Table 1 free parameters in our model, the nominal parameter value for illustrative calculations (Figs. 2–4), and the full Monte Carlo range shown in later calculations (Fig. 5)
Parameter name | Variable | Nominal point estimate | Monte Carlo range | Explanation/Reference |
---|---|---|---|---|
Initial conditions | Initial carbon, C (kg) | 4 × 1020 | 1020–1021.5 | |
Initial free oxygen, O (kg) | 6 × 1021 | 1021–1022 | Approximately Earth-like (ensures post-solidification mantle redox around quartz-fayalite-magnetite buffer if no nebular atmosphere). | |
Initial hydrogen, H (kg) | 4 × 1020 | 1020–1023 | Point estimate is approximate bulk silicate Earth inventory, range encompasses large primary atmosphere. | |
Initial radionuclide U, Th, and K inventory (relative Earth) | 1.0 | 0.33–30.0 | Scalar multiplication of Earth’s radionuclide inventories in Lebrun, et al.27. Allows for modest tidal heating. | |
Initial mantle FeO (mole fraction) | 0.06 | 0.06 | Earth-like value assumed for nominal calculations, but supplementary material investigates broad range of FeO (0.02 -0.2) | |
Stellar evolution and escape parameters | TRAPPIST-1 XUV saturation time,\({t}_{sat}\) | 3.14 | \({3.14}_{-1.46}^{+2.22}\) Gyr | XUV evolution parameters drawn randomly from joint distribution101. |
Post saturation phase XUV decay exponent, \({\beta }_{decay}\) | −1.17 | \(-{1.17}_{-0.28}^{+0.27}\) | XUV evolution parameters drawn randomly from joint distribution101. | |
Saturated log10(FXUV/FBOLOMETRIC) flux ratio | -3.03 | \(-{3.03}_{-0.23}^{+0.25}\) | XUV evolution parameters drawn randomly from joint distribution101. | |
Escape efficiency at low XUV flux, \({\varepsilon }_{low}\) | 0.2 | 0.01–0.3 | See escape section in Krissansen-Totton, et al.28. | |
Transition parameter for diffusion limited to XUV-limited escape, \({\lambda }_{tra}\) | 1.0 | 10−6–101* | See escape section in Krissansen-Totton, et al.28. | |
XUV energy that contributes to XUV escape above hydrodynamic threshold, \({\zeta }_{high}\) | 50% | 0–100% | See escape section in Krissansen-Totton, et al.28. | |
Cold trap temperature variation, \(\varDelta {T}_{cold-trap}\) | 0 K | −30 to +30 K | Cold trap temperature, \({T}_{cold-trap}\), equals planetary skin temperature plus a fixed, uniformly sampled variation, \({T}_{cold-trap}={T}_{eq}{(1/2)}^{0.25}+\varDelta {T}_{cold-trap}\). Here, \({T}_{eq}\) is the planetary equilibrium temperature given assumed albedo. | |
Thermosphere temperature, \({T}_{thermo}\) | 1000 K | 200–5000 K* | ||
Interior parameter | Mantle viscosity coefficient | 10 Pa | 101–103 Pa s* | Solid mantle kinematic viscosity, \({\nu }_{rock}\), (m2/s) is given by the following equation:\({\nu }_{rock}={V}_{coef}3.8\times {10}^{7}\exp (\frac{350000}{8.314{T}_{p}})/{\rho }_{m}\)Here \({T}_{p}\) is mantle potential temperature (K) and \({\rho }_{m}\) is mantle density (kg/m3). See Krissansen-Totton, et al.28. |
Albedo | Bond albedo during magma ocean solidification | 0.2 | 0.0–0.2 |