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Rose is an important ornamental crop cultivated globally for perfume pro-

duction. However, our understanding of the mechanisms underlying scent
production and molecular breeding for fragrance is hindered by the lack of a
reference genome for tea roses. We present the first complete telomere-to-
telomere (T2T) genome of Rosa gigantea, with high quality (QV > 60),
including detailed characterization of the structural features of repetitive
regions. The expansion of genes associated with phenylpropanoid biosynth-
esis may account for the unique tea scent. We uncover the release rhythm of
aromatic volatile organic compounds and their gene regulatory networks
through comparative genomics and time-ordered gene co-expression net-
works. Analyzes of eugenol homologs demonstrate how plants attract polli-
nators using specialized phenylpropanoids in specific tissues. This study
highlights the conservation and utilization of genetic diversity from wild
endangered species through multi-omics approaches, providing a scientific
foundation for enhancing rose fragrance via de novo domestication.

As the ancestor of tea roses, Rosa gigantea (RG) contributed to the tea
scent, yellow color, large flowers, and vigorous growth of modern
roses. Before the 17th century, roses were widely cultivated in the East
and West'”. After the establishment of sea lines of communication,
Western botanists discovered Chinese roses, with a unique scent
characterized by a subtle medicinal fragrance and gentle, refreshing
sweetness, described as a tea scent by Westerners because it was
reminiscent of another famous import from China, green tea’. The wild
tea rose R. gigantea, with the typical tea scent and large yellow flowers,
formed the early tea roses (Supplementary Fig. 1). Two famous Chinese
garden roses, ‘Hume’s Blush Tea-scented China’ and ‘Parks’ Yellow Tea-
scented China’, were introduced from China to England and then to
France in the early 19th century®. Together with R. chinensis ‘Old Blush’

and R. chinensis var. semperflorens, gene exchange between these
varieties and European roses started the first revolution in rose
breeding’. Symbolized by ‘La France’ in 1867, Hybrid Tea Rose became
the most popular owing to its large diameter, high-centered shape,
single long stem, and diverse colors®.

Human intervention has generated roses with highly diverse col-
ors, covering all shades except blue, but a limited fragrance, with a
single characteristic scent. Hybrid Tea Rose has been continuously
improved to create colorful hybrid roses’. Currently, most popular cut-
flower roses are derived from Hybrid Tea Rose®. The aromatic trait has
been neglected during the breeding process, and the tea scent has
been lost®. In addition, to ensure a stable quality, oil roses with the
classic scent have been propagated through strictly asexual
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reproduction, resulting in the loss of fragrance diversity. However,
there has been a shift in consumer attitudes, whereby people are no
longer satisfied with colored but odorless roses or single-scented rose
essential oil products. There is demand for the ancestral tea scent and
the development of new plant essential oil products with biological
activities and multi-functionalities.

Multi-omics analyzes provide insights into the preservation of
genetic resources and a basis for reviving the tea scent. Despite the
importance of R. gigantea for the restoration of the tea scent, it has
been over-exploited and population sizes have decreased sharply in
the wild (Supplementary Fig. 2). Therefore, preservation and genetic
research are urgently needed. Using traditional sequencing methods,
it is difficult to assemble complex regions, such as telomeres and their
surrounding long repetitive sequences, ribosomal DNA, and tandem
repeat sequences. The three published rose genomes’™ are incom-
plete, with gaps, and cannot serve as references for tea-scented or
yellow roses. The combination of Nanopore ultra-long read sequen-
cing (to span overlapping clusters across chromosomal arms and peri-
centromeric regions) and PacBio HiFi sequencing (to fill in gaps) pro-
vides a strategy to overcome this complexity'> ™. In this study, the first
complete telomere-to-telomere (T2T) genome of the endangered
ancestor of tea rose, R. gigantea, was generated. The sensory char-
acteristics, release patterns, and regulatory networks® related to the
unique tea scent were elucidated using multi-omics technologies'.

Results

A complete T2T reference genome for R. gigantea

The first complete T2T gap-free genome for Rosa was generated,
containing seven chromosomes with a total length of 549.76 Mb
(Fig. 1a, b), similar to the estimated genome size (530.96 Mb). The
result was consistent with a karyotype test (Supplementary Fig. 3) and
k-mer (k=19) analysis (Supplementary Fig. 4). Additionally, 159 bp
candidate centromeric repeat sequences were found and designated
as CEN159 satellites, representing the centromeric region of R. gigan-
tea (RG). This region was the same length as the centromeric satellite
0OBC226" identified in R. chinensis ‘Old Blush’ (RC). Oligo-FISH with
CEN159 monomers as probes demonstrated clear and specific signals
at most centromeres of RG (Fig. 1d, e).

Thirteen telomeres and one 45S rDNA end were identified. While
no telomere was found at the end of chromosome 3 in three assembly
versions, 1198 45S rDNA sites were specifically detected in the region
(Fig. 1c). This was similar to the discoveries of short-arm 45S rDNA
clusters at the ends of chromosomes 2 and 4, instead of telomeres, in
Arabidopsis'® and rDNA repeats on the short arms of human acro-
centric chromosomes'®?. To verify the sequencing results, the telo-
mere and 45S rDNA sequences were visualized by FISH, revealing 45S
rDNA sites on two sister chromatids of chromosome 3 (Fig. 1f). In
addition to new insights into high-copy repeats in non-coding regions
(Supplementary Table 1), functionally important protein-coding genes
were also discovered (Supplementary Table 2). All 33 gaps in the RC
assembly were filled in the RG assembly. These gaps were distributed
throughout the genome. There were six predicted genes in gap
regions, suggesting that these genes would not be identified using RC
as a reference genome. These genes included COXI (cytochrome c
oxidase subunit 1), a well-established mitochondrial gene involved in
horizontal gene transfer among angiosperms” (Supplementary Fig. 5).

The R. gigantea genome assembly had a higher completeness and
accuracy than those of other rose genomes. First, the gap-free
assembly showed a significant improvement in continuity over those
of all previously released genome assemblies. The contig N50 lengths
of RG were higher than those reported for RC, R. wichuraiana (RW), R.
rugosa (RR), and R. persica (RP) (Supplementary Table 3). Second,
~99.0% of the core conserved plant genes (1597 out of 1614 BUSCOs)
were complete in the RG genome assembly, indicating high genomic
completeness (Supplementary Table 4). In particular, 7 centromeres,

13 telomeres, and one 45S rDNA site were assembled in the R. gigantea
genome (Supplementary Table 5), while none of the telomeres were
captured in the other rose genomes. Finally, the consensus quality
values (QV) for the genome (60.53) and each chromosome
(57.30-62.49) indicated a high accuracy (Supplementary Table 6).

T2T genome of a wild ancestral species contributes genetic
diversity to the Rosa pan-genome

RG has not experienced whole-genome duplication (WGD) events?, as
evidenced by the one-to-one syntenic depth ratio between RG and RC
(Supplementary Fig. 6). This suggests that the RG genome only
underwent the core eudicot-specific gamma whole-genome triplica-
tion. Phylogenetic trees with divergence time estimates were gener-
ated based on 271 single-copy orthologous genes from 13 species,
including 5 species of Rosa, 6 species from other genera in the family
Rosaceae, Vitis vinifera as a distant relative, and Apostasia shenzhenica
as an outgroup. A total of 464,307 genes were identified and grouped
into 79,059 orthologous gene families in all 13 species (Supplementary
Table 7). In Rosaceae, Prunus, Malus, and Pyrus diverged early from
Rubus, Rosa and Fragaria. In Rosa, the order of species emergence was
RP, RR, RG, RC, and RW (Fig. 2a).

Within Rosa, there is variation in various phenotypic traits, such as
plant type, inflorescence, color, and fragrance (Supplementary
Table 8, Fig. 2b). There was 116-365 Mb of syntenic regions in com-
parisons between the R. gigantea genome and the genomes of the
other four roses (Supplementary Table 9). The whole-genome align-
ment can serve as a reliable data set to predict levels of evolutionary
constraint®. The gap-free genome provides an opportunity to char-
acterize structural variants (SVs) that might be missed owing to lim-
itations in the assembly technology?**. Therefore, 4165-44,181 SVs were
identified between the R. gigantea assembly and R. persica, R. rugosa, R.
chinensis ‘Old Blush’, and R. wichuraiana genomes (Supplementary
Fig. 7), including 622,584 presence/absence variants, 90-249 inver-
sions, 2526-16,939 translocations, and 1540-29504 duplications.
There were also 1,669,504-3,638,390 SNPs, 110,442-271,481 inser-
tions, 91,077-233,107 deletions, 172-26,767 highly diverged regions,
and 6227-58,596 unaligned regions. SVs were unevenly distributed
along the chromosomes. The lengths of these regions are listed in
Supplementary Table 10, showing substantial differentiation within
Rosa (Fig. 2¢). Therefore, the R. chinensis ‘Old Blush’ reference genome
is not suitable for analyzes of R. gigantea, including promoter pre-
diction or feature extraction. In addition, a collinearity analysis showed
that the newly obtained T2T genome, with the most complete
assembly, provided the best framework for constructing a high-quality
Rosa pan-genome, combined with published genomes for Rosa. Fur-
thermore, a 15 Mb specific inversion, including 1416 genes, was iden-
tified on the chr2 arm that was not detected in the other four roses.
There was also a 22 Mb inversion on chr4 differentiating R. gigantea
from R. rugosa, including 2000 genes.

Based on the same protein-coding gene set”, evolutionarily con-
served genomic regions were characterized by identifying shared
syntenic orthologous genes in Rosa species. Among 33042 pan-gene
families, the five species contained 22713-27229 gene families. A total
of 15703 (57.67-69.14%) were shared among all species, probably
representing the core gene set of the Rosa species complex (Supple-
mentary Fig. 8). In addition, there were 13981 dispensable gene families
and 3358 species-specific gene families. Notably, R. gigantea possessed
1646 species-specific gene families, significantly more than the esti-
mates for the other four Rosa species. This indicates that the genome
of R. gigantea could contribute additional sequence diversity to the
Rosa pan-genome. Increasing evidence suggests that alleles in wild
species may play a key role in regulating adaptive traits in crops®. For
example, in turbocharging introgression breeding of apple, allelic
diversity in fruit germplasm provides a useful resource for the intro-
duction of new exotic genes to meet consumer preferences and
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Fig. 1| T2T genome and identification of centromerics and telomerics of R.
gigantea (RG). a Circos plot of gene features at 500-kb intervals across the 7
chromosomes. TRF, Tandem Repeat Finder. SVs, Structural Variation. b Hi-C
chromatin interaction map of the RG assembly. ¢ Positions of centromeres and

telomeres on 7 chromosomes. d Circos representation of the distribution of
RgCEN159 (blue), the pericentromeric region (red), Ty3/Gypsy (orange), and Tyl/

Repeat sequence coverage g
Gpsy LTR-RT density
Copia LTR-RT density
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45S rDNA

[
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Copia repeat elements (yellow) along the seven chromosomes. e FISH with
RgCENI159 oligo probes on R. gigantea chromosomes. f FISH with 45S rDNA oligo
probes on R. gigantea chromosomes. Each experiment of (e and f) was repeated
independently with similar results at least three times. Source data are provided as
a Source Data file.

environmental challenges”. However, alleles in wild species were lost
in cultivated varieties due to genetic bottlenecks during domestica-
tion. A similar situation may explain the evolution of rose scent, further
emphasizing the importance of the studying genomes of wild roses for
pan-genome construction and scent improvement.

Expansion of genes involved in phenylpropanoid biosynthesis
contributes to tea scent evolution

Scent-related genes in phenylpropanoid/benzenoid, terpenoid, and
fatty acid derivative biosynthetic pathways of R. gigantea were iden-
tified and characterized (Supplementary Data 1, Supplementary Fig. 9).
Although only a few fatty acid derivatives contribute to rose floral
scents, no related enzymes have been isolated or characterized from
roses. More enzymatic genes were derived from tandem or proximal

duplications within the phenylpropanoid/benzenoid metabolic path-
way compared to in the terpenoid biosynthesis pathways*. A phylo-
genetic analysis of 13 species in Rosa showed that three odor-related
pathways, including phenylpropanoid biosynthesis, terpenoid back-
bone biosynthesis, and sesquiterpenoid and triterpenoid biosynthesis
pathways, were significantly enriched in the 854 gene family expan-
sions in R. gigantea (Supplementary Fig. 10), potentially explaining the
unique tea scent. Therefore, the major volatile organic compound
(VOC) metabolic pathways were reconstructed, including phenylpro-
panoid/benzenoid (Supplementary Fig. 11) and terpenoid (Supple-
mentary Fig. 12) biosynthesis. According to the main aroma
components associated with the tea scent, two branching pathways
involved in the synthesis of rose benzenoids are potentially linked to
flower scent formation in R. gigantea.
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Fig. 2 | Evolution and comparative genomic analysis in Rosacea. a Chronogram showing divergence times and genome duplications in Rosaceae. b Phenotypes of five
roses with published genomes. ¢ Structural variations characterization among five roses with published genomes. Source data are provided as a Source Data file.

Multiple O-methyltransferases (OMTs)* involved in the produc-
tion of TMB and DMT were identified (Supplementary Fig. 13). In
R. chinensis, phloroglucinol O-methyltransferase (POMT) catalyzes the
first methylation step of phloroglucinol (PLG) to 3,5-dihdroxyanisole
(DHA). The expression level of a candidate POMT was found to be 30

times higher in R. chinensis than in R. gigantea, which may be related to
high TMB synthesis in R. chinensis and low TMB in R. gigantea. DHA is
converted to TMB by two orcinol O-methyltransferases in R. chinensis.
Despite sharing 96.5% similarity at the amino acid level, RcOOMT1 and
RcOOMT2 exhibit different substrate specificities in phenolic methyl
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ether biosynthesis. RcOOMTI may have evolved from an OOMT2-like
gene, and its emergence was a critical step in the evolution of scent
production in Chinese roses. Both RcOOMT1 and RcOOMT?2 efficiently
methylate orcinol to DMT, contributing to the characteristic floral
scent of R. gigantea. Four OOMT paralogs were identified in R. chi-
nensis ‘Old Blush’; however, only two (RchiOBHm_Chr2g0119291 and
RchiOBHmM_Chr2g0128091) were highly expressed (-1000x higher
than levels of other paralogs), suggesting that they corresponded to
RcOOMTI and RcOOMT2 and contributed to TMB synthesis. Five
OOMT paralogs were identified in R. gigantea and three of these
showed specific, high expression (Fig. 3 a-c). Functionally distinct
OMTs are believed to have evolved from a common ancestral
gene through gene duplication and mutation. RgOOMTI
(RgigChr2G00139230) and RgOOMT2  (RgigChr2G00139280)
originated from a proximal duplication of another OOMT
paralog (RgigChr2G00139210), resulting from a WGD. RgOOMT3
(RgigChr2G00153620) formed another OOMT cluster with
RgigChr2G00153520 through the transposed duplication of
RgigChr2G00139210. There were only one or two OOMT paralogs in
RP, RR, and RW. RgigChr2G00139210 and RgigChr5G00009200 were
paralogs resulting from the WGD event in Rosa, and subsequent
proximal and transposed duplications of RgigChr2G00139210 in R.
gigantea led to the high production of specific DMT. As the expression
of RgOOMTI was highly coincident with the production of DMT, it was
the main gene involved in the synthesis of DMT in R. gigantea.

Five eugenol synthases (EGSs) were identified in all five roses.
EGS1 was separated from a cluster containing EGS2-EGS5 (Fig. 3d-f),
indicating that the duplication of the first ancestral orthologous EGS1
occurred before the species diverged. According to the high eugenol
emission of R. gigantea while low eugenol emission of R. chinensis ‘Old
Blush’, the accumulation of eugenol was not correlated with the
number of EGS genes (Supplementary Fig. 14). All EGSs were located
on chré with two EGS clusters. The first cluster was formed by a
proximal repeat of RgEGSI and a tandem repeat between RgEGS2 and
RgEGS3. RgEGSI (RgigChr6G00350620) reduces coniferyl ester to
eugenol, as evidenced by the similar expression trends. The expression
levels of RgEGS3 (Chr6G00350680) were much higher than those of
other homologs, suggesting its important role in eugenol production.
RgEGS2 (RgigChr6G00350670) was highly expressed in the gynoecium
specifically, laying the substrate foundation for the production of
methyleugenol. The other cluster contained RgEGS4 and RgEGSS, and
the expression levels of these genes were not correlated with eugenol
levels (Supplementary Figs. 14-15). There was an isoeugenol synthase
(IGS) cluster on chr5 of three roses and only one singleton in the other
two roses, indicating that the IGS duplication occurred between the R.
rugosa and R. gigantea lineages™. RgIGS2 (RgigChr5G0056550) plays a
major role in isoeugenol production and its expression is ten times
higher than Rg/GS1 (RgigChr5G0056530) expression. This gene was R.
gigantea-specific.

Tissue-specific release rules and regulatory networks of tea
scent in R. gigantea

Angiosperms have flowers with complex traits to advertise the flower
and enhance foraging efficiency® **. Tissue-specific and spatial emis-
sion patterns have been identified in the flowers of Petunia x
hybrida®~" and Silene latifolia® according to the types or ratios of
volatiles. An odor emission gradient is distinguished by bees as a
directional road map. Therefore, the plant-pollinator mutualism
mediated by scent might significantly influence crop yield®. For RG, a
sensory evaluation showed that the petals, androecium, and gynoe-
cium exhibited the highest aroma intensity among five flower tissue
types (Supplementary Fig. 16). These flower parts also displayed an
obvious neutral red color. In particular, an emission gradient towards
reproductive organs was observed along the epidermis (Fig. 4a, b),
with the area most proximal to the reproductive organs emitting the

deepest red, indicating the most intense fragrances. This is similar to
the spatial patterns found in Polianthes tuberosa and Ranunculus
acris*®*', The center-oriented pattern attracts corresponding pollina-
tor(s) to the reproductive organs. The petal base adjacent to repro-
ductive organs emits significantly higher levels of volatile compounds
than those of the distal petal rim because volatile compound levels
were correlated with cell density. In RG, there were more cells in the
region near the base than near the edge or middle sites (Fig. 4c). A
similar gradient has been reported in Petunia x hybrida** and Rosa
hybrida®, where the cells of the upper petal part are wider than those
of the basal part*.

The main site of VOC production in petals is the epidermis, which
is often characterized by unique conical-shaped cells****, In addition
to the horizontal layout of the release of fragrance compounds on the
petals, there are also longitudinal differences. For example, the volatile
emission from the adaxial side is ~20 times greater than that on the
abaxial side in Polianthes tuberosa. Similar emission patterns have
also been observed in Dianthus caryophyllus and Argyranthemum
frutescens*. For RG, adaxial petal epidermal cells have a typical conical,
papillate shape, whereas abaxial petal epidermal cells are flat, indi-
cating a difference in the release environment on the epidermis
(Fig. 4c). However, both epidermal layers are capable of producing and
emitting scent volatiles*. A cytological study has also shown that there
are no major differences in the anatomy of the petals of scent and
scentless roses.

Atotal of 48 aroma VOCs were screened (Supplementary Table 11,
Supplementary data 2). Comparison among tissues revealed that [3-
elemen was a leaf-specific volatile. In addition, 4-methylhexan-1-ol,
benzyl acetate, (E)-isoeugenol, and y-muurolene were not detectable in
the androecium. Methyl octanoate and decanol were specifically
detected in green odorless tissues such as the sepal, receptacle, and
leaf. There was significant tissue specificity in the amounts of VOCs
(Supplementary Fig. 17). Levels of DMT, borneol, caryophyllene, (£)-B-
ionone, and the aspirant release were high in the petal. Androecium-
specific VOCs included (£)-anethole and tetradecanal. Green leaf
volatiles are emitted as a deceptive signal to attract predatory wasp
pollinators®, and several fatty acid derivatives were released at high
levels in the sepal.

Eugenol homologs, the major aroma components in RG (Supple-
mentary Fig. 18), are known to attract moth, bee, and fruit fly polli-
nators of orchids. Interestingly, in RG, these homologs were not only
detected but were also distributed in different tissues with different
functions. Eugenol accumulation in the androecium was 20-100 times
higher than that in other tissues. Isoeugenol and methyleugenol were
highly released in the petal and gynoecium, respectively, and were not
detected in the androecium. These results provide novel insight into
how plants attract pollinators through highly specialized C6-C3 phe-
nylpropanoids. Two co-expression modules were identified based on
expression patterns similar to those of eugenols (Supplementary
Fig. 19). In the androecium-specific module, RgEGSI played a key role in
eugenol accumulation via 13 transcription factors (TFs) based on
analyzes of the transcription factor binding sites (TFBS) the potential
binding affinity for gene promoters. In the gynoecium-specific module,
RgEGS2 was identified as hub gene that interacts with a C4H gene and
12 TFs, forming a regulatory network involved in methyleugenol pro-
duction in the gynoecium (Fig. 4d).

Time-order release rhythm and regulatory networks of tea scent
in R. gigantea

To determine the circadian rhythm in tea scent release, six time points
were observed from buds (0:00) to blooming (20:00) during a day
(Fig. 5a). There were no significant differences in 46 aroma VOCs
among time points. Decanol and p-hydroxyacetophenone were not
detected at 00:00-08:00 but were volatilized at 12:00-20:00. The
remaining 44 VOCs were detected at all time points, with variations in
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the levels (Fig. 5b). There were very few differentially expressed genes
(DEGs) between 0:00 and 8:00 but a number of down-regulated genes
from 8:00 to 12:00, consistent with the changes in VOC content and
pollinator number. For plants, VOCs attract pollinators and defenders
to ensure reproductive success®. In this study, the number of bees was
much higher at 8:00 and 12:00 than at other time points (Fig. 5a). The
results of a principal component analysis (PCA) of gene expression
were consistent with VOC trends. PC2 separated the two points (08:00
and 12:00) in which flowers had a strong odor from the other four
points when flowers were odorless. Flowers at 00:00-08:00 and
12:00-20:00 were clearly separated along PC1 in chronological order
from right to left. These results are consistent with RG blooming from
8:00 to 12:00, the release of floral components, and the attraction of
pollinators, which involved the down-regulation of various genes.

The time lag between the expression levels of TFs, enzymatic
genes, and VOCs was considered. Time-ordered gene co-expression
networks (TO-GCN) were used to analyze the regulation of aroma
compounds. The major GCN consisted of nine time-ordered levels
(denoted L1 to L9 in Fig. 5¢), matching the order of expression time of
the TF genes over six time points, as revealed by the yellow squares
(high expression levels) along the diagonal in the heat maps of mean
normalized TPMs and VOCs (z-scores). A clear developmental transi-
tion during the scent-releasing process was divided into three periods:
the initial (corresponding to TOO-TO8 and L1-4), transitional (corre-
sponding to T12 and L5-6), and terminal periods (corresponding to
T16-T20 and L7-9). In the TO-GCN, more than 80% of VOCs from
phenylpropanoid/benzenoid and terpenoid pathways were released
during the initial process, while VOCs from fatty acid derivative path-
ways were distributed throughout the entire process. The TO-GCN
showed the regulatory relationship between volatiles and genes in the
flowering process of RG, revealing the key genes and TFs that regulate
the main volatiles (Fig. 5c). RgIGS2 was associated with isoeugenol in
L2, with an important role in isoeugenol synthesis; however, its
upstream regulators remain unknown. Thus, we chose Rg/GS2 to
identify up-stream regulators. The TO-GCN was used to predict can-
didate direct regulators of RgIGS2, which should be co-expressed with
RgIGS2 at the same or previous period. Based on the final hierarchical
network, bZIP and C2H2 were direct regulators and 29 TF genes,
including MYB®, NAC, WRYK, and bHLH, were intermediate second
regulators of RgIGS2 (Fig. 5d,e).

Species-specific VOCs and regulatory networks of tea scent in R.
gigantea

To confirm the fragrance difference, RG (Fig. 6a) and RC (Fig. 6i) were
compared with seven rose scent standards (Supplementary Fig. 20).
RG exhibited a stronger tea scent and a higher accumulation of VOCs
than those of odorless RC. Both the scent and VOCs were up-regulated
from young buds to initial-open flowers and decreased from half-open
to full-open flowers (Fig. 6¢, g). The major aroma VOCs of RG included
eugenol, DMT, methyleugenol, (E)-isoeugenol, 2-phenylethanol, lina-
lool, and (E)-B-ionone (Fig. 6b). In contrast, the major components for
RC were TMB, 2-methylbutan-1-ol, 3-elemen, a-cadinol, calamenene, y-
cadinene, and 1S-B-pinene (Fig. 6h). The tea scent was characterized by
VOCs from the benzenoid/phenylpropanoid pathway, as evidenced by
the specific up-regulation in RG, including DMT, eugenol, methyleu-
genol, and (E)-isoeugenol, consistent with the gene family expansion
specific to RG.

TO-GCNs were constructed separately for RG and RC to investi-
gate regulatory genes associated with fragrance differences®. Two
species-specific TO-GCNs (RG- and RC-specific) as well as a consensus
TO-GCN were obtained (Fig. 6e, Supplementary Fig. 21). Based on
expression patterns associated with flower scent, the time-ordered
sub-networks could be assigned to three major processes: initial (S1,
corresponding to L1-L3 for RG-GCN and L1-L2 for RC-GCN, when
petals were not open and the scent was weak), transitional (S2-S3;

corresponding to L4-L5 for RG-GCN and L3-L5 for RC-GCN, when the
scent increased), and terminal (§4-S5; corresponding to L6-L7, when
the scent decreased) (Fig. 6d, f). The release of RC double-flowers was
later than that of RG single-flowers. Few VOCs but a number of genes
were detected at the initial stage, indicating a time lag between VOC
emission and gene expression. Many genes exhibited conserved co-
expression between the two roses at the initial stage (Fig. 7a). In the
phenylpropanoid/benzenoid-specific sub-network, 18, 21, and 11
enzymatic genes were identified in the RG-specific GCN, RC-specific
GCN, and consensus GCN, respectively (Fig. 7b). At the other two
stages, the limited similarity in TO-GCNs between the two roses
facilitated the identification of species-specific scent regulatory
mechanism. At the transitional stage, there were 26 enzymatic genes in
the phenylpropanoid/benzenoid pathway in the RG-specific GCN,
much more than the number in RC. The dominant TF families in RG
were MYB, bZIP, ERF, bHLH, and NAC, while those in the RC-specific
GCN were WRKY, NAC, bHLH, and GeBP.

Key regulatory and enzymatic genes and their hierarchical reg-
ulation were comprehensively predicted by examining species-specific
networks. The differences in enzyme genes and TFs elucidated the
specific high release of DMT in RG compared to TMB in RC. RgOOMT3
and RgOOMTI located in the RG-specific GCN played an important role
in DMT production. By examining the predicted network, RgOOMT3
and RgOOMTI exhibited hierarchical regulation, involving three TFs
(MYB, NAC, and B3) as the third regulators, four TF genes (WRKY, Nin-
like, NAC, and GeBP) as intermediate second regulators, and two TFs
(C2H2, MYB) as direct regulators (Fig. 7c). Moreover, other TF families
were identified as potential regulators, and these TFs were MYB-related
(three), basic helix-loop-helix (bHLHSs), bZIP, etc. These TFs might also
regulate other enzyme genes in the pathway, such as RgEOMT, RgC4H,
and RgCAD. To validate the network, structural genes RgOOMT3 and
RgOOMTI and the four MYBs involved in the network were studied as
examples. The expression levels of these genes determined by qRT-
PCR were consistent with the transcriptome assay results (Supple-
mentary Fig. 22). RgPOMT and RgOOMT sequences were checked with
high consistency with genomic sequences, corresponding to
RhOOMT4 (Supplementary Fig. 23), with AdoMet_MTases Superfamily
and dimerization domains. RgEOBII-like was clustered with PhEOBIF*,
which positively regulates ODOI, thereby affecting the formation of
phenylcyclic and phenylpropane volatiles by modulating upstream
precursors of the mangiferic acid and phenylalanine pathways. RgPH4-
like was clustered with PhPH4%, which also has established roles in
floral color and flavor (Supplementary Fig. 24). In addition, RgMYB091-
likel regulates the RgOOMTI promoter (Supplementary Fig. 25), which
was further verified by a protoplast dual luciferase assay. Overall, the
regulatory networks provided a reference for further analyzes of the
molecular mechanism underlying tea scent in roses.

Discussion

Modern roses emerged through the combination of Chinese and Eur-
opean roses. During the peak period of global species exchange in the
18th century, Chinese garden roses altered the structure of rose
breeding worldwide’®. They not only exhibited bright colors and a long
flowering period but also possessed the unique tea scent and robust
vitality of R. gigantea, forming the genetic basis of modern roses”. Is
this the end of the rose evolution? Certainly not. Previous research has
provided insight into how certain important species were cultivated
from wild into ancient roses and then into diverse modern roses over
the past 3000 years. The history of mutations and recombination has
created lineages with larger flowers, easier reproduction, better
maintenance, and longer ornamental periods. However, many bene-
ficial genes remain underutilized in efforts to obtain new roses*®. For
example, the tea scent characteristic of R. gigantea has been lost
during the breeding process, leaving most modern roses lacking
notable fragrance (Fig. 8). Technological advancements make de novo
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domestication from wild resources possible, providing a basis for
precise crop improvement®. Combining genome editing with selective
breeding is faster and more efficient than either technology alone®°.
The successful assembly of the T2T gap-free R. gigantea genome, with
the highest continuity, completeness, consistency, and accuracy
among rose genomes to date, represents an important milestone in

research aimed at decoding all DNA sequences, structures, epigenetic

signatures, and gene functions®. Ancestral R. gigantea will serve as a
bridge for gene exchange between ancient and modern roses®,
offering favorable genes to alter the fragrance of modern roses and
igniting a second revolution in rose breeding®.

A single reference genome cannot fully represent the substantial
genomic diversity within a species®. For example, a recently published
super pan-genome of maize (about 6.71 Gb) includes about 4.57 Gb of
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Fig. 6 | VOC emission and time-ordered gene co-expression networks related to
rose scent during flowering. a Five flower developmental time points (S1-S5) of
RG. b Major VOC changes in RG from S1 to S5. ¢ Changes in aroma intensity during
flowering in Rosa gigantea (RG). The darker shades correspond to greater intensity.
d Heatmaps of average TPMs (z-score normalized) at each level of TO-GCNs at each
flowering time point in RG. Three flower scent-related stages were identified based
on expression profiles: initial (S1), transitional (S2-S3), and terminal (S4-S5).

e Predicted gene co-expression networks and connections among VOCs (rhom-
bus), enzymatic genes (hexagon), and TFs (circle) involved in phenylpropanoid/
benzenoid (yellow nodes), terpenoid (pink nodes), and fatty acid derivative (purple

nodes) biosynthetic pathways. L1 to L7 indicate the levels identified in three time-
ordered gene co-expression networks (RG-specific, RC-specific, and the consensus
TO-GCNs). Edges between enzymatic genes are not shown. f Changes in aroma
intensity during flowering in R. chinensis ‘Old Blush’ (RC). g Heatmaps of average
TPMs (z-score normalized) at each level of TO-GCNs at each flowering time point in
RC. Three flower coloring stages were identified based on expression profiles: initial
(S1), transitional (S2-S3), and terminal (S4-S5). h Major VOC changes in RC from S1
to SS. i Five flower developmental time points (S1-S5) of RC. Source data are
provided as a Source Data file.

sequences absent from the B73 reference genome. Since the publica-
tion of the first draft genome of R. multiflora in 2017, genomes of
Rosa chinensis ‘Old Blush™, R. rugosa’, and R. wichuraiana ‘Basye’s
Thornless™ have been reported, laying a foundation for analyzing
traits and gene function. However, with over 200 species and 35000
varieties of Rosa exhibiting diverse plant shapes, flower colors, and
fragrance types, a single reference genome is insufficient for
research®, Our analysis of five rose genomes, including the newly
sequenced R. gigantea genome, reveals a substantial number of
species-specific gene families and SVs. Consequently, there is a critical
need to construct a more comprehensive and complex pan-genomic
database with genomic resources for diverse traits. The T2T gap-free
genome of R. gigantea provides a new high-quality reference genome
for roses with the tea scent or yellow color and will facilitate the con-
struction of a pan-genome®®. Telomeres and rDNA play pivotal roles in
genomic stability, serving as hotspots for chromosomal fragmentation
and gross chromosomal rearrangements® . In addition to R. gigan-
tea, some wild Rosa species are diploid with two 45S rDNA sites®®*’,
Further studies of the evolutionary process and disappearance of tel-
omeres on acrocentric chromosomes are needed’®.

The conservation of genetic resources is crucial, as numerous
species in various regions face the risk of extinction. Therefore, the
comprehensive genetic database for R. gigantea with multiple
dimensions, including data for different organs, time points, floral
tissues, and flowering stages, establishes a fundamental basis for pre-
serving precious information on endangered species”. In addition,
aroma mapping through sensory evaluation and VOC characterization
revealed the key aromatic compounds, release rhythm, and optimal
harvesting and pollination times to facilitate the development of nat-
ural resources for new plant essential oils while promoting the appli-
cation of wild germplasms.

VOC:s specific to each tissue reflected the volatile-diversity strat-
egy in plant tissues. Allelic natural variants also underscored the
diversity of floral products’. High-throughput sequencing technology
facilitates in-depth investigations into the molecular mechanisms
underlying the transcriptional regulation of bioactive compounds”,
thereby enhancing the efficiency of targeted improvement in rose
fragrance. The specific distribution and regulatory networks of euge-
nol analogs, the major aroma components of tea scent, were revealed
in different floral tissues. Further studies are needed to understand
how plants attract pollinators through highly specialized C6-C3
phenylpropanoids””*. In addition, DMT, the unique “tea element”
from Chinese roses, was abundant in RG, while RC contained abundant
TMB, a structurally similar compound. Olfactory threshold testing
revealed that both DMT and TMB are odorless, suggesting that they act
as fixatives in tea scent by promoting the stable long-lasting volatili-
zation of aromatic components and inducing a calming and relaxing
effect. Comparative genomics showed differences in the number of
OOMT genes between the two Chinese roses. Therefore, new scent
synthesis pathways like NUDIX found in R. chinensis ‘Old Blush’ were
not found in all roses. RcOOMT1 and RcOOMT?2 reported in previous
studies were not applicable to all tea-scented roses. We discovered
new OOMT genes and regulatory networks for DMT, requiring further
functional validation.

Methods

Plant materials

For the whole-genome assembly, a 15-year-old adult R. gigantea indi-
vidual was selected in 2022 (Supplementary Fig. 2). Young leaves were
sampled for chromosome analyzes and genome sequencing. Five
organs (root, stem, flower, fruit, and leaf) were sampled for Iso-seq to
assist in assembling, examining, and correcting the spliced genome. To
identify transcriptomic and chemical changes, samples were collected
from five flower blooming stages, young bud stage (S1), bud stage (S2),
initial-open stage (S3), half-open stage (S4), and full-open stage (S5)),
six time points within a day (00:00 (T0O0), 04:00 (T04), 08:00 (T08),
12:00 (T12), 16:00 (T16), and 20:00 (T20)), and six tissue types (leaf,
petal, androecium, gynoecium, receptacle, and sepal) for SPME-GC-MS
and RNA sequencing (RNA-seq). In addition, five flower blooming
stages of R. chinensis ‘Old Blush’ were sampled as a control variety to
compare floral traits. All samples were harvested and immediately
frozen in liquid nitrogen between 10:00 and 11:00 in the morning in
2021, except for the analysis of different time points. For sensory
testing, fresh flowers of seven rose cultivars (Supplementary Table 12)
were sampled with peduncles. All materials were cultivated in the
South Tropical Garden located in Kunming, Yunnan, China (24.86°N,
102.98°E).

Sensory test

To prevent any natural odor interference, a clean, odor-free, noise-free
sensory evaluation room, following the guidelines of international
standard ISO 11136-2014 (2014), was carefully prepared. Flowers were
harvested with stems of ~6 cm long from 7:30 to 8:00 am, weighed to
obtain 5g, and placed into glass containers with water for 1.5 h of air
circulation. The room temperature was maintained at 20 °C and the
relative humidity was controlled between 40% and 55%. At 9:30 am,
samples were loaded into acrylic boxes to collect the fragrance for
30 min. Based on the fragrance observation and measurement, the
intensity of the fragrance was the strongest before 12:00 pm. There-
fore, the test was arranged between 10:00 am and 12:00 pm. The test
steps were as follows: olfactory testing, fragrance comparison, sensory
scoring, and description. More details on sensory survey are available
in the Supplementary Note 1.

Genome assessment, generation, assessment and annotation
Genome assessments were performed by karyotype analysis (Supple-
mentary Note 2) and K-mer frequency analysis (Supplemen-
tary Note 3).

Whole-genome sequences was generated using different
platforms: Illumina HiSeq X Ten (HiFi), Oxford Nanopore Tech-
nologies (ONT), and HiC sequencing. More details on genome
assembly are provided in the Supplementary Note 4 and Supple-
mentary Note 5.

Telomeres and centromeres were identified by sequences serch-
ing (Supplementary Note 6) and verified by fluorescence in situ
hybridization (Supplementary Note 7).

Quality assessment was performed considering continuity, accu-
racy and completeness, respectively, which was provided the details in
the Supplementary Note 8.
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Fig. 7 | Subnetworks for aroma metabolic pathways in Rosa gigantea (RG) and
Rosa chinensis ‘Old Blush’ (RC). a Numbers of transcription factors (TFs), volatile
organic compounds (VOCs), and enzymatic genes involved in phenylpropanoid/
benzenoid, terpenoid, and fatty acid derivative biosynthetic pathways at the initial,
transitional, and terminal stages among three Time-ordered gene co-expression

networks (TO-GCNs) (RG-specific, RC-specific, and consensus TO-GCNs).

b Subnetwork of the TO-GCN for phenylpropanoid/benzenoid biosynthesis.

c Subnetwork of the RG-specific TO-GCN for 3,5 dimethoxytoluene biosynthesis.
Edges between enzymatic genes are not shown. Source data are provided as a
Source Data file.

Genome annotation was also included repeat sequence annota-
tion (Supplementary Note 9), protein-coding gene structure annota-
tion (Supplementary Note 10), and noncoding RNA prediction
(Supplementary Note 11).

Comparative genomic analysis

Evolutionary analysis was performed in the genomes of 13 species,
including Apostasia shenzhenica as an outgroup of monocotyledonous
plants, Vitis vinifera as a representative species in Rosanae, six
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Fig. 8 | History and prospect of rose fragrance domestication. The European rose pictures on the left were referenced The Bible of Roses of Pierre-Joserh Redoute.

representative species in Rosaceae (F. vesca, M. x domestica, P. mume,
P. persica, P. bretschneideri, and R. occidentalis), and five representative
species in Rosa (R. persica, R. chinensis, R. gigantea, R. rugosa, and R.
wichuraiana). The software and parameters were detailed in Supple-
mentary Note 12. Synteny and structural variation analyzes was per-
formed in five roses, including R. persica, R. rugosa, R. gigantea, R.
chinensis, and R. wichuraiana. The software and parameters were
detailed in Supplementary Note 13.

Gene family identification

To evaluate the evolution of major aroma VOCs in RG, a phylogenetic
analysis of EGS/IGS genes in Rosa was conducted using the ML method,
using the Petunia homologs sp|Q15GI3 | IGS1 and sp|B2WSN1 | EGS1 for
reference, based on genomic sequences of RR, RC, and RW available in
the Genome Database for Rosaceae (GDR, www.rosaceae.org) as well
as recently sequenced RB and R. gigantea data. The ML tree showed
five well-resolved clades, numbered EGSI1 to EGSS, and a clade named
IGS. Other sequences could not be assigned to a clade due to sig-
nificant sequence divergence; these were associated with eugenol or
isoeugenol synthesis. EGS and IGS were related to PLRs, IFRs, and
PCBERs in the PIP family of NADPH-dependent reductases. EGS1 and
IGS1 showed the highest similarity to two groups of sequences from
various plants that currently lack a clear functional annotation
(designated in databases as NAD_binding and cl21454, with a possible
role in phenylpropene biosynthesis or mechanistically similar reduc-
tive pathways in plants).

For OMT gene family, Arabidopsis OMT and Petunia x hybrida EGS
protein sequences were downloaded from the National Center for
Biotechnology Information (NCBI) and used for a BLASTp search
against R. gigantea, R. chinensis, R. wichurana, R. rugosa, and R. persica
proteins. The protein sequences of the candidate OMT genes were
analyzed to predict the conserved structural domains using CDD
(https://www.ncbi.nlm.nih.gov/) and SMART to determine whether the
OMT candidate proteins had pfam00891 (Methyltransf 2), pfam01596
(Methyltransf 3), or cl17173 (AdoMet_MTases superfamily) conserved

domains™”’. To ensure the integrity of the gene sequence, the candi-
date OMT and EGS sequences were screened for an amino acid length
greater than 20075,

In addition, other scent-related genes in fragrance related path-
ways were summarized and downloaded published protein/nucleic
acid sequences from UniProt, NCBI, or the literature. Blastn (version
2.5.0+; parameters: -evalue le-5, -max_target_seqs 1) was used to align
sequences. Genes whose identity exceeded 40% were obtained as
candidate sequences. PlantRegMap’® was used to identify TFs (Sup-
plementary data 3).

Phylogenies, conserved motif analyzes, and chromosomal
distribution

OMT and EGS amino acid sequences were used for phylogenetic ana-
lyzes. An ML tree was constructed using Geneious Prime with the
plugin PhyML®, Conserved structural domains were analyzed using
MEME based on the amino acid sequences of OMT and EGS®.. Duplicate
OMT and EGS genes were removed (i.e., only one gene per locus was
retained). The gene position on the chromosome was determined
using gene start and end sites, and chromosome length files were
obtained. Genes were mapped on chromosomes using TBtools®*.

Metabolomic assessment

Samples from three individual plants of RG and RC were harvested,
weighed, and immediately frozen in liquid nitrogen, followed by sto-
rage at -80 °C. Upon use, the samples were ground to a powder in
liquid nitrogen. For semi-quantitative calculation of VOC content,
50 pg mL™ 3-hexanone-2,2,4,4-d4 (10 puL, chromatographically pure)
was added as an internal standard. More details on VOCs detection,
qualitative and quantitative analysis are provided in the Supplemen-
tary Note 14. The identified metabolites were subjected to an ortho-
gonal partial least-squares discriminate analysis (OPLS-DA), and
metabolites with |log2FC|>1, p<0.05, and variable importance in
projection (VIP) score =>1 were considered differentially
accumulated VOCs.
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Transcriptomic analysis

Total RNA was isolated using the RNAprep Pure Plant Kit (TIANGEN,
Beijing, China). RNA-seq library construction was performed as
described by Zhou et al.*’. A total of 66 RNA-seq libraries were
obtained, including those for five flowering stages of R. gigantea and R.
chinensis ‘Old Blush’, six tissues of R. gigantea, and six time points
within a day for R. gigantea. RNA-seq data were generated from three
biological replicates with high repeatability, as determined by a sample
correlation analysis. StringTie (version 2.1.4)%* with default parameters
was employed to predict new genes, and RSEM® was used to calculate
the gene alignment and determine the transcripts per kilobase million
(TPM) for each gene based on its length. DESeq2%® was applied to
identify DEGs using gene counts. DEGs were filtered based on fold
change values > 2 and a Benjamini-Yekutieli false discovery rate (FDR)
of <0.01 using TBtools*’.

Weighted gene co-expression network analysis

To study the distribution and expression of odor-related genes in
different tissues of R. gigantea, the Weighted Gene Co-expression
Network Analysis (WGCNA) package®” in R was used. To identify genes
related to the major VOCs, 60979 genes detected in six tissues,
including the leaf, petal, androecium, gynoecium, receptacle, and
sepal, were analyzed using WGCNA Shiny. Then, 12715 genes were fil-
tered out with a threshold TPM in 90% of samples of >1 and the MAD
method. Finally, 15 modules were analyzed. Hub genes were defined as
nodes with a high degree in networks (gene significance >0.90 and
eigengene-based connectivity > 0.9).

Time-ordered gene co-expression network analysis

To investigate the regulatory mechanism underlying the circadian
rhythm of compound release in R. gigantea, a TO-GCN was constructed
following the method described by Chang (2019)*. The generation
process was detailed in Supplementary Note 15.

In addition, TO-GCNs were also constructed for a rose with a
strong scent (R. gigantea-specific TO-GCN), an odorless rose (R. chi-
nensis ‘Old Blush’-specific TO-GCN), and a consensus TO-GCN between
the two networks, using flower samples from five different develop-
mental stages (S1 to S5). The generation and verifying process was
detailed in Supplementary Note 16 and Supplementary Note 17.

Neutral red solution staining

Neutral red solution was used to initially locate the osmophere parts in
the test material, and staining with the neutral red solution was per-
formed following the methods of Kong et al.®®. Complete flowers were
selected and the pedicels were sealed with wax before immersion in
0.01% neutral red solution. The staining process was conducted in a
dark environment for 24 h.

Scanning electron microscope observation

Round petal slices with a diameter of 5mm were taken from three
positions using a hole punch and fixed in 5 mL of 2.5% glutaraldehyde.
The samples were rinsed with phosphate buffer (pH 7.2) three times
(10 min each) to remove the residual fixative. Gradient dehydration
was carried out using 30%, 50%, 70%, 90%, 95%, and 100% ethanol
solutions for 15 min each, and then samples were immersed in 50%,
70%, and 100% tert-butanol-ethanol solutions for 15min each. The
prepared samples were put into Petri dishes and dried continuously for
8 husing a Labconco FreeZone 4.5 L vacuum freeze dryer, coated using
a Hitachi lon Sputter MC 1000, and placed under a Hitachi Cold Field
Emission Scanning Electron Microscope SU 8010 for observation and
obtaining images.

Gene cloning
Total RNA and DNA were extracted from blooming flowers of
R. gigantea and R. chinensis ‘Old Blush’ using an OminiPlant RNA Kit

(CWBIO, Beijing, China) and NuClean Plant Genomic DNA Kit (CWBIO),
respectively, according to the manufacturer’s instructions. Standard
procedures were followed to assess the quality of the extracted RNA
and DNA. Genomic DNA was used for promoter cloning. RNA was
reversely transcribed into ¢cDNA using the Hieff CloneTM Plus One
Step Cloning Kit (Yeasen, Shanghai, China), which was used for gene
cloning and expression evaluation. Specific primers (Supplementary
Table 18) were designed based on genome sequences.

Western blotting and phylogenetic analysis

The OOMT genes were subcloned into the pET-32a vector. Recombi-
nant proteins were induced by 0.25-0.80 mM isopropyl-B-D-
thiogalactopyranoside (IPTG) at 16 °C for 20 h. Afterwards, the cells
were harvested by centrifugation and disrupted by sonication. The
crude proteins were applied to a Ni-TED Sefinose column (Sangon
Biotech Co. Ltd., Shanghai, China) for purification”>. The precipitated
protein extracts were solubilized in 1 x PBS and heated at 100 °C for
6 min. Proteins (50 pg/lane) were resolved by SDS-PAGE and electro-
transferred to PVDF membranes. Membranes were probed at 4 °C
overnight with Anti His-Tag Mouse Monoclonal Antibody (CWBIO) at
1:2000 dilution. Thereafter, this was incubated at room temperature
for 1 h with Goat Anti-Mouse IgG, HRP Conjugated (CWBIO) at 1:5,000
dilution. Detection was performed by ECL using the Omni-ECL™ Pico
Light Chemiluminescence Kit (Epizyme, Shanghai, China). RgOOMT
proteins were submitted to Clustal Omega (https://www.ebi.ac.uk/
Tools/msa/clustalo/) to perform multiple sequence alignment. For
phylogenetic evaluation, the aligned sequences were subjected to
MEGA-X to generate a maximum likelihood tree with bootstrap
analysis.

RT-qPCR analysis

SYBR Green (Toyobo, Osaka, Japan)-based quantitative reverse tran-
scription polymerase chain reaction (QRT-PCR) assays were carried out
using a StepOnePlus Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA) in a total reaction volume of 10 uL containing 5 uL
of 2x Master Mix (TOYOBO, Osaka, Japan), 0.5uM of each primer
(Supplementary Table 18), and 1uL of template. The reaction was
performed in triplicate under the following conditions: 95 °C for 60's,
followed by 40 cycles at 95°C for 5s and 60 °C for 60s. RhiTUB and
RcUBI were used as internal controls. Relative expression was calcu-
lated using the 2724 formula® (Livak and Schmittgen 2001)”. All
measurements were performed in triplicate”*.

Transient dual luciferase reporter assay

Promoter sequences were amplified from genomic DNA using PCR and
inserted upstream of the 0800 Luciferase (LUC) CDS using the Gold-
enBraid 2.0 cloning strategy to yield promoter-LUC reporter vectors.
For an internal control, the expression of the Renilla luciferase gene
(REN) was driven by the CaMV35S promoter in a reporter vector. The
empty vector with chloramphenicol acetyltransferase (CAT) was used
as the negative control (CK). A. thaliana (Columbia-0) used in this
study was grown in a greenhouse under a light/dark photoperiod of 16/
8 h at 22°C. Protoplasts for transfection were isolated from 4- to 5-
week-old A. thaliana leaves. Co-transfection assays were performed
using reporter plasmids and internal control vectors. The results were
analyzed and quantified 16 h post-transfection. Gene expression levels
were determined by calculating the ratio of LUC to REN activity®.

Statistics & reproducibility

For each sample type, three biological replicates from three individual
plants were included. Sample sizes were chosen for satisfied the
request of each experiments. WPS Office, Origin 2021, and IBM SPSS
Statistics 24 were used for statistical analyzes and charting. Cytoscape
was used to visualize the prediction results and co-expression
networks’’. Adobe Photoshop 2021 was used to splice the sub-figures.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The raw sequencing data for the PacBio HiFi reads, ONT long-reads,
Illumina short reads, and Hi-C Illumina reads generated for R. gigantea
in this study have been deposited in the Genome Sequence Archive at
the National Genomics Data Center, Beijing Institute of Genomics,
Chinese Academy of Sciences / China National Center for Bioinfor-
mation under accession code CRA014350. The genomic data for R.
persica was released at the BioProject database under the accession
code PRJNA576752. The details of methods used in this study are
provided in the Supplementary Notes. The detailed statistics data used
in this study are available in the Supplementary Tables and Supple-
mentary dataset. Source data are provided with this paper.
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