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Different strains of identical species can vary substantially in terms of their
spectrum of biomedically relevant phenotypes. Reconstructing the genomes
of microbial communities at the level of their strains poses significant chal-
lenges, because sequencing errors can obscure strain-specific variants. Next-
generation sequencing (NGS) reads are too short to resolve complex genomic
regions. Third-generation sequencing (TGS) reads, although longer, are prone
to higher error rates or substantially more expensive. Limiting TGS coverage to
reduce costs compromises the accuracy of the assemblies. This explains why
prior approaches agree on losses in strain awareness, accuracy, tendentially
excessive costs, or combinations thereof. We introduce HyLight, a metagen-
ome assembly approach that addresses these challenges by implementing the
complementary strengths of TGS and NGS data. HyLight employs strain-
resolved overlap graphs (OG) to accurately reconstruct individual strains
within microbial communities. Our experiments demonstrate that HyLight
produces strain-aware and contiguous assemblies at minimal error content,
while significantly reducing costs because utilizing low-coverage TGS data.
HyLight achieves an average improvement of 19.05% in preserving strain
identity and demonstrates near-complete strain awareness across diverse
datasets. In summary, HyLight offers considerable advances in metagenome
assembly, insofar as it delivers significantly enhanced strain awareness, con-
tiguity, and accuracy without the typical compromises observed in existing
approaches.

Metagenomics has revolutionized our understanding of microbial
diversity and functional potential in various environments by
sequencing the collective genomic material of microbial communities
in many niches. The advent of high-throughput sequencing technol-
ogies (NGS) has made metagenomic research increasingly accessible,
providing valuable insight into complex microbial ecosystems' .,

The assembly of metagenomic data poses significant challenges
due to the presence of multiple strains, high levels of genetic
diversity, and varying abundances of different organisms within a
community*®. Strains that appear at only low abundance in a

metagenome, but whose discovery is crucial in the context of under-
standing the environment under investigation, stress the practical
relevance of these challenges.

Importantly, strains can display significant variations in their
interactions and environmental impact®’. Strains can also differ in
clinically relevant aspects such as medication resistance, virulence,
and host-microbiome interactions®™. For these reasons, it is crucial to
identify genomes at strain resolution. Therefore strain aware meta-
genome assembly has become the driving technical and methodical
challenge'".
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Next-generation sequencing (NGS), where Illumina sequencing
technology is the leading option, is extensively utilized in metage-
nomics research for being culture-independent, and its combination of
high throughput, low error rates (below 1%), and cost-effectiveness'.
Short reads typically ranging from only 35bp to 700 bp in length®
induces obvious difficulties in spanning complex genomic regions'®",
which leads to fragmented genome assemblies™?°. The limitation
becomes particularly concerning when processing metagenomic
samples of greater complexity, characterized by harboring diverse
strains'®. In summary, the reconstruction of both strain-level resolved
and complete genomes of individual organisms from metagenomes is
too challenging when using NGS alone.

Third-generation sequencing (TGS), such as Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT), holds the promise
to overcome these challenges. TGS reads are significantly longer, so
they can also span complex regions, which makes it possible to dis-
tinguish between related organisms™">*?, The disadvantages of TGS
are the considerably higher error rates and substantially larger costs.
Even the relatively cheap PacBio CLR and ONT reads imply sub-
stantially larger costs because their high error rates (up to 15%) require
elevated coverage to compensate the errors?.

Latest generations of PacBio (HiFi) or ONT (Q30+) reads are both
significantly longer than NGS reads and contain similarly little errors.
However, they do not alleviate all relevant issues. In comparison with
noisy PacBio CLR or ONT their length is substantially shorter (often
exceeding 10 kb, but being up to 4-8 times shorter than PacBio CLR or
ONT reads?”). Also, they come at lower throughput in general while still
drawing substantially larger costs?. The computational bottlenecks
explain why hardware-based solutions, for example GPU-tailored ver-
sions of the algorithms supporting PacBio HiFi and most recent ONT
reads algorithm are now considered. Of course, this requires various
sequencing laboratories to re-consider their hardware equipment,
which leads to further investments. In summary, PacBio HiFi or recent
generations of ONT type reads mean practical convenience only suf-
ficiently generously budgeted laboratories can afford. The vast
majority of sequencing laboratories, however, keeps depending on
NGS on one hand, and cheaper hence more erroneous (but in case of
PacBio CLR and ONT still the longest) types of TGS reads, and running
their evaluation of sequencing experiments on standard computa-
tional machinery. In summary, sole application of TGS in metage-
nomics requires to substantially raise expenses: either to increase
coverage (as for PacBio CLR and ONT) or because of employing more
sophisticated sequencing protocols (PacBio HiFi or ONT reads of latest
generations)””>**, The great majority of labs worldwide cannot employ
TGS (regardless of the particular type) alone for strain-level meta-
genome assembly: either coverage remains too low or expenses
become excessive. This hampers the routine and widespread imple-
mentation of successful strain-aware metagenome analyzes in parti-
cular in disease research.

The mix of theoretical and practical challenges just outlined is the
explanation for why StrainXpress® which is based on NGS alone, and
Strainberry” which is based on only TGS, are the only two approaches
that decidedly focus on de novo strain aware metagenome assembly.
Both StrainXpress and Strainberry provide important inspiration, as
they both employ techniques that had hitherto never been considered
for metagenome assembly. While StrainXpress employs overlap
graphs, Strainberry is based on the minimum error correction problem
to separate strain-specific haplotypes in an iterative scheme (see
Background below for details). Still, neither of the two approaches
generates assemblies of the kind of quality that we are envisioning.
While StrainXpress assemblies remain too fragmented, Strainberry
requires elevated coverage rates for the TGS reads (which, as repeat-
edly pointed out, is expensive). This confirms that application of only
NGS or application of only TGS is insufficient from also a methodolo-
gical point of view. We recall, as repeatedly pointed out, that resorting

to standard techniques runs into larger costs or lower assembly qual-
ity, or even both of them.

Here, our goal is to provide a de novo strain-aware metagenome
assembly approach that does not only push the limits in terms of
assembly quality, but is also as inexpensive as possible. The latter point
ensures that the majority of laboratories worldwide can afford related
sequencing strategies. The first point potentially puts our approach
also in the focus of amply budgeted laboratories, if they aim at optimal
assembly quality. To reach this goal, we are guided by the insight that,
recently, methodical novelties were the only way to make progress.

The basis for our strategy is hybrid assembly. Hybrid assembly
synthesizes the advantages of short and long reads. Short and long
reads complement each other perfectly, insofar as their advantages
mutually cancel their disadvantages. While NGS reads are accurate and
short, TGS reads are inaccurate and long. Therefore, synthesizing short
and long reads yields long and accurate fragments, which is the opti-
mal basis for high-quality assemblies. The practical feasibility of hybrid
assembly is established by the fact that the vast majority of sequencing
laboratories are equipped with (Illumina type) NGS platforms and
earlier-type TGS platforms. Both such platforms deliver reads of cov-
erage sufficient for our approach at small expenses.

The accuracy of the assemblies and the inexpensiveness of the
supporting data have already been noticed in prior work. Despite their
benefits, all current state-of-the-art hybrid metagenome assembly
approaches® > operate at the species, but not at the strain level, as their
finest taxonomic resolution. All these approaches have been widely
applied in studies that require metagenomic assembly as an essential
step?33, This documents the popularity of hybrid assembly approaches
already when being used for only identifying species, but not yet strains.

Understanding why the state-of-the-art of hybrid approaches only
delivers species-resolved metagenome assemblies requires a look at
the underlying methodologies. One realizes that both specialized
hybrid metagenome as well as more generic hybrid assemblers broadly
fall into two categories: short-read-first and long-read-first approaches.
Short-read-first approaches assemble short reads first, and then scaf-
fold the short read based contigs guided by the long reads. Vice versa,
long-read-first approaches assemble only the long reads, and treat
short reads as auxiliary source of information. Thereby, they align
short reads either against the already assembled long reads to elim-
inate the errors from the contigs®, or against the raw, unassembled
long reads to eliminate the errors prior to their assembly®. Impor-
tantly, none of the approaches so far presented assembles both long
reads guided by short reads and short reads guided by long reads, so as
to synthesize the advantages of the two axes of approaches. The likely
reason for this is the potential complexity in terms of protocols that
such “cross-hybrid" or “mutual support" strategies may entail.

There are two additional important observations. First, all long-
read-first assemblers so far presented do not specialize in the assembly
of metagenomes. This means that all current state-of-the-art in hybrid
metagenome assembly”?® employ short-read-first type strategies.
Second, all short-read-first approaches are based on de Bruijn graphs
(DBG’s) as the underlying assembly paradigm. The reason for the latter
is the fact that DBG’s are by far the predominant assembly paradigm
when processing short reads. See Background below for more details.

In an encompassing summary of the state-of-the-art, one concludes
that (1) there are no hybrid metagenome assemblers that address strain
awareness, (2) there are no hybrid metagenome assemblers that build
on overlap graphs as their assembly paradigm, (3) there are no long-
read-first approaches to hybrid metagenome assembly, and (4) there
are no hybrid assemblers that build on both short-read- and long-read-
first type strategies in combination. This explains why we focus on the
non-hybrid, but strain aware metagenome assemblers StrainXpress®
and Strainberry®” and on the hybrid, but non-strain-aware metagenome
assemblers  Opera-MS”,  HybridSPAdes”, MetaPlatanus® and
Unicycler” in our benchmark experiments.
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Based on these observations, we suggest a strategy that neither
reflects a short-read-first nor long-read-first approach. Instead, we
suggest to compute assemblies from both the long reads and the short
reads. Thereby, short reads assist in the assembly of the long reads and
vice versa. So, we treat both long and short reads as both primary
assembly and auxiliary data. Upon having assembled both long and
short reads, we merge the two assemblies into a unifying set of scaf-
folded contigs. As a key point, we avoid excessively complex assembly
protocols by not assembling batches of reads whose assemblies can be
foreseen to be redundant. To the best of our understanding, enabling
the usage of both short and long reads as primary (assembly) and
secondary (auxiliary) data via a sufficiently lightweight protocol
establishes a methodical novelty. From this perspective, our approach
adds a third category, which one could refer to as “cross hybrid" or,
alternatively, “mutual support" approach to the well-established cate-
gories of short-read-first and long-read-first approaches. It may be a
relevant observation that our approach is also an advance insofar as it
is a hybrid metagenome assembly approach that makes use of overlap
graphs, and not DBG’s, as the unifying data frame. See again Back-
ground just below for full details.

Background

Strain aware assemblers: strainxpress, overlap graphs and
Strainberry

StrainXpress employs overlap graphs (OG’s) instead of de Bruijn graphs
(DBGs) where the latter ones have been the (by far) predominant data
structure paradigm employed for NGS based assembly. The crucial
insight here is the fact that usage of OG’s effectively aids in spanning
complex repetitive regions, because OG’s do not require to chop reads
into k-mers. As a consequence, genetic linkage of strain specific var-
iants becomes evident. This makes it possible to extend contigs across
regions that remain “strain-specific variant deserts” when operating
with NGS reads or de Bruijn graphs.

Note on Overlap Graphs: Our approach draws inspiration from
StrainXpress, which demonstrated that OG’s could also be used in an
advantageous way when it comes to distinguishing between similar
strains of the same species. To understand this better, we recall that
the construction of DBG’s implies to chop reads into k-mers. The
artificial shortening of the reads leads to significant losses in terms of
information with respect to genetic linkage of strain specific variants
(in particular, one can no longer trace linkage of variants at distance
larger than k when employing k-mers®). Unlike DBG'’s, OG’s preserve
the haplotype (strain) identity of the reads to a maximum degree,
which we systematically exploit also here. On a side remark, note that
the employment of OG’s also lead to superior strain awareness in viral
quasispecies assembly*’*,

Strainberry, on the other hand, initially employs Metaflye* to
assemble the TGS reads into contigs, and subsequently aligns the long
reads with the contigs. Based on these alignments, Strainberry calls
SNP’s where contigs serve to provide auxiliary reference coordinates.
The resulting scenario provides the basis for solving the minimum
error correction problem to phase reads into haplotypes. The source
of inspiration is earlier work that proved that modeling haplotype
separation as instances of the minimum error correction problem was
useful***%, As a methodical novelty, Strainberry applies this procedure
in the frame of an iterative protocol: the iteration ends when separa-
tion does no longer reveal new haplotypes; eventually strain-resolved
contigs are assembled using Wtdbg2*.

Hybrid metagenome assemblers: workflows

In a bit more detail, Opera-MS?” first uses an established short-read
metagenome assembler like MegaHit**, MetaSPAdes* or IBDA-UD (all
of which are DBG based*®) to assemble the short reads. Subsequently,
both short and long reads are mapped against the short-read contigs
to obtain coverage and linkage information for the contigs, and to

construct an assembly graph based on that information. Contigs are
further hierarchically clustered using a distance measure that reflects
the distance between the contigs in terms of their distance in the
assembly graph. Apart from certain details, each cluster is supposed to
collect the contigs of one species. Finally, contigs within clusters are
scaffolded using Opera-LG, which was designed to work for the hybrid
assembly of isolated genomes.

HybridSpades® constructs an assembly graph from the short
reads using SPAdes"’, by removing bulges, tips and chimeric edges. By
mapping the long reads against the resulting assembly graph, it gen-
erates read paths, and further closes gaps in the assembly graph by
using the consensus of the long reads that span the gaps. Then, by
extending a technique that addresses growing read paths by trying
“extension edges" to incorporate long read paths, it resolves repeats.

MetaPlatanus® computes contigs by constructing a DBG, and
subsequently corrects contigs based on coverage considerations
relating to both short and long reads, and also untangles “cross-
structures” from such considerations. DBG’s are re-constructed itera-
tively, where in each iteration the improved contigs serve as the basis
for constructing the DBG, and subsequent correction of contigs yields
new contigs. MetaPlatanus then scaffolds the resulting contigs using
long read links, and, possibly, re-constructs the DBG another last time.
Eventually, scaffolds are binned, where each bin is supposed to refer to
a particular species. Within bins, gaps are closed, edges are extended,
and possibly unused short reads are employed for aiding in that. In
the ultimate step, gaps are closed, and scaffolds are polished using
techniques that address the generation of assemblies for isolate
genomes.

Unicycler®, like HybridSPAdes, uses SPAdes*’ for assembling the
short NGS reads. Like MetaPlatanus, it employs coverage considera-
tions to refine the resulting assembly graph. Subsequent integration of
long reads then points out paths in the refined assembly graph.
“Bridges" that reflect resulting new links in the assembly graph are
ranked by quality (measured in terms of coverage, for example), and
then are applied in decreasing order relative to their quality, which
establishes the paths that are supposed to be real. The resulting
assemblies are finally polished by re-aligning the short reads against
the selected paths using Bowtie*®, as a standard short-read mapper.

Summary of contributions
In summary, the advances we suggest are as follows.

1. Here we show the, to the best of our knowledge, first hybrid
metagenome assembly approach that is strain aware.

2. In all earlier approaches, either short reads or long reads were
used as fundamental assembly data where the other type of reads
was used as auxiliary data. We suggest a hybrid assembly
approach that makes use of both long and short reads as both
primary (assembly) and secondary (auxiliary) data. In other
words, one can arguably refer to our approach as being “cross-
hybrid" in nature.

3. We suggest the, to the best of our knowledge, first hybrid
assembly approach in which overlap graphs are used to capture
effects relevant for the assembly of the short reads. A particular
feature is the employment of “contig OGs", as a rather unusual
concept in genome assembly.

4. We suggest a metagenome asssembly approach that is strain
aware without requirements in terms of long read coverage or
sophisticated sequencing protocols that tend to be excessive in
terms of costs.

5. Last but not least, we suggest a metagenome assembly approach
that is superior over all prior approaches in terms of assembly
quality. Arguably, by its results, HyLight considerably pushes the
limits of possibilities in strain aware metagenome assembly, all in
terms of strain awareness, contig length (contiguity), and in terms
of the accuracy of the contigs.
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Fig. 1| Workflow of HyLight. The input data consists of two fastq files, long reads
and short reads. The output is a fasta file containing the assembled contigs. The
overall procedure can be divided into three primary steps. Firstly, strain-resolved
0OG is conducted to assemble long reads. Subsequently, another OG is established
to assemble short reads. Lastly, a contig OG is established to extend the contigs
obtained from the assembly results of long and short reads, culminating in the
generation of the final master contigs.

In the following, in Results, we will present the workflow of our
approach as well as all details required for understanding it from a
larger perspective. Subsequently, we will present the experiments that
confirm the novelties and improvements as pointed out above. As
usual, we will discuss our results in comparison with the hypotheses
just raised. In Online Methods, we will provide all the details that
establish the full reproducibility of our approach.

Results

In the following, we first briefly discuss the workflow. Details that are
necessary to fully reproduce the workflow from a conceptual point of
view are provided in Methods. Subsequently, we present experiments
on both simulated and real data, which provide evidence for
the benefits of our approach, as listed towards the end of the
Introduction.

HyLight's major innovation lies in the construction of a strain-
resolved overlap graph (OG) as input for assembling long reads, cor-
recting contigs, and clustering and assembling short reads, ultimately
achieving strain-aware assembly.

Long reads align

long reads
P1:X P2:X P3:X
A T C
T T C
AT S T (o}
A g [ ol I C
A = AT TTT
Il oll A AN b di
TCT TAL AN T
ICT 7. VI T
Sequéncing
Untangle wrong overlaps errors
Strain aware graph
Al T (of
T T (of
Al T C
A Lol (of
A
Al I
Lol Al i
1€ Al I
Lol Al I

Assemble long reads

Strain 1
Strain 2

Fig. 2 | Assembly of long reads. Long reads are pre-corrected using short reads.

The distinct colors of the reads indicate their respective strain origins. The objec-
tive of this workflow is to leverage SNP information to filter out incorrect overlaps,
selectively retaining overlaps between reads originating from the same strain. This
enables strain aware assembly to be performed effectively.

Workflow

Please see Fig. 1 for a schematic of the workflow. The workflow pro-
ceeds in two axes: one for assembling the long reads (see left branch in
Fig. 1) and one for assembling the short reads (right branch in Fig. 1).
Assemblies of long and short reads are merged in a final step (see
bottom of Fig. 1).

In a brief summary, HyLight performs the following items. First, it
corrects long reads using short reads, which turns the raw TGS reads
into polished, error-free long reads. The resulting polished long reads
then are the basis for constructing a strain-resolved overlap graph that
gets further polished by removing remaining errors.

To provide an overview of the workflow, this section offers a high-
level description. For detailed descriptions of all methodical steps
involved, please refer to the “Methods” section. Figure 1 illustrates the
overall workflow of HyLight. As outlined previously, HyLight com-
prises three main modules.

First module: long read assembly. The main purpose of this axis is to
compute strain-aware, error-free contigs from the long reads.

1. Longreads are corrected using short reads using FM-index and de
Bruijn graph based techniques, as implemented in FMLRC2*,
which has been shown to outperform other methods in recent
benchmark studies®**",

2. An overlap graph is constructed from the corrected long reads.
We make use of the (widely popular) Minimap2> to compute the
necessary overlaps.

3. We identify overlaps that connect long reads from different
strains by inspecting SNP patterns, and we remove edges in the
overlap graph that reflect the connection of long reads from
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Fig. 3 | Assembly of short reads. The distinct colors of the reads indicate their
respective strain origins. The primary procedure consists of aligning the short
reads to the contigs, establishing a strain-resolved OG, and then excluding short
reads that align to regions already assembled into contigs. Subsequently, an OG is
constructed to assemble the remaining short reads and reconstruct strains or
regions that were not initially assembled.

different strains. See Fig. 2 for an illustration. The result is an
overlap graph of the long reads that consists of connected com-
ponents each of which contains long reads from only one parti-
cular strain. So, each connected component in the overlap graph
now reflects a collection of reads drawn from one haploid
genome.

4. We assemble the long reads based on the resulting strain-aware
overlap graph using Miniasm®, which is a long read assembler that
addresses to assemble haploid genomes from long reads. The
result are contigs each of which stems from one particular strain.

5. We re-align the long reads against the resulting strain-aware
contigs.

6. Based on the re-alignment, we establish a second, improved ver-
sion of an overlap graph for the long reads, which now reflects a
strain-aware overlap graph of the long reads.

7. Using this improved, strain-aware overlap graph, we remove
errors that have remained in the long reads using Racon®.

As for 7, note that Racon has not been designed to operate in a
strain-aware manner. If one fed the original, strain-unaware overlap
graph to Racon, it would “overcorrect” contigs by mistaking true,
strain-specific variation for errors and eliminating them. This would
mask strain-specific variation hence prevent the reconstruction of
genuine strain-specific sequence. One can consider the application of
Racon to only strain-aware overlap graphs an insight that is crucial for
computing both error-free and strain-aware long read based
assemblies.

Second module: short read assembly. We recall that it is a general
objective to establish a workflow that caters to low coverage of long
reads to avoid unnecessary and possibly unaffordable costs. There-
fore, the main purpose of this axis is to assemble the (likely high
coverage, because cheap) short reads in their own right, and use the
assemblies to fill gaps in the long read based assembly, or even identify
additional strains from the resulting contigs.

1. We align the short reads against the strain-aware, error-free
contigs, as the output of the long read axis (first module), using
Miniasm*.

2. The alignment of short reads with long read contigs gives rise to
an overlap graph of the short reads.

3. Analogously to the long read axis, we inspect SNP patterns in the
overlap of the short reads. Based on the SNP patterns, we identify
overlaps of short reads that reflect to connect two short reads
from different strains. See Fig. 3 for an illustration.

4. As a result, we are now able to identify short reads whose SNP
patterns contradict their initial alignment with the long read
contigs. The insight is that breaking up overlaps between short
reads all of which align with the same long read contig leads to
several classes of short reads. Only one of the classes of reads truly
agrees with their respective long read contig (yellow short reads
in Fig. 3).

5. We conclude that short reads no longer having overlaps with
short reads whose SNP patterns truly match those of their long
read contigs, do not stem from the same strain as the long read
contig against which they initially aligned (blue short reads
in Fig. 3).

6. Further, we collect all short reads that did not align with any of the
long read contigs (gray short reads in Fig. 3).

7. We discard all short reads whose alignments indicated full
agreement with a long read contig (yellow in Fig. 3).
Subsequently, using StrainXpress” (which as discussed in the
Introduction specializes in the strain-aware assembly of short
reads using OGs), we assemble all short reads whose alignments
were not in full agreement with their long read contigs (blue in
Fig. 3) or which had remained entirely unaligned with long read
contigs (gray in Fig. 3). See the bottom of Fig. 3 for an illustration
of the resulting assemblies.

®

As per the properties of StrainXpress, the result are strain-aware
short read based contigs. As per the protocol we follow, all contigs
refer to strain-aware metagenomic sequence not captured / spanned
by any of the long read contigs from the first module.

Third module: merging long and short read assemblies. The pur-
pose of this final module is to compute a unifying assembly that is as
comprehensive as possible, as the final output of our approach.

1. One collects both long and short read contigs, as the output of the
first and second module, and computes overlaps between them to
establish an encompassing strain-aware overlap graph.

2. One identifies nodes in the OG through which only one particular
path passes ("simple path").

3. One extends contigs along the identified “simple paths". The
resulting extended contigs are the final output.

Data & experimental setup
The experiments we discuss in the following refer to both simulated
and real data.

The synthetic data we treat refer to scenarios that reflect dif-
ferent levels of complexity in terms of strain content. In particular,
we deal with data sets reflecting 3 Salmonella strains, and further 20
(low complexity), 100 (medium complexity) and 210 (high com-
plexity) strains from various bacterial species. Strains were retrieved
from (**, DESMAN); see Supplementary Data for full information on
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Table 1| Benchmark results for assembly simulated PacBio
CLR reads

Assembly GF(%) NGA50 Indels/ Mismatches/ N/ MC(%)

100 100 kbp 100

kbp kbp
3 Salmonella
MetaPlatanus ~ 72.25 68613 20.56 324.99 2.00 3.15
Unicycler 7092 - 109.42  1957.53 0.00 6.88
OPERA-MS 68.43 41134 115.57 559.08 0.18 7.69
hybridSPAdes 46.22 - 35.73 816.90 0.00 1.60
HyLight 96.03 351848 0.85 23.56 0.00 0.9
Strainberry - - - - - -
StrainXpress 90.99 2645 0.7 59.61 0 0.07
20 strains
MetaPlatanus  70.33 46882 39.11 238.79 2321 215
Unicycler 68.59 46894 36.44 262.88 0.00 144
OPERA-MS 66.25 40464 189.74  290.46 0.09 3.66
hybridSPAdes 62.01 13237 11.83 333.44 0.00 0.44
HyLight 91.76 139730 3.97 59.96 0.00 0.20
Strainberry 78.43 95338 8.48 26.26 19.60 2.30
StrainXpress 92.74 1753 118 44.8 0 0.04
100 strains
MetaPlatanus  76.60 46937  36.80 407.42 41.46  2.05
OPERA-MS 68.61 25223 39.31 575.26 0.53 7.90
Unicycler - - - - - -
hybridSPAdes - - - - - -
HyLight 93.99 163296 16.87 75.95 0.00 0.93
Strainberry 79.25 65706  210.30 115.87 68.05 4.84
StrainXpress 91.79 2597 2.00 75.48 0 0.12
210 strains
OPERA-MS 71.15 43045 185.34  483.57 0.13 7.15
MetaPlatanus - - - - - -
Unicycler - - - - - -
hybridSPAdes - - - - - -
HyLight 90.49 128015 24.59 66.41 0.00 1.63
Strainberry 78.56 81842 418.36  102.55 172 4.66
StrainXpress 89.11 1240 1.89 53.42 0 0.19

Indels/100 kbp: average number of insertion or deletion errors per 100,000 aligned bases.
Mismatches/100 kbp = average number of mismatch errors per 100,000 aligned bases. Genome
Fraction GF reflects how much of each of the strain-specific genomes is covered by contigs. N/
100 kbp denotes the average number of uncalled bases (N’s) per 100,000 bases in contigs.
MC = fraction of misassembled contigs. In the same comparison group, the best-performing
results are highlighted in bold to emphasize their significance.

strain composition of data sets. All data sets were simulated using
CAMISIM®®, which reflects a state-of-the-art and widely popular
choice for generating metagenome sequencing data sets. Further, we
also consider 6 “strain-mixing spike-in" data sets, which reflect
spiking simulated reads from Salmonella strains into real data. This
creates a real data scenario for which ground truth (in form of
simulated reads) is available. See the “Methods” section for full
technical details.

The real data are two microbial communities that reflect the
current standard in terms of available real, both TGS and NGS data with
known ground truth. Both Bmock12 (a bacterial mock community) and
NWC (a natural whey culture data set) have already been widely used in
the evaluation of metagenome assembly approaches'>">**’% For both
data sets, reference genomes, lllumina, PacBio CLR and ONT reads are
readily available. See again the Methods section for full technical
details.

To assess the performance of the hybrid strategy and the
assemblies generated solely from high-quality HiFi reads, we cre-
ated a mock community by mixing real sequencing data from three
yeast strains. The three sequencing data sets were originally inten-
ded for evaluating different sequencing data platforms and
assembly methods*’. Consequently, these data sets contain PacBio
HiFi reads, ONT reads, and NGS reads. In this study, they serve as an
excellent basis for assessing the performance of HyLight, which
runs on NGS and ONT reads, in comparison to Hifiasm-meta®®
and metaMDBG®, which solely utilize PacBio HiFi reads for
assembly.

Benchmarked approaches

As discussed in the Introduction, the state-of-the-art when com-
paring hybrid metagenome assembly approaches that operate in a
strain-aware manner, are Strainberry, as the leading approach to
deal with only TGS data and StrainXpress, as the leading approach
to only deal with NGS data. Hybrid metagenome assembly approa-
ches that address strain awareness have not yet been presented
before; here, we consider all state-of-the-art approaches to meta-
genome assembly that operate at the species level. These are
HybridSPAdes”, MetaPlatanus®®, Unicycler® and Opera-MS?”. Last,
we also compare HyLight with Hifiasm-meta and metaMDBG to
assess differences in quality of HyLight’s hybrid assemblies with
PacBio HiFi only based assemblies, as generated by the current
state-of-the-art assemblers.

Note on metrics

In the following, we evaluate the performance in terms of metrics that
are routinely computed by MetaQUAST V5.1.0rc1°? and Merqury®. For
MetaQuast, we particularly focus on “Genome Fraction" (GF), as a
metric that refers to strain awareness (GF =100.0 translates into full
strain awareness), NGASO, as a metric deemed sufficiently reliable to
measure contig contiguity, and (mismatch / indel) error rates as well as
misassembled contig fraction (MC) to evaluate the quality of the
contigs. Among the evaluation metrics of Merqury, the focus is pri-
marily on “Completeness”, which, similar to MetaQuast's Genome
Fraction, reflects the proportion of the genome covered by the
assembled contigs. Additionally, we pay attention to the error rates
reported by Merqury. Importantly, note that Merqury, as a k-mer
based tool introduces particular biases in its evaluation, which was
noted earlier where it was found to favor k-mer based tools®*. Also,
here, the corresponding statistics appear statistically uncertain;
obviously, evaluating experiments without a ground truth comes at a
price, which is not surprising. See “Methods” for full details on Meta-
QUAST and Merqury.

Note on classification of approaches

We recall that the state-of-the-art hybrid assembly approaches pri-
marily target the accuracy and the length of the assemblies, but do not
address strain awareness. Strainberry and StrainXpress do primarily
target at strain awareness. As a trade-off, they suffer from more erro-
neous (Strainberry) or shorter (StrainXpress) assemblies due to the
nature of the type of data they use as their input: Strainberry and
StrainXpress only use TGS or NGS data, respectively. HyLight is the
sole approach that addresses accuracy, contiguity, and strain aware-
ness at the same time.

Here, because of the different primary goals of the approaches,
we would like to avoid to compare prior hybrid assembly approaches
with prior non-hybrid approaches that focus on strain awareness.
Therefore, in the following, we first compare HyLight with the prior
hybrid assembly approaches, and, subsequently, in separate para-
graphs, present a comparison of HyLight with Strainberry and
StrainXpress.
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Table 2 | Benchmark results for assembly real reads

Assembly GF(%) NGA50 Indels/ Mismatches/ N/ MC(%)
100kbp 100kbp 100kbp
Bmock12 ONT
MetaPlatanus 95.37 789960 34.34 66.81 178.39 4.60
OPERA-MS 94.30 207591 20.78 78.01 0.04 8.38
hybridSPAdes - - - - - -
Unicycler - - - - - -
HyLight 99.77 281944 1.45 3.58 0.00 3.59
Strainberry 67.60 688598 705.34 264.57 3.57 11.66
StrainXpress  99.04 65743 3417 1.4 19.57 0.78
Bmock12
PacBio
MetaPlatanus 94.26 809518 15.85 31.83 2911 4.29
OPERA-MS 93.20 179729  39.65 52.19 0.03 8.60
hybridSPAdes - - - - - -
Unicycler - - - - - -
HyLight 98.57 123823 5.29 19.24 0.00 7.62
Strainberry 62.50 72377 272.41 33.48 21.30 2217
NWCs ONT
MetaPlatanus 68.54 20673 260.28 248.95 249722 4.03
OPERA-MS 62.52 7656 239.54 256.18 0.38 41.54
hybridSPAdes 56.36 - 16.00 102.93 0.00 4.59
Unicycler 53.78 10687 17.12 68.69 0.00 34.15
HyLight 95.35 62800 30.45 174.89 0.00 9.37
Strainberry 91.69 141570 76414 193.84 60.26 22.94
StrainXpress  75.47 1056 25.57 399.71 (0] 3.38
NWCs PacBio
MetaPlatanus 63.86 839 116.67 143.66 802.98 4.19
OPERA-MS 56.49 - 446.73 315.74 0.41 26.57
hybridSPAdes 54.83 - 22.53 124.98 0.00 3.57
Unicycler 46.96 - 36.14 57.18 0.00 11.06
HyLight 78.94 22388 84.42 219.74 0.00 4.27
Strainberry 43.03 - 246.94 1M.47 0.65 22.22

Indels/100 kbp: average number of insertion or deletion errors per 100,000 aligned bases.
Mismatches/100 kbp = average number of mismatch errors per 100,000 aligned bases. Genome
Fraction GF reflects how much of each of the strain-specific genomes is covered by contigs. N/
100 kbp denotes the average number of uncalled bases (N's) per 100,000 bases in contigs.
MC = fraction of misassembled contigs. In the same comparison group, the best-performing
results are highlighted in bold to emphasize their significance.

Misassembled contig rate of strain aware assemblers. The results of
HyLight, Strainberry and StrainXpress with respect to misassembled
contig rate (MC in Tables 1 & 2) remain very consistent across all
datasets. To avoid redundancies when comparing HyLight with
Strainberry and StrainXpress in terms of misassembled contig rate, we
will not go into detail with respect to each of the data sets we run
experiments on. As a general trend—which applies with no exception
on any of the data sets—HyLight and StrainXpress considerably out-
perform Strainberry. For (the solely NGS based) StrainXpress, this can
certainly be attributed to the reduced length of the contigs. For
Strainberry, this can be attributed to being based on solely TGS data,
which prevents the detection of misassemblies thanks to the accuracy
of auxiliary NGS data.

Experiments: synthetic data sets

3 Salmonella. This data set contains simulated reads from three
distinct strains of Salmonella. The average coverage for Illumina
(NGS) and PacBio (TGS) reads is 20X and 10X, respectively,
reflecting a low-coverage TGS data scenario in particular, as

intended. Despite the low number of strains (3), the high degree of
similarity between them ensures that only approaches that are
sufficiently strain aware are able to assemble them without con-
founding them. The data set serves as a test bed for evaluating basic
properties of the benchmarked approaches. See “Methods for full
details.

Hybrid assembly approaches. See Table 1 for corresponding results.
HyLight outperforms all other hybrid assembly approaches in terms of
all relevant metrics. It covers 23.78% more strain sequence than the
second best hybrid assembly approach (HyLight: 96.03; MetaPlatanus:
72.25), missing out on only 4% strain-specific sequence. HyLight also
dominates the other approaches in the other relevant categories,
where improvements are to be measured in terms of orders of mag-
nitude. For example, it improves NGAS50 by a factor of 5 (HyLight: 351
848; MetaPlatanus: 68 613), indel error rate by a factor of 24 (HyLight:
0.85/100 kbp versus 20.56/100 kbp), mismatch error rate by a factor of
13.7 (HyLight: 23.56/100 kbp; MetaPlatanus: 324.99/100 kbp) and
missambled contig rate (MC) by a factor of 8.4 over the second best
approach (HyLight: 0.19%; MetaPlatanus: 1.6%).

Strainberry / StrainXpress. See Table 1. Strainberry encountered dif-
ficulties in the phasing step due to the high similarity among the three
salmonella strains (ANl >99%). As a result, Strainberry could not
identify sufficiently many SNPs to separate reads from contigs, as
assembled by Metaflye. Consequently, Strainberry was unable to
assemble this dataset. StrainXpress achieves Genome Fraction that is
superior over all prior (including hybrid) approaches, but out-
performed by HyLight (90.99%), and achieves excellent results in
categories relating to contig quality (errors and misassemblies).
However, in terms of contiguity, StrainXpress lags behind all other
approaches, by large margins. This is no surprise, of course, since
StrainXpress is the only approach that does not make use of long
reads, which limits its potential to output longer contigs.

20 bacterial strains. This data set consists of 20 strains from 10 dif-
ferent species, resulting in an average of two strains per species. The
average coverage for lllumina (NGS) and PacBio (TGS) reads is 20X and
10X, respectively, again reflecting a TGS low coverage scenario. For
further details, please refer to the “Methods” section.

Hybrid assembly approaches. See again Table 1. Also on this data set,
HyLight outperforms the other four methods across all categories.
HyLight achieves a Genome fraction of 91.76%, surpassing the current
best method by more than 21% (MetaPlatanus: 70.33%). The NGA50 of
HyLight is 139,730, which exceeds the second best NGA50 by a factor
of 3 (Unicycler: 46 894). Regarding errors, HyLight's contigs mark a
threefold improvement in terms of indel error rates (HyLight: 3.97/
100 kbp; HybridSPAdes: 11.83/100 kbp), and the mismatch error rate is
four times lower than the toughest competitor (HyLight: 59.96/
100 kbp; MetaPlatanus: 238.79/100 kbp). Finally, there are only half as
many misassembled contigs relative to the second best competing
method (HyLight: 0.20%; HybridSPAdes: 0.44%).

Strainberry / StrainXpress. As was expected, both Strainberry and
StrainXpress are competitive with respect to Genome Fraction. How-
ever, while StrainXpress (93.45%) even outperforms HyLight (91.76%),
Strainberry achieves only 78.43%, which from an overall perspective
(including hybrid approaches) still is remarkable. In terms of con-
tiguity, unlike Strainberry’s assembly, whose contiguity is worse than
that of HyLight, but still competitive, StrainXpress’ NGA50 is smaller by
a factor of more than 40 in comparison with HyLight. Further,
Strainberry’s error rates are largely on par with the low error rates of
HyLight and StrainXpress, which is somewhat surprising in particular
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variation in misassembly contig length among different assembly methods. ¢ and
d Increase in coverage, changes in mismatch and indel error rate in the assembly
results of different approaches. Box plots represent the median (center line), the
25th and 75th percentiles (bounds of the box), and the minimum and maximum
values within 1.5 times the interquartile range (whiskers).

for indel errors. While the good error rates of Strainberry can be
attributed to the low complexity of the data set, results in the other
categories reflect expected outcomes when working with low cover-
age TGS and/or (medium coverage) NGS data. Here, just as much as on
all other data sets, StrainXpress has the lowest misassembled contig
rate (0.04% vs. 0.20% by HyLight).

100 bacterial strains. This data set consists of 100 strains from
30 species, at an average coverage of 20X per strain for NGS (Illu-
mina) and the (as usual low) 10X per strain for TGS (PacBio CLR)
reads. The data set is designed to reflect a more complex scenario.
The idea is to evaluate which of the available approaches potentially
become confused if the mix of strains becomes more complex and
more diverse.

Hybrid assembly approaches. See Table 1). In fact, despite a slight
increase in terms of errors, HyLight remains unaffected by the elevated
complexity and continues to outperform the other four methods. Note
first that neither HybridSPAdes nor Unicycler was able to perform the
assembly within a month time, so we terminated the corresponding
runs (on 32 CPUs and 500 GB RAM) not terminating when the strain
number reached 100, short read volume reached 16G, and long read
volume reached 10G). As for Genome Fraction, HyLight outperforms
the other methods by at least 17%, where GF even exceeds the GF
achieved on the low complexity data set (HyLight: 93.99%; MetaPla-
tanus: 76.6%). The NGA50 exceeds the second best one by 3.5 times
(HyLight: 163 296; MetaPlatanus: 46 937). Indel error rates are
still lower by a factor of more than 2 (HyLight: 16.87/100 kbp;

MetaPlatanus: 36.8/100 kbp) and mismatch error rates are smaller by a
factor of more than 5 (HyLight: 75.95/100 kbp; MetaPlatanus: 407.42/
100 kbp). Misassembled contig rate is smaller by a factor of more than
2 (HyLight: 0.93; Metaplatanus: 2.05).

Thanks to variations in the average coverage of the TGS data of
the 100 strains (average coverage follows a log-normal distribution
by the design of CAMI), one can analyze the influence of coverage
on the quality of the assemblies of the different strains. See Fig. 4 for
the corresponding results. In comparison to the other two methods
whose runs terminated successfully, HyLight generally achieves
greater Genome Fraction across all strains. HyLight’s advantages
become particularly noticeable at coverage rates below 20X where
HyLight outperforms the other methods by large margins with
respect to all categories that refer to strain awareness and error
content.

Strainberry / StrainXpress. Again, StrainXpress excels in terms of
strain awareness (Genome Fraction), closely followed by HyLight.
Although the margin between Strainberry and HyLight is considerable,
Strainberry still achieves remarkable strain awareness with from an
overall perspective that takes the other hybrid approaches into
account. The increased complexity of the data has an impact on con-
tiguity and error rates of the assemblies. Strainberry now has con-
siderable disadvantages in terms of error rates, in particular with
respect to indel errors, while HyLight and StrainXpress preserve
excellent error rates. StrainXpress has considerable disadvantages in
terms of contiguity, where HyLight exceeds the NGAS50 of Strainberry
by more than 2 times.
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from 5X to 30X, the variations in genome fraction (a), indel error rate (b), mismatch
error rate (c), and misassembly contig rate (d) were presented for these five
assembly methods.

210 bacterial strains. This data set consists of 210 strains from
100 species as provided by*, for which reads were simulated using
CAMISIM®®, As usual, depth of coverage is 10X for TGS (so low cover-
age), and 20X for NGS reads. The data set is supposed to reflect a
scenario of utmost complexity with respect to numbers of species and
their strains.

Hybrid assembly approaches. See Table 1 for results. By and large,
HyLight, as well as Opera-MS, as the only methods whose runs termi-
nated within a month time, approximately mirror the results achieved
on the data set containing 100 strains. HyLight outperforms Opera-MS
by 19% in terms of Genome Fraction (HyLight: 90.49%; Opera-MS:
71.15%), has three times longer contigs (NGA 50: HyLight: 128 015;
Opera-MS: 43 045), has more than 3 times lower indel error rates
(HyLight: 24.59/100 kbp; Opera-MS: 185,34/100 kbp), 7 times lower
mismatch error rates (HyLight: 66.41/100 kbp; Opera-MS: 483.57/
100 kbp) and more than 4 times less misassembled contigs (MC:
HyLight: 1.63%; Opera-MS: 7.15%).

Strainberry / StrainXpress. Results largely repeat the achievements
from the data set on 100 strains just discussed, but become even more
distinct in terms of the expected advantages and disadvantages of the
approaches. Both approaches outperform other approaches in terms
of strain awareness. On this most complex data set, HyLight finally also
clearly outperforms StrainXpress. While Strainberry has drawbacks
with respect to error rates, StrainXpress considerably trails in terms of
contiguity, with HyLight clearly outperforming both approaches in
these categories.

Strain-mixing spike-in datasets. By its design, these data sets can be
used to investigate the influence of the coverage of the NGS reads in
hybrid assembly. To enable such experiments, we made use of 10
highly identical Salmonella strains, which we spiked into real meta-
genome samples. While the coverage of spiked-in long reads was fixed
to 10X, the coverage of spiked-in NGS reads varied from 5X to 30X, in
steps of 5X, resulting in 6 different levels of coverage. These 6 different
NGS read sets were spiked into 6 different real metagenome sequen-
cing data sets, amounting to 36 different data sets overall. For each of
these 36 data sets, the task is to assemble the genomes of the 10
Salmonella strains, in a strain-aware manner.

For the evaluation, note that we do not make use of MetaQuast,
because MetaQuast was not able to align the contigs against the
reference effectively due to the high identity of many strains, often
amounting to average nucleotide identity (ANI) of more than 99%. This
implied that indel and mismatch error rates were evaluated as exces-
sive for all methods apart from HyLight (for example, the mismatch
error rate was evaluated as 6859.95/100 kbp for Opera-MS, which
cannot be correct, see Supplementary Data). For fairness reasons, we
therefore resorted to using Quast® with the same parameters, because
we realized that Quast aligned contigs with the reference genomes
more accurately. This immediately entailed that the error rate of the
competitors dropped substantially (e.g., Opera-MS now at 1753.41/
100 kbp). See Supplementary Data for both Quast and MetaQuast
evaluated results.

An additional challenge was that MetaPlatanus consistently threw
errors when dealing with data sets of only 5X or 10X simulated NGS
coverage. Despite reaching out to the authors (via GitHub), the issue
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could not be resolved. Therefore, we only display results for datasets
of simulated NGS coverage 15X and greater.

Hybrid assembly appraoches. See the Fig. 5 for results. HyLight
outperforms the other methods across different coverages. For
example, HyLight achieves an average Genome Fraction that exceeds
those of other approaches by at least 28.81% (24.65% ~ 26.93%). Note
that at coverage 5X, the Genome Fraction of HyLight drops to 77.45%.
Genome Fraction for HyLight already increases to 85.03% when
increasing coverage to 10X. Increasing coverage further does not lead
to any more significant changes. Subsequent increases in the coverage
of the most community did not have a more significant changes
(Genome Fraction rises to nearly 90% from 15X and onwards).

Among the prior hybrid assemblers, Unicycler achieves the lowest
indel error rate (17.97/100 kbp -37.98/100 kbp) where HyLight (2.73 -~
5.47/100 kbp) achieves an error rate of only 17.5% of that of Unicycler
(Fig. 5b). Improvements of HyLight over prior hybrid assemblers in
terms of mismatch errors are even more distinct, decreasing the one of
the top competitor by about 90%. Figure 5d finally displays compar-
ison in terms of misassembled contig rate (MC): HyLight's MC is only
17.5% of that of HybridSPAdes, as the toughest competitor.

In summary, HyLight outperforms the state-of-the-art in hybrid
assembly by large margins with respect to the most relevant key
assembly metrics, in a scenario that is characterized by near-identical
strains embedded into complex real backgrounds.

Strainberry / StrainXpress are not evaluated, because the experi-
ment only makes sense for evaluating particular qualities of hybrid
assembly approaches.

Experiments: real data sets

We conducted further evaluations of all approaches using four real
datasets: “Bmock 12 PacBio", “Bmock 12 ONT", “NWCs PacBio" and
“NWCs ONT". While TGS coverage of the 4 data sets amounted to
22.11X, 18.1X, 127.2X and 89.01X (in the order of having listed data sets
before), NGS coverages reached 275X for Bmockl2 and 35.62X
for NWCs.

The ‘Bmock12’ dataset consists of 11 strains from 9 species. Due to
the low number of strains per species, also strain-unaware approaches
are to achieve fairly high Genome Fraction overall. This also means that
a sufficiently thorough analysis of the strain awareness of the
approaches requires to break down results relative to the strains that
make part of the data set. In this vein, one notices that among the
species present, only Marinobacter and Halomonas have more than
one strain, see Table 3 for summarizing statistics that refer to “Bmock
12 ONT" (statistics for “Bmock 12 PacBio" are similar, see Supplemen-

tary Table 1). While the two strains of Marinobacter exhibit 85% average
nucleotide identity (ANI), the two Halomonas strains have an ANI of
99%. This points out that methods should be evaluated with a view to
their performance on Halomonas strains in particular.

The NWC dataset includes 3 species (Streptococcus thermophilus,
Lactobacillus delbrueckii, Lactobacillus helveticus), each of which has
2 strains, at ANIs of 99.99%, 99.24%, and 98.03%, respectively. For
more detailed information, please see Supplementary Table 3. Despite
the limited number of strains and their relatively low complexity,
assembly remains challenging due to the high degree of similarity
affecting the two strains of a particular species.

Bmock12 ONT

Hybrid assembly approaches. See Table 2 for the following results.
Due to the reduced level of complexity in terms of the variety of
strains, also strain-unaware, species-level metagenome assembly
approaches are expected to deliver good performance in recon-
structing the individual genomes. Despite the reductions in overall
coverage due to the subsampling procedure (inducing a low coverage
TGS data scenario), both HybridSPAdes and Unicycler were unable to
complete the assembly process within one month runtime.

HyLight outperforms both Opera-MS and MetaPlatanus, which are
the two hybrid assembly approaches whose runs terminate in accep-
table time when examining the relevant criteria and putting them into
mutual perspective. Genome Fraction of HyLight is 4.4% higher than
that of the second-ranked MetaPlatanus (99.77% vs. 95.37%). Meta-
Platanus achieves the greatest NGASO (789,960 vs. 281,944), which,
however, can be explained by the unusually large number of Ns in its
contigs, whose primary purpose is to link and extend contigs by force
without that read evidence for the missing sequence context of contig
links can be provided. HyLight improves by more than one order of
magnitude over the other methods in terms of indel and mismatch
errors. The indel error rate of HyLight is only 6.9% of that of the
second-ranked OPERA-MS (1.43 vs. 20.78 per 100 kbp), and the mis-
match error rate of HyLight is only 5.4% of that of the second-ranked
MetaPlatanus (3.58 vs. 66.81 per 100 kbp).

We further examined the assembly status for each strain making
part of the mock community individually. Genome Fraction for the
individual strains is displayed in Table 3. One immediately realizes that
all approaches reconstruct at least (about) 99% of the strain-specific
sequence for all but the two Halomonas strains whose ANI comes at
99%. On Halomonas sp.HL-4 in particular, HyLight achieves a Genome
Fraction that is greater by 7.58% than that of MetaPlatanus and 8.93%
than that of Opera-MS (HyLight: 99.36; MetaPlatanus: 93.05; Opera-
MS: 90.7). This lets one conclude that HyLight is the only hybrid

Table 3 | The genome fraction of each individual strain in the Bmock12 data (Illumina and ONT)

Assembly Coverage (Illumina) Coverage (ONT) HyLight MetaPlatanus OPERA-MS
Halomonas sp.HL-4 507.08 46.03 99.63 93.05 90.70
Halomonas sp.HL-93 579.87 41.23 99.68 96.75 93.90
Marinobacter sp.LVIOR510-8 447.83 18.19 100.00 99.97 99.80
Marinobacter sp.LVIOMA510-1 135.05 6.95 99.94 99.85 98.95
Muricauda sp.ES.050 618.76 53.87 100.00 99.92 99.82
Psychrobacter sp.LVIOR520-6 425.47 31.82 100.00 99.34 98.46
Cohaesibacter sp.ES.047 170.59 11.78 99.78 99.48 98.57
Thioclava sp.ES.032 78.32 5.54 99.64 99.65 99.40
Propionibacteriaceae bacterium 31.90 2.39 99.99 99.99 99.97
Micromonospora echinofusca 18.19 2.44 99.58 99.50 99.29
Micromonospora echinaurantiaca 14.91 1.80 99.64 99.67 99.1

Present the impact of different sequencing coverage in different assembly methods. Because these are the only four strains in Bmock12, their assembly is more challenging than others, so they are

highlighted in bold to emphasize their importance.
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metagenome assembly approach that operates in a strain-aware
manner even when the ANI between strains is as great as 99%. As an
additional insight gained from the analysis of the quality of the
assemblies that is stratified relative to the individual strains, one rea-
lizes that all hybrid assembly approaches are able to reconstruct about
99% of the strain specific sequence even when TGS sequencing cov-
erage is as low as 1.8X and also as low as 14.91X for the respective NGS
coverage for a particular strain (here: Micromonospora echinaur-
antiaca). This documents the general value of hybrid metagenome
assembly with respect to its favorable behavior in terms of sequencing
(in particular TGS) coverage demands.

Strainberry / StrainXpress. While StrainXpress achieves competitive
performance with respect to Genome Fraction (99.04%), Strainberry
somewhat unexpectedly, no longer does (67.60%), while HyLight
outperforms also StrainXpress (99.77%). While Strainberry has draw-
backs with respect to error rates, StrainXpress considerably trails in
terms of contiguity. HyLight outperforms both approaches in terms of
both indel error and mismatch error rates, but is outperformed by
Strainberry in terms of contiguity.

Bmock12 PacBio. Note that NGS reads used here agree with those
from “Bmockl12 ONT", whereas the TGS reads now stem from PacBio
CLR sequencing platforms. This means in particular that the results of
StrainXpress (see further below agree with those achieved on
“Bmockl2 ONT".

Hybrid assembly approaches. See Table 2 for results. In an overall
summary, results here mirror results achieved on “Bmocki2 ONT",
where the advantages of HyLight look less: HyLight maintains a Gen-
ome Fraction that exceeds that of the other approaches by more than
4%, and although less distinct, still exhibits considerably lower error
rates. The NGA50 of MetaPlatanus exceeds that of HyLight con-
siderably, again put into context by the large number of N’s in the
MetaPlatanus contigs. Misassembled contig rate of HyLight is again
roughly on a par with that of MetaPlatanus, where now MetaPlatanus
has slight advantages (but see below for a more fine-grained analysis
that provides explanations). Although results look more favorable for
MetaPlatanus from a greater persepctive, breaking down results by
strain (see Supplementary Table 2) reveals that MetaPlatanus sub-
stantially struggles in reconstructing one of the Halomonas strains:
while achieving 93.05 Genome Fraction for Halomonas sp.HL-4 on ONT
data, MetaPlatanus only achieves 82.19 Genome Fraction on PacBio
data, despite even having small advantages over HyLight on the other
Halomonas strain. Analogous trends become evident for Opera-MS.
With respect to the misassembly contig rate, a more detailed analysis
further demonstrates that the MC of the raw long reads (i.e., evaluating
raw long reads as contigs in their own right) for “Bmockl2 ONT" and
“Bmockl2 PacBio" comes out at 2.33% and 7.55%, see Supplementary
Table 1. The MC of the raw long reads are introduced by chimera reads.
Comparing the MC of the raw long reads with the MC of HyLight points
out that HyLight reproduces MC rates of the raw long reads. The most
plausible explanation for this is the fact that HyLight uses overlap
graphs, which cannot identify chimera reads, while “short-read-first"
approaches, thanks to employing DBG'’s, can identify artificial links as
mistaken. While there is good hope that overlap graph based
approaches are able to identify chimera reads, too, we leave such
improvements as promising future work at this point.

Stainberry / StrainXpress. StrainXpress reproduces its results by
making use of only the NGS portion of the data, which agrees with that
from “Bmockl2 ONT". Again, Strainberry, somewhat unexpectedly,
does not achieve competitive performance in terms of strain aware-
ness. Similarly, Strainberry again has considerable drawbacks with
respect to (in particular indel) error rates, containing more then 40

times more indel errors than HyLight. Here, also the contiguity of
Strainberry’s assembly here is outperformed by that of HyLight
(NGASO0 - HyLight: 123823; Strainberry: 72377).

NWC ONT

Hybrid assembly approaches. Due to the presence of a higher num-
ber of highly similar strains in NWC compared to Bmockl2, the
advantage of HyLight becomes more pronounced. HyLight outper-
forms the other hybrid assembly methods, both in terms of Genome
Fraction (i.e., strain awareness; HyLight: 95.35%; MetaPlatanus, as
second best: 68.54%) and NGAS5O (i.e., contiguity; HyLight: 62800;
MetaPlatanus, as second best: 20673). Further, although not out-
performing the other approaches, HyLight achieves decent indel and
mismatch error rates in comparison with the other approaches, rank-
ing second and third, respectively, and, just like most other approa-
ches, reducing the error content of the raw long reads by more than
two orders of magnitude. Again, the MC, although not bad, is slightly
worse than that of MetaPlatanus and HybridSPAdes, again reflecting
that HyLight adopts issues introduced by chimera reads, for which
there is good hope that this can be successfully addressed in
future work.

Strainberry / StrainXpress. All approaches achieve competitive per-
formance relative to strain awareness, in case of StrainXpress at least
from the perspective of comparing it with strain unaware approaches,
as was expected, while HyLight, followed by Strainberry both excel.
Strainberry has drawbacks with respect to indel error rates, containing
approximately 25 times more indel errors than HyLight, while being
roughly on par with HyLight in terms of mismatch errors. As usual,
StrainXpress considerably trails in terms of contiguity, with Strain-
berry taking over the lead from HyLight.

NWC PacBio. Unlike NWC ONT, this data set is affected by two strains
whose long read coverage is extremely low (1.45X and 2.47X, respec-
tively see Supplementary Table 5). The reconstruction of those two
strains presents a particular challenge, which points out that this data
set is a particularly challenge in one overall. Therefore, all methods
produced assembly results that were inferior to those achieved on
NWC ONT.

Hybrid assembly approaches. Notwithstanding the level of diffi-
culty of the data set overall, results virtually reproduce the ones
achieved on NWC ONT: HyLight outperforms the other approaches
both in terms of Genome Fraction (HyLight: 78.94%; MetaPlatanus:
63.86% as second best) and NGA50 (HyLight: 22388; MetaPlatanus:
839 as second best). Error rates are roughly on a par with those of
the other approaches, where everyone achieves sufficiently decent
results. MC is slightly lower than those of the two best approaches,
but considerably better than those of the other two approaches;
again, presumably, chimera reads imply that HyLight reproduces
the MC rates of the raw reads.

Strainberry / StrainXpress. Just as for Bmockl2, StrainXpress
reproduces its results because making use of only the NGS portion
of the NWC data. Again, Strainberry’s performance in terms of strain
awareness drops (here: quite substantially), which is somewhat
unexpected, and may be due to reduced quality of the TGS portion
of the data here—note that even HyLight somewhat struggles. In
comparison to “NWC ONT", Strainberry’s error rates are improved,
containing only approximately 3 times more indel errors than
HyLight, with StrainXpress taking the lead in terms of indel errors.
Mismatch error rates are similar to those of NWC ONT. In terms of
contiguity, HyLight clearly outperforms Strainberry, whose contigs
only align with less than 50% of the true genome, which prevents
computation of NGA50.
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Hybrid versus HiFi: three yeast strains. The three yeast strains Sac-
charomyces cerevisiae S288C, CICC-1445, and Saccharomyces pombe
FLO-DUT were sequenced with PacBio HiFi, Oxford Nanopore Tech-
nologies, and the short-read sequencing technology BGISEQ (2 x ! 150
bp paired reads), which allows to evaluate experiments that compare
hybrid approaches (as per their design relying on ONT and BGISEQ)
with HiFi assemblers. To control variables, and make sure that we were
dealing with low coverage datasets, we subsampled 10X data from
each sequencing technology for the assemblies. It is noteworthy that
the ONT reads here contained a large number of shorter reads,
resulting in an average length only half of that of PacBio HiFi reads,
which is not the typical case. Generally, ONT reads are two to three
times the length of PacBio HiFi reads. To ensure fairness in subsequent
evaluations, we randomly subsampled reads with the requirement that
ONT reads should be longer than 10,000 bp and PacBio HiFi reads
should be longer than 5,000 bp. Due to the abundance of relatively
shorter reads in the ONT data for these three datasets, the resulting
10X ONT subset had an average length close to that of PacBio HiFi.

Subsequently, to mimic a scenario akin to a metagenome, we
merged the ONT, the BGISEQ and the HiFi reads of the three yeast
strains into one data set for each sequencing technology. This estab-
lished a mock community that consisted of two S.cerevisiae strains
(5288C and CICC-1445) as well as a S.pombe strain (FLO-DUT). We ran
all assemblers on this mock community type data set. Note that only
$288C comes with a (haploid) reference genome (provided via the
SRA), in other words only S288C is equipped with a ground truth. To
evaluate results in a way that agrees with the conventions of evaluating
metagenomes, we fed the contigs of each method into Merqury. We
recall that the lack of reference genomes for CICC-1445 and FLO-DUT
prevented an evaluation with MetaQUAST.

Results are shown in Table 4. Evidently, HyLight outperforms both
HiFi assemblers, Hifiasm-meta and MetaMDBG quite substantially,
while Hifiasm-meta and MetaMDBG are largely on a par. In summary,
the hybrid assembler HyLight proves to be superior over the HiFi only
assemblers. Evidently, combining noisy ONT with NGS data appears to
be quite preferable over assemblies generated from HiFi data alone:
the hybrid approach excels all in terms of strain awareness (Com-
pleteness), error content (Error Rate) and potential misassembled
contigs (QV).

To make sure that these results agree with what one can achieve in
terms of evaluating results with respect to an available reference
genome, we also ran the contigs pertaining to S288C against its
available reference genome. See Supplementary Table 8 for the cor-
responding results. Numbers confirm the superiority of HyLight's
hybrid assemblies over the HiFi only assemblies all in terms of strain
awareness, misassembly and error content. One can also see that the
contiguity of the HiFi only assemblies exceeds that of HyLight. This
suggests that HiFi assemblies trade length for quality in terms of strain
specificity, error and misassembly content. However, since corre-
sponding related results for the other two strains cannot be obtained
because of the lack of reference genomes, one cannot be certain about
the contiguity of the contigs relating to these two strains, since
Merqury can only assess strain awareness and quality in terms of error
and misassembly content.

Runtime and memory usage evaluation

We evaluated the performance of runtime and peak memory of all
methods on the data set containing the 3 Salmonella strains, on a
x86_64 GNU/Linux machine with 48 CPUs. The data volume of the NGS
(IMlumina) reads amounted to 573 MB and the volume of the Pacbio
CLR reads amounted to 281 MB. Supplementary Table 7 reports CPU
times and peak memory usages of the different hybrid assembly
methods. without any doubt, OPERA-MS is the fastest tool: it only takes
2.09 hours and 1.23 GB memory. The runtime of hybridSPAdes,
HyLight, and MetaPlatanus is roughly on a par, requiring

approximately 5.53, 7.01, and 6.93 hours, respectively. However, in
terms of peak memory usage, both hybridSPAdes and HyLight
demonstrate significantly lower usage compared to MetaPlatanus,
with values of 3.85, 15.99, and 69.26, respectively. Unicycler, on the
other hand, requires the longest runtime (53.71 hours).

Discussion

Despite exhibiting a high degree of similarity, different strains of the
same bacterial species can vary significantly in terms of phenotype,
such as drug resistance or pathogenicity. This explains why it is
important in biomedical and clinical research to identify putative
pathogens at the level of strains as the desirable degree of taxonomic
resolution, and not only at the level of species. Therefore, when ana-
lyzing an environmental mix of genomes, the current driving challenge
is to assemble the individual genomes at strain resolution. In this, de
novo assembly is crucial to avoid reference induced biases that would
favor the detection of more common strains over those not yet fully
investigated or even entirely unknown.

In this paper, we have presented HyLight, as an approach that
aims at pushing the limits of strain-aware metagenome assembly in
various aspects. HyLight is based on de novo hybrid assembly, char-
acterized by integrating both long, third-generation sequencing reads
and short, next-generation sequencing reads during the assembly
process. Two good reasons support the principled superiority of
hybrid assembly.

The first reason is the superiority of the assemblies themselves
HyLight improves the quality of strain-level metagenome assemblies in
comparison with the state of the art all in terms of strain awareness,
contiguity, and accuracy (as measured by error and misassembly
content), often by large margins. As anticipated, HyLight achieves its
most pronounced advantages when strains are very similar and/or
when strains are subject to low (TGS) read coverage. HyLight stands
out as the sole method that consistently reconstructs at least 90% of
the strain-specific sequence content, with second best approaches
achieving only approximately 70% on average. Another particular
advantage of HyLight is the low error content in terms of insertions
and deletions, as the predominant type of errors that affects TGS
reads. Beyond clearly outperforming competitors in terms of indel
error content, HyLight shares the favorable non-indel error rates that
the other approaches had been able to achieve already, which docu-
ments the beneficial complementarity of the TGS reads on the one
hand and NGS reads on the other hand.

The second reason is the substantial savings in terms of costs
and resources

From the point of view of the global assembly/sequencing community,
hybrid assembly opens up a range of opportunities for laboratories
that operate on less generous budgets and are equipped with earlier
types of TGS and NGS platforms, which applies for the great majority
of laboratories worldwide. The principled explanation for this is the
favorable complementarity of the two types of data: while TGS reads
are long but inaccurate, and in particular predominantly affected by
indel errors, NGS reads are short and accurate where the (anyway little)
errors come in form of single letter mismatches. This reduces the need
for generating larger data volumes. In line with earlier hybrid assembly
approaches, HyLight again demonstrates that superior results are
achieved already with little and cheap data.

It seems to be a fair assessment to consider most advanced types
of reads (such as PacBio HiFi or ONT Q30+) as pleasant convenience
that, unfortunately, remains unaffordable to the (vast) majority of
laboratories worldwide. Beyond the expenses that these most
advanced platforms require, our results show that also the quality of
their assemblies is exceeded by that of our hybrid assemblies. One of
the reasons is the length of the TGS reads of the earlier types, which
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Table 4 | Benchmark results are presented for the assembly of
a real sequencing dataset comprising reads from 3 yeast
strains

Assembly Completeness (%) Qv Error rate (%)
HyLight (Hybrid) 98.08 41.55 0.007
Hifiasm-meta (HiFi) 96.31 30.94 0.081
MetaMDBG (HiFi) 93.49 33.31 0.047

Completeness indicates the fraction of the genomes covered by the assembled contigs. QVis a
k-mer-based metric quantifying the quality of the assembled contigs. The error rate represents
the proportion of erroneous bases present in the assembled contigs. In the same comparison
group, the best-performing results are highlighted in bold to emphasize their significance.

exceeds the length of PacBio HiFi for example by factors of 2-4 times
on average. Another reason may be the complementarity of NGS and
TGS reads in terms of error content. Our results demonstrated again
that using NGS reads for correcting errors in TGS reads results in
ultimately low error content of the TGS reads or their contigs.

In summary, we have presented an approach that leverages the
complementarity of ultra-long, but erroneous TGS reads and short,
but accurate NGS reads. We have demonstrated to outperform the
state of the art often by large margins, and on low data volumes in
particular, which confirms the theoretical intuition of the approach.
From the point of view of costs, we have indeed opened up
opportunities for the many laboratories that operate on less gen-
erous budgets when it comes to the strain aware assembly of
metagenomes.

The methodical key to success was to considerably remodel the
protocols of hybrid assembly approaches. Unlike all of the earlier
hybrid assembly approaches, HyLight does not follow a “short-read-
first" or “long-read-first" protocol. Rather, HyLight employs a protocol
that relies on assembling both types of reads without the protocol
becoming too complex, which one could refer to as a “cross hybrid" or
“mutual support” strategy. The foundation of this has been to use
overlap graphs instead of de Bruijn graphs, where the latter have been
dominating hybrid metagenome assembly approaches for several
years. The crucial insight is the fact that using overlap graphs leads to
the correct line up of strain specific variation across strain specific
genomes, which is favorable even when working with short reads.
Based on such accurate line ups, HyLight incorporates a filtering step
that identifies mistaken (i.e., “strain unaware") overlaps among contigs,
and removes them from further consideration, which constitutes an
important technical advance.

In conclusion, we have introduced HyLight, as a de novo hybrid
metagenome assembly approach that reconstructs the genomes of the
individual members of microbial communities at strain level, which, to
the best of our knowledge, is a novelty. HyLight is characterized by its
economic behavior in terms of costs and times, and the ubiquitous
availability of the data that HyLight relies on. This may enable a large
number of laboratories worldwide that had been restricted to operate
at the level of species, to now perform strain aware analyzes of
environmental mixes of microbes.

Despite the various advantages that we have been able to
demonstrate, there is still room for improvement. So far, for
example, we have not yet addressed the existence of long chimera
reads, which introduce a detectable amount of misassemblies and
confound the correct identification of strain specific genomes to a
small, but non-negligible degree. Last but not least, although
HyLight's runtimes are perfectly viable, overlap graphs remain
“heavy" data structures. In future work, we will focus on the design
of “lightweight" overlap graphs that, although agreeing on minor
amounts of inaccuracies, still achieve superior results in compen-
sation for further substantial savings in terms of runtime and peak
memory requirements.

Methods

Quality control

Before assembling reads with HyLight, we performed quality control
on the sequencing reads using fastp (version 0.20.1)°. This multi-
functional FASTQ data preprocessing toolkit ensures the quality of the
data by providing major functions including quality control, adapter
detection, base correction, and read filtering. In the raw reads, bases
with Phred scores less than 20 at the 5" or 3’ ends, as well as adapters,
were trimmed. After trimming, only reads longer than 70 bp were
retained. Moreover, in the overlapped regions of paired-end reads,
fastp corrected mismatched bases only when a high-quality base was
paired with a low-quality base.

Workflow: detailed description of 3 modules

Module 1: Strain-Aware Assembly of Long Reads

Hybrid correct long reads and establish OG. As long-read technolo-
gies such as CLR or ONT often contain a significant amount of sequen-
cing errors, which can affect downstream SNP identification and
assembly, the first step in our pipeline is to use FMLRC2* to perform
error correction on long reads using high-quality short reads. After
obtaining high-quality long reads, we use minimap2 to align them to each
other and construct an OG. In this OG, each read is represented as a node,
and the overlapping regions between them are represented as edges.

Untangle wrong overlaps with SNPs. Once a long read OG is estab-
lished, further optimization is necessary to obtain a strain-resolved
OG,. In particular, the OG established contains a considerable amount
of mistaken overlaps. The reasons for such mistaken overlaps to show
are the high similarity between different strains, which leads to align-
ment algorithms aligning regions that look similar, but stem from
different stains with each other. Therefore, assembling genomes using
the still raw OG is prone to accumulating misassemblies and losses of
strain-specific variations.

To enable HyLight to assemble strain-resolved contigs, it is
therefore crucial to untangle such mistaken overlaps (i.e., removing
the corresponding edges in the OG). To discover and untangle such
overlaps, we utilize SNP information as per the steps displayed in Fig. 2.

First, for each read, we keep track of the mismatches and indels in
comparison with the reads that aligned with it. Corresponding details
can be immediately obtained from examining the CIGAR strings out-
put by Minimap2. In other words, we leverage the mismatch infor-
mation in combination with counts of reads that support the mismatch
characters (nucleotides) to determine SNP sites.

There can be two cases: 1) A base in a read is different from the
consensus base in all other reads, see 'T” at P1:X and 'C’ at P2:X in Fig. 2.
If less than 3 reads support such a base, we consider it a sequencing
error. We do not break overlaps between reads due to this case. 2)
There are two bases showing, and a sufficient amount of reads (>3) that
support each of them. See Fig. 2: this applies for both “A" and “C" at
PLX, “T" and “A" at P2:X, and “C" and “T" at P3:X. In any such case, we
break overlaps that are affected by this scenario, in other words, we
remove the corresponding edges from the OG.

In case of both 1) and 2) applying for pairs of aligned reads (for
example for the read that contains “T" at PL:X in Fig. 2), we determine
the identity of a read based on the SNP information referring to other
positions, where bases of a read were not evaluated as sequencing
errors (here P2:X and P3:X).

Note that Fig. 2 only refers to the case of reads from two different
strains alone. In reality, scenarios encompass more than just two
strains, however. Nevertheless, the rules that we have described can be
straightforwardly extended to scenarios reflecting the presence of
more than 2 strains: we distinguish between sequencing errors (sup-
ported by at most 2 reads) and strain-specific variation (supported by
at least 3 reads) in the exact same way.
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The encompassing evaluation of the SNP information obtained
from studying the alignments of the overlapping part of reads even-
tually leads to unambiguous resolution of strain-aware overlap infor-
mation, which leads to establishing a strain-aware OG as a result.

Assemble long reads by strain aware OG and correct contigs. After
obtaining the strain-resolved graph, we can use Miniasm™ to assemble
contigs. Note that standard usage of Miniasm consists in providing an
OG as immediately computed by Minimap2. The particular advance
applied here is to break overlaps that connect reads from different
strains before providing the OG as input to Miniasm. Despite prior
distinguishing between errors and true variation during mistaken
overlap removal, long reads often still contain numerous sequencing
errors, which necessitates further correction of the contigs assembled
by Miniasm using the strain-resolved OG we provided as input.

To do that, we align the long reads with the contigs and, subse-
quently, following the strategy described earlier, resolve erroneous
overlaps between reads and contigs. After untangling the erroneous
overlaps, we apply Racon® to correct the contigs further. As per its
protocol, Racon cuts the mapped reads into 500bp windows and
rapidly corrects contigs by way of a de Bruijn Graph (DBG) based
procedure. It is important to note that both Miniasm and Racon ori-
ginally lacked the ability to perform strain-aware assembly and cor-
rection. If the original, raw OG had been provided as input, both
Miniasm and Racon would lose strain-specific variations during cor-
rection (Racon) and assembly (Miniasm). The outcome would be
merged contigs affected by considerably more misassemblies. Since
we provide a strain-resolved OG that has retained strain-specific var-
iants correctly, HyLight is not affected by this issue.

Module 2: Strain-aware assembly of short reads

Pick up and strain-aware assembly of unmapped short reads. The
low depth of long reads implies that still some sequencing errors have
remained undetected. The low depth induces further that certain
genomic regions or (even entire) strains cannot be reconstructed
using long reads alone. To this end, we use short reads that remained
unaligned with any of the long reads, to polish long read based contigs
further, and fill gaps between the contigs. The specific steps are shown
in Fig. 3. First, we use Minimap2 to align the short reads to the contigs
generated from long reads, creating an OG. Then, based on the strat-
egy mentioned above, we use SNPs to untangle the wrongly linked
overlaps between two strains and obtain a strain-resolved OG. Reads
that are not in this OG belong to regions or strains that have not yet
been reconstructed. We then use the previously published method
StrainXpress” to cluster these remaining short reads and perform
strain aware assembly using the OG’s emerging from the clustered
short reads.

Module 3: global assembly. After having computed long-read and
short-read contigs, we aim to extend them further by constructing a
global contig graph through contig-to-contig alignment. Each vertex
corresponds to a contig, and edges correspond to high-quality over-
laps: overlaps are supposed to be longer than 100 bp showing at least
0.99 similarity, following guidance provided by previous works”*"). To
reduce complexity, all transitive edges are removed, and contigs are
joined into “branch-less" sequences. To identify branches, we evaluate
short reads that match the corresponding contigs. After removing
branches, HyLight updates the graph and extends contigs further. This
process is iterated until no further branches are observed, resulting in
the “master contigs" that establish HyLight's final output, available for
downstream functional analysis.

Synthetic data sets
To compare the performance of different approaches, we utilized
CAMISIM®®  (version 0.0.6) to produce four simulated hybrid

sequencing datasets consisting of Illumina MiSeq and PacBio CLR.
These datasets included 3 Salmonella strains, 20 bacterial strains
(10 species), 100 bacterial strains (30 species), and 210 bacterial strains
(100 species), respectively. CAMISIM is a widely used metagenome
simulator capable of modeling second and third-generation sequen-
cing data with varying abundances and multi-sample time series based
on real strain-level diversity.

The length of the simulated Illumina MiSeq reads is 2X250 bp, at
an insert size of 450 bp. The N50 of PacBio CLR reads is 10 kbp at an
average sequencing error rate of 10%. As per the principles of CAMI-
SIM, the abundance of different strains is uneven, as sampled from a
log-normal distribution. The average coverage of both Illumina MiSeq
and PacBio CLR data for the four simulated communities is 20X and
10X respectively. The genomes of the 3 Salmonella strains were
obtained from earlier work®®. The genomes for the 20 bacterial strains,
the 100 bacterial strains and the 210 bacterial strains communities
were downloaded from an earlier study®. For details with respect to
Genome ID’s and their average nucleotide identity (ANI), please
see Supplementary Data.

Additionally, to assess the impact of long read coverage, we
generated six sequencing datasets by combining simulated and real
data, which represents a typical simulation scenario known as “spike-
in" data. This approach allows us to evaluate how methods assemble
the simulated ("spiked-in") data, for which the ground truth is known,
within a realistic context (although ground truth is lacking for the real
data, hence the need to incorporate simulated reads). Specifically, we
incorporated simulated reads from ten well-known Salmonella strains
downloaded from® into six distinct real gut metagenome sequencing
datasets. These datasets were obtained from experiments aiming at
identifying functional characteristics of low-abundance and uncul-
tured species in the human gut® (project number: PRJNA602101).

To simulate reads from the Salmonella strains, we utilized the
CAMISIM simulator while closely matching the properties of the real
sequencing data, ensuring optimal comparability. The synthesized
short reads were set to a length of 2X150 bp. To account for the
influence of read coverage, the coverage of synthesized long reads for
the spiked-in strains varied from 5X to 30X in increments of 5X across
the six real data sets. Each of the six spiked-in real data sets repre-
sented a specific coverage level for short reads. On the other hand, the
coverage of the simulated NGS reads remained fixed at 20X across the
six real data sets.

Considering the substantial number of reads, we randomly
extracted 8,166,722 NGS reads and 181,092 TGS reads from each real
hybrid sequencing data set for a less computationally intensive eva-
luation. These extracted reads were further processed for analysis. For
more details regarding the ten Salmonella Genome ID’s and SRA
identifiers, please refer to Supplementary Data, “spike-in Salmonella".

Real data sets
We considered two microbial communities for which both TGS and
NGS data were available in our experiments:

Bmockl12 is a mock community comprising 12 bacterial strains
from 10 different species”®. The mock community was sequenced
using all ONT MinION, PacBio and Illumina sequencing platforms. The
corresponding data sets were obtained from SRA (illumina
SRR8073716, ONT SRR8351023, PacBio SRR8073714). The N50 read
length for ONT and PacBio reads is 22,772 and 8,701, respectively. The
Illumina reads have a read length of 2X150 bp, with an average insert
size of 302.7 bp. It is worth noting that the number of reads mapped to
Micromonospora coxensis, one of the 12 strains, was negligible”, so we
effectively dealt with only 11 bacterial strains. The average coverage for
these 11 strains ranges from 74.56X to 3,093.79X, with a median of
1,376.35X. For the sake of a less runtime-intense evaluation in the light
of the large amount of duplicates among the reads, we randomly
extracted 20% of the reads, and further processed only these. Lastly, it
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is important to address the challenges posed by this data set, which
involve assembling the long reads of two species whose strains exhibit
high average nucleotide identities (ANI). Specifically, this applies to the
Marinobacter species and the Halomonas species, as they contain pairs
of strains characterized by ANI values of 85% and 99%, respectively.

NWCs. The second real microbial community selected for analysis
originates from natural whey starter cultures (NWCs)”. The metagen-
ome samples of the NWCs were sequenced using Illumina MiSeq,
generating reads with a length of 2 x 300 bp. Additionally, PacBio and
ONT sequencing platforms were employed. We acquired the sequence
data sets from SRA (illumina SRR7585899 and SRR7589561, ONT
SRR7585900, PacBio SRR7589560). The N50 read lengths for PacBio
and ONT TGS data are quite similar, measuring 11,895 and 9,562,
respectively. In a previous study, complete genomes of six bacterial
strains from three species were obtained”’. The GenBank accession
numbers for these six genomes are CP029252.1, CP031021.1,
CP031024.1, CP031025.1, CP029252.1, and CP031021.1. We utilized
these reference genomes as the ground truth for evaluating the
accuracy of assembly results for distinct approaches.

In the NWCs datasets, we performed a removal of low-quality
bases (>Q20), the NGS (Illumina) reads retained an unusually high
error rate (indel error rate: 19.58/100 kbp; mismatch error rate: 883.28/
100 kbp.). This does not reflect standard scenarios, and can have a
considerable impact on the accuracy of the assembly. To restore a
standard scenario, we corrected the NGS reads prior to hybrid
assembly, by using bfc’?, an approved error corrector applicable for
Illumina short reads.

Three yeast strains. To compare HyLight with Hifiasm-meta and
metaMDBG, which are assemblers designed for high-quality PacBio
HiFi reads, we mixed real reads of three yeast. Original datasets were
intended for evaluating different assembly methods and sequencing
platforms®. Consequently, the three yeasts Saccharomyces cerevisiae
strain S288C, S. cerevisiae CICC-1445, and S. pombe FLO-DUT were
simultaneously sequenced using PacBio HiFi, Oxford Nanopore Tech-
nologies, and the short-read sequencing technology BGISEQ (2 x ! 150
bp paired reads). Among these three datasets, S288C has an available
haploid reference genome, allowing us to directly evaluate the
assemblies using metaQUAST. For the other two yeasts, since no
haploid reference genomes are available, we employed Merqury to
assess the assembly results. The sequencing data for all three datasets
are deposited in the SRA (S288C: PRJNA792930; CICC 1445:
PRJNA792931; S. pombe FLO-DUT: PRJNA792932).

QUAST evaluation criteria

During the evaluation process, we took into account all pertinent
categories provided by MetaQUAST V5.1.0rc1®, a widely recognized
tool for assessing assembly quality. Following established guidelines,
we incorporated the flags ~ambiguity-usage all and -ambiguity-score
0.9999 specifically for the evaluation of metagenomic data. The
remaining parameters were kept at their default values. In the sub-
sequent sections, we will provide concise definitions of the metrics
under consideration. For more comprehensive explanations, please
refer to http://quast.sourceforge.net/docs/manual.html.

Indels/100 kbp. The sequence derived from raw PacBio CLR and
ONT reads is susceptible to a significant presence of indel errors. In this
context, “indels per 100 kbp" refers to the average count of insertion or
deletion errors per 100,000 aligned bases within the contigs.

Mismatches/100 kbp. This metric represents the average count
of mismatch errors per 100,000 aligned bases in the examined
contigs.

N/100 kbp. This indicates the average count of uncalled bases
(N’s) per 100,000 bases in the evaluated contigs.

Genome Fraction (GF).GF represents the proportion of aligned
bases in the reference genome to which the contigs are aligned.
Essentially, GF indicates the extent to which the evaluated contigs
cover each of the strain-specific genomes.

Misassembled contigs (MC). A contig is categorized as a
misassembled contig if it contains one or more misassembly
events. A misassembly event is identified when a contig aligns to
the correct sequence but exhibits a gap larger than 1kbp, an
overlap exceeding 1kbp with a different strand, or even with a
distinct strain. The percentage of misassembled contig, relative to
the total number of evaluated contig, is reported as “mis-
assembled reads."

NGA50. NGAS5O0 is defined as the longest contig length, where all
contig of that length or longer align to at least 50% of the true
sequence. In other words, NGAS0 represents the maximum contig
length that provides coverage to at least half of the true sequence
through their alignments.

Merqury evaluation criteria

Merqury is a reference-free approach for evaluating assembly results.
It assesses the completeness and error rate of an assembly by analyzing
the reproducibility of k-mers generated from the read data compared
to those present in the assembled contigs.

Completeness. Completeness quantifies the fraction of reliable
k-mers from the read data that are accurately represented in the
assembled contigs. This metric reflects how comprehensively the
assembled genome captures the full genetic content of the original
DNA sample.

QualityValue (QV).QV isa metric for evaluating the quality of
assembled contigs, reflecting the confidence in their accuracy. A
higher value indicates greater confidence in correctly identifying the
contigs from the k-mers generated by NGS data, corresponding to
better assembly results.

Error rate. In the context of Merqury, the reported error rate
encompasses the cumulative frequencies of both indel error rate
events and nucleotide mismatche error rate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The simulated data generated in this study are available via Code
Ocean, at https://doi.org/10.24433/C0.8025931.v2 and Zenodo, at
https://doi.org/10.5281/zenodo.13295035. The real data used in this
study have been deposited in the SRA database under accession
codes SRR8073716  https://www.ncbi.nlm.nih.gov/sra/?term=
SRR8073716 (lllumina), SRR8351023 https://www.ncbi.nlm.nih.
gov/sra/?term=SRR8351023 (ONT), and SRR8073714 https://www.
ncbi.nlm.nih.gov/sra/?term=SRR8073714 (PacBio) for Bmock 12, as
well as accession codes SRR7585899 https://www.ncbi.nlm.nih.gov/
sra/?term=SRR7585899 and SRR7589561 https://www.ncbi.nlm.nih.
gov/sra/?term=SRR7589561 (lllumina), SRR7585900 https://www.
ncbi.nlm.nih.gov/sra/?term=SRR7585900 (ONT) and SRR7589560
https://www.ncbi.nlm.nih.gov/sra/?term=SRR7589560 (PacBio) for
NWCs. All other data supporting the findings described in this
manuscript are available in the article and its Supplementary
Information files.

Code availability

The source code of HyLight is GPL-3.0 licensed, and can be retrieved at
https://github.com/LuoGroup2023/HyLight. You also can reproduce
the results or run your own data on Code Ocean, at https://doi.org/10.
24433/C0.8025931.v2.
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