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Exploring microbial diversity and
biosynthetic potential in zoo and wildlife
animal microbiomes

Georges P. Schmartz1,7, Jacqueline Rehner 2,7, Miriam J. Schuff2,
Leidy-Alejandra G. Molano 1, Sören L. Becker 2, Marcin Krawczyk 3,
Azat Tagirdzhanov 1,4, Alexey Gurevich4,5, Richard Francke6, Rolf Müller 4,
Verena Keller1,7 & Andreas Keller 1,4,7

Understanding human, animal, and environmental microbiota is essential for
advancing global health and combating antimicrobial resistance (AMR). We
investigate the oral and gut microbiota of 48 animal species in captivity,
comparing them to those of wildlife animals. Specifically, we characterize the
microbiota composition, metabolic pathways, AMR genes, and biosynthetic
gene clusters (BGCs) encoding the production of specialized metabolites. Our
results reveal a high diversity of microbiota, with 585 novel species-level
genome bins (SGBs) and 484 complete BGCs identified. Functional gene ana-
lysis of microbiomes shows diet-dependent variations. Furthermore, by com-
paring our findings to wildlife-derivedmicrobiomes, we observe the impact of
captivity on the animal microbiome, including examples of converging
microbiome compositions. Importantly, our study identifies AMR genes
against commonly used veterinary antibiotics, as well as resistance to vanco-
mycin, a critical antibiotic in human medicine. These findings underscore the
importance of the ‘One Health’ approach and the potential for zoonotic
transmission of pathogenic bacteria and AMR. Overall, our study contributes
to a better understanding of the complexity of the animal microbiome and
highlights its BGC diversity relevant to the discovery of novel antimicrobial
compounds.

Microorganisms and the microbiomes they shape wield considerable
influence on broader ecological dynamics despite their small scale.
While much attention in clinical microbial research focuses on human
pathogens and associatedmicrobiomes, there is a growing recognition
of the interconnectedness among animal, human, and environmental
health, underscored by the ‘One Health’ paradigm1–7. Accordingly,
there is an increasing interest in exploring environmental and animal-

associated microbial ecosystems. At the forefront of the ‘One Health’
paradigm lies the pressing issue of antimicrobial resistance (AMR)8.
The emergence and spread of AMR pose a significant threat to public
health worldwide, with escalating concerns about its impact on a
population scale9,10. While extensive literature has documented the
prevalence of AMR in farm animals, shedding light on the con-
sequences of intensive animal farming, comparatively scarce data is
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available for wildlife populations11–15. However, wildlife animals can
travel major distances and interact with other animals through inter-
species or intra-species interactions, providing numerous opportu-
nities to acquire and spread AMR along the way16.

Assessing the genetic makeup of animal-derived microbiomes
may not only be useful for quantifying the extent of the AMR crisis but
also for searching for potential new antibiotics. Biosynthetic gene
clusters (BGCs) found across fungi andbacteriahave beendiscussed as
a promising avenue for the discovery of novel antimicrobial
compounds17–21. These genetic loci encode the machinery for synthe-
sizing bioactive compounds and can be specifically searched for
throughmethods of genomemining inmetagenomicdata analysis22–24.
The large biodiversity in both environmental and animal-associated
microbiomes sources a plethora of BGCs, of which, unfortunately, only
a few have the potential to serve as antimicrobial agents21,25–27.

A study by Youngblut et al. explored BGCswithin themicrobiome
of various wildlife species, focusing on the diversity and functional
breadth of themicrobiomewhileminimizing technical variation across

samples28. However, challenges faced during sampling can introduce
various confounding factors that may significantly disturb down-
stream analysis and impact final conclusions. To mitigate some of the
previouslymentioned challenges, zoo animals, serving as ambassadors
for their wild counterparts, yet existing in a controlled environment,
have been explored29–31. However, most studies working on captive
animals focus only on one animal species and often limit themselves to
their gut microbiome32–35.

In this study, we focus on the oral and intestinal microbiota of
captive animals, all derived from the same zoo, whose environments
are regulated and influenced by the presence of zookeepers and visi-
tors. Our aim is not only to characterize the composition of these
microbial communities but also to understand their functional roles,
document BGCs, and measure antimicrobial resistance genes. Our
investigation extends beyond the confines of captive environments, as
we performed a comparative analysis between the microbiomes of
captive zoo animals and those of their wild counterparts (Fig. 1a). By
scrutinizing the microbiota of these captivated creatures, our study

Fig. 1 | Study setup and data quality. a The sampling strategy of the study focuses
on the comparison of saliva and stool samples of different zoo animals. Extension
with the dataset by Youngblut et al.28 further allows a comparison to wildlife-
derived samples. Createdwith BioRender.com released under a Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license. b Map of the Zoo
Saarbrücken with the position of each individual animal species. Co-located ani-
mals are encircled in blue. Silhouette-species mappings are elaborated in (c). Sil-
houettes were taken from PhyloPic (phylopic.org). c Species included in the study

after quality control and introduction of their silhouettes for a large portion of the
remaining plots in this study. d Statistics on host-derived read decontamination of
the metagenomic samples. For datapoints in green, a species-level genome was
available to perform read decontamination. Violet datapoints used a taxonomic
close substitute genome instead. The p-value indicates the significance of the two-
sided Wilcoxon rank sum test on the relative read loss attributed to host con-
tamination (QC quality control).
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not only aims to enrich our understanding of the microbiome’s com-
plexity but also holds the promise of unearthing novel antimicrobial
compounds sourced from animal microbiota.

Results
Deep sequencing andquality control results in 64metagenomes
from 45 species
First, weassessed thequality of themetagenomic sequencing results in
light of the diversity of species and sample types included and char-
acterized the robustness of our data. We collected a total of 55 stool
and 16 saliva samples, representing an extensive range of 48 and 15
distinct zoo animal species (mammals, birds, and reptiles), respec-
tively (Fig. 1b). Subsequently, after sequencing and quality control, we
obtained a final dataset comprising 52 stool and 14 saliva samples,
reflecting 45 and 13 species (Fig. 1c). Our quality control measures,
including host DNA decontamination, yielded minimal read losses
during the process, with an average loss of only 6.6% and a standard
deviation (SD) of ±13.2%. We retained an average of 5.3 gigabases of
sequencing data (SD: 1.7 GB), ensuring a reliable dataset for further
analysis.

To account for the species forwhich a reference assemblywas not
available on RefSeq, we employed substitute assemblies that were
taxonomically close. Notably, this substitution did not significantly
impact the relative number of filtered reads (two-sided Wilcoxon p-
value of 0.36, Supplementary Data 1), supporting our methodology.
Utilizing reference-free ordination analysis, we performed an in-depth
examinationof the cleaned reads, unveiling distinct patterns of sample
clustering primarily based on biospecimen (PERMANOVA p-value
< 0.001, Supplementary Fig. 1). This finding underscores the sig-
nificance of differentiating between stool and saliva samples and
highlights the influence of the animal’s specific microbiota on each
biospecimen.

De-novo analysis reveals 585 novel genomes and enhances
taxonomic assignment
We encountered an expected—yet significant—challenge when per-
forming taxonomic profiling based on the Genome Taxonomy Data-
base (GTDB) (21). The assignment rate using this database was low,
with an average of less than 17% (SD: ±16.6%) matches. This scarcity of
read assignments prompted us to adopt a de-novo analysis workflow.
Applying this de-novo analysis workflow proved to be instrumental in
overcoming some limitations of the taxonomic profiling from existing
databases and uncovered the hidden microbial diversity within our
dataset. Through this approach, we successfully recovered a total of
786 dereplicated species-level genome bins (SGBs) exceeding the cri-
teria of at least medium MIMAG quality (namely, less than 10% con-
tamination and a minimum of 50% completeness) (22). Among these
SGBs, 585 genomes (74%) had no representatives in the GTDBwith ANI
(Average Nucleotide Identity) less than 95% (Fig. 2a, Supplementary
Fig. 2, Supplementary Data 2). Specifically, when examining the stool
samples, we found that out of the 616 dereplicated SGBs, 446 had no
representatives (72%). In the case of saliva samples, the ratio increased
to 139 out of 170 (82%). Saliva samples, accounting for 21% of the
overall samples, contributed 22% and 23% of all the dereplicated SGBs
and novel dereplicated SGBs, respectively, suggesting the importance
of the oral microbiome in uncovering microbial diversity to be on par
with the gut microbiome. Analyzing all the recovered SGBs, we
observed an average scaffold length of 13 kb (SD: ±2.5 kb). Addition-
ally, we conducted searches for tRNA sequences as well as 5S, 16S, and
23S rRNA sequences within the SGBs. In total, 11,801 tRNAs and 205
rRNAs were detected in the SGBs, averaging 15 tRNAs and 0.3 rRNAs
per SGB. Whereas these functional gene statistics are indicative of the
overall quality of the assemblies, they also highlight the challenges of
reliably assembling ribosomal RNA genes.

Importantly, the integration of our SGBs into the GTDB prior to
taxonomic profiling yielded a substantial improvement in the read
assignment rate (paired two-sided Wilcoxon p-value < 1.7 × 10−12, Sup-
plementary Fig. 3). Nevertheless, for 17 samples, the assignment rate
remained below the low threshold of 20%. This highlights the sig-
nificance of including the novel microbial genomes discovered in this
study to enhance the accuracy and comprehensiveness of taxonomic
assignments. This analysis is also necessary to assess compositional
and functional differences between microbiomes and to uncover the
distribution of BGCs.

Culture-based taxonomic assignment yields differences
between herbivores and carnivores
In our metagenomic data, the measured alpha diversity, a sign of the
microbial complexity of a sample, appears stable for biological repli-
cates. In contrast, the alpha-diversity fluctuates significantly across
species (Fig. 3). Astonishingly, we observed a negative Spearman cor-
relation of −0.38 between assignment rates and diversity. Moreover,
the reference-based ordination analysis does not yield clear clusters,
reflecting neither zoological classification nor diet compositions.
Nevertheless, specific zoological proximities are reflected in the clus-
tering hierarchy, such as similar patterns between sheep and goat or
between zebra and horse. But in sum, the overall assessment is that the
reference-based ordination analysis remains inconclusive with respect
to identifying sub-groups of animals. One likely reason for this result is
the high variability of assignment rates and missing SGBs. Because
differences in the gut microbiota between herbivores and carnivores
are known from the literature, we asked whether a more targeted
approach involving culturing of bacteria highlights such
differences36,37.

Culturing of 11 saliva and 49 stool samples on TSA, Chocolate
blood, Columbia, and MacConkey agar, followed by subsequent
MALDI-TOF analysis, enabled the identification of 79 different bac-
terial species (Supplementary Fig. 4, Supplementary Data 3). While we
identified a total of 29 species in saliva (37%), only 8of them (28%)were
also detected in stool samples, where 6 of these 8 were of the genus
Staphylococcus. In total, 32 species (40%) were only detected in the
38 samples of herbivore animals (including species such as Enter-
ococcus mundtii, Bacteroides ovatus, and Bacillus pumilus). In contrast,
8 species (10.1%) were observed only in the 7 samples from carnivore
animals (including Citrobacter braakii, Plesiomonas shigelloides, and
Staphylococcus simulans). Moreover, 17 bacterial species (21.3%) were
uniquely detected in 15 samples of omnivore animals (including Neis-
seria zoodegmatis and Staphylococcus hominis depicting the highest
frequency across samples). Across all samples, 7 species (8.8%) are
present in all three diet forms, including prevalent intestinal micro-
biota such as Enterococcus faecalis, Escherichia coli, and Enterococcus
faecium, as well as Clostridium perfringens and Bacillus cereus. Before
adjustment for multiple hypothesis testing, 11 species were sig-
nificantly unevenly distributed within the cohorts (χ2 test p-value <
0.05). After the Benjamini–Hochberg adjustment, no p-value
remained significant. Performing the same test over all stool samples
and cohorts did not display significant differences between diets (χ2

testp-value = 0.51). As for culturing, only a selectionofmediawas used,
bias is introduced by excluding the growth of certain bacteria, that
cannot grow on the selectedmedia. However, all samples were treated
the same, which makes these results at least comparable. It is worth
mentioning that not every microorganism is cultivatable under
laboratory conditions, making the metagenomic analysis a more
powerful and more precise tool to investigate the microbiome.
Nevertheless, the considerably different repertoire of microbiota
suggests unique functional characteristics that might be connected to
the dietary origin. We thus performed a functional in-silico gene ana-
lysis of the respective microbiota.
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The statistically significant results from this functional gene ana-
lysis highlight elevated creatinine degradation I pathway in herbivore
animals (Supplementary Fig. 5). Contrastingly, the super pathway of
tetrahydrofolate biosynthesis and salvage are more prevalent in
microbiota from carnivore animals. Enriched in both carnivore and
omnivore animals are bacteria carrying the genomic information for
flavin-dependent thymidylate synthase (thyX), which is required to
synthesize pyrimidine deoxyribonucleotides de novo. Most notably,
this gene and the encoded protein are present in human and animal
pathogens, such as Helicobacter pylori, Borrelia burgdorferi, and Chla-
mydia trachomatis38–40.

Differences in 484 complete biosynthetic gene clusters
depending on the diet
After the initial general functional gene analysis of the different animal
microbiota, we looked into the specific metabolite landscapes of

individual members of the microbiomes. We performed genome
mining of the previously defined SGBs and identified 1588 potential
BGCs. Of those, 1104 remained partial, and 484 were identified as full
BGC clusters of various categories (Fig. 2a, Fig. 2b, Supplementary
Data 4). Further analysis with BiG-SCAPE categorized BGCs into 1482
families, out of which 1407 families were singletons containing only
one BGC41. A total of five families compromising six BGCs are linked to
annotated gene clusters from the MIBiG 3.1 database42. But interest-
ingly, BiG-SCAPEdidnot formany clans of the families. Togetherwith a
high number of singleton families, this suggests a high diversity of
BGCs in the collected dataset.

With 604 (38%) BGCs, Clostridiawas the class where we predicted
most BGCs. However, this is mostly due to Clostridiamaking up about
36% of our recovered dereplicated SGBs. If we look at the average
number of BGCs per SGB and exclude singletons, we observe that, on
average, most BGCs were predicted for the class of Planctomycetia.

Fig. 2 | Species-level genome bins. a Phylogenetic tree of species-level genome
bins as classified by the GTDB-Tk. The colored background of clades indicates class
ranks. The innermost ring, named Novel, indicates if the GTDB-Tk found a species-
level assignment. The second, third, and fourth rings discuss bin quality by dis-
playing detected rRNAs, tRNAs, and scaffold length distribution, respectively. The

two outer rings indicate the BGCs that were detected in the respective bins. BGCs
are classified by type and by completion. A more richly annotated version of this
visualization is available in Supplementary Fig. 2. b Number of SGBs and BGCs
recovered from each sample.
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Averaged over 15 genomes, we observed 3.73 BGCs per SGB. With only
4 BGCs in 33 SGBs, Saccharimonadia had the lowest non-singleton
ratio of BGCs to SGBs. Concerning disparities between the oral and gut
microbiome, we observed a total of 450 BGCs (28%) in the 170 saliva-
derived SGBs averaging 2.65 BGCs per SGB, which compares to 1,138
BGCs in 616 SGBs at a ratio of 1.85 in the stool samples. Focusing only
on the stool-derived BGCs, we observed an average of 2.01, 1.65, and
1.47 BGCs per SGB for herbivores, omnivores, and carnivores,
respectively. These differences were confirmed to be significant
(Kruskal–Wallis p-value < 0.0053). Specifically, the average number
of nonribosomal peptides (NRPs) was 2.87 and 3.46 times higher in
herbivore SGBs compared to carnivores and omnivores, respectively.

Through a comparative analysis of predicted BGCs and
known annotated BGCs from the MIBiG database, we observed 37
BGCs (2%) within our SGBs that shared a similarity of over 50%
with known entries. Among these annotations, various

compounds may be of relevance to the host organism (Supple-
mentary Fig. 6). We detected virulence factors, such as the toxin
tolaasin I, within an SGB derived from tapir saliva. Furthermore,
we uncovered various annotations associated with health bene-
fits, including the bacteriocin salivaricin CRL 1328, present in an
SGB derived from a mandrill stool sample43. We encountered two
further compounds with noteworthy properties: α-galacto-
sylceramide, an immunostimulating compound found in an SGB
derived from horse stool, and rhizomide, identified in an SGB
derived from tapir saliva, exhibiting anti-tumor and antimicrobial
properties in vitro44.

Having captured differences in the repertoire of bacteria from
animalswith different diets in the gut and oral cavity alongwith unique
functional characteristics and novel BGCs raises the question of whe-
ther captivity has an influence on the microbiota or whether wildlife
animals reveal similar patterns.

Fig. 3 | Reference-based analysis. Summary statistics on quality, diversity, com-
position, and compositional similarity of microbiomes. Starting from the left, the
taxonomic classification of host animals is displayed. Silhouettes represent the host
species, and their color represents the different specimens. If multiple replicates
were available,multiple pie charts are displayed, where each pie chart indicates the
overall quality of the reference-based analysis. Further, diet classification is pro-
vided for each species which is consistently used throughout the paper. Three diets

are being distinguished: herbivore, carnivore, and omnivore. Alpha-diversity of
each sample is indicated using the Shannon index, to visualize microbiome com-
plexity. On the rightmost side, hierarchical clustering based on Bray–Curtis dis-
tances are displayed. The optimized tanglegramm displays the accordance
between taxonomic class and membership based on predicted microbial compo-
sition. The edges are colored by the taxonomic class of the host.
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Animals in captivity present different antimicrobial resistance
gene patterns
Comparing microbiome differences between captive and wildlife ani-
mals and addressing the complexities in the sample extraction pro-
cess, we conducted a comparative analysis with data from Youngblut
et al. 28, the—asof now—most complete study of animal gutmicrobiota.
Theirdataset consistedof 289 samples from180different host species,
including humans. The large differences between both studies in the
selection of animal species call for a balanced and stratified analysis
approach. Therefore, we implemented a matching scheme that care-
fully selects a subset of samples with close zoological similarity from
both studies (Supplementary Data 1). We excluded the oral micro-
biomes of the zoo animals from this analysis because no oral micro-
biota from wildlife animals were present.

It is important to acknowledge that differences in sample pro-
cessing between the two studies, such as different DNA extraction kits,
can be reflected in the data45. Similarly, the easier collection process in
a controlled environment, such as a zoo in comparison to a wildlife
setting, likely leads to differences in the sample quality. To quantify
these differences and ensure methodological consistency, we thus
applied our analysis workflow to the selected metagenomes from
Youngblut et al.28. We observed a significant decrease in read quantity
after decontamination compared to the present data, which is
explained by the above-mentioned challenges in wildlife sampling
(Supplementary Fig. 7a). This reduction also influences the assembly
quality, which was lower in the wildlife samples, finally leading to
overall shorter fragments (Supplementary Fig. 7b). Consequently,
fewer SGBs were recovered in the wildlife samples compared to the
zoo dataset (Supplementary Fig. 7c). While the samples from animals
kept in captivity retained an average of 9.8 SGBs per sample, the
wildlife dataset yielded just 1.9 SGBs. Similar differences also apply to
the number and abundance distribution of BGCs. Here, SGBs derived
from wildlife animals present, on average, 13 fewer BGCs per SGB
(Supplementary Fig. 7d). We were only able to recover partial BGCs in
the wildlife samples compared to 50 complete BGCs in the matching
zoo samples. Further, only one BGC was annotated to have a similarity

>10% to any known MIBiG BGC. It has a 28% similarity to a carotenoid
cluster derived from an Algoriphagus species. Again, the latter results
might seem counterintuitive, and we might expect more BGCs in
wildlife, yet the results are likely biased by the challenges of wildlife
sampling and different sample processing. Most importantly, the
quality of the wildlife samples is still sufficient to enable reference-free
comparison.

As one first aspect, we asked whether the microbiomes between
zoo and wildlife animals present a conserved proximity-dependent on
the relatedness of host animal species. For the selected samples, we
thus performed reference-free FracMinHash comparisons (Fig. 4a). On
average, we computed a large dissimilarity between any compared
pairs. In detail, the average dissimilarity amounts to 0.98 (SD: 0.018),
which is close to the maximal dissimilarity value of 1. Importantly, the
dissimilarity distributions within the wildlife and zoo animals do not
differ significantly (two-sided Wilcoxon p-value > 0.37). Nevertheless,
zoo animals display several strong similarities between gutmicrobiota.
These includemostly inter-replicate comparisons of zebra, camel, and
giraffes, yielding an overall significantly lower dissimilarity index as
compared to the other zoo animals (two-sided Wilcoxon p-
value < 9.44 × 10−7). Of note, no replicates for the wildlife animals are
available, explaining the missing similarities within those samples.
Interestingly, several of the zoo animal species, including the yak,
giraffe, camel, and goat, displayed increased similarities in gut
microbiota. The same applies to two kangaroo species that also show
similarities in the gut microbiota. Of note, such similarities are not
present in the wildlife animals and may suggest an influence, e.g., of
the nutrition in this controlled environment. Further, the results
clearly argue for combining the advantages of studies in wildlife ani-
mals (being closer to nature) and controlled environments (facilitating
higher sample quality).

One immediate question in comparing wildlife to captivity set-
ups concerns the presence of AMR. AMR gene analysis of zoo ani-
mals revealed potential resistances against antibiotics that are
commonly used in veterinary medicine, such as tetracyclines,
macrolides, and lincosamides, with tetW being the most prominent

Fig. 4 | Potential consequences of captivity. a FracMinHash dissimilarity between
samples within our dataset and the dataset of Youngblut et al.28. The cross-
comparison matches sample pairs as elaborated in Supplementary Data 1. For
reference, zoo replicates and their dissimilarity are visualized alongside.b Presence

of antimicrobial resistance genes for each of the zoo and wildlife samples classified
by antimicrobial compound class. Visualized results derive from ResFinder and
AMRFinderPlus.
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gene detected encoding for resistance against tetracyclines, and
lnu(C)being the most frequent gene encoding for lincosamide
resistance when looking at the results using AMRFinderPlus46

(Fig. 4b, Supplementary Data 5). Genes conferring resistance to
fluoroquinolones were rare (qnrS1). However, we also observed
resistance genes against vancomycin, a broad spectrum antibiotic
against Gram-positive bacteria47. Specifically, we documented the
well-known resistance clusters vanD and vanG, which are uncom-
mon in humans48,49. However, we also detected the vanO operon,
which has only been identified in captive elephants in Africa50,51.
Furthermore, we observed a high number of genes encoding beta-
lactamases (e.g., blaEC and blaTEM), some of which may even
confer resistance to carbapenems. We were able to detect 21 dif-
ferent genes encoding for resistance mechanisms against ami-
noglycosides, with the most prominent one being aadE when
looking at the results generated with AMRFinderPlus. We stratified
all beta-lactamases according to the Ambler classification and found
most prominently beta-lactamases belonging to Ambler class A and
C. We did not observe any beta-lactamases belonging to Ambler
class B or D. As outlined in the ‘One Health’ concept, such resistant
bacteria could be transferred from zoo animals to zookeepers,
increasing the global spreading of such organisms. When we com-
pared our matching stool zoo samples to the wildlife samples, we
observed a significantly smaller number of antimicrobial compound
classes that are targeted by at least one resistance gene in the
wildlife samples (two-sided Wilcoxon p-value < 0.036). Overall, we
only observed a total of five potential resistances in all analyzed
wildlife samples. This suggests that wild animals overall harbour
less AMR. Nevertheless, we want to highlight that this result is again
to be interpreted in the light of the inferior assembly quality of the
wildlife samples, which impacts the quality of AMR gene detection.

Discussion
Our findings, in line with the study by Youngblut et al.28, indicate that
the microbial dark matter within animal microbiomes remains inade-
quately characterized in existing data repositories. Despite our
extensive efforts and the generation of several novel SGBs, we
encountered 17 samples with a low estimated assignment rate below
20%. This deficiency significantly impacts state-of-the-art reference-
based analysis, as evident in our own investigation.

The microbial richness we detect, despite the accompanying
challenges, presents an intriguing opportunity for the discovery of
BGCs associated with antimicrobial natural compounds within these
samples. In this context, it is worth emphasizing the advantages of
combining different study setups. While our focus lies on samples
from a highly controlled environment, specifically a zoo, com-
plementary studies like that of Youngblut et al.28. provide valuable
insights into wildlife microbiomes, which are closer to the natural
microbiota. By integratingfindings fromdiverse settings, we can gain a
more comprehensive understanding of the animal microbiome and
potentially uncover novel microbial resources with therapeutic
potential.

Specifically, the zoo animals present higher numbers of SGBs and
BGCs per SGBs but also higher proximity of gut microbiota as com-
pared to the wildlife animals. It is important to acknowledge that the
number of BGCs within SGBs can vary, depending on the specific
species discovered. However, the improved assembly statistics high-
light the advantages of easier sample collection in captivity compared
to wild animals, at the cost of BGCs that might only be present in
wildlife animals.

When comparing studies, one limitation we encountered was the
need to perform inter-species comparisons, which involved species
from different continents with potentially diverse diets. This aspect
adds complexity to the analysis, as the microbiomes of zoo animals,
despite sharing similar diets such as local seasonal vegetables, still

exhibit considerable differences. The convergence of microbiome
composition across zoo animals appears to be limited, yetmeasurable.

Furthermore, the presence of AMR genes in animal microbiomes
is of considerable importance from the ‘One Health’ perspective. A
previous study, for example, screened captive animals in a zoo in
Seoul, South Korea, for particular AMR patterns carried by Escherichia
coli and Enterococcus faecalis. However, the research assessed resis-
tance phenotypically only without analyzing the responsible genes.
They found ampicillin resistance in most E. coli isolates, and also
describedmultidrug resistance in 50%of isolated E.coli52. Aswewanted
to monitor all AMR genes found in captive animals, we followed a
metagenomic approach.While it is not uncommon to detect antibiotic
resistance genes both in wildlife animals and in zoo animals, the dis-
tribution of these genes is of enormous relevance, e.g., to track pos-
sible associations between commonly used antibiotics in veterinary
and/or humanmedicine and todecipher potential transmission chains.
Also, resistance towards ‘last-line antibiotics’ in animals might con-
stitute a potential threat to humans53. In that regard, it is important to
note that we also identified resistance genes against vancomycin in
certain animals, including prosimians. Considering their close contact
with zookeepers, there is a potential risk of transferring vancomycin-
resistant bacteria to humans. A closer look into resistances against
beta-lactam antibiotics revealed mainly beta-lactamases belonging to
Ambler class A and C, such as blaEC and blaTEM. Recent findings from
studies conducted in Africa revealed mainly blaOXA, blaKPC, blaNDM,
blaSHV, and blaVIM to be found in animals, food, and environmental
samples54. These genes encoding for carbapenemases were absent in
our study but are also becoming amajor threat in humanmedicine55–57,
and hence, are listed among the World Health Organizations’s (WHO)
‘priority pathogen list in the highest category ‘ as ‘critical’58. Therefore,
longitudinal screening of captive animals which are in close contact to
humans should be employed to notice such a trend before the spread
of bacteria carrying such resistances cannot be stopped. The com-
paratively frequent detection of resistance to tetracycline antibiotics is
a further concern and future studies should ideally employ strategies
to document the previous antibiotic intake of zoo animals to gain
insights onpotential associationswith a rise in resistance rates. Indeed,
as transmission ofmulti-resistant bacteriahasbeenobserved in clinical
settings, our findings emphasize the need for comprehensive surveil-
lance and management of AMRs in zoo settings to mitigate potential
health risks and maintain a safe environment for both animals and
humans59–61. Our AMR analysis is limited by the fact that individual
resistance genes could not be assigned to specific bacterial species;
e.g., Enterobacter cloacae complex frequently carries AmpC beta-
lactamases in clinical practice, and it would have been interesting to
see whether such associations also hold true for captive animals62.

Methods
Study design
For docile animals such as horses, dwarf goats, and tapirs, buccal
swabs were easily taken from the oral cavity to collect saliva samples.
Concurrently, fresh fecal samples were collected from the enclosures
or stables maximum two hours after defecation and immediately
transported to the veterinary station. Using a spoon from a stool
sample tube, feces from the inner portion of the excreta were trans-
ferred into sample tubes. Subsequently, all samples were promptly
frozen at −20 °C in the freezer compartment of a refrigerator. Typi-
cally, samples were frozen within 30min of collection.

For non-docile animals, such as primates and large or small car-
nivores, the same sample collection methods were employed during
necessary anesthesia, which occurred for veterinary examinations,
treatment, transport, or sex determination. For small animals, fecal
samples were collected rectally as swabs, following the same protocol
described above, and stored frozen until further analysis. Due to the
non-invasive sampling procedure, no ethical approval was required.
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DNA extraction
We extracted whole-genome DNA from all fecal and salivary swabs
using the Qiagen QiAampMicrobiomeKit (Qiagen, Hilden, Germany)8.
The DNA extraction procedure was conducted according to the man-
ufacturer’s protocol. Briefly, all swabs containing native samples were
vortexed in 1ml PBS for 2minutes. The PBS containing the microbes
from each sample was then used for DNA extraction according to the
manufacturer’s recommendation. We used the MP Biomedicals™ Fas-
tPrep-24™ 5G Instrument (FisherScientificGmbH, Schwerte, Germany)
for mechanical lysis of bacterial cells. The velocity and duration were
adjusted to the ‘hard-to-lyse’ protocol,meaning 6.5m/s for 45 s 2 times
and 5min storage on ice in between each lysis step. DNA was eluted in
50 µl elution buffer. The DNA concentration after elution was deter-
mined via NanoDrop 2000/2000c (ThermoFisher Scientific, Wil-
mington, DE) full-spectrum microvolume UV–Vis measurements45.

Library preparation and sequencing
Extracted whole-genome DNA was sent to Novogene Company Lim-
ited (Cambridge, UK) for library preparation and sequencing. For
quality control of the samples, potential genomic DNA degradation
was measured using the fragment analyzer platform AATI (Agilent
Technolgies, CA, USA). The DNA concentration was measured using
Qubit (Thermo Fisher, Wilmington, DE) before library preparation.
Briefly, samples were subjected to metagenomic library preparation
and further sequenced via paired-end Illumina Novaseq X plus
Sequencing PE150. For library preparation, the Novogene NGS DNA
Library Prep Set (Cat No.PT004) was used. Genomic DNA was sheared
into short fragments in random positions and fragmented DNA was
subjected to end-repair and A-tailing, as well as Illumina adapter liga-
tion. Fragments with the appropriate size of 500bp were selected via
beads-based size selection of libraries and amplified via PCR. The PCR
products underwent quality control and quantification using theQubit
system and bioanalyzer to visualize the generated fragment sizes. All
samples were pooled and sequenced on the Illumina Novaseq X plus
Sequencer. For all samples, 5 Gb reads per sample were generated.

Culturing of bacteria
Native fecal samples were streaked out using the swab theywere taken
with, on three different agar plates: TSA with 5% sheep blood (TSA),
MacConkey (MC), and Columbia (Co) agar plates (Becton, Dickinson
and Company, Heidelberg, Germany). Oral samples were streaked out
on TSA, Co and Chocolate blood (CB) agar plates (Becton, Dickinson
and Company, Heidelberg, Germany). All TSA, CB, and MC agar plates
were incubated at 35.6 °C and 5% CO2 for a minimum of 18 h and a
maximum of 24h. Co agar plates were used for the cultivation of
anaerobic bacteria and therefore incubated in an anaerobic environ-
ment for a minimum of 48 h at 35.6 °C45.

Mass spectrometry-based identification
Bacterial colonies obtained by culturing native fecal and oral samples
on different agar plates were subjected to species identification using
matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)
mass spectrometry. To this end, colonies from overnight growth on
tryptic soy agar plates containing 5% sheep blood, fromColumbia agar
plates, and MacConkey agar plates were taken with a sterile toothpick
and spotted on theMALDI-TOF target plate by smearing one colony on
one spotof the target, dried, and thenoverlayedwith 1 µl of 70% formic
acid. This step aids in the cell lysis and makes peptides and proteins
available for ionization. After drying, 1 µl of α-cyano-4-
hydroxycinnamic acid (CHCA) matrix solution (Bruker Daltonics,
Bremen, Germany) was pipetted on top of the bacterial matter and
formic acid and set to dry. The matrix solution is composed of satu-
rated CHCA dissolved in 50% (v/v) acetonitrile, 47.5% (v/v) LC-MS
grade water, and 2.5% (v/v) trifluoroacetic acid. After drying thematrix
solution at room temperature, each spot was overlayed with 70 %

formic acid to pre-disrupt the cells. Followed by drying at room tem-
perature, the plate was placed into the Microflex LT Mass Spectro-
meter (Bruker Daltonics) for MALDI-TOF MS. All measurements were
performed with the AutoXecute algorithm in the FlexControl© soft-
ware version 3.4 (Bruker Daltonics). Each spot was excited with 240
laser shots in six random positions. Measurements were carried out
automatically to generate protein mass profiles in linear positive ion
mode using a laser frequency of 60Hz, high voltage of 20 kV, and
pulsed ion extraction of 180 ns. Mass charge ratio ranges (m/z) were
measured between 2 kDa and 20 kDa. We identified bacterial species
using the software MALDI BioTyper compass explorer (v.3.0). The
database used was Bruker´s commercial database: Bruker BDAL
database (10,148 species-specific main spectra profiles). Identification
scores above 2.0 were considered a precise identification of proteins
and peptides on the species level, scores between 1.7 and 1.99 were
considered as possible species identification and precise genus iden-
tification, and all identification scores below 1.7 were considered
unsuccessful identification. In this study, we only considered scores ≥2
for analyses36.

Next-generation sequencing preprocessing
The first step of data analysis was host read removal with KneadData
(version (v):0.10.0; command line arguments (cla): “--trimmomatic-
options = ’LEADING:3 TRAILING:3 MINLEN:50’ --bowtie2-options = ’--
very-sensitive --no-discordant -reorder’”) using the respective gen-
omes as specified in Supplementary Data 163. The selected, publicly
available, host genomes were downloaded with the ncbi-datasets-cli
(v13.35.0). For several animal species, no exact sequenced genome of
sufficient quality was available and instead, a taxonomically close
substitute was selected. Bowtie2 (v2.4.5; -s) databases were prepared
for each reference64. After decontamination, we performed sequence
overrepresentation analysis and quality assurance with fastp (v:0.23.2;
cla: --overrepresentation_analysis) and visualized results with MultiQC
(v1.13a)65,66. The two-sided Wilcoxon rank sum test was performed on
the relative loss attributed to host DNA removal. To reduce bias,
replicates were averaged. Saliva and stool samples were not averaged.

Metagenome assembly
We assembled each sample with SPAades (v3.15.4; cla: --meta) and
monitored assembly quality with QUAST (v5.0.2; cla: -s)67,68. Next, we
aligned each host decontaminated sample against each set of assem-
bled scaffolds with BWA-MEM2 (v2.2.1) and generated abundance
profiles for each combination69. We extracted coverage information to
bin scaffolds with MetaBAT2 (v2.15; cla:-l --seed 420 --unbinned),
MaxBin2 (v2.2.7), and DAS Tool(v1.1.5; --search_engine diamond)70–72.
MAGs across all samples were aggregated and dereplicated with dRep
(v:3.4.0; cla: -comp 50 -con 10 --checkM_method lineage_wf --S_algo-
rithm fastANI --S_ani 0.95 -nc 0.5). At last, we usedGTDB-Tk (v:2.1.1; cla:
classify_wf), tRNAscanSE (v:2.0.11;--brief -Q), and barrnap(v:0.9; cla: -q)
to taxonomically classify MAGs and annotate them with tRNA and
rRNA information based on their classified kingdom73,74.

Reference-based compositional analysis
FracMinHash profiles were computed for all samples with sourmash
(v:4.4.3; cla: -k51)75. After FracMinHash profile generation, samples
were compared with sourmash compare. Dissimilarities were com-
puted by subtracting the resulting similarities from one. Samples were
embedded with UMAP (v:0.2.8)76. Further, for each SGB, FracMinHash
profiles were computed as well, and an index was generated. The
PERMANOVAanalysis treated samples and replicates as independent77.
Taxonmic profiling was performed with sourmash (cla: -k51) our pre-
viously generated indices, GTDB (v:GTDBR07-RS207 all genomes k51),
and host decontaminated reads. Shannon index was used as the alpha-
diversity measure and computed with phyloseq (v:1.40.0)78,79. Relative
abundances were averaged if replicates were available. Clustering was
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performed with average hierarchical clustering on Bray-Curtis dis-
tances computed with the vegan package on mean relative abun-
dances (v:2.6.2)80. Tanglegram was optimized for visual clarity with
“step2side” algorithm of the R dendextend package (v:1.16.0)81. Dif-
ferential abundance analysis was made with ANCOMBC (v:1.6.2) com-
paring herbivores and the union of omnivores and carnivores82.

Functional analysis
In order to incorporate our ownSGBs into the functional profiling step,
we updated an existing GTDB207-based database with Struo2
(v:2.3.0)83. After database generation, functional profiling was per-
formed with HUMAnN 3 (v:3.6; cla: --bypass-nucleotide-index)63. We
also used ANCOMBC for exploration of differences in function. The
default setting of Holm–Bonferroni p-value adjustment was employed.
Genes were predicted with prodigal (cla:-p meta) and passed to anti-
SMASH (v:6.1.1; cla: -cb-knownclusters --cb-subclusters --asf) for BGC
detection22,84. A BGCwasclassified aspartial if it is shorter than 5 kbpor
located on a contig edge and as full otherwise. Clustering of all BGCs
was performed with BiG-SCAPE (v:1.1.5; cla: --mibig) using Pfam
(v:35.0). BiG-SCAPE failed to process two BGCs and removed them
from further analysis42,85.

Antimicrobial resistance gene analysis
Antimicrobial resistance gene assessment was performed with AMR-
FinderPlus (v:3.11.26; database v:2023-11-15.1; cla: --report_all_equal
--plus --coverage_min 0.9 --ident_min 0.95), DeepARG (v:1.0.4; data-
base v:2; cla: --model SS --type nucl –min-prob 0.8 --arg-alignment-
identity 95 --arg-alignment-evalue 1e-10 --arg-num-alignments-per-
entry 1000), and ResFinder (v:4.4.2; database v:2.3.0; clr: --threshold
0.95 --min_cov 0.95). Aftermetagenomic assembly, the contigs of each
sample were passed to each of the aforementioned tools, grouping
contigs by sample. Results across all samples, as well as tools were
aggregated using hamronizer (https://github.com/pha4ge/
hAMRonization; v:1.1.4)86–88. DeepARG predictions were rejected
from further analysis due to exceptionally high numbers of detected
resistance genes and divergence from manually inspected results.
AMRFinderPlus predictions were discussed in detail in the paper. For
visualization, ResFinder and AMRFinderPlus results were unified if
genes that provide resistance against the same group of antimicrobial
compounds were predicted on the same contig within a 50bp interval
by both tools.

Wildlife comparison
Samples specified in Supplementary Data 1 were downloaded from the
European Nucleotide Archive and processed identically to our dataset,
from host DNA removal to BGC prediction89. We subsetted our data to
only the paired samples specified in the aforementioned table. Pairings
were manually selected based on taxonomic similarity. Paired com-
parison to our data was done based on FracMinHash dissimilarities.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw unfiltered sequencing reads as well as dereplicated SGBs
generated in this study have been deposited in the Sequence Read
Archive under the accession PRJNA983076.
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