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AtPRMT3-RPS2B promotes ribosome
biogenesis and coordinates growth and cold
adaptation trade-off

Zhen Wang 1,2,3,4 , Xiaofan Zhang1,2,4, Chunyan Liu 1, Susan Duncan 3,
Runlai Hang1, Jing Sun1, Lilan Luo 1, Yiliang Ding 3 & Xiaofeng Cao 1,2

Translation, a fundamental process regulating cellular growth and prolifera-
tion, relies on functional ribosomes. As sessile organisms, plants have evolved
adaptive strategies to maintain a delicate balance between growth and stress
response. But the underlying mechanisms, particularly on the translational
level, remain less understood. In this study, we revealed the mechanisms of
AtPRMT3-RPS2B in orchestrating ribosome assembly and managing transla-
tional regulation. Through a forward genetic screen,we identified PDCD2-D1 as
a suppressor gene restoring abnormal development and ribosome biogenesis
in atprmt3-2 mutants. Our findings confirmed that PDCD2 interacts with
AtPRMT3-RPS2B, and facilitates pre-ribosome transport through nuclear pore
complex, finally ensuring normal ribosome translation in the cytoplasm.
Additionally, the dysfunction of AtPRMT3-RPS2B was found to enhance
freezing tolerance. Moreover, we revealed that AtPRMT3-RPS2B promotes the
translation of housekeeping mRNAs while concurrently repressing stress-
related mRNAs. In summary, our study sheds light on the regulatory roles of
AtPRMT3-RPS2B in ribosome assembly and translational balance, enabling the
trade-off between growth and stress.

Low temperature represents a major environmental factor limiting
plant growth and development. Due to their sessile nature, plants
have evolved sophisticated mechanisms to cope with stress
conditions1,2. For instance, cold acclimation is a phenomenon
wherein plants increase freezing tolerance after exposure to low non-
freezing temperatures3. Researches over the past decades have
unveiled extensive networks of the transcriptional and post-
translational regulation of cold signaling pathways4. However, how
translational regulation is involved in this adaptive process remains
less characterized.

Ribosomes are essential for protein synthesis, making them vital
for cell proliferation and survival. Ribosome biogenesis is one of the
most intricate and energy-consuming programs in a cell. This process
originates with ribosomal DNA (rDNA) transcription in the nucleolus,

and then the precursor rRNAs (pre-rRNAs) will undergo processing,
modification, and assembly process to form a large ribonucleoprotein
complex termed 90S pre-ribosome, assisted by multiple assembly
factors5–7. Subsequently, the 90S pre-ribosome complex splits into
precursors of the 40S and 60S (pre-40S and pre-60S) particles, and
undergo independent maturation steps5,6. The nuclear pore complex
(NPC) serves as a central role in ribosomebiogenesis by facilitating the
transport of pre-ribosomal particles from the nucleus to the cyto-
plasm, where they undergo further processing to assemble into func-
tional ribosomes8,9. The NPC is a sophisticated cellular structure
embedded in the nuclear envelope, facilitating the exchange of
molecules between the nucleus and the cytoplasm. Disruptions in
nucleocytoplasmic transport have profound consequences on cellular
function and stress responses10–12.
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Ribosome biogenesis and translation dynamics are tightly
orchestrated during developmental programs and various stress
responses, ensuring optimal growth adaptation13–18. This process is
stringently regulated during environmental changes to ensure effi-
cient ribosome activity19. During stress conditions, plants usually
sacrifice their growth in order to better survive, generally, there is a
balance between active growth and stress-responsive gene
expression17,20. The translational regulation of stress-growth trade-off
represents an efficient strategy. In yeast, the translation initiation
factor Ded1p acts as a translational switch between housekeeping
and stress mRNAs21. Similarly, in Arabidopsis, the defects of DHH1/
DDX6-like proteins RNA HELICASE, RH6/8/12, could shift growth and
stress transcriptome and translatome homeostasis22. AtPRMT3, a
family of protein arginine methyltransferase, actively participates in
ribosome biogenesis23. Its interaction with ribosomal protein RPS2B
is crucial for regulating pre-ribosome biogenesis in the nucleus,
thereby repressing nucleolus stress24. However, its underlying
mechanisms in regulating ribosome biogenesis as well as the broader
implications for plant growth and stress response regulation still
require further elucidation.

In this study, we conducted a forward genetic screen and iso-
lated a dominant suppressor, named atprmt3pdcd2-d1, which par-
tially rescued the developmental defects and aberrant ribosome
biogenesis in atprmt3-2 mutants. Our findings established the invol-
vement of PDCD2 in AtPRMT3-RPS2Bmediated ribosome biogenesis.
We demonstrated that PDCD2 could regulate the pre-ribosome bio-
genesis in the nucleus by promoting their efficient export to cyto-
plasm. Additionally, we identified that AtPRMT3-RPS2B was a
negative regulator in freezing stress. We employed polysome profile
combined with Ribo-seq to illustrate that AtPRMT3-RPS2B maintains
gene translational balance. The disruption of AtPRMT3-RPS2B
enhances the translation of specific mRNA linked to cold stress,
thereby conferring freezing tolerant phenotype. Above all, we
demonstrate a regulatory mechanism of AtPRMT3-RPS2-PDCD2 in
ribosome biogenesis and translational trade-off between stress tol-
erance and normal growth.

Results
Mutation in PDCD2 is responsible for suppressor of atprmt3
mutants
AtPRMT3 is crucial for pre-ribosome assembly, and the defects of
AtPRMT3 lead to pleiotropic developmental defects23,24. To gain dee-
per insights into the underlying mechanisms, we performed a forward
genetic screen to identify the suppressors of atprmt3 mutants. Nota-
bly, we isolated a suppressor named m20, partially rescued the
developmental defects observed in atprmt3 mutants. This rescue was
evident in delayed growth state (Supplementary Fig. 1a), restored leaf
morphology, including the pointed first leaves and disrupted leaf vein
patterns (Supplementary Fig. 1b), and recovery of short primary root
(Supplementary Fig. 1c, d).

Genetic analysis showed that m20 represented a semi-dominant
mutation in a single nuclear gene (Supplementary Fig. 1e). To pinpoint
the causal gene mutation in m20, we performed whole-genome re-
sequencing and mapped to At4g02220, which contains a G-to-A
mutation in its 9th exon, and converts Glutamicacid-350 into Lysine
(E350K) (Supplementary Fig. 1f). At4g02220 encodes a protein char-
acterized by a zinc finger (MYND type) domain and a programmed cell
death 2C-terminaldomain (SupplementaryFig. 1g),which is conserved
and widely existed across different species (Supplementary Fig. 2a).
PDCD2 has localization in both cytoplasm and nucleus (Supplemen-
tary Fig. 2b). Next, we expressed ProUBQ10:PDCD2E350K-HA in atprmt3-2
mutants, finding that the transgenic plants PDCD2E350K-HA partially
rescued the developmental defects of atprmt3-2 mutants (Fig. 1a–d).
The above genetic results demonstrated that PDCD2E350K was

responsible for the rescued phenotype inm20, hereafter, we renamed
m20 as atprmt3pdcd2-d1. Additionally, we used CRISPR-Cas9 to knock
out PDCD2, and got two weak alleles of pdcd2-cr1 (15-bp deletion) and
pdcd2-cr2 (12-bp deletion) (Supplementary Fig. 1h). We observed that
pdcd2-crmutants aswell aspdcd2-d1 singlemutants exhibit no obvious
developmental defects (Supplementary Fig. 1i).

Mutation in PDCD2 rescues the aberrant ribosome biogenesis in
atprmt3 mutants
Then wewondered whether the suppressor could restore the aberrant
pre-rRNAprocessing ofatprmt3mutants.WeperformedNorthernblot
assay to determine the pre-rRNA state, rRNA processing intermediates
could be detected by probes as previously described23,24. We observed
that the defective pre-rRNA processing state was restored in sup-
pressoratprmt3pdcd2-d1 asprobed by S7 and S9 (Fig. 1e). For example,
probe S7 detected that the suppressor rescued the accumulated level
of 33S(P’)/32S and 18S-A3/A2 intermediates, and decreased level of P-
A2/A3 intermediates in atprmt3-2 mutants; probe S9 proved that the
accumulated level of 33S(P’)/32S, 27SA/27SB and pre-5.8S inter-
mediates were also rescued in the suppressor (Fig. 1e).

During ribosome biogenesis, U3 small nucleolar ribonucleopro-
tein (snoRNP) is an essential component within the 90S/SSU proces-
some, consisting of U3 snoRNA and core proteins, including Nucleolar
protein 1 (NOP1)/FIBRILLARIN (FIB), NOP56, NOP58, Small nuclear
protein 13 (Snu13), and RRP925. We observed that the expression levels
of FIB1, FIB2, NOP56, and NOP58 were accumulated in atprmt3-2
mutants, and they were restored in the suppressor atprmt3pdcd2-d1
(Fig. 1f). Similarly, the accumulated U3 snoRNAs observed in the
atprmt3-2mutants were also restored in the suppressor atprmt3pdcd2-
d1 (Fig. 1g). Similarly, we also assessed the rescued protein levels of
FIB1 andNOP56 in the suppressoratprmt3pdcd2-d1 (Fig. 1h). The above
results indicate that PDCD2-D1 mutation effectively rescues the aber-
rant ribosome biogenesis in atprmt3-2 mutants.

PDCD2 is an interacting partner of AtPRMT3 and RPS2
PDCD2 features a MYND-type zinc finger domain (ZF-MYND) that facil-
itates protein-protein interactions. To ascertain the significance of ZF-
MYND domain of PDCD2, we deleted the ZF-MYND domain in
PDCD2E350K to create ProUBQ10:PDCD2E350K&ΔZF -HA, and introduced into
atprmt3-2 mutants (Fig. 2a). The transgenic plants PDCD2E350K&ΔZF-HA
could not rescue the developmental defects of atprmt3-2 mutants
(Fig. 2b, c, and Supplementary Fig. 3a), underscoring the essential
function of ZF-MYND domain. We subsequently aimed to identify the
interacting proteins of PDCD2 to uncover its biochemical functions.
Given that ribosome assembly process primarily occurs in the nucleus,
so we identified the nuclear PDCD2-associated proteins with mass
spectrometry (MS). From theMS results, we identified that PDCD2 could
interact with a family of RPS2 proteins including RPS2B (Supplementary
Table 1). These interactions were further validated by yeast two-hybrid
assay and split luciferase complementation (Fig. 2d, e). In our previous
study,weproved the interactionbetweenAtPRMT3 andRPS2proteins24,
here, we also identified that PDCD2 could interact with AtPRMT3 vali-
dated by split luciferase complementation assay (Fig. 2f), co-
immunoprecipitation (Supplementary Fig. 3b), and Bimolecular Fluor-
escence Complementation (BiFC) (Supplementary Fig. 3c).

To investigatewhetherPDCD2-D1 could rescue thedevelopmental
defects of rps2a2b-1 mutants, we crossed pdcd2-d1 with rps2a2b to
generate rps2a2bpdcd2-d1 mutants. Remarkably, the rps2a2bpdcd2-d1
mutants also exhibited a partial rescue of the developmental defects
observed in rps2a2b mutants (Fig. 2g, h) as well as the pre-rRNA pro-
cessing defects (Fig. 2i).

In summary, the collective biochemical and genetic evidences
prove that PDCD2 has biological functions in regulating AtPRMT3-
RPS2 mediated ribosome biogenesis process.
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Mutation in PDCD2 rescues the retarded pre-ribosome assembly
in atprmt3 mutants
The PDCD2-associated proteins also include U3 snoRNP proteins such
as FIB1 and NOP56 (Supplementary Table 1). These interactions were
further validated by co-immunoprecipitation (Supplementary Fig. 3d).
We also observed that their associations were enhanced in atprmt3-2
mutants, but partially reduced in suppressor atprmt3pdcd2-d1 (Sup-
plementary Fig. 3d). The above results indicate the potential function
of PDCD2 in pre-ribosome biogenesis process.

We observed that the protein level of PDCD2 was accumulated
in the nucleus, but decreased in cytoplasm in atprmt3-2mutants; the
aberrant distribution was restored in the suppressor (Fig. 3a), indi-
cating its potential disruptive transport between the cytoplasm and
nucleus. Moreover, we used gel-filtration assay to show that more
PDCD2 proteins were distributed in the high-molecular-weight
fractions in atprmt3-2 mutants, and PDCD2E350K were returned to a

normal level in suppressor (Fig. 3b). The above results suggest that
PDCD2 is involved in the regulation of dynamic pre-ribosome bio-
genesis in the nucleus. Furthermore, we determined the distribution
pattern of PDCD2 in cytoplasmic and the nuclear fractions, respec-
tively. It was evident that nuclear PDCD2 was primarily distributed in
the high-molecular-weight fractions; in contrast, cytoplasmic
PDCD2 was mainly distributed in the low-molecular-weight fractions
(Supplementary Fig. 3e). This observation further proves that
PDCD2 functions in a large complex (including pre-ribosomes) in
nucleus.

PDCD2 functions in nucleocytoplasmic transport
Interestingly, a series of proteins related to nucleocytoplasmic trans-
port were also identified in PDCD2-associated proteins (Supplemen-
tary Table 1). The nuclear pore complex (NPC) comprises multiple
copies of different nucleoporins (Nups), which forms a channel-like
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Fig. 1 |Mutation in PDCD2 suppresses the defective development and ribosome
biogenesis in atprmt3 mutants. a, b Phenotypes of the aboveground seedlings.
Ten-day-old seedlings of Col-0, atprmt3-2, atprmt3pdcd2-d1, and PDCD2E350K-HA are
shown. Scale bar, 1 cm. Data are presented as mean values ± SD (n = 25).
c, d Phenotypes of primary root length. Nine-day-old seedlings were shown. Scale
bar, 1 cm. Data are presented as mean values ± SD (n = 35). e Pre-rRNA processing
states. Northern blot was performed with probe S7 and S9, methylene blue (MB)
stain was used as a loading control. Experiments were repeated three times with
similar results. f Gene expression patterns of FIB1, FIB2, NOP56, and NOP58,

detectedby qRT-PCR.UBQ10was used as an internal control. Data are presented as
mean values ± SD (n = 4). g The expression of U3 snoRNA detected by Northern
blot. Probe for U3 snoRNA was used, MB stain was used as a loading control.
Experiments were repeated three times with similar results. h The protein levels of
FIB1 and NOP56 detected by immunoblotting. Total proteins were immunoblotted
with anti-FIB1, anti-NOP56, and anti-HSC70 antibodies. HSC70 was used as the
control. Experiments were repeated two times with similar results. P value was
calculated by One-way ANOVA with Dunnett’s multiple comparisons test. Source
data are provided as a Source Data file.
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structure11,26. NPC controls macromolecular trafficking between the
nucleus and the cytoplasm, including the transportation of pre-60S
andpre-40S subunits27. Exportin 1 (XPO1), also knownas chromosomal
maintenance 1 (CRM1), is a major transport receptor, responsible for
exporting proteins and multiple RNA species28,29. Then we wondered
whether PDCD2 could transport though NPC in a XPO1-dependent
manner. To address this, we analysed the localization of PDCD2-GFP
following treatment with leptomycin B (LMB) which is a XPO1
inhibitor30. The results show that PDCD2-GFP is accumulated in the
nucleus after LMB treatment, indicating that PDCD2 shuttles between
the nucleus and the cytoplasm (Fig. 3c). In Arabidopsis, XPO1 com-
prises two closely related members, XPO1A and XPO1B, with their sin-
gle mutants exhibiting normal behavior, however, their double
mutants display gametophytic defects31, so it restricts us to perform
downstream genetic experiment. Thus, we focused our attention on
other NPC complex members for genetic validation, such as HOS1
(high expression of osmotically responsive genes 1). HOS1 was repor-
ted to interact with RNA export factor 1 (RAE1), Nup43, Nup96, and
Nup160, and compromises a core regionof plant NPCs32–34.We crossed
hos1-3 with the suppressor atprmt3pdcd2-d1 to create
hos1atprmt3pdcd2-d1 triple mutants. The results showed that the
hos1atprmt3pdcd2-d1 triple mutants compromised the restoration
capacity of the suppressor atprmt3pdcd2-d1, with the phenotypes of

the hos1atprmt3pdcd2-d1 triple mutants were between atprmt3-2 and
atprmt3pdcd2-d1 suppressor (Fig. 3d, e). The results indicate that the
suppressor atprmt3pdcd2-d1 functions partially through the NPC
function.

Furthermore, we performed data-independent acquisition (DIA)
mass spectrometry (MS) to determine the difference of nuclear pro-
teins in Col-0, atprmt3-2, and atprmt3pdcd2-d1 (Fig. 3f). We found that
most of the accumulated proteins in atprmt3-2mutants were restored
in suppressor atprmt3pdcd2-d1 (Fig. 3f), those restored proteins were
mainly associated with ribonucleoprotein complex biogenesis and
ribosome biogenesis (Fig. 3g, Supplementary Data 1). Additionally, we
performed RNA fluorescence in situ hybridization (RNA-FISH) to
detect the pre-rRNA expression pattern. We visualized that the pre-
rRNA signals were retarded in atprmt3-2 mutants with a large nucleo-
lus, but restored in suppressor atprmt3pdcd2-d1 (Fig. 3h). As a result,
our findings provide compelling evidence that PDCD2 plays a role in
the export of pre-ribosomes to the cytoplasm. Notably, the PDCD2E350K

facilitate the translocation of delayed pre-ribosomes to the cytoplasm
in atprmt3-2 mutants, thereby partially rescuing their aberrant ribo-
some biogenesis.

Finally, we investigated the ribosome state in the suppressors,
finding that atprmt3pdcd2-d1 also rescued the aberrant polysome state
in atprmt3-2 mutants (Fig. 4a, b). Additionally, genome-wide gene
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expression analysis revealed that the suppressor restored most of the
differentially expressed genes in atprmt3-2 mutants (Fig. 4c, Supple-
mentaryData 2). Gene ontology analysis of these rescued up-regulated
genes showed that they were mainly associated with ribosome bio-
genesis, highlighting the role of AtPRMT3-PDCD2 in ribosomal func-
tions (Fig. 4d). Moreover, we observed the enrichment of stress-

responsive genes in this process (Fig. 4d), implying the involvement of
AtPRMT3-PDCD2 in stress response.

AtPRMT3-PDCD2 functions in freezing stress response
Then we are curious about whether AtPRMT3 or PDCD2 is involved in
stress responses. Firstly, we detected the expression of AtPRMT3 and
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PDCD2 in response to multiple stresses from public database, and
found that they were obviously induced by cold stress (Fig. 4e)35.
Further validation through qRT-PCR confirmed the upregulation of
AtPRMT3 and PDCD2 upon cold treatment (Fig. 4f). This led us to
investigate the potential involvement of AtPRMT3 in freezing stress
adaptation. To do so, we subjected twelve-day-old seedlings grown at
22 °C to freezing treatment with cold acclimation (CA) or non-
acclimation (NA). The results showed that under both NA and CA
conditions, atprmt3-2mutants displayed enhanced freezing tolerance
compared with wild-type Col-0 (Fig. 4g, h). These results suggest that
AtPRMT3 is a negative regulator in freezing tolerance. Furthermore,
the suppressor atprmt3pdcd2-d1 was able to rescue the freezing tol-
erant phenotype of atprmt3-2 mutants under both NA and CA condi-
tions (Fig. 4g, h).

AtPRMT3 regulates freezing stress mainly through
CBF-independent pathways
The CBF/DREB 1 (C-Repeat Binding Factor/Dehydration Responsive
ElementBindingprotein 1)-dependentpathwayplays a vital role in cold
stress regulation4. Therefore, we detected whether AtPRMT3mediates
plants responses to cold stress through the CBF pathway. We com-
pared the expression levels of CBF1/2/3, and their targets including
RD29A, COR15B, and KIN1 in Col-0 and atprmt3-2 mutants under cold
stress. These results showed that the expression of CBFs and their
targets did not exhibit consistent up-regulation pattern in atprmt3-2
mutants (Supplementary Fig. 4a, b), suggesting that AtPRMT3 was
involved in freezing stress partially through CBF pathway. Moreover,
we crossed atprmt3-2 with cbfs (cbf1cbf2cbf3) triple mutants to create
atprmt3cbfs quadruple mutants to identify their freezing tolerance.
Under both CA andNA conditions, atprmt3cbfsmutants demonstrated
increased tolerance to freezing stress compared with Col-0 (Supple-
mentary Fig. 4c, d). Under CA conditions atprmt3cbfs mutants also
show reduced survival rate compare to atprmt3-2mutants, suggesting
the partial function of CBFs in this process (Supplementary Fig. 4c, d).
The freezing tolerant phenotype of atprmt3mutants in NA conditions
indicating their stronger response to cold stress, and our work focuses
on understanding the mechanism through which they are regulated
under these conditions.

AtPRMT3-RPS2 modulates transcriptome and translatome
homeostasis
RPS2 is the direct component of ribosome, and RPS2 family has four
members including RPS2A, RPS2B, RPS2C, and RPS2D. For our study,
we focused on the phenotypically distinct pair of mutants rps2a2b-1
and rps2c-1 to assess their response to freezing stress. We found that
rps2a2b-1 mutants were tolerant to freezing stress like atprmt3-2
mutants, whereas rps2c-1mutants were sensitive to freezing like Col-0
(Fig. 5a, b). These results indicate that although the members of RPS2
are core component of ribosome, but they possess different functions,
which may imply their heterogeneous nature within ribosome
function.

Next, we detected the translation state in Col-0, atprmt3-2 and
rps2 mutants with polysome profiling. Remarkably, we observed a
significant increase in the polysome ratios in both atprmt3-2 and
rps2a2b-1 mutants, while the polysome pattern of the rps2c-1 mutant
remained comparable to that of Col-0 (Fig. 5c, d). These results imply
that AtPRMT3 and RPS2A2B are involved in the regulation of transla-
tion dynamics, and then it inspires us to examine their effect onmRNA
translation. Ribo-seq analysis enables genome-wide investigation of
translation36–38. To get a comprehensive view of the translational reg-
ulation, we performed RNA-seq and Ribo-seq to assess their tran-
scriptional and translational changes, respectively (Fig. 5e). The
independent Ribo-seq and RNA-seq library replicates showed high
reproducibility (Supplementary Fig. 5).

We computed the fold change (FC) of atprmt3-2, rps2a2b-1, and
rps2c-1 mutants compared with Col-0 for transcriptome (RNA-seq),
translatome (Ribo-seq) and translational efficiency (TE, TE=Ribo-
seq_RPKM/RNA-seq_FPKM). We compared the changes between tran-
scriptome and translatome, and observed a moderate correlation
(R ≈0.4) between translational (Ribo-seq) and transcriptional changes
(RNA-seq) in atprmt3 and rps2a2bmutants (Fig. 5f), which suggests the
presence of a regulatory mechanism at the translational level in these
mutants. Additionally, the results provided evidence of similar trans-
lation states between atprmt3-2 and rps2a2b-1 mutants, in contrast to
rps2c-1mutants (Fig. 5f). To better illustrate the translational changes,
we calculated the translational efficiency (TE) to quantify these chan-
ges and found that alternations in TE have poor correlations with the
transcription changes (Supplementary Fig. 6), which further indicates
that extra layer of translational regulation.

Given the similar phenotypes exhibited inatprmt3-2 and rps2a2b-1
mutants, we compared genes that were altered in both mutants,
excluding rps2c-1 mutants. We identified 724 genes with down-
regulated TE, mainly associated with growth-related genes such as
Carbohydrate metabolic process, Cell wall organization or biogenesis,
and Reproductive system development (Fig. 6a, c, and Supplementary
Data 3). Interestingly, the 648 genes with up-regulated TE were pri-
marily associated with stress responses such as Response to stimulus,
Response to reactive oxygen species, and Response to cold (Fig. 6b, d,
and Supplementary Data 3).

Altogether, the above results suggest that AtPRMT3-RPS2 is a vital
regulator in translational regulation process, maintaining a delicate
balance between the translation of stress-responsive and growth-
related processes.

The disruption of AtPRMT3-RPS2B promotes the expression of
stress responsive genes
Next, we compared these 648 specifically TE up-regulated genes with
cold-induced genes, finding that nearly 20% of these genes are cold
inducible, potentially contributing to the freezing-tolerant phenotype
of atprmt3-2 mutants (Supplementary Fig. 7a, and Supplementary
Data 4). We observed that the expression of Chaltone synthase (CHS)
was accumulated inatprmt3-2 and rps2a2b-1mutants instead of rps2c-1
(Fig. 6e), which was further validated by qRT-PCR (Fig. 6f). The trans-
lation efficiency of CHS was also accumulated in atprmt3-2 and
rps2a2b-1 mutants instead of rps2c-1 (Fig. 6g), corresponding to the
higher protein level of CHS in atprmt3-2 and rps2a2b-1 mutants (Sup-
plementary Fig. 7b). And the expression of CHS was induced by cold
stress (Fig. 6h). CHS serves as a key enzyme in the flavonoid bio-
synthesis pathway (Supplementary Fig. 7c). Flavonoid is a major class
of secondary plant metabolites and is essential for plant development
and plant–environment interplay39. Thenwedetected gene expression
of key enzymes in flavonoid metabolic pathway, finding that most of
these genes including CHI, DFR, ANS, and FLS1 all exhibited an up-
regulated gene expression pattern in atprmt3-2 and rps2a2b-1mutants
instead of rps2c-1 mutants (Supplementary Fig. 7d, e). We found that
the TE of FLS1 andANSwas also accumulated inatprmt3-2 and rps2a2b-
1 mutants instead of rps2c-1 (Supplementary Fig. 7f). The flavonoid
including anthocyanin facilitates plants adaptation to cold stress40,41.
We identified that there were higher levels of anthocyanin in atprmt3-2
and rps2a2b-1 mutants compared with Col-0 and rps2c-1 mutants
(Supplementary Fig. 7g). Furthermore, wegenerated a chsmutant with
CRISPR-Cas9 (Supplementary Fig. 7h) and crossed it with atprmt3-2 to
create atprmt3chs double mutants, finding that the freezing tolerance
ability of atprmt3chs double mutants was reduced compared with
atprmt3-2 mutants (Fig. 6i, j), which partially explains its freezing tol-
erant phenotype.

Collectively, we revealed that AtPRMT3-RPS2 function as a trans-
lational regulator to balance the translation of genes involved in

Article https://doi.org/10.1038/s41467-024-52945-8

Nature Communications |         (2024) 15:8693 7

www.nature.com/naturecommunications


growth and stress responses (Supplementary Fig. 8). In wild type,
AtPRMT3-RPS2B promotes the proper pre-ribosome assembly in
nucleus, and PDCD2 promotes efficient pre-ribosome export to cyto-
plasm, ultimately maintaining normal translation in the cytoplasm and
promoting the expression of genes related to growth. However, the
defects of AtPRMT3-RPS2B results in disturbed ribosome biogenesis
and translation, whereby promoting the expression of stress respon-
sive genes (such as cold related genes), therefore conferring freezing
tolerant phenotypes (Supplementary Fig. 8).

Discussion
Translation is a fundamental process required for all cellular activities.
Impairments in ribosome or translation are associated with multiple
developmental defects and stress responsive disorders. Previously, we
show that AtPRMT3-RPS2B actively promotes pre-ribosome assembly
and alleviates nucleolus stress24. Here, we further demonstrated the
molecular mechanism of AtPRMT3-RPS2B in ribosome assembly pro-
cess, and its pivotal role in orchestrating the balance between the
translation of genes associated with growth and stress response.

The membrane-less nucleolus serves as the primary site for ribo-
some biogenesis, and alterations in ribosome biogenesis often man-
ifest in changes to nucleolar organization42,43. We found that atprmt3
mutants exhibit enlarged nucleolus due to retarded pre-ribosome
assembly in nucleus. Here, we identified that PDCD2-D1 rescued the
aberrant ribosomebiogenesis and nucleolar stress in atprmt3mutants.
PDCD2 is conserved in different species, its homolog PDCD2/PDCD2L
in human and TSR4 in yeast, were reported to cooperate with RPS2/
uS5, which function in ribosome biogenesis44–46. Here, we proved that
Arabidopsis PDCD2 was required for dynamic pre-ribosome assembly
by exporting the ribosome subunit to cytoplasm in time. The NPC is
the trafficking gateway for macromolecular cargos between the
nucleus and the cytoplasm, pre-ribosomal particles are among the
largest transport cargos8. PDCD2 shuttles between nucleus and cyto-
plasm. PDCD2-D1 promotes the export of pre-ribosome subunits in
atprmt3-2 mutants, thereby relieving their retarded pre-ribosome
assembly in nucleus.

In plants, nuclear pore complexes are recognized for their pivotal
roles in response to both biotic and abiotic stresses, including
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immunity and temperature responses10,12. For example, HOS1 and
LOS4 emerging as key players associated with NPC in cold stress47,48.
Our study reveals a novel dimension related to NPCs in regulating cold
stress. Specifically, we elucidate that AtPRMT3-RPS2-PDCD2 primarily

functions to facilitate ribosome biogenesis from the nucleus to the
cytoplasm through NPC, thereby ensuring the accurate translation
step in the cytoplasm. During cold stress, the expression of CBFs-CORs
is an essential step, but only 10-20% of CORs are transcriptionally
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as a control. Data are presented asmean values ± SD (n= 3). gTranslation efficiency
analysis in (f). Data are presented as mean values ± SD (n= 3). h Induction of CHS
expressionby cold stress. Twelve-day-old seedlingsofCol-0were treated at4 °C for
0 and 24h, and then used for qRT-PCR. ACTIN2 was used as a control. Data are
presented as mean values ± SD (n= 4). i Freezing stress phenotype. Twelve-day-old
seedlings of Col-0, atprmt3-2, chs and atprmt3chs were subjected to freezing
treatment at −6 °C for 1 h for non-acclimated (NA) condition. j The survival rates of
plants in (i). Data are presented as mean values ± SD (n = 4). (f, g, j) P value was
calculated by One-way ANOVA with Dunnett’s multiple comparisons test. (h) P
value was calculated by two-sided unpaired Student’s t test. Source data are pro-
vided as a Source Data file.
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regulated byCBFs4,49,50. It is interesting to investigate CBF-independent
regulating mechanisms, such as the Nonexpresser of pathogenesis-
related genes 1 (NPR1) and Brassinazole-resistant 1 (BZR1)51,52. The
ribosome recognized as cold stress sensors, is known to be affected by
cold stress, influencing both rRNA biogenesis and gene expression
related to ribosomes53–55. Accumulating evidence highlights the
essential role of ribosomes in cold stress adaptation, with factors such
as Ribosomal Protein L9 (RPL9) and cytosolic ribosomal biogenesis
factor REI-LIKE (REIL) implicated in this process56–58. Our findings
contribute to this understanding by revealing a translational
mechanism involving AtPRMT3-RPS2B. This complex acts as a trans-
lation regulator balancing trade-off of growth and stress-responsive
gene expression. Defects in AtPRMT3 promote the translation of cold
stress-responsive gene expression, endowing the atprmt3 mutants
with a freezing-tolerant phenotype.

Ribosome is dynamic and not uniform in its structural composi-
tion. Our study demonstrates that rps2 family mutants exhibit diverse
phenotypes and translation status, it will be interesting to study whe-
ther it is due to ribosome heterogeneity in the future. Ribosome het-
erogeneity includes sequence variation of rRNAs, absence of specific
ribosomal proteins (RP),modification of rRNAs/RPs, different auxiliary
factors, etc59,60. Evidence shows that heterogeneous ribosomes pre-
ferentially translate different subpools of mRNAs61. The intrinsic fea-
tures existed in mRNA also determine the efficiency of translation,
such as UTR, polyA tail, as well as secondary structures within
mRNA13,62. Particularly upstream open reading frames (uORFs) is small
ORFs located in the 5′ UTR, which repress the translation of the
downstream ORF63. It remains to determine whether the mRNA fea-
tures affect translation in these ribosome-defective mutants. Ribo-
some is the translation machine in cells, the response of ribosome
biogenesis to stress adds fine-tuning layer to the regulation of gene
expression. Translational regulation provides valuable insights for
crop breeding with improved stress tolerance and high quality64.
Therefore, the understanding of ribosome feature and translational
mechanism is particularly noteworthy, which can be used for modern
agricultural breeding in the future.

Methods
Plant materials
The materials used in this study including atprmt3-2 (WISCD-
SLOX391A01), rps2c-1 (SALK_020959C) and rps2a2b-1 mutants were
characterized previously23,24. The chsmutants were created by CRISPR-
Cas965.

EMS mutagenesis and DNA sequencing
The seeds of atprmt3-2 mutants were mutagenized with ethyl metha-
nesulfonate (EMS). The resulting individualM1plants were screened to
isolate suppressors of atprmt3-2 mutants. The identified suppressors
were backcrossedwith atprmt3-2 for at least three times. Homogenous
seedlings exhibiting wild-type characteristics were selected for DNA
extraction and underwent whole-genome resequencing at Berry
Genomics. Simultaneous Identification of Multiple causal Mutations
(SIMM) analysis was employed to clone the suppressor genes66.

Plasmid construction and generation of transgenic plants
The CDS of PDCD2E350K amplified from m20 cDNA was cloned to gen-
erate the ProUBQ10:PDCD2E350K-HA constructs, and then transformed
into atprmt3-2 mutants to generate PDCD2E350K-HA plants. The con-
structs ProUBQ10:PDCD2E350K&ΔZF-HA was generated on basis of
ProUBQ10:PDCD2E350K-HA, and transformed into atprmt3-2 mutants to
generate PDCD2E350K&ΔZF-HA plants. The CDS region of PDCD2 amplified
from Col-0 cDNA was cloned to generate the ProUBQ10:PDCD2-GFP
constructs, and then transformed into Col-0 to generate PDCD2-GFP/
Col-0 plants. The primers used in this study are listed in Supplemen-
tary Table 2.

Freezing treatment assay
Twelve-day-old seedlings grown at 22 °C were treated with or without
cold acclimation (4 °C for 3 days), and then placed in freezing chamber
initially set at 0°C and gradually decreased by 1°C per hour until the
desired temperature. After freezing treatment, the plants were kept at
4 °C in dark overnight and then transferred to 22 °C for two or three
days. Finally, the survival rates of the seedlings were counted. The
germination rates of atprmt3chs doublemutants are affected, in order
to better calculate the survival rate, we replaced the ungerminated
seeds before freezing assay.

Polysome profile
Polysome profile was performed as previously described67. Briefly,
polysomeswereextracted from5 g twelve-day-old seedlings lysedwith
extraction buffer (0.2M Tris-HCl, pH 9.0, 0.025M EGTA, 0.2M KCl,
0.035MMgCl2, 1% Brij-35, 1% CA630, 1% Triton X-100, 1% Tween-20, 1%
sodium deoxycholate, 1% polyoxycholate 10 tridecyl ether, 1mM
PMSF, 5mM DTT, 50 μg/mL cycloheximide, 50μg/mL chlor-
amphenicol and 0.5mg/mL heparin). Then the supernatant was sepa-
rated by sucrose cushion buffer (0.4M Tris-HCl, pH 9.0, 0.2M KCl,
0.005MEGTA, 0.035MMgCl2 and 1.75M sucrose), ultracentrifuged at
115,510 g (70Ti rotor) for 18 h at 4 °C. The polysome pellet was resus-
pended in resuspension buffer (0.2M Tris-HCl, pH 9.0, 0.025M EGTA,
0.2MKCl, 0.035MMgCl2, 5mMDTT, 50μg/mL cycloheximide, 50μg/
mL chloramphenicol). A total of 3,500 OD260 units of the resuspen-
sion was separated by a linear 5–50% sucrose gradient, and ultra-
centrifuged at 213,669 g (SW-41Ti rotor) for 3 h at 4 °C. The samples
were then analyzed by Piston Gradient Fractionator by
monitoring OD254.

Northern blot
Briefly, 0.1 g twelve-day-old seedlings were used to extract total RNA
with TRIzol reagent (TIANGEN, DP405). 5μg total RNA was separated
on a 1.2% agarose/formaldehyde gel and transferred to Hybond N+

membrane (GE Healthcare). The γ-32P-ATP labeled DNA probes were
hybridized to the membrane. The membranes are exposed to a
phosphor screen (GE Healthcare), and then the signals are detected by
the Typhoon TRIO scanner (GE Healthcare).

Mass spectrometry (MS)
For the IP-MS analysis, the nuclear proteins from Col-0 were immu-
noprecipitated with anti-PDCD2 and anti-IgG antibodies, separated by
SDS-PAGE gel (GenScript, M00664), and subjected to Coomassie blue
staining. The proteins were then excised from the gel, subjected to in-
gel digestion, and the resulting solution was analyzed with MS.

For Data-independent Acquisition (DIA) MS analysis, the nuclear
protein from Col-0, atprmt3-2, and suppressor m20 with three biolo-
gical replicates were extracted, homogenized, and lysed in buffer
containing 8M urea, 0.1M Tris-HCl (pH 8.0), protease inhibitor. The
proteins were reduced with 10mM DTT for 2 h, followed by alkylated
with 20mM iodoacetamide in the dark for 30min. The protein solu-
tionwasdiluted 1:5with 50mMtriethylammoniumbicarbonate (TEAB)
and digested with trypsin (1:50) at 37 °C overnight. The digestion was
desalted on OASIS HLB column and peptides eluted with 60% acet-
onitrile were lyophilized via vacuum centrifugation.

The nanoLC-MS/MS experiments were performed on a Orbitrap
Eclipse equipped with Easy n-LC 1200 HPLC system (Thermo Scien-
tific). The MS analysis was performed with Orbitrap Eclipse mass
spectrometerwith the data-dependent acquisitionmode (for IP-MS) or
data-independent acquisitionmode (for DIA-MS). The IP-MS data were
analyzed with Proteome Discovery version 2.4.1.15 using Sequest HT
search engine for protein identification. The DIA raw data were ana-
lyzed using Spectronaut version 18 (Biognosys) with the “DirectDIA”
mode for protein identification and quantification. The Uniprot Ara-
bidopsis thaliana protein database was used for searching the data.
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Twomissed cleavages were allowed for searching. FDR < 1%was set for
both peptides and proteins identification. Proteins with P <0.05 and
fold change ≥ 1.5 were considered as differentially expressed.

Yeast-two-hybrid
The CDSs of PDCD2 and RPS2Bwere cloned into pGADT7 and pGBKT7
(Clontech) to generate AD-PDCD2 and BD-RPS2B, respectively. Yeast-
two-hybrid assay was performed according to the Matchmaker GAL4
Two-Hybrid System 3 (Clonetch). The constructs were transformed
into the yeast strain AH109, which were grown on SD/-Leu-Trp. Then
the transformants were selected on SD/-Leu-Trp-His-Ade. The primers
used in this study are listed in Supplementary Table 2.

Luciferase complementation assay
The CDSs of RPS2B and AtPRMT3 were cloned into the pCAMBIA-
split_nLUC vector, generating RPS2B-nLUC and AtPRMT3-nLUC; The
CDSs of PDCD2 were cloned into the pCAMBIA-split_cLUC vector, gen-
erating cLUC-PDCD268. Constructs were transformed into Agrobacter-
ium GV3101, and co-infiltrated into N. benthamiana leaves. The
luciferase activity was detected after two days with CCD imaging
apparatus (CHEMIPROHT 1300B/LND; Roper Scientific). The primers
used in this study are listed in Supplementary Table 2.

Bimolecular fluorescence complementation (BiFC)
The CDSs of AtPRMT3 and PDCD2 were cloned into the BiFC vector to
generate AtPRMT3-YFP-C and PDCD2-YFP-N, respectively69. Constructs
were transformed into Agrobacterium GV3101, and co-infiltrated into
N. benthamiana leaves with different combinations. The leaves were
analyzed by fluorescencemicroscope after two days. The primers used
in this study are listed in Supplementary Table 2.

RNA fluorescence in situ hybridization (RNA-FISH)
RNA FISH was carried out according to the protocol previously
described70. Briefly, 7-day-old seedlings were fixed in 4% methanol-free
formaldehyde (Thermo Fisher Scientific, UK) for 30mins and then
washed three times with 1 × PBS before being squashed. Then the roots
were left to dry for 1 h before being immersed in 70% ethanol for 1 h.
Samples were then equilibrated with freshly prepared 10 % (v/v) deio-
nized formamide (Thermo Fisher Scientific, UK) Stellaris RNA FISHWash
Buffer A (LGC Biosearch Technologies, CA, USA) for 5min. The probes
diluted in deionized formamide Stellaris Hybridization Buffer (LGC Bio-
search Technologies, CA, USA) were added to each slide, and incubated
overnight at 37 °C in the dark. Unbound probes were removed by incu-
bation with Wash Buffer A for 30min at 37 °C. And 4ʹ,6-diamidino-2-
phenylindole (DAPI) was then applied at 37 °C for 30min. After removal
of DAPI, Wash Buffer B (LGC Biosearch Technologies, CA, USA) was
applied to each slide and left for five mins at room temperature. After
removal, ~20 µL anti-fademountingmedia VECTASHIELDwas added and
a No.1 coverslip (VWR, UK) was then applied to each sample then sealed
using CoverGrip (Biotium, CA, USA). Finally, the samples were imaged
with ZEISS Elyra 7 inverted super-resolution microscope. The probes
used in this study are listed in Supplementary Table 2.

Quantitative real-time PCR (qRT-PCR)
TheRNAswere reverse transcribedwith 5×All-In-OneMasterMix (ABM,
G592). Then qRT-PCR was performed using ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Q711-02). The specific primers used in this
study are listed in Supplementary Table 2.

Ribo-seq and RNA-seq library construction
Ribo-seq library was constructed as previously described71. Briefly,
0.1 g twelve-day-old seedlings powder were lysed with 0.2mL buffer D
(100mM Tris-HCl (pH 8.0), 40mM KCl, 20mM MgCl2, 2% poly-
oxyethylene (10) tridecyl ether (v/v), 1% deoxycholic acid (w/v), 1mM
DTT, 100μg/mL cycloheximide, and 10 unit/mL DNase I). The lysate

was incubated on ice for 30min, and then clarified at 13,000 g for
15min at 4 °C. A 100 µL aliquot of the supernatant was treated with
RNase I (Ambion, AM2294) at 23 °C for 1 h, and the reaction was
stopped by adding SUPERase•In™ RNase inhibitor (Invitrogen,
AM2694). The ribosome-protected fragments were isolated with
MicroSpin S-400 HR Columns (GE Healthcare, 27514001). Following
RNA isolation and rRNA depletion, the ribosome-protected RNAs
(28–32 nt) were separated by a denaturing gel. The Ribo-seq libraries
were constructed using NEBNextMultiplex Small RNA Library Prep Set
for Illumina (New England Biolabs, E7330). Libraries were pooled for
150 bp paired-end sequencing in a NovaSeq 6000 platform by Anno-
road Gene Technology Company in Beijing, China. Another 100 µL
aliquot of the supernatant was used to extract total RNA with TRNzol
Reagent (TIANGEN, DP405). Total RNA was purified with Dynabeads®
mRNA Purification Kit (Invitrogen, 61006). After RNA fragmentation,
the RNAwas subjected to strand-specific RNA-seq library construction
with MGIEasy RNA Directional Library Prep Kit. Sequencing was con-
ducted on the DNBSEQ-T7 platform with 150bp paired-end reads in
The Beijing Genomics Institute (BGI).

Bioinformatics analysis
The bioinformatic analysis was modified from Xu et al.38. Adapter
sequence was trimmed by Cutadapt72, then rRNA and tRNA were
removed from the ribo-seq reads by Bowtie273. Cleaned reads were
mapped to Arabidopsis TAIR10 reference genome by Tophat274. Fold
changes were calculated using DESeq275. Genes with FDR values less
than 0.05 and fold change over 1.5 were identified as differentially
expressed genes. Genes with RPKM ≥ 1 in Ribo-seq and FPKM ≥ 1 in
RNA-seq were kept for the calculation of translational efficiency. The
translational efficiency was calculated as the ratio between RPKM in
the Ribo-seq and that of FPKM in the RNA-seq, genes with fold change
of TE ≥ 1.5 were identified as differentially expressed.

Anthocyanin detection
Twelve-day-old seedlings were ground into powder and lysed in five
volumes (5× fresh weight, F.W.) Extraction Buffer (containing 45%
methanol and 5% acetic acid). The supernatant was clarified by cen-
trifuging at 13,000 g for 5min at room temperature for twice. The
relative level of anthocyanin was calculated by the absorbance at
530nm and 657 nm76.

Statistics & reproducibility
Statistical analysis was performed by GraphPad Prism 8.0. Two groups
were analyzed by two-sided unpaired Student’s t-test. Three or more
groups were analyzed by One-way ANOVA with Dunnett’s multiple
comparisons test. Data was presented as mean values ± SD. P value <
0.05 was considered as significant difference. No data was excluded
from the analyses. Details of the biological replicates were provided in
figure legends wherever necessary.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data have been deposited in the Genome Sequence
Archive in National Genomics Data Center, Beijing Institute of
Genomics, Chinese Academy of Sciences under accession code
CRA013783. The mass spectrometry proteomics data have been
deposited in the ProteomeXchangeConsortium via the iProX partner
repository with the dataset identifier PXD055607 and PXD055608
(http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD055607; http://proteomecentral.proteomexchange.org/cgi/
GetDataset?ID=PXD055608). Source data are provided with
this paper.
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