and some reduced
pollen tube germination) in Arabidopsis24,49. In maize, a primarily
outcrossing species with an extensive stigma for pollen reception and
pollen in excess, rapid pollen tube germination and growth are critical
for successful competition and eventual fertilization. Although the
expansins, pectinases, and pectin methylesterases regulated by DNGs
inmaize pollen predict a pollen tube growth defect in dngmutants, an
earlier pollen defect might prevent a tube phenotype from ever
manifesting. In theory, the lackof a singleDNG target could lead to a sp
phenotype with a large impact on pollen fertility, similar to sp1, sp2,
and stt1 mutants50–52.

Maize DNGs, including mdr1 and dng102, are expressed in other
cell types, particularly endosperm. There are notable differences
between the DNG target genes we identified in pollen and the ones
already identified in the endosperm. In diverse angiosperms, key
endosperm genes that are upregulated by DNGs (specifically from the
maternal genome), function in gene regulation themselves, producing
indirect effects on gene expression. These genes include members of
the polycomb repressive complex PRC2 and ethylene signaling path-
ways that have central roles in early endosperm development53–57.
Thus, moderate expression of these genes initiates a cascade of gene
expression changes indirectly resulting from DNA demethylation. In
contrast, the DNG target genes in pollen appear to be massively
upregulated directly. In endosperm, DNG target genes exhibit a strong

tendency for methylation in their promoters and 5’ UTRs rather than
CDS20, whereas the pollen genes are methylated not just in promoters
and 5’ UTRs but also across CDS. In fact, our observation of methyla-
tion in CDS partially motivated this study34.

In some animals, DNA methylation in promoters functions with
other chromatin modifications as a developmentally stable form of
transcriptional repression. This occurs in the repression of germline
genes in somatic cell lineages and across the X chromosome in X
inactivation58. Although there are many examples of repetitive ele-
ments acting as cis-regulatory elements that sensitize gene expression
to DNA methylation, such as the Arabidopsis FWA and SDC genes and
the maize r1 and b1 genes29–32, DNA methylation is not a common part
of developmental gene regulation in plants. Rather, as well established
in maize, cis-regulatory elements remain constitutively free of
methylation, regardless of which cells the genes are expressed in35,59.
This is also true of their coding DNA methylation, except in CG
context34. Keeping cis-regulatory elements free of methylationmay be
amajor function ofDNGs in the plant body, allowingdynamic accessof
both activating and repressing factors60. Transcription factors provide
both tissue specificity and sequence specificity to repression by
recruiting histone modifiers such as the polycomb repressive com-
plexes PRC1 and PRC2, which ubiquitinate histone H2A at lysine 119
(H2AK119ub) and methylate histone H3 lysine 27 (H3K27me3)61,62.

The vast majority of genes in the pollen vegetative nucleus are
likely regulated using the same mechanisms as other plant cells since
they are neither differentially expressed in mdr1 dng102 double
mutant pollen nor have teM in the plant body.We hypothesize that the
highly expressed DNG target genes we identified require a two-step
activation in pollen—first, recruitment of DNGs to create an environ-
ment permissive for RNA polymerase, followed by recruitment of
other activators and high levels of RNApolymerase itself (Fig. 4c). As in
endosperm, unidentified factors would recruit DNGs to some methy-
lated loci and not others. Transcription factors, because of their roles
in guiding protein complexes to specific loci would be good candi-
dates. This two-step activation using DNAmethylation as the basis for
repression could allow for the huge dynamic range of expression we
observe, from nearly undetectable in most cells to 11% of the tran-
scriptome in pollen.

Why not use DNA methylation in gene regulation more broadly?
One possibility is that the unique epigenetic features of the pollen
vegetative nucleus make it better suited to this form of gene
regulation12,13. Another reason for limiting the use of DNA demethyla-
tion in gene activation could be an elevated riskofmutation associated
with excisingmethylated cytosines. Regardless, these results point to a
role for DNA demethylation in potent and cell type-specific gene reg-
ulation in the pollen vegetative nucleus. This form of regulation not
only allows for massive upregulation of gene expression in pollen, but
also for robust silencing outside of pollen.

Methods
Pollen phenotyping
100 to 600 uL of freshly shed pollen was mixed with 800 uL EAA
fixative solution (3:1 ethanol to acetic acid) by inverting three times in a
microcentrifuge tube before being parafilmed and stored at 20 °C.
Samples were imaged using a LEICA M205 FCA Fluorescence stereo
microscope and the Leica Application Suite X (V 3.7.5.24914). Resulting
images were imported into Fiji (ImageJ) (V 2.0.0) and subjected to the
following processing pipeline: ‘Image -> Enhance Contrast’ (0.3%),
‘Adjust -> Threshold Image’ (Auto ->Apply), ‘Process -> Binary ->Make
Binary’,’ Process -> Binary ->Watershed’, ‘Analyze -> Analyze Particles
(size (micron2): 2000–14,000, circularity: 0.75–1.00, show: nothing,
display results, summarize, exclude on edges, include holes) -> Okay’.
Particlemeasurements were copied into a.csv file and loaded into R (V.
4.2.3) to produce plots with ggplot2 (V 3.4.3) and ggridges (0.5.4)
packages.
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Identification of MPGs from B73 expression and
methylation data
To identify genes with teM, we reanalyzed methylation data from B73
developing leaf 35 using the same methods as in our recent study of
methylation in genes34. This method only makes use of methylation
within annotated CDS, as introns often have teM for the simple reason
that they contain TEs, and UTRs are difficult to annotate accurately. To
include more genes with short CDSs, we required only 30 individual
informative CGs and individual informative 30 CHGs per gene rather
than 40 of each. “Informative” means they were spanned by at least
one EM-seq read where the C in the genome could unambiguously be
associated with either a C or a T in the read. As before, genes with
average methylation levels of at least 40% in both mCG and mCHG
were defined as having teM. We only included the core gene set in
these analyses, the ones that are present at syntenic positions in B73
and the 25 other NAM founder genomes, as defined previously35. This
yielded 926 geneswith teM, 7882with gbM, 13,098 thatwere UM, 3661
that had intermediate methylation values (ambiguous), and 2724 that
did not meet the requirements for sufficient informative cytosines.
These methylation epialleles are listed along with gene names and
methylation values in a table available on GitHub (https://raw.
githubusercontent.com/dawelab/MethylatedPollenGenes/main/Data/
df_RedefineEpailele.csv?token=GHSAT0AAAAAACMFLIBUHCBROGB
SM7N7KK6AZNKUPWQ).

Tomoremeaningfully quantify the expressionof geneswith teM in
the ten tissues,we further enriched for functional genesbyexcluding all
gene annotationswhoseCDSoverlappedwith annotated TEs. Gene and
TE annotations were the same as the ones used in the prior study,
obtained from https://download.maizegdb.org/Zm-B73-REFERENCE-
NAM-5.0/. Using a combination of Unix cut, awk, and sed commands,
we converted the source gff3 gene annotation file ZM-B73-REFERENCE-
NAM-5.0_Zm00001eb.1.ggf3 into bed format with a geneID for each
CDS region. We then used the BEDTools v2.30.063 intersect tool to
identify all genes whose CDS overlapped with TEs in Zm-B73-REFER-
ENCE-NAM-5.0.TE.gff3 by even a single base. Then we used awk to
select the geneID columns and uniq to remove redundant rows corre-
sponding to different CDSs from the same gene. We imported the
geneIDswith TE-overlappingCDSs into anRdata framewith rownames
as genes and a second column indicating TE overlaps by a value of 1.
Then we merged this data frame with a list of all core B73 genes using
the R merge function to create a new data frame where genes whose
CDS did not overlap TEs had “NA” in the second column. Finally, we
replaced all NA values in the second columnwith zeros and used this to
filter each subset of genes to remove ones with TE-overlapping CDSs
using the R tidyverse filter function. This yielded 394 teM genes, 6544
gbM genes, 11,873 UM genes, 3975 that had intermediate values
(ambiguous genes), and 2383 that did not meet the requirements for
sufficient informative cytosines. These methylation epialleles are also
listed alongwith gene names andmethylation values in the table above.

To count the numbers of genes that expressed at or above differ-
ent TPM thresholds in each tissue, we used the TPMmatrix produced in
the prior study34 (https://raw.githubusercontent.com/dawelab/Natural-
methylation-epialleles-correlate-with-gene-expression-in-maize/main/
Data/B73.all.csv).Weused theRmerge function to combinedata frames
containing themethylation epiallele information for the core genes that
did not have TE-overlapping CDSs with their TPM values in each tissue.
Thenweobtained counts of expressed genes in each tissue at each TPM
threshold using the R group_by function to process each tissue sepa-
rately followedby the summarize and sum functions.We thenused a for
loop in R to iterate over a series of TPM thresholds from 1 to 100.

AGP-like sequence comparisons
We used NCBI blastp to identify the best homologs of the AGP-like
proteins in sorghum, rice, andwheat using default parameterswith the
“Non-redundant protein sequences (nr)” as Database, “grass family

(taxid:4479)” as Organism and sequences of Zm00001eb316010_P001
and Zm00001eb033720_P001 as Query. The resulting GenBank
accessions of the best matches were used for sequence comparisons:
KAG0544127.1 (Sorghum bicolor), EAZ09485.1 (Oryza sativa),
XP_044385131.1 (Triticum aestivum), KAG0524731.1 (Sorghum bico-
lor), ATS17269.1 (Oryza sativa), and XP_044386294.1 (Triticum aesti-
vum). We used Geneious® 10.1.2 Tree Builder for protein tree
construction using global alignment with free end gaps, identity cost
matrix, Jukes-Cantor Genetic distance model, UPGMA method,
gap open penalty of 6, and gap extension penalty of 3. The three
Arabidopsis thaliana arabinogalactan proteins we included in the tree
are AT3G01700.1 (AGP11), AT5G14380.1, (AGP6) and AT5G64310.1
(AGP1). For pairwise comparisons between maize proteins and AGP11,
we obtained amino acid identities using Geneious® 10.1.2 global
alignmentwith free end gaps, costmatrix identity, gapopen penalty of
12, and gap extension penalty of 3. Zm00001eb316010 was 23% iden-
tical to AGP11, Zm00001eb033720 was 29% identical to AGP11, and
Zm00001eb316010 and Zm00001eb033720 were 26% identical to
each other.

Single-pollen mRNA sequencing
For plant material, the EMS4-06835d allele of mdr1 and the dng102-
Q235 allele of dng102 were used20. Both alleles originated in B73 and
had been backcrossed for five generations into W22 (mdr1 as stock
J657 and the dng102 stock as stock J658). Both stocks were then
crossed together to create the double heterozygous stock EMS4-
06835d/Mdr1 and dng102-q235/Dng102, which was planted in late
spring 2022 in a greenhouse in Athens, GA, and grown under ambient
light conditions until pollen collection in July.

Single pollen isolation and RNA-seq library prep were performed
as described previously37. Briefly, pollen was released from anthers
into a dropof 0.1× PBS by cutting transverselywith a scalpel. Individual
pollen grains were then manually isolated with a syringe needle and
placed on the cap of a PCR 8-tube strip. RNA-seq libraries were then
prepared with CEL-seq37. Oligos for first-strand cDNA synthesis are
available in Supplementary Data 2 (this replaced the “Barcoded CEL-
seq primer plate”); all other oligos and reagents are as described37.

Sequencing data were analyzed similarly to Nelms and Walbot36.
Read 2 of these CEL-seq libraries contain ten nucleotides (nt) UMIs,
followed by a six nt sample-specific barcode, and then a long string of
Ts originally from the mRNA polyA tail. Read 1 contains a sequence
matching the mRNA transcript. Paired-end reads were first demulti-
plexedbasedonsample-specific barcodes in read 2, requiring a perfect
match to one of the expected barcode sequences (Supplementary
Data 2). UMIs were then extracted from read 2 and appended to the
read 1 sequence identifiers. Nomore informationwas used from read 2
and the remainder of the analysis was on read 1 only.

Prior to mapping, reads were trimmed and filtered using Fastp
v0.23.264 with parameters -y -x −3 -a AAAAAAAAAAAA. Then filtered
readsweremapped to the B73 v5 genomeusingHisat2 v2.2.165 with the
parameter -dta. Novel transcripts were annotated and existing ones
were extended by de novo transcript assembly using Stringtie v2.2.166,
guidedby the reference gene annotations andusing the strand-specific
information available from CEL-seq (parameter ‘-rf’; CEL-seq libraries
map specifically to the coding strand). Reads were then assigned to
genes using featureCounts v1.2.567 with parameters -s 1 -read-
Extension5 500. Then unique transcripts were counted using the
umi_tools v1.1.268 ‘count’ function with parameter—per-gene. The GTF
file of gene annotations and a table of UMI counts for each pollen
transcriptome are available in the accompanying source data. For
pollen grain genotyping (Supplementary Fig. 3), mapping was per-
formed as above but using theW22 v2 reference genome69; the reason
for this differencewas purely historical: we initially aligned toW22, but
found that it was easier to work with B73 annotations because of
greater consistency with other datasets.
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Quality control for RNA-seq samples
In total, 48 pollen grains were collected and sequenced. The resulting
libraries showed two clearpopulationswith varying library complexity.
Twenty-seven pollen grains had high read depth, with a mean of
548,866UMIs detected per pollen grain (range: 192,456–866,263). The
remaining twenty-one pollen grains hadmuch lower readdepth, with a
mean of 5444 UMIs detected per pollen grain (range: 2969–17,197).
These two populations showed no enrichment for a given genotype or
sample batch; a likely explanation is that some of the pollen grains
failed to lyse completely, resulting in low library complexity. The 21
pollen grainswith low complexitywere excluded from further analysis.

One additional pollen grain was excluded because it showed
several anomalous behaviors. First, it had a relatively low correlation
with every other pollen grain in the dataset. Second, when genotyping
the genes nearmdr1, there was a consistent trend for expression from
both the B73 and W22 alleles; there was no other sample with notice-
able biallelic expression, and this trendwas not true for any genes near
dng102. The conclusions of the paper were not sensitive to the inclu-
sion or exclusion of this one pollen grain, but given the anomalies in
the data, it was excluded.

Analysis of single-pollen RNA-seq data
To genotype individual pollen grains, mapped RNA-seq data were
visualized using the integrative genomics viewer (IGV)70. Three “sen-
tinel” genes were selected on both sides of both themdr1 and dng102
genes (12 genes in total), based on the availability of mapped RNA
transcripts with SNPs that distinguished the B73 vs W22 alleles. The
mappeddatawere visualized to assign each sentinel gene to the B73 or
W22 alleles. The B73 alleles are linked to themutant alleles ofmdr1 and
dng102 while the W22 alleles are linked to wild-type. Some positions
were scored as ambiguous if there were no reads spanning the SNPs
that distinguish B73 and W22. The sentinel genes were then used to
infer the alleles of mdr1 and dng102, requiring consistency in allele
calls on both sides (Supplementary Fig. 3).

For the correlation heatmap in Fig. 1d, the expression count
matrix was normalized to transcripts per million (TPM) and then log-
transformed after adding a pseudocount of 1. Genes with a mean
expression under 500 TPM were filtered, and then the pairwise Pear-
son’s correlation was calculated between all samples.

Differential gene expression analysis was performed using
DESeq271 with default parameters. Unadjusted p-values (two-sided)
were then adjusted for multiple hypothesis testing using Holm’s
method. Significant genes were identified as follows: for the “DEG” set,
we required an adjusted p-value ≤0.05, an estimated log2 fold
change ≥ 3, and a baseMean≥ 10; for the “weak DEG” set, we required
an adjusted p-value ≤0.05 and a log2 fold change ≥ 1.

Time course of gene expression during pollen development
For Fig. 3, themapped transcript countmatrix fromNelms andWalbot
(2022) and associated samplemetadata (e.g., the developmental stage
of each sample) was downloaded from the Gene Expression Omnibus
(accession GSE175505). These data, from a B73/A188 hybrid, were
mapped to the B73 v4 maize genome72, and so we determined the v4
IDsof the strongDEGs using themaizeGDB “TranslateGeneModel IDs”
tool; 41 of 58DEGshadan associated v4 ID (SupplementaryData 3).We
further excluded 12 genes that had very low expression in pollen in the
2022 dataset (<10 TPM), as these may result from incorrect mapping.
This left 29 DEGs that were analyzed for their timing during pollen
development.

There are large changes in the total number of mRNA transcripts
per pollen grain or precursor at different stages of pollen develop-
ment, and so normalization methods that assume a constant total
transcriptome size can be misleading36. For example, a gene with the
same number of transcripts in a nearly-quiescent cell and in a tran-
scriptionally active cell would highly appear to be differentially

expressed by conventional TPM measurements. Thus, to better
determine both the timing and level ofDNG target expression,we used
a normalization strategy that accounted for the differences in total
transcript abundance between pollen and each pollen precursor stage.
The data was first normalized to TPM, but then scaled based on the
fraction of absolute transcripts detected at a given stage relative to
pollen. For instance, ameanof 133,905 and 377,873 UMIs was detected
per individual BM stage precursor and mature pollen grain, respec-
tively. Thus, all of the TPM-normalized data for BM stage precursors
was scaled by 35.4% (133,905/377,873), preserving the relative differ-
ence in total transcripts betweenBMandpollen. Themain effectof this
choice on our conclusions is that all DEGs were expressed at a lower
level in BM than Pollen (Fig. 3), while if using TPM normalization there
were three genes with higher expression in BM than Pollen. Thus, the
TPM normalizationmight lead to themisleading conclusion that these
three genesweredownregulated between BMand pollen, even though
the data is most consistent in a situation where these three genes
continue to increase in transcript abundance between BM and pollen,
but at a lower rate than many other genes. The proportion of an
enzyme’s transcripts relative to total transcripts is usually a good
indicator of its activity in different cell types regardless of the cell’s
total transcriptome size. Thus, for measuring DNG transcript abun-
dance in Fig. 3b, we use conventional TPM normalization.

For the time course in Fig. 3a, the normalized transcript abun-
dances were also smoothed using a weighted average to suppress
sample-to-sample noise. The average was performed using a Gaussian
kernel with the sample-specific x-coordinates given as the sample
“pseudotime” value as previously defined36. This creates a weighted
average where two samples that are more similar in overall expression
(e.g., similar pseudotime values) are given more weight than samples
that are distinct. The effect of this smoothing is similar to taking the
mean expression value by stage, but allows more continuous time
resolution without requiring sharp stage boundaries (e.g., a gene that
goes up within a stage could be recognized). The heatmap in Supple-
mentary Fig. 6 shows the same data without any smoothing

Statistics and reproducibility
Forty-eight pollen grains were chosen for single-pollen RNA-seq in the
experimental design to obtain a minimum of three high-quality tran-
scriptomes of each genotype as biological replicates. Library pre-
paration and initial clustering of single-pollen transcriptomes were
done blindly to their genotypes. After validation that genotypes clus-
tered as expected, differential gene expression was done without
blinding. Tukey’s honest significant difference test was used to test for
differences between genotype: p =0.001 for Mdr1 Dng102 vs mdr1
Dng102, p =0.001 for Mdr1 Dng102 vs Mdr1 dng102, p = 1 × 10−7 for
Mdr1 Dng102 vs mdr1 dng102, p =0.9997 for mdr1 Dng102 vs Mdr1
dng102, p = 1 × 10−7 for mdr1 Dng102 vs mdr1 dng102, p = 1 × 10−7 for
Mdr1 dng102 vs mdr1 dng102.

Preparation of pollen EM-seq libraries
Fifty to one hundred milligrams of W22 pollen at −80 °C was homo-
genized in 2-ml tubes using a GenoGrinder (SPEX SamplePrep 2010)
with five 3-mm glass beads (Fisher Scientific #11-312A) for 10min at
max frequency (two sets of 5min with the GenoGrinder rack in each
orientation). DNA was extracted using a CTAB extraction buffer con-
taining 1% PVP (w/v) and 120 ug/ml proteinase K and purified with
chloroform: isoamyl alcohol (24:1) and ethanol precipitation. RNA and
degraded DNAwere removed by treating 800 ng of DNA (asmeasured
by Qubit) with 1 ul RNase Cocktail Enzyme Mix (ThermoFisher
#AM2286) for 30min at room temperature then size selecting for large
molecules with a 0.8:1 ratio of Mag-Bind (omega BIO-TEK #M1378-00).
EM-seq libraries were prepared using pollen from two different plants
using a NEBNext Enzymatic Methyl-seq Kit (New England Biolabs
#E7120S). The input for each library consisted of 100ng of DNA that
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had been combined with 1 pg of control pUC19 DNA and 20pg of
control lambda DNA and sonicated to fragments averaging∼700 bp in
length using a Diagenode Bioruptor. The protocol for large insert
libraries was followed with formamide as the denaturing agent, and
libraries were amplified with 6 PCR cycles and Illumina sequenced
using paired-end 150 nt reads.

Metagene and single-read methylation analyses
In addition to theW22 pollen EM-seq data produced in this study, data
from four other W22 tissues were included. These are 15-DAP endo-
sperm and paired embryo (~3.5mm in width and 5mm in length),
premeiotic tassel (~1 cm stage), and second leaf (prior to emergence
from being wrapped in the 1st leaf). See Supplementary Table 1 for SRA
accessionnumbers. EM-seq reads frompollenwere trimmedof adapter
sequence and mapped to the W22 genome67 using the same methods
as the other tissues20. Metagene methylation profiles were produced
using the CGmapTools MFG tool v1.271. Methylation values for whole
genes and promoters (upstream 600-bp) were obtained with the
CGmapTools MTR tool. Genes or promoters lacking at least 30 infor-
mative CGs were removed from the analysis. Since the number of
informative cytosines varied depending on the source methylome
data, each of the five tissues retained different numbers of genes and
promoters. For the Wilcoxon signed rank test, only ones that were
retained in both embryo and pollen were included. A one-tailed test
was used because the known activity of DNGs in removing methylated
DNA provided a clear expectation of decreased methylation in pollen.
To determine differences in methylation between embryo and pollen
for each gene, we excluded genes where mCG equaled zero in either
tissue. This lessens noise associated with counting small numbers of
EM-seq reads, avoids dividing by zero, and prevents artificially inflating
the methylation decrease in pollen. For the single-read analysis of
promoter methylation, we were specifically interested in testing whe-
ther promoters that aremethylated in the plant body are demethylated
in pollen. Since MPGs were defined by methylation in their CDS, not
promoters, some might lack methylation in their promoters in the
plant body and confound the analysis. Thus,wefirst selected the subset
ofMPGswith evidence formethylation in promoters in theW22 leaf. In
particular, methylation values for the upstream 100bp of each W22
gene were determined using the CGmapTools MTR tool, and only the
subset of 36MPGswith EM-seq coverage andmCGvalues of at least 0.4
included in the single-read analysis. All EM-seq reads from each source
tissue that overlapped with these regions were selected using the
BEDTools v2.30.062 intersect tool. A custom Python script, Methyl-
BammerAll.py, was used to call methylation for each read. Only reads
with at least four CGswere included. For the single-read analysis of four
representative MPG promoters, reads pairs that overlapped specific
regions were selected from bam files using the SAMtools view tool
v1.1772 with region parameters as follows: 3:86,636,030–86,636,629,
5:152,375,079–152,375,678, 7:133,679,456–133,680,055, and9:16,361,514–
16,362,113. A custom Python script, MethylBammer.py, was used to
trim reads that extended outside these regions and call methylation
for each read. Only reads with at least four CGs were included.
Methylation callswerevisualized using aGGplot2 point geomplotwith
X-values scattered by a random number generator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw RNA-seq and EM-seq data generated in this study are available
through NCBI BioProject database under accession number
PRJNA1035166 [https://www.ncbi.nlm.nih.gov/bioproject/1035166].
Processed single-pollen RNA-seq data (UMI counts) andmodified gene
annotations used for defining DEGs are available in the Source Data

provided with this paper. Processed RNA-seq data and gene methyla-
tion data used to define methylated pollen genes are available at
https://github.com/dawelab/MethylatedPollenGenes. Source data are
provided with this paper.
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