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Enhancing fairness in AI-enabled medical
systems with the attribute neutral
framework

Lianting Hu1,2,3,4,10, Dantong Li2,3,4,10, Huazhang Liu3,4, Xuanhui Chen3,4,
Yunfei Gao3,4, Shuai Huang3,4, Xiaoting Peng3,4, Xueli Zhang4,5,6, Xiaohe Bai7,
Huan Yang2,3,4, Lingcong Kong3,4, Jiajie Tang 8, Peixin Lu9, Chao Xiong 1 &
Huiying Liang 1,2,3,4

Questions of unfairness and inequity pose critical challenges to the successful
deployment of artificial intelligence (AI) in healthcare settings. In AI models,
unequal performance across protected groupsmay be partially attributable to
the learning of spurious or otherwise undesirable correlations between sen-
sitive attributes and disease-related information. Here, we introduce the
Attribute Neutral Framework, designed to disentangle biased attributes from
disease-relevant information and subsequently neutralize them to improve
representation across diverse subgroups. Within the framework, we develop
the Attribute Neutralizer (AttrNzr) to generate neutralized data, for which
protected attributes can no longer be easily predicted by humans or by
machine learning classifiers. We then utilize these data to train the disease
diagnosis model (DDM). Comparative analysis with other unfairness mitiga-
tion algorithms demonstrates that AttrNzr outperforms in reducing the
unfairness of the DDM while maintaining DDM’s overall disease diagnosis
performance. Furthermore, AttrNzr supports the simultaneous neutralization
of multiple attributes and demonstrates utility even when applied solely dur-
ing the training phase, without being used in the test phase.Moreover, instead
of introducing additional constraints to the DDM, the AttrNzr directly
addresses a root cause of unfairness, providing amodel-independent solution.
Our results with AttrNzr highlight the potential of data-centered and model-
independent solutions for fairness challenges in AI-enabled medical systems.

Artificial Intelligence (AI) technology has made tremendous progress
in recent years, and its applications in the medical field are
increasing1–3. While AI has achieved specialist-level performance, its
direct application has raised concerns about producing unfair out-
comes across various scenarios4–7. Instances such as Gichoya et al.‘s
study on AI systems capable of detecting a patient’s race with differing
degrees of accuracy across self-reported racial groups in medical
imaging8, and Seyyed-Kalantari et al.‘s findings on underdiagnosis

across age, sex, race, and socioeconomic status, underscore the critical
issue of fairness9. Unfairness, characterized by uneven performance
among groups identified by sensitive attributes, is often the result of
AI-enabled medical systems relying on improper correlations stem-
ming from attribute biases5,10.

Previous efforts to mitigate these biases have involved specific
adjustments to individual models11,12. Puyol-Antón et al. proposed a
fairness meta-learning for segmentation, in which a deep learning
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classifier is trained to classify race and jointly optimized with the
segmentation model13. Dash et al. designed a counterfactual regular-
izer to mitigate the bias of a pre-trained machine learning classifier14.
Although effective, such model-specific modifications demand sub-
stantial resources and expert knowledge for effective bias identifica-
tion and correction, a task further complicated by the scarcity of
domain experts. Hence, a model-independent solution is increasingly
recognized as the most effective strategy.

Commonly proposed approaches tomitigate AI model unfairness
act debiasing on the feature encoding space11 or are based on some
kind of image augmentation strategy12. Yet, several studies have indi-
cated that such biases are closely linked to both disease outcomes and
the features of medical images. Effectively separating and eliminating
biased attributes while preserving essential medical information on
the image level remains a substantial challenge, with potential solu-
tions still under exploration.

To address this challenge, we propose the Attribute Neutral Fra-
mework. This framework aims to disentangle biased attributes from
disease-relevant information at the data level and subsequently neu-
tralize them to guarantee a balanced representation across diverse
subgroups. Through the simultaneous neutralization of multiple
attributes, theAttributeNeutral Framework tackles biased attributes at
their root, offering a universally applicable solution that transcends
model complexities and deployment scenarios.Within the framework,
we develop the Attribute Neutralizer (AttrNzr) to generate neutralized
data, for which protected attributes canno longer be easily recognized
by humans or by machine learning classifiers. Then, we utilize these
data to train the disease diagnosismodel (DDM). Comparative analysis
with other unfairnessmitigation algorithmsdemonstrates that AttrNzr
effectively reduces the unfairness of the DDM while maintaining its
overall disease diagnosis performance. The primary contributions of
this article are twofold: 1) Exploring the effectiveness of using neu-
tralized data to mitigate the unfairness of AI-enabled medical systems
and employing AttrNzr to achieve neutralization of X-ray images
across multiple attributes; 2) Offering a model-independent solution
by directly addressing unfairness at the image level, thus obviating the
need for individual modifications to each model.

Results
The study verified themitigation effectof theAttrNzr on theunfairness
within AI-enabledmedical systems using three large public chest X-ray
image datasets: ChestX-ray1415, MIMIC-CXR16, and CheXpert17. The
metadata of the datasets includes the attributes of sex and age. In the
MIMIC-CXRdataset, the additional attributes of race and insurance are
available. The AttrNzr was trained using these datasets to modify the
attribute intensity within X-ray images. The modification intensity α
controls the degree of attribute modification in the AttrNzr. α ranges
from 0 to 1, with 0 indicating nomodification, 1 indicating negation of
the attribute, and 0.5 indicating a neutral attribute. The attribute
recognition, involving both AI judges and human judges, was con-
ducted to assess the ability of the AttrNzr to generate X-ray images
with specific attributes, which are indistinguishable from genuine
X-ray images possessing those attributes. Multiple DDMs were built,
including those based on neutralized X-ray images (modification
intensities: 0.5), modified X-ray images (modification intensities: 0.6,
and 0.7), and those integrating other unfairnessmitigation algorithms:
the Fairmixup12, the Fairgrad11, and theBalanced sampling18,19. To assess
the unfairness within the DDM, three types of unfairness metrics:
worst-case performance, performance gap, and performance standard
deviation are employed. Lastly, to mitigate the unfairness of the pre-
existing AI-enabled medical system and to reduce the computational
requirements of the AttrNzr at the test stage, two application para-
digms of the AttrNzr: test-stage neutralization and training-stage
neutralization were proposed. An overview of our comprehensive
study is presented in Fig. 1.

X-ray images generated by attribute neutralizers
Based on the original X-ray images and their corresponding attribute
labels, AttrNzrs for single and multiple attributes were trained. These
AttrNzrs were used to modify the attributes with a modification
intensity α, which controls the degree of attribute modification. α
ranges from 0 to 1, with 0 indicating no modification, 1 indicating
negation of the attribute, and 0.5 indicating a neutral attribute. The
averagemodified X-ray images and some examples are shown in Fig. 2.

The Structural Similarity Index Measure (SSIM) was employed to
quantitatively evaluate the similarity between the modified X-ray
images and the original X-ray image. The results indicate a gradual
decrease in SSIM as the modification intensity increases. As shown in
Fig. 2a–d, there is a strong negative correlation between the SSIM and
the modification intensity in these average modified X-ray images
(Pearson’s r of (male to female): −0.9097, Pearson’s r of (female to
male): −0.8917, Pearson’s r of (≥60 y male to <60 y female): −0.9099,
Pearson’s r of (<60 y female to ≥60 ymale):−0.9040). Additionally, the
difference image produced by the AttrNzr is similar to the difference
image produced by original X-ray images (Supplementary Fig. S6).

The aforementioned observations in average X-ray images are
also observable in the modified X-ray examples. Figure 2e–h show-
cases examples of the modified X-ray images. Visually, as the mod-
ification intensity increases, the modified X-ray image undergoes
subtle changes gradually (Supplementary Movie 1). The difference
image illustrates that higher modification intensities lead to increased
differences between the original X-ray images and the modified ones.
Moreover, the difference regions observed align with anatomical dif-
ferences between different subgroups, such as differences between
male and female mammary glands and differences in skeletal size
between older (≥60 y) and younger (<60 y) age groups.

Attributes recognition of modified X-ray images
In this study, attribute recognition was used to assess the ability of the
AttrNzr to generate X-ray images with specific attributes, which were
indistinguishable from real X-ray images with those attributes. In the
first attribute recognition, AI judgeswere fully trainedon original X-ray
images and then asked to identify the sex (female/male) and age
(<60 y/ ≥ 60 y) of modified X-ray images.

As shown in Fig. 3a–d, for modification intensities below 0.5, the
AI judge exhibits proficient performance in accurately identifying the
original attributes of the modified X-ray images, demonstrating a
reasonable agreement between the predicted and original attributes.
Conversely, for modification intensities above 0.5, it is difficult for the
AI judges to correctly identify the original attributes of the modified
X-rays. Since sex and age are binary, the attributes predicted by the AI
judge are almost opposite to the real attributes. Consequently, the
modification intensity of 0.5 is the turning point of the AI judge’s
identification performance. As depicted in Fig. 3g, h, while the mod-
ification intensity is set at 0.5, the distance between attribute groups
reaches its minimum. As the modification intensity deviates further
from0.5, the distance between attribute groupings gradually expands.
This observation is also substantiated by the UMAP visualizations of
attribute groups, as shown in Supplementary Figs. S7 and S8.
Figure 3i–l further depicted that modified X-ray images possessing
specific attributes were more likely to activate the corresponding
attribute gradient. Additionally, notable dissimilarities emerged
between the activation regions associated with modification inten-
sities greater than 0.5 and those below 0.5, highlighting the sig-
nificance of 0.5 as the turning point for changes in the activation
heatmap.

In the second attribute recognition, human judges were asked
to identify the attributes of X-ray images generated by our AttrNzr.
Figure 3e, f demonstrate a strong negative correlation between the
accuracy of attribute identification by human judges and the mod-
ification intensity (Pearson’s r of age: −0.9919, Pearson’s r of sex:
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−0.8896). Notably, human judges exhibited superior proficiency in
identifying the sex compared to the age in X-ray images. Furthermore,
the identification performance of human judges changes more
smoothly than that of AI judges.

The identification results of both AI judges and human judges
indicated that the X-ray images produced by AttrNzr achieved a high
degree of authenticity. Furthermore, the modification intensity
adeptly regulates the strength of various subgroup attributes. Notably,
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Fig. 1 | A comprehensive frameworkofour study. aUtilizing theAttrNzr to create
modified X-ray images, where the attributes of these modified images can be
regulated by the modification intensity α. b Involving AI judges and human judges
in the attribute recognition to discriminate the original attributes of the modified
X-ray images. c Establish a DDM on neutralized X-ray images generated by the

AttrNzr with an α value of 0.5. d Conduct performance and unfairness evaluations
based on predictions from the DDM. e Investigate the implementation of AttrNzrs
in both the test-stage neutralization paradigm to mitigate unfairness in pre-
existingmedical AImodels, aswell as the training-stage neutralization paradigm to
minimize computational requirements in new medical AI models.
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both AI judges and human judges exhibited the greatest uncertainty
when confronted with amodification intensity of 0.5. This observation
underscores that the modified (α =0.5) X-ray image, unlike the binary
attributes at their extreme ends, represents a form of neutral and
unbiased data.

Disease diagnosis performance
Is the disease-related information in the X-ray image retained during
the attribute modification process by the AttrNzr? To address this
question, four DDMs were trained on the original and modified X-ray
images, respectively. The modifications pertained to the attribute of
age, with intensities of modification (α) set at 0.5, 0.6, and 0.7.
Importantly, at α =0.5, the X-ray images generated by the AttrNzr
exhibit signs of attribute neutralization, hence referred to as “neu-
tralized X-ray images.” Additionally, alternative unfairness mitigation
algorithms, namely, the Fairmixup12, the Fairmixup manifold12, the
Fairgrad11, and the Balanced sampling18 were also applied to train
another four DDMs.

Figure 4a–d and Supplementary Fig. S9 depict 7 Critical Differ-
ence (CD) diagrams of various unfairness mitigation algorithms in
disease diagnosis. These 7 diagrams correspond to 7 metrics: Macro-
(ROC-AUC, accuracy, sensitivity, specificity, precision, F1-score, and
PR-AUC). It is evident that the overall performance of the 7 DDMs
across the 6 {datasets, attributes} combinations exhibit significant
differences (Friedman test P-value: <0.05 across all 7 metrics). The
rankings of original-based DDM on the 7 metrics are 1.5, 3.3, 2.8, 3.3,
2.2, 2.7, and 1.3. Conversely, the rankings of neutralized-based DDMon
the 7metrics are 3.2, 1.0, 6.5, 1.0, 1.0, 1.0, and 2.5, respectively. Notably,
the Macro-sensitivity of the neutralized-based DDM is significantly
lower than that of the original-based DDM, with no significant differ-
ences observed in the other 6 metrics. Regarding other unfairness
mitigation algorithms, the Fairgrad-based DDM exhibits significantly
lower performance than the original-based DDM in terms of Macro-
(ROC-AUC, precision, F1-score, and PR-AUC). Both the Fairmixup-
based and the Fairmixup-manifold-based DDMs show significantly
lower performance compared to the original-based DDM concerning
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Fig. 2 | Modified X-ray images generated by AttrNzrs. a–d Average modified
X-ray images of the attribute modification. The modified attributes are (male) to
(female), (female) to (male), (male, ≥60 y) to (female, <60 y), and (female, <60 y) to
(male, ≥60 y), respectively. Other average modified X-ray images with other mod-
ifiedattributes are shown inSupplementary Fig. S4. e–hExamples ofmodifiedX-ray
images. Themodified attributes are the same asa–d. Examples of X-ray imageswith
other modified attributes are shown in Supplementary Fig. S5. Each subfigure
consists of four rows. The first row displays a bar chart depicting the Structural
Similarity IndexMeasure (SSIM) between themodified X-ray image and the original

X-ray image. The second row shows the original X-ray image and themodifiedX-ray
images. The third row displays the difference image between the modified X-ray
images and the original X-ray image. In comparison to the original X-ray image,
regions of high intensity in the modified X-ray image are marked in red, while
regions of low intensity are marked in green. The fourth row exhibits the mod-
ification intensities αwith values ranging from 0.0 to 1.0 sequentially (0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). a,b, e, and f are generatedby the single-attribute
AttrNzrs, while c, d, g, and h are generated by the multi-attribute AttrNzrs.
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Macro-(ROC-AUC, precision, and PR-AUC). However, Modi (α =0.6)-
based, and Balanced-sampling-based DDMs have no significant dif-
ference in all 7metrics, compared to the original-basedDDM. Formore
detailed Macro-performance information, please refer to Supplemen-
tary Table S9–11.

In the comparative analysis of DDMs, ROC curves, and PR curves
are utilized to evaluate specific findings. A total of 43 findings are
considered, distributed as follows: 15 in ChestX-ray14, 14 in MIMIC-
CXR, and 14 in CheXpert datasets. Delong’s test and the Bootstrap
method are employed to assess the statistical significance of

Sex group distances Age group distances

ca

b d
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Original 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Modification intensity (α)

hg

female      male

male      female

<60y      ≥60y

≥60y      <60y

ROC of AI judges in sex recognition Performance of  AI judges in sex recognition Accuracy of human judges in sex recognition

ROC of AI judges in age recognition Performance of  AI judges in age recognition Accuracy of human judges in age recognition

Fig. 3 | Performance of AI judges and human judges in attribute recognition.
Receiver operating characteristic (ROC) curves of AI judges in attribute recognition
for sex (a) and age (b). The AI judges were asked to identify the attributes of
modifiedX-ray images. Themodification intensityαwas set to 0.0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Area under the curve (AUC), accuracy, sensitivity,
specificity, and F1 score of AI judges in attribute recognition for sex (c) and age (d)
at different modification intensities. Accuracy of human judges in the attribute
recognition for sex (e) and age (f). Human judges were asked to identify the attri-
butes of five groups of X-ray images,modified at intensities of 0.0, 0.3, 0.5, 0.7, and
1.0. The sex (g) and age (h) group distances, computed using 2-dimensional fea-
tures obtained through UMAP reduction from the AI judge’s 768-dimensional final

layer features. Distances are measured as Euclidean distances between group
centers, with a 95%confidence interval derived fromnon-parametric bootstrapping
(1000 iterations). The visualization of X-ray images after UMAP dimension reduc-
tion is shown in Supplementary Fig. S7 (sex) and Supplementary Fig. S8 (age).
i, j Two activation heatmap examples of AI judges in the attribute recognition for
sex. The activation category of the heatmap is female. The original sex of the
examples is female (i) and male (j). k, l Two activation heatmap examples of AI
judges in the attribute recognition for age. The activation category of the heatmap
is <60 y. The original age group of the examples is <60 y (k) and ≥60 y (l). Source
data are provided as a Source Data file.
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differences in ROC curves and PR curves, respectively. For ROC curves
(Supplementary Fig. S10 for examples), when compared to the
original-based DDM (Supplementary Tables S12–14), the counts of
findings exhibiting no significant difference are as follows: 15 (neu-
tralized), 13 (Modi (α = 0.6)), 11 (Modi (α = 0.7)), 1 (Fairgrad), 28
(Balanced sampling), 0 (Fairmixup), and 0 (Fairmixup manifold).
Additionally, within the neutralized-based DDM, the ROC-AUCs of all
findings demonstrate an even distribution (Fig. 4e–l). Regarding PR
curves (Supplementary Fig. S11 for examples), when compared to the
original-based DDM (Supplementary Table S15–17), the counts of
findings with no significant difference are 23 (neutralized), 17 (Modi
(α = 0.6)), 13 (Modi (α = 0.7)), 0 (Fairgrad), 20 (Balanced sampling), 0
(Fairmixup), and 0 (Fairmixup manifold). Moreover, within the
neutralized-based DDM, the PR-AUCs of all findings exhibit an even
distribution (Supplementary Fig. S12).

Figure 5 showcases four examples evaluated by AI judges,
human judges, and DDMs. It can be observed that the neutralized
X-ray image increases the uncertainty of the AI judges and human
judges in identifying the attributes compared to the original X-ray
image. However, the neutralized-based DDM can still identify
the corresponding findings from the neutralized X-ray images, and
the detection results are consistent with those of the original-
based DDM.

Unfairness of disease diagnosis models
This section aims to assess the unfairness of various DDMs using three
types of unfairness metrics: worst-case performance among
subgroups20,21, the performance gap between the best and worst
subgroups20, and the performance standard deviation across all
subgroups13,22, is introduced. Within the unfairness evaluation,

Macro-ROC-AUC  (Friedman test P: < 0.001) Macro-Accuracy (Friedman test P: < 0.001)

Macro-Sensitivity (Friedman test P: 0.033) Macro-Specificity (Friedman test P: < 0.001)

a b

c d

e

g

i

k

f

h

j

l

Fig. 4 | Performance comparisonof various unfairnessmitigation algorithms in
disease diagnosis. Critical Difference (CD) diagrams for Macro-ROC-AUC (a),
Macro-Accuracy (b), Macro-Sensitivity (c), and Macro-Specificity (d). In each dia-
gram, the Friedman test and the Nemenyi post-hoc test are performed across 6
{dataset, attribute} combinations: {ChestX-ray14, age}, {ChestX-ray14, sex}, {MIMIC-
CXR, age}, {MIMIC-CXR, sex}, {CheXpert, age}, and {CheXpert, sex}. The CD value is
3.68. Violin plots of ROC-AUC for various DDMs in ChestX-ray14 (e, f), MIMIC-CXR

(g–j), and CheXpert (k, l). The violin plot shows the distribution of ROC-AUCs
across all findings (15 findings in ChestX-ray14, 14 findings in MIMIC-CXR, and 14
findings in CheXpert). The attributes corresponding to unfairness mitigation
include age (e, g, k), sex (f, h, l), insurance (i), and race (j). In the violin plot, the
central white dot represents the median, while the thick line inside the violin
indicates the interquartile range. The whiskers represent the range of the data,
excluding outliers. Source data are provided as a Source Data file.
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performance is evaluated based on ROC-AUC20, accuracy19,23,24,
sensitivity23, and specificity20.

Figure 6a–d and Supplementary Fig. S13 present unfairness CD
diagrams illustrating various unfairness mitigation algorithms. It is
evident that the overall unfairness of the 7 DDMs across the 6 {data-
sets, attributes} combinations exhibit significant differences (Fried-
man test P-value: <0.05 across 11 metrics except for worst-case

sensitivity). The rankings of neutralized-based DDM on the 12 unfair-
ness metrics are 1.3, 1.8, 2.2, 1.8, 1.0, 1.0, 2.7, 1.0, 1.0, 1.8, 2.2, 1.8, and
ranks first in performance-SD, worst-case-performance. The rankings
of Fairgrad-basedDDMon the 12 unfairnessmetrics are 3.8, 1.2, 1.0, 1.2,
7.0, 6.5, 5.0, 6.3, 7.0, 1.2, 1.0, 1.2, and ranks first in the accuracy, sen-
sitivity, and specificity gap. Furthermore, there is no significant dif-
ference between the unfairness of balanced-sampling-based and

Attributes: Female, < 60y; Findings: Infiltration (INF)
AI judges

Human judges

Disease diagnosis model

Original X-ray image AI judges

Human judges

Disease diagnosis model

Neutralized X-ray imagea

Attributes: Female, ≥ 60y; Findings: Emphysema (EM)
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Fig. 5 | Four examples showcasing disease diagnosis on original and neu-
tralized X-ray images. The attributes for each example are as follows: a female,
<60 y; b female, ≥60 y; cmale, <60 y; and dmale, ≥60 y. The identified findings for
these examples are as follows: a infiltration; b emphysema; c nodule; and
d atelectasis, effusion. Each subfigure consists of an original X-ray image and its
corresponding neutralized X-ray image. The neutralized attributes are sex and age,
and the modification intensity α is 0.5. The attributes of the X-ray images are

identified by AI judges and human judges, while the findings of X-ray images are
identified by the DDM. AI judges and DDMs report output probabilities. Human
judges report the voting ratio based on the evaluations of five human judges. AT
Atelectasis, CA Cardiomegaly, CO Consolidation, ED Edema, EF Effusion (EF), EM
Emphysema, FI Fibrosis, HE Hernia, INF Infiltration, MA Mass, NOD Nodule, PT
Pleural Thickening, PN Pneumonia, PNX Pneumothorax, NF No Finding.
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neutralized-basedDDMsonmultiplemetrics, suchasROC-AUCSDand
worst-case ROC-AUC (Fig. 6e–l). However, the Fairmixup-based and
Fairmixup-manifold-based DDMs generally exhibited worse perfor-
mance across all 12 unfairness metrics and even performed inferiorly
compared to the original-based DDM on certain unfairness metrics.
For a more comprehensive unfairness evaluation, please refer to
Supplementary Tables S18–20.

The Pearson correlation coefficient is utilized to quantify the
correlation between two unfairness metrics, with Pearson’s r values
presented in Supplementary Table S21. As depicted in Supplementary
Table S21, a negative correlation is observed between the worst-case
metric and the other two types of unfairness metrics, with varying
strengths observed. Conversely, there exists a strong positive corre-
lation between the performance gap and the standard deviation (SD)
across all four metrics: ROC-AUC (Pearson’s r: 0.7195), accuracy

(Pearson’s r: 0.8794), sensitivity (Pearson’s r: 0.9437), and specificity
(Pearson’s r: 0.7219).

Unfairness in multi-attributes neutralization
The population hasmultiple attributes, resulting inmultiple sources of
unfairness. This section aims to explore the impact of multi-attribute
AttrNzrs on the performance and unfairness of DDMs. Four types of
neutralized X-ray images were generated using the AttrNzr, where the
neutralized attributes were (sex), (sex, age), (sex, age, race), and (sex,
age, race, insurance), respectively. Subsequently, five DDMs are
trained based on the original X-ray images and these four types of
neutralized X-ray images individually. Figure 7 shows the ROC-AUCs
and sensitivity SDs of these five DDMs on three datasets. It should be
noted that the neutralized attribute and the evaluated attribute for
unfairness may be different. For example, in Fig. 7k, the evaluated

ROC-AUC SD  (Friedman test P: 0.012) Accuracy SD (Friedman test P: 0.007)

Sensitivity SD (Friedman test P: 0.001) Specificity SD (Friedman test P: 0.004)

a

c

e

g

i

k

b

d

f

h

j

l

Fig. 6 | Unfairness comparison of various unfairness mitigation algorithms in
disease diagnosis.Critical Difference (CD) diagrams for ROC-AUC SD (a), accuracy
SD (b), sensitivity SD (c), and specificity SD (d). In each diagram, the Friedman test
and the Nemenyi post-hoc test are performed across 6 {dataset, attribute} combi-
nations: {ChestX-ray14, age}, {ChestX-ray14, sex}, {MIMIC-CXR, age}, {MIMIC-CXR,
sex}, {CheXpert, age}, and {CheXpert, sex}. TheCDvalue is 3.68. Violin plots ofROC-
AUC SD for various DDMs in ChestX-ray14 (e, f), MIMIC-CXR (g–j), and CheXpert

(k, l). The violin plot shows the distribution of ROC-AUC SDs across all findings (15
findings in ChestX-ray14, 14 findings in MIMIC-CXR, and 14 findings in CheXpert).
The attributes corresponding to unfairness mitigation include age (e, g, k), sex
(f, h, l), insurance (i), and race (j). In the violin plot, the central white dot represents
the median, while the thick line inside the violin indicates the interquartile range.
The whiskers represent the range of the data, excluding outliers. Source data are
provided as a Source Data file.
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attribute for unfairness is insurance, but insurance is neutralized only
in X-ray images where sex, age, race, and insurance all are neutralized.

Illustrated in Fig. 7a–c, there exists a marginal reduction in the
Macro-ROC-AUC of the DDM as the number of neutralized attributes

increases. For instance, in the context of MIMIC-CXR (Fig. 7b), the
Macro-ROC-AUC values for the five DDMs are as follows: 79.41% (ori-
ginal), 78.26% (neutralized sex), 78.21% (neutralized sex, and age),
77.44% (neutralized sex, age, and race), and 77.76% (neutralized sex,

ca b

fd e

ig h

j k

Fig. 7 | Violin plots of ROC-AUCs and sensitivity SDs of DDMs. The violin plot
shows the distribution of ROC-AUCs or sensitivity SDs across all findings (15 find-
ings in ChestX-ray14, 14 findings in MIMIC-CXR, and 14 findings in CheXpert). The
distribution of ROC-AUCs in ChestX-ray14 (a), MIMIC-CXR (b), and CheXpert (c).
The distribution of sensitivity SDs in ChestX-ray14 (d, e), MIMIC-CXR (h, i, j, k), and
CheXpert (f, g). The attributes assessed for unfairness are as follows: sex (d, f, h),
age (e,g, i), race (j), and insurance (k). There aremultiple DDMs trainedusing either
original X-ray images or neutralized X-ray images. The neutralized attributes
include (sex), (sex, and age), (sex, age, and race), and (sex, age, race, and insurance).

In the violin plot, the central white dot represents the median, while the thick line
inside the violin indicates the interquartile range. Thewhiskers represent the range
of thedata, excludingoutliers. Note: Theneutralized attribute of themodel training
data and the attributes where unfairness is assessed may differ. For instance, in
subfigure k, the assessed attribute is insurance, but only one model is trained on
data with insurance neutralized. The ROC-AUCs and sensitivity SDs of each finding
are shown in Supplementary Figs. S14 and S15. Source data are provided as a Source
Data file.
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age, race, and insurance). This observation underscores that, like the
single-attribute AttrNzr, the X-ray images generated by the multi-
attribute AttrNzr can still retain sufficient disease-related information.

As depicted in Fig. 7d–k, when the neutralized attributes of the
X-ray image encompass the attribute under evaluation, the reduction
in unfairness related to the assessed attribute becomes evident. In
Fig. 7e, the sensitivity SD for age decreased from 0.0507 (original) to
0.0249 (neutralized sex, and age). However, if the attribute under
assessment is absent among the neutralized attributes of the X-ray
image, the corresponding sensitivity SD displaysminimal alteration. In
Fig. 7j, the sensitivity SD for race shifted from 0.1360 (original) to
0.1184 (neutralized sex, and age); in Fig. 7k, the sensitivity SD for
insurance changed from 0.0350 (original) to 0.0370 (neutralized sex,
and age). This observation underscores the ability of the multi-
attribute AttrNzr to alleviate unfairness in DDMs across numerous

attributes. Simultaneously, this mitigation is highly targeted, with
minimal influence on the unfairness of un-neutralized attributes.

Test-stage and training-stage neutralization paradigms
This section aims to explore two questions: 1) Can AttrNzrs offer post-
protection of fairness for pre-existing models that were not originally
designed to mitigate unfairness? 2) The parameters of the AttrNzr are
approximately ten times larger than those of the DDM. To minimize
the computational costs during the application, the AttrNzr is only
introduced during the application stage. Can the early exit of the
AttrNzr still effectively mitigate the unfairness of the model?

For the sake of explanation, four application paradigms of AttrNzr
are defined: no neutralization (no AttrNzr is used), test-stage neu-
tralization (AttrNzr is added only during the test stage of the pre-
existing model), training-stage neutralization (AttrNzr is used only

Post 
protection

No 
protection

Early exit Full 
protection

O
rig

in
al

 X
-ra

y 
im

ag
es

N
eu

tra
liz

ed
 X

-
ra

y 
im

ag
es

Original X-ray 
images

Neutralized X-
ray images

Tr
ai

ni
ng

 s
ta

ge
Test stage

rb c d e

f g h i

j k l m

n o p q

a Training stage Test stage
No 

neutralization 

Test-stage 
neutralization

Training-stage 
neutralization

Throughout
neutralization Detected findings

Attribute Neutralizer

Disease diagnosis
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diagnosis model

Fig. 8 | Macro-ROC-AUCs and sensitivity SDs of DDMs in four application
paradigms. a Schematic diagram illustrating the four application paradigms of the
AttrNzr. The four paradigms are as follows: no neutralization (no AttrNzr is used),
test-stage neutralization (AttrNzr is used only during the test stage), training-stage
neutralization (AttrNzr is used only during the training stage), throughout
neutralization (AttrNzr is used during both the training and test stages). Macro-

ROC-AUCs in ChestX-ray14 (b, c), CheXpert (d, e), and MIMIC-CXR (f–i).
d–k Sensitivity SDs in ChestX-ray14 (j, k), CheXpert (l, m), and MIMIC-CXR (n–q).
The neutralized attributes for each subfigure are as follows: sex (b, d, f, j, l, n), age
(c, e, g, k, m, o), race (h, p), and insurance (i, q). r Detailed layout template for
subgraphs b–q.
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during the training stage of the newmodel), throughout neutralization
(AttrNzr is used during both the training and test stages) (Fig. 8a).
Macro-ROC-AUCs and average sensitivity SDs of DDMs in these four
application paradigms are shown in Fig. 8b–q.

Illustrated in Fig. 8b–i, the average Macro-ROC-AUCs across the
three datasets for the DDM in the four paradigms are as follows:
79.49% (no neutralization), 77.22% (test-stage neutralization), 77.46%
(training-stage neutralization), and 78.34% (throughout neutraliza-
tion). In the test-stage neutralization and training-stage neutralization
paradigms, the reduction in the average Macro-ROC-AUC of the DDM
might be attributed to the heterogeneity between the training data
(training stage) and the test data (test stage). However, this decline is
relatively modest, indicating that the performance of the DDM is not
substantially affected in the test-stage neutralization and training-
stage neutralization paradigms of the AttrNzr.

As shown in Fig. 8j–q, the sensitivity SDs across three datasets of
the DDM in the four paradigms are 0.0488 (no neutralization), 0.0405
(test-stage neutralization), 0.0397 (training-stage neutralization), and
0.0266 (throughout neutralization). It can be seen that in the training-
stage neutralization paradigms, the AttrNzr can still provide some fair
protection effect. These results underscore how the introduction of
the training-stage neutralization paradigms expands the potential
applications of the AttrNzr.

Discussion
In this study, we proposed an attribute-neutral framework for miti-
gating unfairness in medical scenarios. Within this framework, we
utilize AttrNzr to generate neutralized data. By employing neutral data
in training DDMs, the improper correlation between disease informa-
tion and sensitive attributes is effectively disrupted, thereby reducing
themodel’s unfairness. Across three large public X-ray image datasets,
AttrNzr demonstrates proficient reconstruction of X-ray images and
accurate adjustment of attribute information intensity. Comparative
analysis with other unfairness mitigation algorithms reveals that
AttrNzr outperforms in multiple unfairness evaluation metrics. Fur-
thermore, AttrNzr does not significantly reduce the diagnostic per-
formance of the DDM across the entire population. Even when
modifying multiple attributes, AttrNzr effectively mitigates model
unfairness while preserving diagnostic performance. Lastly, AttrNzr
proves effective in safeguarding model fairness in training-stage neu-
tralization paradigms.

Among various DDMs, the Fairgrad-based DDM exhibits notable
performance in terms of performance gap and performance SD (Fig. 6,
and Supplementary Fig. S13). However, its disease diagnosis perfor-
mance across the entire population is comparatively inferior (Fig. 4,
and Supplementary Fig. S9). This phenomenon, referred to as leveling-
down, deviates from the desired fairness standards in many practical
scenarios21,25,26. Numerous in-processing unfairness mitigation algo-
rithms introduce additional learning objectives to the loss function
during training11,12,14. To some extent, this additional constraint con-
flicts with the model’s primary objective, consequently leading to the
prevalent occurrence of the leveling-down effect.

If a technique for mitigating unfairness in AI-enabled medical
systems proves to be effective in real clinical scenarios, deployed AI-
enabled medical systems may need to be scrapped and new systems
developed based on the technology. In this case, the design, devel-
opment, execution, testing, and deployment of system development
will need tobe redone. Thiswill not only consumeextramanpower and
funds but also more medical resources. And these problems will be
even more severe in underdeveloped regions. In this study, the test-
stageneutralization paradigmof theAttrNzrmaybeoneof the options
to solve this problem. It can provide certain protection for the fairness
of the system while retaining the original AI-enabled medical system.

In underdeveloped regions, medical resources are scarce and
there is a lack of experienced doctors. Therefore, underdeveloped

regions are the places where the advantages of AI-enabled medical
systems can be best utilized. However, patients in underdeveloped
regions are often an underrepresented population in AI training
datasets. In the UK Biobank dataset, researchers found evidence of a
“healthy volunteer” selection bias27. In the 23andMe genotype dataset
of 2399 individuals, 2098 (87%) are European, while only 58 (2%) are
Asian and 50 (2%) are African28. Therefore, AI-enabledmedical systems
deployed in underdeveloped regions may have more serious unfair-
ness problems.On the other hand, computational resources are scarce
in underdeveloped regions. Hence unfairness mitigation techniques
that require heavy computational resources may be difficult to apply
effectively. In this study, the training-stage neutralization paradigm of
the AttrNzr does not require heavy computing resources. Since most
patients in underdeveloped regions are underrepresented popula-
tions, the deployment of AttrNzrs can not only improve the fairness of
the system but may also improve the overall diagnostic performance.

Our experimental results show that there is no significant corre-
lation between certain unfairness evaluation metrics. For instance, the
correlation between worst-case accuracy and accuracy gap (Pearson’s
r: −0.1767), as well as between worst-case ROC-AUC and ROC-AUC SD
(Pearson’s r: −0.20172), is weak. This underscores the incompatibility
of various fairness definitions29 at an experimental level. While per-
formance gap, performance SD, and worst-case performance effec-
tively gauge performance disparities among different groups, they
may not directly capture the leveling-down effect. Given the incon-
sistency between performance and fairness, the complexity of indivi-
dual attributes, and the groups of cross-attributes, adopting a
comprehensive and diverse evaluation system is crucial for the
development of effective unfairness mitigation algorithms.

The studyhas several limitations. Firstly, the current versionof the
AttrNzr can onlymodify discrete attributes. However,many attributes,
such as age, income, etc., are continuous variables. To apply the
AttrNzr to continuous attributes, they need to be discretized. Dis-
cretization introduces variance between groups of attributes. For
instance, a patient aged 59 years and 364 days, and another aged 60
years and 1 day, would be grouped as “<60 y” and “≥60 y”, respectively,
despite the negligible real age difference. This forced distortion of the
data distributionmayprevent the AttrNzr from effectively learning the
true change trend of continuous attributes. Secondly, the effective-
ness of the AttrNzr should be validated on other types of imaging
models and additional attributes. Thirdly, compared to worst-case
performance and performance gap, the unfairness metric, perfor-
mance SD, possesses less interpretability. Hence, future studies should
consider this limitation when utilizing performance SD. While the
current study demonstrated promising results on DDMs and specific
attributes, it remains crucial to explore its performance across differ-
ent medical imaging applications and various attribute domains.

Methods
Datasets
In this study, we include three large-scale public chest X-ray datasets,
namely ChestX-ray1415, MIMIC-CXR16, and CheXpert17. The ChestX-
ray14 dataset comprises 112,120 frontal-view chest X-ray images from
30,805 unique patients collected from 1992 to 2015 (Supplementary
Table S1). The dataset includes 14 findings that are extracted from the
associated radiological reports using natural language processing
(Supplementary Table S2). The original size of the X-ray images is
1024 × 1024 pixels. The metadata includes information on the age and
sex of each patient.

The MIMIC-CXR dataset contains 356,120 chest X-ray images
collected from 62,115 patients at the Beth Israel Deaconess Medical
Center in Boston, MA. The X-ray images in this dataset are acquired in
one of three views: posteroanterior, anteroposterior, or lateral. To
ensure dataset homogeneity, only posteroanterior and ante-
roposterior view X-ray images are included, resulting in the remaining
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239,716 X-ray images from 61,941 patients (Supplementary Table S1).
Each X-ray image in the MIMIC-CXR dataset is annotated with 13
findings extracted from the semi-structured radiology reports using a
natural language processing tool (Supplementary Table S2). The
metadata includes information on the age, sex, race, and insurance
type of each patient.

The CheXpert dataset consists of 224,316 chest X-ray images from
65,240 patients who underwent radiographic examinations at Stan-
ford Health Care in both inpatient and outpatient centers between
October 2002 and July 2017. The dataset includes only frontal-view X-
ray images, as lateral-view images are removed to ensure dataset
homogeneity. This results in the remaining 191,229 frontal-view X-ray
images from 64,734 patients (Supplementary Table S1). Each X-ray
image in the CheXpert dataset is annotated for the presence of 13
findings (Supplementary Table S2). The age and sex of each patient are
available in the metadata.

In all three datasets, the X-ray images are grayscale in either “.jpg”
or “.png” format. To facilitate the learning of the deep learningmodel,
all X-ray images are resized to the shape of 256×256 pixels and nor-
malized to the range of [−1, 1] usingmin-max scaling. In theMIMIC-CXR
and the CheXpert datasets, each finding can have one of four options:
“positive”, “negative”, “not mentioned”, or “uncertain”. For simplicity,
the last three options are combined into the negative label. All X-ray
images in the three datasets can be annotated with one or more find-
ings. If no finding is detected, the X-ray image is annotated as “No
finding”.

Regarding the patient attributes, the age groups are categorized
as “<60 years” or “≥60 years“30. The sex attribute includes two groups:
“male”or “female”. In theMIMIC-CXRdataset, the “Unknown” category
for race is removed, resulting in patients being grouped as “White”,
“Hispanic”, “Black”, “Asian”, “American Indian”, or “Other”. Similarly,
the “Unknown” category for insurance type is removed and patients
are grouped as “Medicaid”, “Medicare”, or “Other”. The amount and
proportion of X-ray images under attributes and cross-attributes for
the three datasets are shown in Supplementary Tables S1, S3–S5.

All three large-scale public chest X-ray datasets are divided into
training datasets, validation datasets, and test datasets using an 8:1:1
ratio (Supplementary Table S6). To prevent label leakage, X-ray images
from the same patient are not assigned to different subsets.

Attribute neutralizer
The AttrNzr is structured based on AttGAN31, allowing for continuous
adjustment of attribute intensity while preserving other image infor-
mation. It consists of two main components: the generator and the
discriminator. The generator employs a U-net structure to encode the
original X-ray image as a latent representation and decodes the con-
catenation of the latent representation and the attribute vector into
the modified X-ray image. The discriminator serves as a multi-task
image classifier, distinguishing between the original and modified
X-ray images while identifying the X-ray attribute. The AttrNzr’s para-
meters are optimized through a loss function that combines attribute
classification constraints, reconstruction loss, and adversarial loss
(Supplementary Fig. S1).

Genc and Gdec indicate the encoder and the decoder of the gen-
erator. C and D indicate the attribute classifier and the discriminator.
Denoted by a the original attribute vector, b the modified attribute
vector, b̂ the identified attribute vector by C, Z the latent representa-
tion, xa the original X-ray image with a, xâ the modified X-ray image
with a, and xb̂ the modified X-ray image with b. a, b, and b̂ contain n
binary attributes, and can be expressed as a= a1, � � � ,an

� �
,

b= b1, � � � ,bn

� �
, and b̂= b̂1, � � � ,b̂n

� �
, respectively.

In the AttrNzr, the image generated by the generator (encoder,
and decoder) should meet three objectives: 1) xâ is the same as xa; 2)
the attribute of xb̂ is identified by C as b; and 3) xb̂ is identified by D as
the real X-ray image. Therefore, the loss function of the generator Lgen

is formulated as follows:

Lgen = λ1Lrec + λ2Lclsg + Ladvg , ð1Þ

where Lrec, Lclsg , and Ladvg indicate the reconstruction loss, the attri-
bute classification constraint, and the adversarial loss, respectively. λ1
and λ2 are hyperparameters for balancing different losses. Lrec is
measuredby the sumof all the absolute differences between xa and xâ,
and is formulated as follows:

Lrec = jjxa � xâjj1: ð2Þ

Lclsg is measured by the cross entropy between b and b̂, and is
formulated as follows:

Lclsg =
Xn
i= 1

�bilogCi xb̂
� �

� 1� bi

� �
log 1� Ci xb̂

� �� �
, ð3Þ

where Ci xb̂
� �

indicates the predication of the ith attribute. Ladvg is
formulated as follows:

Ladvg = � D xb̂
� �

, ð4Þ

In the AttrNzr, the discriminator/attribute-classifier should meet
threeobjectives: 1) identify the attributes of xa asa; 2) identify xa as the
real X-ray image; and 3) identify xb̂ as the fake X-ray image. Therefore,
the loss function of the discriminator/attribute-classifier Ldis=cls is for-
mulated as follows:

Ldis=cls = λ3Lclsc + Ladvd , ð5Þ

whereLclsc and Ladvd indicate the attribute classificationconstraint, and
the adversarial loss, respectively. λ3 is the hyperparameter for balan-
cing different losses. Lclsc is measured by the cross entropy between a
and the attribute vector produced by C, and is formulated as follows:

Lclsc =
Xn
i= 1

�ailogCi x
a� �� 1� ai

� �
log 1� Ci x

a� �� �
: ð6Þ

Ladvd is formulated as follows:

Ladvg = � D xa
� �

+D xb̂
� �

: ð7Þ

The attribute vector comprises binary representations of attri-
butes. For age and sex, “<60 years”/“≥60 years” and “female”/“male”
are represented by 0/1. For multiclass attributes like race and insur-
ance type, each subgroup is encoded using the one-hot encoding
(Supplementary Fig. S2a). For example, the White is encoded as
ð1,0,0,0,0,0Þ, and the Hispanic is encoded as ð0,1,0,0,0,0Þ. In the
AttrNzr, the X-ray attribute is adjusted by modifying the attribute
vector. The modification intensity α controls the degree of attribute
modification. α ranges from0 to 1, with 0 indicating nomodification, 1
indicating negation of the attribute, and 0.5 indicating a neutral attri-
bute (Supplementary Fig. S2b).

The high scalability of the attribute vector allows AttrNzr to
modify not only a single attribute but also multiple attributes simul-
taneously. For the three chest X-ray datasets, single-attribute AttrNzrs
and multi-attribute AttrNzrs are trained respectively (Supplementary
Table S7).

To enhance the fundamental stability of the AttrNzr, several tips
are implemented: 1) Gaussian noise with a mean of 0.1 is added to the
X-ray image before inputting it to the discriminator; 2) 5% of fake/real
labels are flipped during discriminator training; 3) label smoothing is
applied to the attribute vector; 4) random horizontal flips are used to
augment the X-ray image dataset; 5) a relatively large convolution
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kernel of size 6 × 6 is utilized; 6) the loss weights for the attribute
classification constraint, reconstruction loss, adversarial loss, and
gradient penalty are set to 10, 100, 1, and 10, respectively. Other
training hyperparameters include a learning rate of 0.0001, a batch
size of 64, and a training epochof 300. TheAttrNzr is trainedon aTesla
V100 32GB GPU.

AI judge for attribute recognition
In this study, the judges identify the attributes of X-ray images gen-
erated by our AttrNzr. The first judge is an AI model that has been fully
trained on original X-ray images to classify attribute types. The AI
judge is used to identify the attributes of X-ray images that have been
modified with different intensities. The modification intensity α is set
to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. To facilitate the
evaluation of the performanceof theAI judge, onlyAI judges forbinary
attributes (age, and sex) are trained in this study.

After considering the performance of various deep learning
models in disease diagnosis (which will be mentioned in the Disease
Diagnosis Model section), ConvNet32 is selected to build the AI judge.
The AI judge is designed with 2 output nodes, corresponding to “<60
years”/“≥60 years” or “female”/“male”. All parameters of the AI judge
are initialized using ConvNet’s pre-training on the ImageNet dataset.
Data augmentation techniques33, including random horizontal flip,
random rotation, Gaussian blur, and random affine, are applied to
expand the dataset. Other hyperparameters include a learning rate of
0.0005, a batch size of 120, and a training epoch of 100. TheAI judge is
also trained on a Tesla V100 32GB GPU. After the AI judge is fully
trained, the Gradient-weighted Class ActivationMap is involved to find
the activated region of the modified X-ray image.

Human judge for attribute recognition
The second attribute recognition involves human judges identifying
the attributes of X-ray images generated by our AttrNzr. Five junior
physicians are invited from the Thoracic Surgery Department of
Guangdong Provincial People’s Hospital to act as human judges for the
attribute recognition. Due to variations in race and insurance between
the regions where the large-scale public chest X-ray datasets are
acquired and the working regions of the 5 human judges, the attribute
recognition focused only on the attributes of age and sex.

For eachattribute, 5 groupsofX-ray images are randomly selected
from the ChestX-ray14 dataset. Each group contains 40 X-ray images
that are modified by the AttrNzr using different modification inten-
sities. To reduce the workload of the human judges, the modification
intensity α is limited to five values: 0.0, 0.3, 0.5, 0.7, and 1.0.

Even with different modification intensities, the same group of
X-ray images still exhibits relative similarity. To prevent the identifi-
cation decisions of the human judges from being influenced by mod-
ified X-ray images of the same group but with different modification
intensities, each judge is not allowed to repeatedly identify the same
group, regardless of the modification intensity. The assignment sche-
dule for the five human judges is presented in Supplementary Fig. S3.

Disease diagnosis model
After comparing the disease diagnosis performance of various deep
learning networks on the three large-scale public chest X-ray datasets
(Supplementary Table S8), ConvNet is selected as the DDM for this
study. In these datasets, the “No finding” label and other finding labels
are mutually exclusive, but the other finding labels themselves are not
mutually exclusive. To simplify the disease diagnosis task, it is treated
as a multi-label recognition task. In the DDM, the number of output
nodes is equal to the number of finding labels, including the “No
finding” label. The activation function of the last layer is sigmoid, and
the loss function is binary cross-entropy, which calculates the loss
between the target and the output probabilities. Taking into account
the imbalanceoffindings in the dataset, we assignweights to the losses

of the findings based on the number of X-ray images associated with
each finding. The initialization, data augmentation, and hyperpara-
meter settings remain consistent with those of the AI Judge.

The instability of deep learning poses uncertainty in the evalua-
tion of DDMs. To ensure reliable evaluation results, we conduct addi-
tional training for 20 epochs after the DDM has converged on the
validation dataset. At the end of each training epoch, we save the
output of the DDM. Finally, the DDM is evaluated based on the outputs
obtained from these 20 epochs.

Alternative unfairness mitigation algorithms
Three alternative algorithms for mitigating unfairness in AI-enabled
medical systems are introduced in this study: the Fairmixup12, the
Fairgrad11, and the Balanced sampling18. The first two algorithms
require integration into the DDM, while the third is solely applied to
the dataset.

In the Fairmixup, mixup is employed to generate interpolated
samples between different groups12. These interpolated samples
introduce a smoothness regularization constraint that is incorporated
into the loss function ofAImodels tomitigate unfairness.Mixup canbe
implemented at both the image and feature levels, referred to as
Fairmixup and Fairmixupmanifold, respectively. Interpolated samples
are derived from blending two samples, thus, Fairmixup is effective in
addressing unfairness associated with binary attributes such as age
and sex. The implementation of Fairmixup is based on the official
algorithm source code (https://github.com/chingyaoc/fair-mixup),
with the regularization constraint weight in the loss function
set to 0.05.

The Fairgrad ensures fairness by assigning lower weights to
examples from advantaged groups compared to those from dis-
advantaged groups11. This method is applicable only to binary classi-
fication tasks. Consequently, in our investigation, the multi-label
recognition task is segmented into multiple binary classification tasks
(15, 14, and 14 binary classification tasks in the ChestX-ray14, MIMIC-
CXR, and CheXpert datasets respectively). The Fairgrad’s imple-
mentation is based on the official PyPI package (https://pypi.org/
project/fairgrad/), and unfairness in the loss function is assessed using
equalized odds.

Balanced sampling combats unfairness by constructing group-
balanced data, wherein the sample size ofmajority groups is randomly
down-sampled to match that of the minority group while preserving
proportional distributions among various findings. Details regarding
the sample size of the minority group are available in Supplementary
Table S1.

For each alternative unfairness mitigation algorithm, model fra-
mework, data augmentation, learning rate, number of training epochs,
and other configurations remain consistent with the baseline DDM.

Performance evaluation metrics
The SSIM34 is utilized to evaluate the similarity between two X-ray
images. SSIM is calculated on various windows of an image. The
measure between twowindows x and y, with a size ofN ×N, is given by
the formula:

SSIM x,yð Þ=
2μxμy + c1

� �
2σxy + c2

� �
μ2
x +μ2

y + c1
� �

σ2
x + σ2

y + c2
� � : ð8Þ

Here, μx and μy represent the mean pixel values of x and y,
respectively. σ2

x and σ2
y denote the variances of x and y, while σxy

represents the cross-correlation between x and y. The variables c1 and
c2 are included to stabilize the division when the denominator is weak.
The size of the window is set to 100× 100 in our study.

In attribute recognition, the performance of the AI judge in
identifying the original attributes of the modified X-ray image is
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evaluated using accuracy, sensitivity, specificity, and F1 score. Addi-
tionally, the area under the receiver operating characteristic curve
(AUC-ROC) is calculated to provide further evaluation of the AI judge.
For the human judges, only accuracy is used to assess their perfor-
mance in identifying the original attributes of the modified
X-ray image.

To address the instability of the DDM, the outputs obtained from
20 epochs after convergence are averaged to obtain a stable output. In
assessing the performance of the DDM for each finding, ROC curves
and precision-recall (PR) curves are generated, and corresponding
AUC values are computed. Additionally, accuracy, sensitivity, specifi-
city, precision, and F1-score are calculated for evaluation purposes.
Macro-averaging of these metrics across all findings is performed to
assess the overall performance of the DDM.

Unfairness evaluation metrics
Unfairness is assessed by examining the performance of various
subgroups20. In our study, ROC-AUC serves as the primary metric for
evaluating model performance. To assess unfairness related to non-
binary attributes, we employ two evaluation metrics: (1) Group Fair-
ness, which measures the gap in ROC-AUC between subgroups with
the highest and lowest AUC values20, and (2) Max-Min Fairness, which
evaluates the AUC of the subgroup with the poorest performance20,21.
Furthermore, we report values for other performance metrics such as
accuracy, sensitivity, and specificity.

Neither the Worst-case ROC-AUC nor the ROC-AUC Gap can
reflect the performance differences among all subgroups. The stan-
dard deviation (SD) can measure the mutual difference among multi-
ple variables. Therefore, we introduce the standard deviation of
performance13,22 as the third evaluation metric of unfairness. The per-
formance SD can be computed using the following formula:

UI =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i= 1 meti �met

� �2
M

s
: ð9Þ

Here, M represents the number of groups in the attribute. meti
denotes the performance metric value of the ith group, and met
represents the average performance across all groups.

The performance SD quantifies the variation or dispersion of
performance among different groups within the attribute. A low per-
formance SD suggests that the performance of each group is closer to
the average performance across all groups, indicating less unfairness.
Conversely, a high performance-SD suggests that the performance of
each group is spread out over a wider range, indicating greater
unfairness. In our study, the calculation of the performance SD is also
based on the stable output of the DDM.

Statistical analysis
SSIM is utilized to assess the similarity between the modified X-ray
image and the original X-ray image. Subsequently, the Pearson corre-
lation coefficient is employed to measure the correlation between the
similarity and modification intensity. Additionally, the Pearson corre-
lation coefficient is also used to evaluate the correlation between the
judges’ identification performance and themodification intensity. The
evaluation metrics of the DDM are calculated at a 95% confidence
interval using non-parametric bootstrapping with 1000 iterations.
Delong’s test is employed to test the statistical significance of the
difference between two ROC curves. The confidence interval for the
difference between the areas under the PR curves is computed using
the bias-corrected and accelerated bootstrap method. If the 95%
confidence interval does not encompass 0, it signifies a significant
difference between the two areas (P <0.05). The comparison of ROC
curve and PR curve was performed by MedCalc.

For a comprehensive comparison of the relative performance and
unfairness mitigation among different algorithms, we employ the

Friedman test35 followed by the Nemenyi post-hoc test20. Initially,
relative ranks are computed for each algorithm within each dataset
and attribute independently. Subsequently, if the Friedman test
reveals statistical significance, the average ranks are utilized for the
Nemenyi test. A significance threshold of P <0.05 is adopted. The
outcomes of these tests are presented throughCritical Difference (CD)
diagrams36. In these diagrams, methods connected by a horizontal line
belong to the same group, indicating nonsignificant differences based
on the p-value, whilemethods in distinct groups (not connected by the
same line) exhibit statistically significant disparities. The Fairmixup
and Fairmixup manifold techniques are unsuitable for non-binary
attributes. Consequently, the Friedman test and the Nemenyi post-hoc
test are performed across 6 {dataset, attribute} combinations: {ChestX-
ray14, age}, {ChestX-ray14, sex}, {MIMIC-CXR, age}, {MIMIC-CXR, sex},
{CheXpert, age}, and {CheXpert, sex}.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
In this study, we incorporate three extensive public chest X-ray data-
sets: ChestX-ray14, MIMIC-CXR, and CheXpert. The ChestX-ray14
dataset is supported by the Intramural Research Program of the NIH
Clinical Center and accessible at https://nihcc.app.box.com/v/
ChestXray-NIHCC/folder/36938765345. The MIMIC-CXR dataset is
accessible at https://physionet.org/content/mimic-cxr-jpg/2.0.0/. To
access the data files of the MIMIC-CXR dataset, one must first be a
credentialed user of PhysioNet. Subsequently, the completion of
mandatory training, such as CITI Data or Specimens Only Research, is
required. Lastly, the data use agreement for the project should be
signed. Notably, the chest X-ray images within the MIMIC-CXR dataset
have been preprocessed into compressed JPG format. The initial chest
X-rays in DICOM format can be retrieved at https://physionet.org/
content/mimic-cxr/2.0.0/. The CheXpert dataset can be accessed
through https://stanfordmlgroup.github.io/competitions/chexpert/
. Source data are provided with this paper.

Code availability
The code for the AttrNzr, AI judge, and DDM can be accessed via the
following link: https://zenodo.org/records/1325409937. Comprehen-
sive instructions are provided to facilitate the replication of ourwork.
For code testing purposes, we have made available reduced-scale
data files. Moreover, all model hyperparameters are encompassed
within the respective scripts. Notably, a segment of the AttrNzr code
draws inspiration from the work of Elvis Yu-Jing Lin (https://github.
com/elvisyjlin/AttGAN-PyTorch); the implementation of Fairmixup is
derived from the official algorithm source code (https://github.com/
chingyaoc/fair-mixup); while the implementation of Fairgrad is based
on the official PyPI package (https://pypi.org/project/fairgrad/).
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