
Article https://doi.org/10.1038/s41467-024-52970-7

A subpellicular microtubule dynein
transport machinery regulates ookinete
morphogenesis formosquito transmissionof
Plasmodium yoelii

Bing Liu1,4, Cong Liu2,4, Zhenkui Li3,4, Wenjia Liu 1, Huiting Cui 1 &
Jing Yuan 1

The cortical cytoskeleton of subpellicular microtubules (SPMTs) supports the
Plasmodium ookinete morphogenesis during mosquito transmission of
malaria. SPMTs are hypothesized to function as the cytoskeletal tracks in
motor-driven cargo transport for apical organelle and structure assembly in
ookinetes. However, the SPMT-based transport motor has not been identified
in the Plasmodium. The cytoplasmic dynein is the motor moving towards the
minus end ofmicrotubules (MTs) and likely be responsible for cargo transport
to the apical part in ookinetes. Here we screen 7 putative dynein heavy chain
(DHC) proteins in the P. yoelii and identify DHC3 showing peripheral locali-
zation in ookinetes. DHC3 is localized at SPMTs throughout ookinete mor-
phogenesis. We also identify five other dynein subunits localizing at SPMTs.
DHC3disruption impairs ookinete development, shape, andgliding, leading to
failure in mosquito infection of Plasmodium. The DHC3-deficient ookinetes
display defective formation or localization of apical organelles and structures.
Rab11A and Rab11B interact with DHC3 at SPMTs in a DHC3-dependent man-
ner, likely functioning as the receptors for the cargoes driven by SPMT-dynein.
Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in ookinete mor-
phogenesis. Our study reveals an SPMT-based dynein motor driving the
transport of Rab11A- and Rab11B-labeled cargoes in the ookinete morpho-
genesis of Plasmodium.

Malaria remains a global infectious disease caused by unicellular
apicomplexan protozoa of the genus Plasmodium, resulting in
627,000 deaths globally in 20221. Malaria transmission relies on
successful infection and development of Plasmodium in the female
Anopheles mosquito vector. Once entering the mosquito midgut

after a bloodmeal, gametocytes are quickly activated to gametes that
fertilize to form the zygotes. Within 12–24 h, a spherical zygote
undergoes remarkable morphogenesis to differentiate into a cres-
cent ookinete2–4. Only mature ookinetes are capable of gliding and
traversing the mosquito midgut wall to colonize at the basal lumen
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where thousands of sporozoites develop within an oocyst for para-
site transmission5.

The invasive “zoite” stages of apicomplexan organisms, including
the Plasmodium ookinete, sporozoite, and merozoite, as well as the
Toxoplasma gondii tachyzoite, are morphologically polarized and
possess a unique cortical pellicle underneath the parasite plasma
membrane6,7. From outside to inside, the pellicle consists of a double-
membrane organelle inner membrane complex (IMC) and a cytoske-
leton layer of apically radiating subpellicular microtubules (SPMTs),
both of which associate with each other and span along the periphery
of the zoite parasites6,7. Variable numbers of SPMTs are assembled in
different zoite stages of Plasmodium, around 60 SPMTs in ookinetes8,
11–16 SPMTs in sporozoites9–11, and 1–9 SPMTs in merozoites8,11,12.
Applying ultrastructure expansion microscopy (U-ExM), Bertiaux and
Qian observed a super-high resolution cytoskeleton of SPMTs in the
ookinetes of P. berghei and P. yoelii8,13. Besides SPMTs, the invasive
zoites of apicomplexanparasites possess a highly specialized structure
called the apical polar ring (APR) at the cell apical cortex. APR is
recognized as an electron-lucent region beneath the apical IMC11,14,15,
and resembles a cap-like structure in the transmission electron
micrograph of the ookinetes11,16. Since the minus-ends of all SPMTs
emanate from APR, it is believed that APR functions as a microtubule-
organizing center (MTOC) for nucleating SPMTs at the Plasmodium
zoites7,17,18. In Plasmodium, the SPMT cytoskeleton functions as a
scaffold supporting parasite morphogenesis4, maintaining the polar-
ized cell shapes9 and providing parasite rigidity during gliding and
invasion19. Another possible role of SPMTs is for docking the apical
secretory organelles19, whose protein secretion mediates through a
putative apical gateway for parasite gliding and invasion. So far, the
roles of SPMTs in the invasive zoites of apicomplexan parasites remain
incompletely understood.

The Plasmodium zygote to ookinete morphogenesis is orche-
strated by two cellular processes, one is the ookinete growth via apical
protrusion-elongation-maturation, and the other is the zygote con-
traction. In the process of ookinete growth, the parasite undergoes
massive expansion of the plasma and cortex membrane. In addition,
the ookinete acquires a complete set of apical organelles and struc-
tures via de novo assembly. IMC is assembled at the apical site of the
initial protrusion and extends along the expanding plasma membrane
to the basal end. After biogenesis, APRnucleates the assemblyof apical
SPMTs underling the IMC. Meanwhile, the apical tubulin ring (ATR),
another compacted structure of MTs, emerges at the apex of ooki-
netes. Up to ookinete maturation, a number of the secretory organelle
micronemes are distributed apically for protein secretion via exocy-
tosis through the apex gateway. While the IMC, SPMT, APR, ATR, and
microneme are essential for either development, gliding, or midgut
invasion of ookinetes, the mechanisms for de novo assembly of these
organelles and structures at the apical distal area are largely unknown.

Each apical organelle and structure contains a distinct set of
component proteins20, all of which must find the way after synthesis
from ER-Golgi near the nucleus to be delivered to the apical end of the
ookinetes. In eukaryotes, intracellular cargoes like organelles, vesicles,
proteins, and other molecules are trafficked by molecular motors that
track along MTs or actin filaments throughout the cytoplasm21. MTs
are polarized polymer structures with a minus end and a plus end22,23.
The MT-based molecular motors, dynein (minus-end-directed) and
kinesin (primarily plus-end-directed) are responsible formany types of
intracellular transport24,25. As the retrograde motor, the cytoplasmic
dynein is the principal motor in the cytoplasm26, while the axonemal
dynein specifically drives the beating of flagellar and cilia27. Therefore,
we hypothesize that besides playing a cytoskeleton role, the apically
radiating SPMTs may function as the tracks for the apical transport of
cargoes containing the contents required for the assembly of apical
organelles and structures in the ookinetes7. In this scenario, the cyto-
plasmic dynein could be the primarymotormoving towards theminus

end of SPMTs for cargo transport to the apical distal area of ookinetes.
However, the SPMT-based dynein transport machinery has not been
identified in Plasmodium. Cytoplasmic dynein is a large multi-subunit
protein complex, and the core is a homodimer of two heavy chain
subunits (DHCs) interacting with intermediate, light intermediate, and
light chain subunits25.

Here we screen the putative DHC genes in the genome of rodent
malaria parasite P. yoelii. We identify the core subunit DHC3 and other
subunits of dynein showing co-localizing with SPMTs in the ookinete.
In-depth phenotypical and functional analyses demonstrate that
SPMT-based dynein plays an essential role in ookinetemorphogenesis,
shape, and gliding motility. In addition, we find that two small GTPase
proteins Rab11A and Rab11B may function as the receptors for the
vesicle cargoes driven by SPMT-dynein. This study confirms the exis-
tence of the SPMT-based cytoplasmic dynein motor in the ookinetes
and reveals its importance in intracellular cargo transport in ookinete
morphogenesis.

Results
Protein screening identifies a subpellicular dynein heavy chain
DHC3 in ookinetes of P. yoelii
Each dynein contains at least one dynein heavy chain (DHC) and other
subunits including the intermediate chain (IC), light intermediate
chain (LIC), and light chain (LC)28. There are 7 genes encoding putative
DHC proteins from the PlasmoDB database of the Plasmodium para-
sites. In the rodent malaria parasite P. yoelii, they are PY17X_0418900
(dhc1), PY17X_0618400 (dhc2), PY17X_0215400 (dhc3),
PY17X_0508400 (dhc4), PY17X_0927400 (dhc5), PY17X_0603800
(dhc6), and PY17X_1333900 (dhc7) (Fig. 1A). These proteins range in
size from 5063 to 6473 amino acids and are conserved among Plas-
modium species. So far, the cytoplasmic and axonemal types of these
DHCs remained undefined. To search for the potential SPMT-based
cytoplasmic dynein in the ookinetes (Fig. 1A), we analyzed the
expression and localization of these proteins in P. yoelii. Each genewas
tagged with a sextuple HA epitope (6HA) at the C-terminus in the
17XNL strain using CRISPR-Cas929,30. These 6HA-tagged parasite lines
showed normal asexual blood stage proliferation and gametocyte
differentiation in mice, suggesting that the addition of 6HA did not
affect parasite viability. We next investigated the expression of these
DHCs during the life cycle of the parasite. Immunofluorescence assay
(IFA) showed that all these 7 DHCs displayed no detectable expression
in the asexual blood stages (Fig. S1A). Only DHC3 was expressed in
female gametocytes, ookinetes, and sporozoites (Fig. 1B and
Fig. S1A–D). Other 6 DHCs (DHC1, DHC2, DHC4, DHC5, DHC6, and
DHC7) were specifically expressed in male gametocytes (Fig. S1A–C).
Notably, DHC3was evenly distributed along theperipheryof ookinetes
(Fig. 1B), suggesting the existence of SPMT-based dynein in the ooki-
netes. Two parasite lines dhc3::3V5 and 4Myc::dhc3 were generated
with endogenous DHC3 tagged with 3V5 at the C-terminus and with
4Myc at the N-terminus, respectively. Both DHC3::3V5 and
4Myc::DHC3 proteins displayed similar localization at the ookinetes
(Fig. 1C, D). To visualize DHC3 localization in living ookinetes, we
generated a parasite line, dhc3::mScarlet, with DHC3 C-terminally tag-
ged with a red fluorescence protein mScarlet. The mScarlet-tagged
DHC3 was also distributed along the periphery of ookinetes (Fig. 1E).
These results suggested the existence of the SPMT-based cytoplasmic
dynein in the ookinetes and DHC3 is likely a subunit of the dynein
complex.

We analyzed the localization of DHC3 relative to proteins known
to be expressed within specific localizations in ookinetes. We engi-
neered parasite clones with additional proteins tagged with quadruple
Myc epitope (4Myc) or triple V5 epitope (3V5) from the dhc3::6HA
parasite. These proteins included P28 (plasma membrane), GAP45
(IMC) [14], MyosinB and SAS6L (apical tubulin ring, ATR)31,32, APR2
(apical polar ring, APR)13, GCβ (ookinete extrados site, OES)33, and
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CTRP and chitinase (microneme)34–36 (Fig. 1F). Among these proteins,
P28 and GAP45 showed overlapping signals with DHC3, further sup-
porting the peripheral localization of DHC3 in the ookinetes (Fig. 1F).

DHC3 associates with SPMTs throughout ookinete
morphogenesis
To investigate the localization dynamics of DHC3 during ookinete
morphogenesis (see the schematic in Fig. 2A), we collected the para-
sites in different stages from in vitro dhc3::6HA ookinete cultures. IFA
showed that DHC3 was distributed in the cytoplasm in the zygote
(stage I),moved to the periphery of the protrusion part from stage II to

stage IV, and completely located at the periphery of mature ookinetes
(stages V) (Fig. 2A and Fig. S2A). We described the periphery locali-
zation level of DHC3 by quantifying fluorescent signals at the periph-
ery over the whole cell (Fig. 2B). DHC3 in the 4Myc::dhc3 parasites
displayed similar localization dynamics (Fig. 2A, B). The localization
dynamics of DHC3 are similar to that of SPMTs in the ookinete mor-
phogenesis of P. berghei and P. yoelii8,13.

Next, we investigated whether the peripherally localizing DHC3
associates with the SPMTs. First, co-immunostaining of DHC3 (HA tag)
and SPMT (α- and β-Tubulin) in the dhc3::6HA parasites detected per-
ipheral co-localization of DHC3 with SPMTs in the protrusion and
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Fig. 1 | Protein screening identifies a subpellicular dynein heavy chain DHC3 in
ookinetes of P. yoelii. A A diagram showing the subpellicular microtubules
(SPMTs, green) in the ookinetes and the potential SPMT-based cytoplasmicdynein.
The dynein complex is composed of a pair of six different subunits, including one
heavy chain (violet), one intermediate chain (orange), one light intermediate chain
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plus end of the SPMTs is indicated as “+” and the minus end as “−”. Seven genes
encoding putative dynein heavy chain protein in the P. yoelii are shown (lower
panel).B IFA of seven DHC proteins expression in the ookinetes. Each endogenous
protein was C-terminally fused with a 6HA in the P. yoelii 17XNL strain and seven
modified parasite lines were generated. Hst: DNA dye Hoechst 33342. Three
independent experiments. Scale bars: 5μm. C IFA of 3V5-tagged DHC3 in the

ookinetesof the dhc3::3V5parasite line. Three independent experiments. Scale bar:
5μm.D IFA of 4Myc-tagged DHC3 in the ookinetes of the 4Myc::dhc3 parasite line.
Three independent experiments. Scale bar: 5μm. E Fluorescence microscopy
observation of mScarlet-tagged DHC3 in living ookinetes of the dhc3::mScarlet
parasite line. Three independent experiments. Scale bars: 5 μm. F Co-localization
analysis by IFA for DHC3with proteins of known cellular localizations in ookinetes.
P28 (plasma membrane, PM), GAP45 (inner membrane complex, IMC), MyosinB
and SAS6L (apical tubulin ring, ATR), APR2 (apical polar ring, APR), GCβ (ookinete
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or 3V5. P28, GAP45, chitinase, and CTRP were detected using the antiserum. Three
independent experiments. Scale bars: 5μm.
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cytoskeleton association analysis of DHC3. The left panel is a diagram showing the
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ookinetes were treated with the ionic detergent sodium deoxycholate (SDC), and
DHC3 (HA) and SPMTs (α- and β-Tubulin) were analyzed via IFA in the dhc3::6HA
ookinetes and ookinete ghosts. Three independent experiments. Scale bars: 5 μm.
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immunoprecipitated with Myc-tagged DHC3 in the 4Myc::dhc3 ookinetes. Co-
immunoprecipitation was conducted using the anti-Myc antibody. BiP as the
loading control. Two independent experiments. Source data are provided as a
Source Data file.
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elongation processes of ookinetes (Fig. 2C, D). Second, we isolated the
heavy fraction (includingpelliclemembrane and cytoskeleton) and light
fraction (including cytoplasm) from the ookinetes extracts of different
stages (3, 6, and 12 h) after hypotonic lysis, and showed thatDHC3could
be detected in light fraction from early stages, but in heavy fraction of
mature ookinetes (Fig. 2E), implying DHC3 association with cytoskele-
ton in mature ookinetes. Third, proximity ligation assay (PLA), an
immunohistochemical method analyzing protein interaction with high
specificity and sensitivity37, detected PLA signals at the cell periphery of
the ookinetes in dhc3::6HA parasites but not in 17XNL and 4Myc::dhc3
parasiteswhenboth anti-α-/β-Tubulin and anti-HAantibodieswere used
(Fig. 2F), indicating proximity between DHC3 and SPMTs. Fourth, we
analyzed the association of DHC3 in the ookinete ghost after extraction
with the ionic detergent sodium deoxycholate (SDC) (Fig. 2G), which
was used for isolating SPMT cytoskeleton in the T. gondii and P.
yoelii38,39. In SDC-treated dhc3::6HA ookinetes, the pellicle membranes
(PM and IMC) were largely depleted (Fig. S2B). However, DHC3
remained co-localized with SPMTs (Fig. 2G), indicating a close associa-
tion with ookinete ghost. Fifth, co-immunoprecipitation (Co-IP) with
anti-HA or anti-Myc antibodies indicated that DHC3 binds to Tubulin
both in the dhc3::6HA and 4Myc::dhc3 ookinete lysates (Fig. 2H, I).
Together, these pieces of evidence indicate that DHC3 associates with
SPMTs during ookinete morphogenesis.

We attempted to investigate dyneinmovement along the SPMTs in
living ookinetes of the dhc3::mScarlet parasites (Fig. 1E). However,
visualization of DHC3::mScarlet moving at the molecular level in the
living ookinetes was not successful due to weak signal of endogenous
protein and limit in the spatial-temporal resolution of the confocal
microscopy. Instead, we used fluorescence recovery after photobleach-
ing (FRAP) and found that the fluorescent signal of DHC3::mScarlet
recovered within seconds in the periphery of the dhc3::mScarlet ooki-
netes after photobleaching (Fig. S2C). These results suggested that
DHC3 is not localizing in a relatively fixed position at the periphery,
consistent with its property as a motor moving dynamically along MT.

Ultrastructure expansion microscopy (U-ExM) of DHC3 asso-
ciation with SPMTs
To observe the peripheral localization of DHC3 in more detail, the
dhc3::6HA ookinetes were physically expanded and imaged using
U-ExM8,13. Approximately sixty DHC3::6HA-labeled fibers were evenly
distributed fromthe apical to the basal endof the ookinetes (Fig. 3A). A
similar localization of 4Myc::DHC3 was observed in the 4Myc::dhc3
ookinetes under U-ExM (Fig. 3B). To further analyze the relative loca-
lization of DHC3 in the pellicle, the 4Myc::dhc3 ookinetes were co-
stained with an anti-Myc antibody and protein NHS-ester dye (NHS)14.
Under U-ExM, 4Myc::DHC3 was closely underneath the apical pellicle
indicated by NHS signal in later-stage ookinetes (Fig. S3A). This loca-
lizationpatternof DHC3 completely resembled the SPMTsdistribution
in the ookinetes8,13. Therefore, we investigated the localization relation
of DHC3 and SPMTs in the dhc3::6HA parasites from 3- and 12-h in vitro
ookinete culture by U-ExM. The parasites were co-stained with anti-α/
β-Tubulin and anti-HA antibodies. In early ookinetes showing minor
protrusion, DHC3overlappedwith the initially assembled SPMTs in the
apical part, although both DHC3 and α/β-Tubulin were mostly dis-
persed at the cytoplasm (Fig. 3C and Fig. S3B). DHC3 showed no signal
at thenuclear spindleMTs (Fig. 3C). Inmature ookinetes,DHC3was co-
localized with SPMTs along their entire length (Fig. 3C, Fig. S3B, C). In
addition, detailed images in Fig. 3C showed that the apical tubulin ring
(ATR), a compacted structure of MTs at the apex of ookinetes, was not
labeled with DHC3. Therefore, DHC3 associates specifically with
SPMTs during ookinete development.

The microtubule-binding domain (MTBD), a globular fragment of
80-130 amino acids in the stalk tip, is responsible for theMTbinding of
DHC40,41 (Fig. 3D). To further validate the association of DHC3 with
SPMTs, we deleted the MTBD and investigated the effect on the SPMT

localization of DHC3. In the P. yoelii, theMTBD (3559-3648 amino acid)
is located between the AAA4 and AAA5 of the pseudohexameric ring
composed of 6 ATPase modules (Fig. 3D). We used CRISPR-Cas9 to
delete the genomic sequences encoding MTBD of DHC3 in the
dhc3::6HA parasite and obtained a mutant line designated as ΔMTBD.
Removal of MTBD had little effect on the protein level of DHC3 in the
gametocytes (Fig. 3E), however, ΔMTBD showed reduced formation of
mature ookinetes compared to the parental line (Fig. 3F). The trun-
cated DHC3 lost the peripheral localization in the ΔMTBD ookinetes
(Fig. 3G). To visualize the DHC3 localization relative to SPMTs at a
higher resolution, the parasites were co-stained with antibodies
against HA and Tubulin polyglutamylation (PolyE), a marker for the
stabilized MT8,13. U-ExM indicated that PolyE antibody specifically
labeled the apical assembled SPMTs, but not the cytoplasmic Tubulins
in early ookinetes of the dhc3::6HA line (Fig. 3H). The MTBD-truncated
DHC3 lost SPMT localization and dispersed at the cytoplasm in the
early and later stages of ookinetes (Fig. 3H). Therefore, the MTBD
contributes to the SPMT binding of DHC3.

Component subunits of the SPMT-dynein complex in ookinetes
Cytoplasmic dynein comprises six subunits (Fig. 4A), including one
HC, one IC, one LIC, and three LCs (Robl, LC8, and Tctex)42. We sought
to identify all the subunits of SPMT cytoplasmic dynein in the ooki-
netes. In the P. yoelii genome, one putative dynein IC gene
(PY17X_0505600), oneputative dynein LIC gene (PY17X_0417700), and
12 putative dynein LC genes are encoded (Fig. S4A). These 14 proteins,
conserved in human and rodent Plasmodium species, have not been
investigated for expression and localization. We tagged each of these
candidate proteins with a 6HA at the C-terminus in the 17XNL using
CRISPR-Cas9 and analyzed their expression and localization in ooki-
netes. IFA of the tagged parasite clones showed that five proteins (LIC,
PY17X_0417700; IC, PY17X_0505600; three LCs, PY17X_0505400,
PY17X_1431600, and PY17X_0831600) were localized at the periphery
of ookinetes (Fig. S4B). In addition, these five proteins displayed
similar localization dynamics during ookinetemorphogenesis asDHC3
(Fig. S4C) andwere not detected in the asexual blood stages (Fig. S4D).
To confirm the co-localization of these candidate subunits with DHC3,
we engineered parasite clones with each of these five proteins tagged
with a 6HA from the 4Myc::dhc3 parasite and obtained five double-
tagged parasite lines. Two-colored IFA showed thesefive proteinswere
co-localized with DHC3 in the periphery of ookinetes (Fig. 4C). To
visualize the association of the protein with SPMTs in more detail, the
ookinetes were stained with antibodies against HA and α/β-Tubulin
and imaged by U-ExM. These subunits (LIC, IC, Robl, LC8, and Tctex)
showed complete co-localization with SPMTs in the ookinetes
(Fig. 4D). It is noted that these five subunits showed no signal at the
ATR (Fig. 4D), consistent with the results of DHC3. These pieces of
evidence indicate that the SPMT-based cytoplasmic dynein complex is
composed of DHC3, LIC, IC, and three LCs (Robl, LC8, and Tctex).

DHC3 is required in ookinete morphogenesis for mosquito
midgut infection
To elucidate the function of DHC3 in the life cycle of the parasite, we
deleted a 1.0 kb genomic sequence at the coding region (15.3 kb) of
dhc3 in the 17XNL (wild type or WT) using CRISPR-Cas9 (Fig. 5A). The
deletion caused a frameshift for the remaining coding sequence. Two
independent mutant clones Δdhc3 sc1 and sc2 were obtained. Both
clones exhibited comparable levels of 17XNL in asexual blood stage
proliferation (Fig. S5A) and gametocyte formation inmice (Fig. 5B). To
evaluate the role of DHC3 in parasite development in mosquitoes,
Anopheles stephensi mosquitoes were fed on the parasite-infected
mice. Both mutant clones produced no midgut oocyst on day 7 post-
infection (pi) (Fig. 5C) and no sporozoite in the salivary glands on day
14 pi (Fig. 5D). Consistently no transmission of parasite from mosqui-
toes to mice was observed (Fig. 5E). To confirm the parasite
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transmission defects in mosquitoes were caused by DHC3 deficiency,
we introduced the deleted fragment fused with a 4Myc back into the
dhc3 locus of Δdhc3 sc1 (Fig. 5A). The complemented line comp
restored the expression of 4Myc-taggedDHC3 in gametocytes (Fig. 5F)
and the formation of oocysts and sporozoites in mosquitoes
(Fig. 5G, H).

Next, we delineated the developmental step(s) affected by DHC3
deficiency between gametocyte and oocyst stages. The Δdhc3 showed
normal gamete formation and fertilization in vitro (Fig. S5B–D) and
developed from diploid to tetraploid during ookinete development
(Fig. S5E, F). GAP45 staining showed that DHC3 deletion had less effect
on the IMC assembly in the Δdhc3-defective ookinetes (Fig. S5G).
However, the in vitro assay for zygote to ookinete differentiation

revealed that Δdhc3 had a dramatic decrease in ookinete formation
(59% in 17XNL, 14% in Δdhc3, and 53% in comp) (Fig. 5I). We isolated
ookinetes from infected mosquito midguts and detected similar
defects of Δdhc3 in vivo (Fig. 5J). Time-course analysis revealed that
DHC3 deficiency caused developmental arrestment mainly at stages I
and II, and a small proportion of parasites developed into mature-
looking ookinetes (Fig. 5K). The defective morphology of the Δdhc3
ookinetes was also observed under scanning electron microscopy
(SEM) (Fig. 5L). Compared to the 17XNL ookinetes with characteristic
crescent shapes, the mature-looking ookinetes of Δdhc3 lost cell
bending (Fig. 5M).We further assessed the gliding activity of ookinetes
in vitro and found that the mature-looking ookinetes of Δdhc3 dis-
played a significantly reduced gliding speed (17XNL: 8.4 ± 1.7μm/min,
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n = 24; Δdhc3: 0.3 ± 0.2μm/min, n = 20) (Fig. 5N). Since ookinete
development, shape, and gliding were impaired, we speculated that
the Δdhc3 parasites may fail to traverse the mosquito midgut. To test
this, the midguts from infected mosquitoes were dissected at 24 hpi
and visualized after staining with an antibody against P28 (parasite
plasmamembrane protein in ookinete and early oocyst). The numbers
of P28-positive parasites were significantly reduced in the Δdhc3-
infected midguts (parasites per mosquito: 122 ± 71 in 17XNL, n = 38;
3 ± 6 inΔdhc3, n = 36) (Fig. 5O). These results demonstrated that DHC3

regulates ookinete development, shape, and gliding for mosquito
midgut infection of the parasite.

Defective apical structures in ookinetes of the DHC3-deficient
parasites
The ookinetemay use the SPMT-dynein to deliver cargoes from the cell
body to the apical distal area for de novo assembly of the IMC, APR,
ATR, or micronemes. We therefore investigated the formation of the
apical organelles and structures in the ookinetes of the DHC3-deficient
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parasites. Transmission electron microscopy (TEM) revealed an aber-
rant apical part in early- and later-arrested ookinetes of Δdhc3 com-
pared to 17XNL. Intact IMCat the apical pelliclewasdetectedunderlying
the plasmamembrane in both 17XNL and Δdhc3 ookinetes (Fig. 6A and
Fig. S6), which is consistent with ookinete staining with GAP45 in
Fig. S5G. These results suggest that DHC3 disruption had little effect on
the IMC formation. In TEM micrographs of 17XNL ookinetes, APR is
adjoined with apical IMC (Fig. 6A and Fig. S6). However, APR appeared
posteriorly at a distance from the apical IMC in the Δdhc3 ookinetes
(Fig. 6AandFig. S6), suggestingAPRdetachment fromthe apical IMC. In
addition, the detached APR appeared structurally defective (Fig. 6A and
Fig. S6). U-ExM analysis of ookinetes after staining with NHS-ester dye
also revealed the impaired APR in the Δdhc3 ookinetes (Fig. S7A). To
visualize the defects of APR in more detail, we deleted the dhc3 gene in
twoparasite linesapr2::4Mycandara1::4Myc13, inwhich theAPRproteins
APR2 and ARA1 were tagged with a 4Myc. In both mutant parasites
apr2::4Myc;Δdhc3 and ara1::4Myc;Δdhc3, most of the defected ooki-
netes retained the apical localization of APR2 and ARA1. However, the
IFA signals of APR2 (Fig. 6B, C) and ARA1 (Fig. 6D, E) were decreased in
the ookinetes of the mutant compared to the parental line (Fig. 6C, E).
U-ExM further confirmed the impaired APR in the later-arrested ooki-
netes of apr2::4Myc;Δdhc3 (Fig. S7B).

Detailed images of TEM revealed that the apical tubulin ring
(ATR), an MT structure at the apical extremity of ookinetes, was not
detected in early- and later-arrested ookinetes of Δdhc3 compared to
17XNL (Fig. 6A and Fig. S6).U-ExMconfirmed the absenceof ATR in the
Δdhc3 ookinetes after α/β-Tubulin staining (Fig. 6F). To further test
this, we deleted the dhc3 gene in the parasite line myosinb::4Myc13, in
which the ATR-localizing protein MyosinB was tagged with a 4Myc.
Apical localization of MyosinB was lost in defective ookinetes of the
mutant myosinb::4Myc;Δdhc3 compared to the parental line (Fig. 6G),
which is consistent with the results of TEM and U-ExM.

ExM images of α/β-Tubulin in Fig. 6F also detected defects of
apical SPMTs, many of which lost cortical attachment and were dis-
orderly scattered in the Δdhc3 ookinetes. Disturbed pellicle attach-
ment of apical SPMTs may result from the impaired APR, which
directs the assembly of SPMTs and stabilizes the SPMTs in the
ookinetes13. Consistently, we noticed a marked decrease of apical
micronemes in ookinetes of the Δdhc3 compared to 17XNL, where
most of the micronemes are apically localized (Fig. 6A,
Figs. S6 and S7C). We analyzed the microneme protein secretion by
immunoblot and found that themicroneme-secreted proteins CTRP,

chitinase, and WARP were reduced in the ookinete culture super-
natants of Δdhc3 compared to 17XNL (Fig. S7D, E). Therefore, DHC3
disruption also affects the apical formation or localization of SPMTs
and micronemes.

Small GTPases Rab11A and Rab11B co-localize and interact
with DHC3
Small GTPases of the Rab family participate in cargo transport via
vesicle trafficking in the eukaryotes43,44. A recent study demonstrated
the essential role of Rab11A in the P. berghei ookinete development45.
Knockdown of rab11a via promoter swap strategy inhibited ookinete
development, and most of the ookinetes failed to elongate after
protrusion45. The Rab11A-deficient defects resembled the phenotype
of the DHC3 null parasite, prompting us to explore the potential
association between Rab proteins and DHC3 in ookinete development
(Fig. 7A). Plasmodium encodes eleven Rab proteins. Among them,
Rab1A, Rab7, Rab11A, Rab11B, and Rab18 displayed relatively high
levels of transcripts in gametocytes from previous transcriptome
profiles46 (Fig. 7B). We investigated the expression and localization of
these five Rab proteins in the ookinetes. Since the C-terminal mod-
ification of Rab would inactivate the protein47, we failed to tag the
endogenous protein at the C-terminus after several attempts. Alter-
natively, the expression cassettes of rab geneswere integrated into the
p230p locus using CRISPR-Cas9 in the dhc3::6HA parasite for trans-
genic overexpression. Each gene was tagged with a 4Myc at the
N-terminus and driven by the hsp70 5′-UTR and the dhfr 3′-UTR. Five
double-tagged parasite lines (dhc3::6HA;4Myc::rab1a, dhc3::6HA;4My-
c::rab7, dhc3::6HA;4Myc::rab11a, dhc3::6HA;4Myc::rab11b, and
dhc3::6HA;4Myc::rab18) were obtained (Fig. 7C). IFA showed that
Rab11A and Rab11B were primarily distributed at the periphery and co-
localizedwith DHC3 in ookinetes of the dhc3::6HA;4Myc::rab11a (DTS1)
and dhc3::6HA;4Myc::rab11b (DTS2) lines, respectively (Fig. 7C). Rab1A,
Rab7, and Rab18 appeared to be cytoplasmic (Fig. 7C). Rab11A locali-
zation is in agreementwith that of Rab11A detected by antiserum in the
P. berghei ookinete45. Time-course analysis of ookinete development
showed that Rab11A and Rab11B displayed similar localization patterns
as DHC3 (Fig. S8A, B).

Peripheral co-localization with DHC3 suggested that Rab11A
and Rab11B associate with dynein along the SPMTs. Consistent with
this, U-ExM observed co-localization of Rab11A and Rab11B with
SPMTs in mature ookinetes after staining with anti-α/β-Tubulin and
anti-Myc antibodies (Fig. 7D). Detailed images also showed that

Fig. 5 | DHC3 is required in ookinete morphogenesis for mosquito midgut
infection. A Diagram showing genetic deletion and complementation of the dhc3
gene using CRISPR-Cas9. The N-terminus 1.0 kb coding sequence of dhc3 was
deleted in the 17XNL strain, generating two mutant clones Δdhc3 sc1 and sc2. The
Δdhc3 sc1 was complemented by introducing the deleted sequence of the dhc3
gene fusingwith anN-terminal 4Myc, generating the complementation clone comp.
UTR, untranslated region. B Gametocyte formation in mice. Values are means ±
SEM (n = 3 biological replicates). C Midgut oocyst formation in mosquito 7 days
post-infection (dpi). n is the number of mosquitoes dissected. Red horizontal lines
show the mean value. Two-sided Mann–Whitney U-test. Two independent experi-
ments. D Salivary gland sporozoite formation in mosquito 14 dpi. 30 mosquitoes
were counted in each group. Values are means ± SEM (n = 3 biological replicates).
Two-sided t-test. E Infectivity of sporozoites from mosquito to mice via natural
biting. Infectedmiceweredeterminedby the emergenceof the asexual blood-stage
parasites. x/y in the bracket is the number of infected mice/total naïve mice used.
F Immunoblot of the Myc-tagged DHC3 in gametocytes of the Δdhc3 and comp
parasites. Bip as a loading control. Two independent experiments. G Midgut
oocysts in mosquitoes infected with the comp line 7 dpi. n is the number of mos-
quitoes. Red horizontal lines show the mean value. Two-sided Mann–Whitney U-
test.H Salivary gland sporozoites in mosquitoes infected with the comp line 14 dpi.
30 mosquitoes were counted in each group. Values are means ± SEM (n = 3 biolo-
gical replicates). Two-sided t-test. I Ookinete formation in vitro. Values are
means ± SEM (n = 3 biological replicates). Two-sided t-test. J Ookinete formation in

the midgut of infected mosquitoes. Values are means ± SEM (n = 3 biological
replicates). Two-sided t-test. K Giemsa staining of cultured ookinetes. The upper
diagram indicates morphological changes from zygote to ookinete. The black
arrow indicates the apical. Scale bars: 5μm. The pie chart shows the percentage of
different subtypeswithin theookinete population. Three independent experiments
with similar results.LRepresentative images from scanning electronmicroscopy of
17XNL and Δdhc3 ookinetes. Scale bars: 200 nm. Three independent experiments
with similar results. M Ookinete cell shape. The nucleus center point was set as a
vertex of the angel (θ) from two lines of nucleus-apical and nucleus-basal for each
ookinete.n is the number of ookinetes. Scale bars: 5μm. The lower panel is the data
quantification. Box plot: center line =median, box range 25th–75th percentile,
minimum/maximum denoted by whiskers. Two-sided Mann–Whitney U-test. Two
independent experiments. N Ookinete gliding motility using the in vitro Matrigel-
based assay. n is the number of ookinetes. Box plot: center line =median, box range
25th–75th percentile, minimum/maximum denoted by whiskers. Two-sided
Mann–Whitney U-test. Two independent experiments. O IFA of P28 in mosquito
midguts infected with 17XNL and Δdhc3 24 hpi. P28 is a plasmamembrane protein
of ookinete and early oocyst. Scale bars: 10μm. The right panel shows the quan-
tification of parasites per mosquito midgut. x/y on the top is the count of midguts
containing parasites/the count ofmidgutsmeasured. Red horizontal lines show the
mean value. Two-sided Mann–Whitney U-test. Two independent experiments.
Source data are provided as a Source Data file.
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Rab11A and Rab11B had no signal at the ATR (Fig. 7D), similar to the
subunits of dynein shown in Figs. 3C and 4D. Co-IP using the anti-
Myc antibody detected the interaction between DHC3 and Rab11A in
the ookinete lysates of the DTS1 line (Fig. 7E). Similarly, the Co-IP
interaction between DHC3 and Rab11B was observed in the DTS2
ookinetes using anti-Myc or anti-HA antibodies respectively
(Fig. 7F, G). These results demonstrated that Rab11A and Rab11B are
associated with the DHC3-residing dynein which tracks along the
SPMTs (Fig. 7A).

GTPase activity is necessary for Rab11A and Rab11B co-
localization with DHC3
We next tested whether Rab11A and Rab11B co-localization with DHC3
requires theGTPase activity.Mutation in theGTPasedomain at residue
25 from serine to asparagine (S25N) had been shown to stabilize the
protein in a dominant-negative (DN) GDP-bound state of Rab11A, while
pointmutation of residue 71 fromglutamine to leucine (Q71L) resulted
in the constitutively active (CA) GTP-bound state48,49. The expression
cassettes of Rab11A-DN (harboring S25N) and Rab11A-CA (harboring
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Q71L) were integrated into the p230p locus of the dhc3::6HA parasite
using CRISPR-Cas9 (Fig. 8A). Both proteins were taggedwith a 4Myc at
the N-terminus and driven by the promoter of gene isp1 for ectopic
expression in the ookinetes. Immunoblot confirmed that Rab11A-CA
and Rab11A-DNwere expressed in the ookinetes, but not in the asexual
blood stages (Fig. 8B). Co-IP detected the interaction of DHC3 with
Rab11A-WT and Rab11A-CA, but not with Rab11A-DN in the ookinete
lysates (Fig. 8C). Consistent with the Co-IP results, U-ExM revealed that
Rab11A-DN lost SPMT localization in the defective ookinetes, while
Rab11A-CA behaved like Rab11A-WT (Fig. 8D). Using a similar strategy,
we overexpressed the Rab11B-DN (harboring T23N) and Rab11B-CA
(harboringQ69L) in the ookinetes of the dhc3::6HAparasite (Fig. 8E, F).
Rab11B-DN lost both DHC3 interaction and SPMT localization, while
Rab11B-CAbehaved like Rab11B-WT (Fig. 8G, H). Therefore, Rab11A and
Rab11B require the GTPase activity for DHC3 interaction and SPMT
localization.

Localization of Rab11A and Rab11B to SPMTs requires DHC3 but
not vice versa
To investigate whether SPMT localization of Rab11A and Rab11B is
dependent on DHC3, we deleted the dhc3 gene in the dhc3::6HA;4-
Myc::rab11a (DTS1) and dhc3::6HA;4Myc::rab11b (DTS2) parasites, gen-
erating twomutant linesDTS1;Δdhc3 andDTS2;Δdhc3. DHC3 depletion
did not affect the protein amount of Rab11A and Rab11B in either
gametocytes or early ookinetes (Fig. S8C, D), ruling out an effect of
DHC3 on protein synthesis of Rab11A and Rab11B. To visualize the Rab
localization relative to SPMTs in early ookinetes at a higher resolution,
the parasites were co-stained with antibodies against Myc and PolyE.
U-ExM indicated that in the absence of DHC3, Rab11A lost SPMT
localization and was dispersed in the cytoplasm in early ookinetes of
theDTS1;Δdhc3 parasite (Fig. 9A). Similar to Rab11A, Rab11B lost SPMT
localization in the early ookinetes of the DTS2;Δdhc3 parasite com-
pared to the parental line DTS2 (Fig. 9B).

We next investigated whether Rab11A and Rab11B influence the
SPMT localization of DHC3. Several attempts to disrupt the rab11a or
rab11b gene failed in the P. yoelii parasite, suggesting an essential role
in the asexual blood stage. The essential nature of Rab11A is consistent
with results in recent studies of Rab11A in P. berghei and P.
falciparum45,50. Overexpression of the dominant-negative (DN) mutant
protein has been utilized to interfere with the endogenous Rab func-
tion in many organisms, including T. gondii51. We analyzed the
dhc3::6HA parasites with overexpressed dominant-negative (DN) and
constitutively active (CA) Rab11A respectively, and measured the
localization of DHC3. In the presence of Rab11A-CA, DHC3 was co-
localized with the apical SPMTs stained by PolyE in early ookinetes of
the dhc3::6HA;rab11a-CA parasite under U-ExM (Fig. 9C). Notably, DN
inhibition of Rab11A had less effect on the SPMT localization of DHC3
in the dhc3::6HA;rab11a-DN early ookinetes (Fig. 9C). Using the

similarly designed Rab11B-DN (harboring T23N) and Rab11B-CA (har-
boring Q69L), we found that DN inhibition of Rab11B also had less
effect on the SPMT localization of DHC3 (Fig. 9D). Together, SPMT
localization of Rab11A and Rab11B requires DHC3 while SPMT tracking
of DHC3 requires neither Rab11A nor Rab11B. These results of protein
localization dependency are in agreement with the relative position of
proteins in the “Cargo-Rab-Dynein-MT” model (Fig. 9E).

Disturbing Rab11A or Rab11B phenocopies DHC3 deficiency in
ookinete morphogenesis
We analyzed the development and transmission of the dhc3::6HA;r-
ab11a-DN and dhc3::6HA;rab11b-DN parasites. DN inhibition of Rab11A
in ookinetes had less effect on the parasite asexual blood stage pro-
liferationandgametocyte formation inmice (Fig. 10A, B). However, the
dhc3::6HA;rab11a-DN parasite displayed a dramatic decrease in ooki-
nete formation both in the in vitro culture (Fig. 10C) and in the infected
mosquito midguts (Fig. 10D). We further analyzed the midgut trans-
versal of ookinetes and found that the number of ookinetes and early
oocysts (P28-positive) was reduced in the dhc3::6HA;rab11a-DN-infec-
ted mosquito midguts dissected at 24 hpi (Fig. 10E). Consistent with
the defects in ookinete formation and midgut transversal, the
dhc3::6HA;rab11a-DN parasite produced no midgut oocyst on day 7 pi
(Fig. 10F) and no sporozoite in the salivary glands on day 14 pi
(Fig. 10G). In the parallel test, DN inhibition of Rab11B resulted in
defects in the ookinete formation and mosquito transmission of the
dhc3::6HA;rab11b-DN parasite (Fig. 10H–N), similar to the
dhc3::6HA;rab11a-DN parasite. Thus, DN inhibition of Rab11A or Rab11B
phenotypically mimics DHC3 deficiency in ookinete morphogenesis
and mosquito midgut infection of parasites.

Discussion
In Plasmodium, the cytoskeleton of SPMTs plays a mechanical role
in supporting cell shape and rigidity of the invasive zoite stages4,9.
For ookinete development, the parasite undergoes massive expan-
sion of the plasma membrane and acquires a complete set of apical
organelles and structures via de novo assembly. Thus, intracellular
cargo trafficking appears essential for ookinete growth. Indeed,
SPMTs are also proposed to function as the tracks for retrograde
motor-driven intracellular cargo transport in ookinetes. However,
the SPMT-based proteinmotor has not been identified. In this study,
we identified the SPMT-based cytoplasmic dynein complex, in
which themechanical force-producing subunit DHC3 is essential for
ookinete morphogenesis, shape, and gliding motility. In addition,
we found two small GTPase proteins Rab11A and Rab11B as possible
cargo receptors between the SPMT-dynein and as-yet uncharacter-
ized intracellular cargoes. This study reveals a dynein-Rab11A/
Rab11B machinery for intracellular cargo transport in ookinete
morphogenesis.

Fig. 6 | Defective apical structures in ookinetes of theDHC3-deficient parasites.
A Representative images from transmission electron microscopy (TEM) of 17XNL
and Δdhc3 ookinetes. The apical area (black dashed box) is zoomed in. The apical
polar ring (APR), apical tubulin ring (ATR), and innermembrane complex (IMC) are
indicated. APR is adjoined with apical IMC in the 17XNL ookinete while a gap (blue
arrow) appears between apical IMC and APR in both early and later-stage defective
ookinetes of Δdhc3. Micronemes were labeled with an asterisk. Scale bars: 200 nm.
Three independent experiments. B IFA of Myc-tagged APR2 in apr2::4Myc and
apr2::4Myc;Δdhc3 ookinetes. The dhc3 gene was deleted in the apr2::4Myc parasite
in which the APR protein APR2 was tagged with a 4Myc. Scale bars: 5μm. Three
independent experiments. C Quantification of APR2 signal in (B). Left panel shows
the percentage of ookinetes with APR2 apical localization. 100 cells were analyzed
in eachgroupof each replicate. Values aremeans ± SEM (n = 3biological replicates).
Two-sided t-test. The right panel shows the IFA signal area of APR2. 20 cells were
analyzed in each group. Box plot: center line =median, box range 25th–75th per-
centile, minimum/maximum denoted by whiskers. Two-sided Mann–Whitney U-

test. D IFA of Myc-tagged ARA1 in the ara1::4Myc and ara1::4Myc;Δdhc3 ookinetes.
The dhc3 gene was deleted in the ara1::4Myc parasite line in which the APR protein
ARA1 was tagged with a 4Myc. Scale bars: 5μm. Three independent experiments.
EQuantification of ARA1 signal in (D). Left panel shows the percentage of ookinetes
with ARA1 apical localization. 120 cells were analyzed in each group of each repli-
cate. Values are means ± SEM (n = 3 biological replicates). Two-sided t-test. The
right panel shows the IFA signal area of ARA1. 20 cells were analyzed in each group.
Box plot: center line =median, box range 25th–75th percentile, minimum/max-
imumdenoted by whiskers. Two-sidedMann–Whitney U-test. FU-ExM of SPMTs in
the 17XNL and Δdhc3 ookinetes. Parasites were co-stained with the NHS-ester dye
and antibodies against α-/β-Tubulin. Scale bars: 5μm. Three independent experi-
ments. G IFA of Myc-tagged MyosinB in the myosinb::4Myc and myo-
sinb::4Myc;Δdhc3 ookinetes. The dhc3 gene was deleted in the myosinb::4Myc
parasite line in which the ATR proteinMyosinB was tagged with a 4Myc. Scale bars:
5μm. Three independent experiments. Source data are provided as a Source
Data file.
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Fig. 7 | Two small GTPase Rab11A and Rab11B co-localize and interact
with DHC3. A Diagram showing the potential Rab protein as a cargo receptor
linking dynein and cargo. B Eleven Rab genes in the Plasmodium and their tran-
script level in the gametocyte ofP. berghei. Rab1A,Rab7,Rab11A, Rab11B, andRab18
show relatively high transcript levels. The data comes from the published tran-
scriptomes by Otto, T.D. 2014. C Co-localization analysis of DHC3 with Rab1A,
Rab7, Rab11A, Rab11B, and Rab18 in ookinetes. The expression cassette of each rab
gene was integrated into the p230p locus in the dhc3::6HA parasite for over-
expression. Each gene was tagged with a 4Myc at the N-terminus and driven by the
hsp70 5′-UTR and the dhfr 3′-UTR. Five double-tagged parasite lines were obtained
and co-stained with antibodies against HA and Myc. Scale bars: 5μm. Three inde-
pendent experiments. D U-ExM of Rab11A and Rab11B association with SPMTs in

ookinetes of two double-tagged parasite lines dhc3::6HA;4Myc::rab11a and
dhc3::6HA;4Myc::rab11b. Parasites were co-stained with antibodies against α/β-
Tubulin andMyc. Scale bars: 5μm. Three independent experiments. EMyc-tagged
Rab11A co-immunoprecipitated with the HA-tagged DHC3 in the dhc3::6HA;4My-
c::rab11a (DTS1) ookinetes. The anti-Myc antibody was used for immunoprecipi-
tation. BiP as the loading control. Three independent experiments. F Myc-tagged
Rab11B co-immunoprecipitated with the HA-tagged DHC3 in the dhc3::6HA;4My-
c::rab11b (DTS2) ookinetes. The anti-Myc antibody was used for immunoprecipi-
tation. Three independent experiments. G HA-tagged DHC3 co-
immunoprecipitated with the Myc-tagged Rab11B in the DTS2 ookinetes. The anti-
HA antibody was used for immunoprecipitation. Three independent experiments.
Source data are provided as a Source Data file.
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Cytoplasmic dynein-1 (referred to as cytoplasmic dynein) is a
major type of dynein motor that drives the movement of intracellular
cargo toward theminus ends ofMTs52. The dynein family also includes
the axonemal dynein for ciliary or flagellar beating and the IFT dynein
(known as cytoplasmic dynein-2) which drives intraflagellar transport
on the axoneme27. Cytoplasmic dynein is a structurally conserved 1.6-
MDa complex composed of a homodimer of DHC and several pairs of
smaller noncatalytic subunits, including one IC, one LIC, and three
LCs42. The Plasmodium genome encodes a total of 7 putative DHC
proteins (DHC1 to DHC7), but it is so far unclear which are cytoplasmic
or axonemal. We analyzed the expression and localization of all 7 DHC
proteins of P. yoelii and found only DHC3 expressed in ookinetes and
distributed along the ookinete periphery (Fig. 1B–E). This is consistent
with the observation that one cytoplasmic DHC protein evolves in
eukaryotes28. Using homology search and localization validation, other
dynein subunits (LIC, IC, Robl, LC8, and Tctex) were identified and
showed similar peripheral localization in the ookinetes (Fig. 4C).
U-ExM further detected the co-localization between SPMT and all
these six subunits of dynein in ookinetes. Importantly, the cytoplasmic

dynein bound the SPMTs after SPMTbiogenesis from the early stage of
ookinete development.

We initially thought that Plasmodium’s SPMT cytoplasmic dynein
may exist in all three SPMT-containing zoite stages (merozoite, ooki-
nete, and sporozoite). Surprisingly, DHC3 was detected only in the
ookinetes and sporozoites but not in the merozoites (Fig. S1A). The
lack of SPMT-based cytoplasmic dynein in the merozoites was further
confirmed as no expression of the other dynein subunits (LIC, IC, and
three LCs) was detected in the asexual blood stages (Fig. S4D). These
results imply no existence of the SPMT-based and cytoplasmic dynein-
driven cargo transport in the merozoite. Why does the SPMT-based
cytoplasmic dynein exist in the ookinete but not in the merozoite? In
erythrocytic schizogony for merozoite formation, the cortex mem-
branes invaginate and engulf the cellular contents, forming the
daughter merozoites53,54. In contrast, the zygote undergoes massive
expansion of the plasma and cortex membranes for ookinete growth.
Merozoite formation hence displays a mode of inward invagination
inside the mother schizont, which is different from the ookinete out-
wardbudding fromthe zygote. Formerozoite, the actinfilament-based
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and Myc. Scale bars: 5μm. Three independent experiments. Source data are pro-
vided as a Source Data file.
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transport driven by a set of myosin motors and Rab proteins is likely
responsible for protein trafficking from the Golgi to the apical end55.
For sporozoites, it is unclear which mode is used and DHC3 involve-
ment in sporogony could be tested by stage-specific deletion of the
gene. Also, the number (approximately 60) of SPMTs in the ookinetes
is much higher than that (approximately 1–9) in merozoites8,12 and the
SPMTs in ookinetes are 10–15 µm in length compared to 0.5–1 µm in
merozoites9,11. Compared to erythrocytic schizogony, ookinete growth
likely requires much more long-distance cargo transport from the cell
body to the apical distal for material trafficking. Although the SPMT

cytoskeletons are analogously essential in all three zoite stages, the
requirement of SPMT-based cytoplasmic dynein and dynein-driven
cargo transport may be zoite stage-specific.

Kinesins are MT-based molecular motors that dominantly move
toward the plus end of MT24. Approximately 9 putative kinesins are
encoded in the Plasmodium genome56. The developmental stage
expression and subcellular localization of all 9 kinesins were recently
investigated in P. berghei57. Among the kinesins analyzed, Kinesin-X3
showed a peripheral distribution restricted to one side of the early
ookinetes but enveloped the entire periphery in mature ookinetes57,
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suggesting a possible SPMT association. Whether Kinesin-X3 is an
SPMT-based motor and whether Kinesin-X3 plays a role in ookinete
development are worth investigating in the future.

The DHC3-deficient parasites showed severely defective devel-
opment in the ookinete apical part, especially the formation of SPMTs,
APR, and ATR. In addition, they were impaired in the distribution and

secretion of micronemes. To fit the requirement of material transport,
many different vesicle cargoes should be loaded into the SPMT-based
dynein and delivered toward the apical direction. This raises the
question of how the dynein motor recognizes the cargo vesicles for
transport. Rab protein has been reported as the receptor for the cargo
in eukaryotic intracellular vesicle trafficking58. In this study, we
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characterized Rab11A and Rab11B both of which are associated with
DHC3 and co-localizing with SPMTs in the ookinetes. Functional dis-
turbing of either single Rab11A or Rab11B via DN inhibition resulted in
ookinete development arrest that mimicked the defects caused by
DHC3 disruption. Another study also revealed that Rab11A is localized
at the periphery of the ookinetes and is essential for the ookinete
development of P. berghei45. Consistent with the cargo receptor role,
Rab11A and Rab11B require dynein for their SPMT association. The
Rab11A- and Rab11B-vesiclesmay be dominant cargo vesicles driven by
the SPMT-based dynein. Although dynein can transport different
vesicle cargoes, establishing a functional dynein-cargo link depends on
a cargo-specific activating adapter as the dynein complex has not been
reported to interact directly with the Rab proteins25,59. In eukaryotes,
the Rab11-interacting proteins (FIPs) play an adapter role for the
dynein complex linking with the Rab11A-vesicles60. However, no
homologs of different FIP proteins could be found in the Plasmodium
genome. Another future avenue of investigation is elucidating the
adapter protein linking dynein with the Rab11A- and Rab11B-vesicles in
the ookinetes. Based on the results of this and other studies, we pro-
posed a working model (Fig. S9) that the SPMT-based dynein motor
function to deliver the Rab11A- and Rab11B-vesicles likely containing
materials to the apical for apical organelles assembly in the ookinetes.

Methods
Ethics statement
The animal experiments conducted in this studywere approved by the
Committee for Care and Use of Laboratory Animals of Xiamen Uni-
versity (XMULAC20190001).

Mice and mosquito usage
Female ICR mice (5–6 weeks old) were obtained from the Animal Care
Center of Xiamen University and used for parasite propagation, drug
selection, parasite cloning, and mosquito feeding.The larvae of Ano-
pheles stephensi mosquitoes (Hor strain) were reared at 28 °C, 80%
relative humidity, and a 12-h light/12-h dark condition in a standard
insect facility. Adult mosquitoes were supplemented with 10% (w/v)
sugar solution containing 0.05% 4-aminobenzoic acid and
kept at 23 °C.

Plasmid construction and parasite transfection
The CRISPR-Cas9 plasmid pYCm was used for gene editing30. To
construct vectors for gene deletion, the left and right homologous
arms consisted of 400–700 bp sequences upstream and down-
stream of the coding sequences of the target gene. To construct
plasmids for gene tagging, the 5′- and 3′-flanking sequences
(300–700 bp) at the designed insertion site of target genes were
amplified as homologous templates. DNA fragments encoding 6HA,

4Myc, 3V5, and mScarlet were placed between them and in-frame
with the target gene. For each modification, at least two small guide
RNAs (sgRNAs) were designed using the online program EuPaGDT
(http://grna.ctegd.uga.edu/). To construct the plasmids for over-
expression of the rab genes, the expression cassettes of rab genes
driven by the 5′-UTR (1755 bp) of the hsp70 gene and the 3′-UTR
(561 bp) of the dhfr gene were inserted into specific restriction sites
between the left and right homologous arms for transgenic inte-
gration in the p230p locus of P. yoelii61. Paired oligonucleotides for
sgRNA were denatured at 95 °C for 3min, annealed at room tem-
perature for 5min, and ligated into pYCm. All primers and oligo-
nucleotides used in the plasmid construction are listed in
Supplementary Table 1. For parasite electroporation, parasite-
infected red blood cells were electroporated with 5 μg plasmid
DNA using Lonza Nucleofector. Transfected parasites were imme-
diately intravenously injected into a naïve mouse and exposed to
pyrimethamine (6mg/ml) provided in mouse drinking water 24 h
after transfection.

Genotyping of genetically modified parasites
All modified or transgenic parasites were generated from the P. yoelii
17XNL strain or 17XNL-derived lines (Supplementary Table 2). 10μl
parasite-infected blood was collected from the infected mice tail vein
and red blood cells were lysed using 1% saponin in PBS. Parasite cells
were spun down by centrifugation at 13,000 × g for 5min and pellets
were washed twice with PBS and boiled at 95 °C for 10min followed by
centrifugation at 13,000 × g for 5min. The supernatant containing
parasite genomic DNA was subjected to genotyping. For each gene
modification, both the 5′ and 3′ homologous recombination events
were detected by diagnostic PCR, confirming the successful integra-
tion of the homologous templates. Parasite clones with targeted
modifications were obtained by limiting dilution cloning. At least two
clones of each gene-modified parasite were used for phenotypic ana-
lysis. Modified parasite clones subject to additional modification were
negatively selected to remove pYCm plasmid. Each naïve mouse
infected with the pYCm plasmid-carrying parasites was exposed to
5-Fluorouracil (5-FC, Sigma-Aldrich, cat#F6627) in mouse drinking
water (2.0mg/ml). After 3 days, most of the surviving parasites no
longer carried pYCmplasmids andunderwent limiting dilution cloning
by injecting them into mice via the tail vein. Seven days later, blood
smears were used to identify the mice that were infected with para-
sites, and these parasites were genotyped again and used as a
single clone.

Parasite intraerythrocytic asexual proliferation in mouse
Parasite proliferation rates in the asexual blood stagewere determined
in mice. Four ICR mice were included in each group. Parasite growth

Fig. 10 |DisturbingRab11AorRab11BphenocopiesDHC3deficiency inookinete
morphogenesis. AParasite asexual blood stageproliferation inmice for the 17XNL,
rab11a-CA, and rab11a-DN. Values are means ± SEM (n = 3 biological replicates).
B Gametocyte formation in mice. Values are means ± SEM (n = 3 biological repli-
cates). C Ookinete formation in vitro. Values are means ± SEM (n = 3 biological
replicates). Two-sided t-test.DOokinete formation in themosquitomidgut. Values
are means ± SEM (n = 3 biological replicates). Two-sided t-test. E IFA of P28 in
ookinete and early oocyst atmosquitomidguts infected with 17XNL and rab11a-DN
24 hpi. Scale bars: 10μm. The right panel shows the quantification of parasites per
midgut. x/y on the top is the count of midguts containing parasites/the count of
midguts measured. Red horizontal lines show the mean value. Two-sided
Mann–WhitneyU-test. Three independent experiments. FMidgut oocyst formation
in mosquito 7 dpi. n is the number of mosquitoes dissected. Red horizontal lines
show the mean value. Two-sided Mann–Whitney U-test. Three independent
experiments. G Salivary gland sporozoite counts in mosquitoes 14 dpi. 30 mos-
quitoes were dissected in each group per replicate. Values are means ± SEM (n = 3

biological replicates). Two-sided t-test.H Parasite asexual blood stage proliferation
in mice for the 17XNL, rab11b-CA, and rab11b-DN in mice. Values are means ± SEM
(n = 3 biological replicates). I Gametocyte formation in mice. Values are means ±
SEM (n = 3 biological replicates). J Ookinete formation in vitro. Values are
means ± SEM (n = 3 biological replicates). Two-sided t-test.KOokinete formation in
the mosquito midgut. Values are means ± SEM (n = 3 biological replicates). Two-
sided t-test. L IFA of P28 in ookinete and early oocyst atmosquitomidguts infected
with 17XNL and rab11b-DN 24 hpi. Scale bars: 10μm. The right panel shows the
quantification of parasites per midgut. x/y on the top is the count of midguts
containing parasites/the count ofmidgutsmeasured. Red horizontal lines show the
mean value. Two-sided Mann–Whitney U-test. Two independent experiments.
M Midgut oocyst formation in mosquitoes 7 dpi. n is the number of mosquitoes
dissected. Two-sided Mann–Whitney U-test. Three independent experiments.
N Salivary gland sporozoite counts in mosquitoes 14 dpi. 30 mosquitoes were
dissected in each group per replicate. Values are means ± SEM (n = 3 biological
replicates). Two-sided t-test. Source data are provided as a Source Data file.
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was monitored by Giemsa-stained thin blood smears every two days
from day 2 to 14 after intravenous injection of 1.0 × 105 parasites. The
parasitemiawas calculated as the ratio of parasitized erythrocytes over
total erythrocytes.

Gametocyte induction in mouse
ICR mice were treated with phenylhydrazine (80 µg/g mouse body
weight; Sangon Biotech, China, cat#A600705-0025) through intra-
peritoneal injection. Three days after treatment, the mice were infec-
ted with 5.0 × 106 parasites via intravenous injection. The peak of
gametocytaemia usually occurs on day three post-infection. Male and
female gametocytes were checked via Giemsa-stained thin blood
smears. Gametocytemia was calculated as a percentage of the number
of male or female gametocytes over the number of parasitized
erythrocytes.

Exflagellation assay
2.5 µl of mouse tail blood containing gametocytes was mixed with
100 µl of exflagellation medium. The exflagellation medium was com-
posed of RPMI 1640 supplemented with 100 µM xanthurenic acid (XA,
Sigma-Aldrich, cat#D120804), 2 unit/ml heparin, and pH 7.4. The
mixture was incubated at 22 °C for 10min. The number of parasite
exflagellation centers (ECs) and total red blood cells were counted
within a 1 × 1-mm square area of a hemocytometer under a light
microscope. The exflagellation rate was calculated as the number of
ECs per 100 male gametocytes. Three biological replicates were con-
ducted for each exflagellation assay.

In vitro ookinete culture and purification
Mouse blood with 6–10% gametocytemia was collected and immedi-
ately mixed with ookinete culture medium (RPMI 1640, 10% FCS,
100μM XA, 25mM HEPES, 0.1mg/ml streptomycin, 100U/ml peni-
cillin, pH 8.0). The gametocyte-containing mouse blood was cultured
at 22 °C for 12–15 h for gametogenesis, fertilization, and ookinete dif-
ferentiation. Ookinetes formation was evaluated based on cell mor-
phology in Giemsa-stained thin blood smears. The mature ookinete
conversion rate was calculated as the number of crescent-shaped
mature ookinete (stage V) over that of total ookinetes (from stage I to
V). Ookinetes were purified using Nycodenz density gradient cen-
trifugation as described previously62. After centrifugation at 500 × g
for 5min, ookinete pellets were resuspended with 7ml PBS and
transferred onto the top of 2ml of 63% Nycodenz (Axis-shield,
cat#66108-95-0) in a 15ml Falcon tube. After centrifuging at 1000× g
for 20min, the ookinetes enriched at the interface layerwere collected
from the Falcon tube. The purity of ookinetes was examined by
hemocytometer analysis. Ookinetes with more than 80% purity were
used for further experiments.

Parasite infection and transmission in mosquito
Forty femaleAnopheles stephensimosquitoes inone cagewere allowed
to feed on one anesthetizedmouse carrying 6–10% gametocytemia for
30min. Formidgut oocyst counting,mosquitomidgutsweredissected
on day 7 or 8 post-blood feeding and stained with 0.1% mercur-
ochrome for oocyst observation. For salivary gland sporozoite
counting, mosquito salivary glands were dissected on day 14 post
blood feeding, and the average number of sporozoites per mosquito
was calculated. For mice infected with sporozoite, 20 infected mos-
quitoes on day 14 post blood feeding were allowed to bite one anes-
thetized naïvemouse for 30min. Parasite transmission capability from
mosquito to mouse was monitored daily by Giemsa-stained blood
smears for 12 days.

Ookinete microneme secretion assay
Microneme-secreted proteins were examined in the supernatant from
the in vitro ookinete culture as previously reported63. 5.0 × 106 purified

ookinetes were incubated in 200μl PBS at 22 °C to allow microneme
protein secretion. After 6 h incubation, the supernatant was collected
by centrifugation at 750 × g for 3min, filtered through a 0.45μm filter
(Millipore, cat#SLHP033RS). An equal volume of 2× Laemmli sample
buffer was added. All samples were boiled at 95 °C for 10min and
centrifuged at 12,000× g for 5min. An equal volume of supernatant
from each group was used for immunoblot analysis.

Ookinete gliding assay
All procedures were performed in a temperature-controlled room at
22 °C. 20μl of the suspended ookinete cultures were mixed with 20μl
of Matrigel (BD Biosciences, cat#356234) on ice. The ookinete and
Matrigel mixtures were transferred onto a slide, covered with a cov-
erslip, and sealed with nail varnish. The slide was rested for 30min
before observation under the microscope. After tracking a gliding
ookinete under the microscope, time-lapse videos (1 frame per 20 s,
for 20min) were taken to track ookinete movement using a Nikon
ECLIPSE E100 microscope fitted with an ISH500 digital camera con-
trolled by ISCapture v3.6.9.3N software (Tucsen). Ookinete motility
speeds were calculated with ImageJ software using the MtrackJ
plugin64.

DNA content measurement in ookinete
To evaluate nuclear DNA content changes from zygote to ookinete
development post-fertilization, parasites were fixed using 4% paraf-
ormaldehyde for 20min at 0 and 4 h from the ookinete culture med-
ium, rinsed twicewith PBS, andblockedwith 5%BSA solution in PBS for
1 h. Parasites were then incubated with anti-P28 antibody for 1 h and
washed with PBS three times. After this, parasites were incubated with
fluorescent conjugated secondary antibodies for 1 h and followed by
three washes with PBS. Parasites were then stained with DNA dye
Hoechst 33342 (Thermo Fisher Scientific, cat#23491-52-3) for 10min
and mounted in a 90% glycerol solution. Female gametocytes (P28-
negative), female gametes(P28-positive), and zygotes (P28-positive)
were measured for the Hoechst 33342 signal. Images were captured
using identical settings under a ZEISS LSM 880 confocal microscope.

Antibodies and antiserum
The primary antibodies used included: rabbit anti-HA (Cell Signaling
Technology/CST, cat#3724S, 1:1000 for immunoblotting (IB), 1:500 for
immunofluorescence (IF), 1:500 for immunoprecipitation (IP)), mouse
anti-HA(CST, cat#2367S, 1:500 for IF), rabbit anti-Myc (CST, cat#2272S,
1:1000 for IB, 1:500 for IF), mouse anti-Myc (CST, cat#2276S, 1:500 for
IF, 1:1000 for IB, 1:500 for IP), mouse anti-α-tubulin II (Sigma-Aldrich,
cat#T6199, 1:1000 for IF, 1:1000 for IB), mouse anti-β-tubulin (Sigma-
Aldrich, cat#T5201, 1:1000 for IF, 1:1000 for IB), and rabbit anti-
Polyglutamate chain (PolyE, AdipoGen, cat#AG-25B-0030, 1:1000 for
IF). The secondary antibodies included: HRP-conjugated goat anti-
rabbit IgG (Abcam, cat#ab6721, 1:5000 for IB), HRP-conjugated goat
anti-mouse IgG (Abcam, cat#ab6789, 1:5000 for IB), Alexa 555 goat
anti-rabbit IgG (Thermo Fisher Scientific, cat#A21428, 1:1000 for IF),
and Alexa 488 goat anti-mouse IgG (Thermo Fisher Scientific,
cat#A11001, 1:1000 for IF). The anti-serums, including the rabbit anti-
P28 (1:1000 for IB, 1:1000 for IF), rabbit anti-BiP (1:1000 for IB), rabbit
anti-Enolase (1:1000 for IB), rabbit anti-Rab11A (1:500 for IB), rabbit
anti-GAP45 (1:1000 for IF), rabbit anti-WARP (1:1000 for IB), rabbit anti-
CTRP (1:1000 for IB, 1:1000 for IF) and rabbit anti-chitinase (1:1000 for
IB, 1:1000 for IF).

Immunofluorescence assay
Parasites fixed in 4% paraformaldehyde were transferred to a Poly-L-
Lysine coated coverslip in a 24-well plate and centrifuged at 550 × g for
5min. Parasites were then permeabilized with 0.1% Triton X-100
solution in PBS for 10min, blocked in 5% BSA solution in PBS for
60min at room temperature, and incubated with the primary
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antibodies diluted in 5% BSA-PBS for 1 h at room temperature. After
three PBS washes, the coverslip was incubated with fluorescent con-
jugated secondary antibodies for 1 h at room temperature. Cells were
stained with Hoechst 33342, mounted in 90% glycerol solution, and
sealed with nail varnish. All images were acquired and processed using
identical settings on Zeiss LSM 880 or LSM 980 confocalmicroscopes.

Live cell imaging
Parasites expressing the mScarlet-fused proteins were collected in
200μl PBS, washed three times with PBS, and stained with Hoechst
33342 at room temperature for 10min. After centrifugation at 500 × g
for 3min, the parasite pellets were resuspended in 100μl of 3% low
melting agarose (Sigma-Aldrich, A9414), and transferred evenly on the
bottom of a 35-mm culture dish. Parasites were placed at room tem-
perature for 15min and imaged using a Zeiss LSM 880 confocal
microscope.

Fluorescence recovery after photobleaching (FRAP) assay
A laser pulse was used to bleach 80–90% of the mScarlet fluorescence
at a rectangle region in the ookinete periphery of the parasite
dhc3::mScarlet. Another ookinete in the same field was set as a no-
photobleaching control. The recovery of fluorescence in the rectangle
region was monitored. Images were taken in a time-series mode to
record the fluorescent signal intensities using a Zeiss LSM 980 con-
focal microscope. The time-series parameters for acquiring images
were set as follows: scanning every 1 s for 30 s. Twenty ookinetes were
analyzed in each group.

Protein extraction and immunoblot
Parasites were lysed in RIPA buffer (0.1% SDS, 1mMDTT, 50mMNaCl,
20mM Tris-HCl; pH 8.0) (Solaribio, cat#R0010) supplemented with
protease inhibitor cocktail (Medchem Express, cat#HY-K0010) and
PMSF (Roche, cat#10837091001). After ultrasonication, the extracts
were incubated on ice for 30min followed by centrifugation at
12,000 × g for 10min at 4 °C. The clarified supernatant wasmixed with
the same volume of 2× Laemmli sample buffer, boiled at 95 °C for
5min, and cooled at room temperature. After SDS-PAGE separation,
samples were transferred to a PVDF membrane (Millipore,
cat#IPVH00010). The membrane was blocked with 5% skim milk,
probed with primary antibodies for 1 h at room temperature, rinsed 3
times with TBST, and incubated with HRP-conjugated secondary
antibodies. Followed by three washes with TBST, the membrane was
visualized with enhanced chemiluminescence detection (Advansta,
cat#K12045-D10).

Protein immunoprecipitation
Parasites were lysed in the IP buffer A (50mM HEPES pH 7.5, 150mM
NaCl, 1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.1% sodium deox-
ycholate) with protease inhibitor cocktail and PMSF. Protein aggre-
gates were pre-cleared by centrifugation at 20,000× g for 10min, and
1ml of lysates were incubated with primary beads (anti-HA or anti-Myc
nanobody)mixed for 3 h. Thebeadswerewashedwith IP buffer A three
times at 4 °C, and then mixed with an equal volume of 2× Laemmli
sample buffer for protein elution. All samples were boiled at 95 °C for
10min and centrifuged at 12,000 × g for 5min. An equal volume of
supernatant from each sample was used for immunoblotting.

Extraction of ookinete pellicle cytoskeleton
Extraction of ookinete pellicle cytoskeleton was performed as pre-
viously described38. Approximately 5.0 × 106 purified ookinetes were
lysed in 200μl 0.5mM sodium deoxycholate (SDC) detergent for
3min at room temperature. Followed by centrifugation at 800× g for
8min, the pellet fractions containing ookinete cytoskeleton were
collected for further experiments.

Scanning electron microscopy
Purified ookinetes were fixed with 2.5% glutaraldehyde in 0.1M phos-
phate buffer at 4 °C overnight, rinsed three times with PBS, and fixed
with 1% osmium tetroxide for 2 h. Fixed cells were dehydrated using a
graded acetone series, CO2-dried in a critical-point drying device, and
gold-coated in a sputter coater as detailed previously65. The samples
were imaged using a SUPRA55 SAPPHIRE Field Emission Scanning
Electron Microscope.

Transmission electron microscopy
Purified ookinetes were fixed with 2.5% glutaraldehyde in 0.1M phos-
phate buffer at 4 °C overnight, as previously described4. Samples were
post-fixed in 1% osmium tetroxide at 4 °C for 2 h, treated en bloc with
uranyl acetate, dehydrated, and embedded in Spurr’s resin. Thin sec-
tions were sliced, stained with uranyl acetate and lead citrate, and
examined in an HT-7800 electron microscope (Hitachi, Japan).

Ultrastructure expansion microscopy (U-ExM)
Purified ookinetes were sedimented on a 15mm round poly-D-lysine
(Sigma-Aldrich, cat#A-003-M) coated coverslips for 10min. The para-
sites were then permeabilized with 100% ice-cold methanol for 7min.
To add anchors to proteins, coverslips were incubated for 5 h in 1.4%
formaldehyde (FA, Sigma-Aldrich, cat#F8775)/2% acrylamide (AA,
Sigma-Aldrich, cat#146072) at 37 °C. Next, gelation was performed in
ammonium persulfate (APS, Sigma-Aldrich, cat#A7460)/ N,N,N′,N
′-Tetramethyl ethylenediamine (Temed, Sigma-Aldrich, cat#110-18-9)/
Monomer solution (23% Sodium Acrylate (SA, Sigma-Aldrich,
cat#408220); 10% AA; 0.1% N,N′-Methylenebisacrylamide (BIS-AA,
Sigma-Aldrich, cat#M7279) in PBS) for 1 h at 37 °C. Sample denatura-
tion was performed for 90min at 95 °C. Gels were incubated in bulk
ddH2O at room temperature overnight for complete expansion. In the
followingday, gel sampleswerewashed in PBS twice for 30mineach to
remove excess ddH2O. Gels were then cut into square pieces (1 cm×
1 cm), incubated with primary antibodies at 37 °C for 3 h, and washed
with 0.1% PBS-Tween (PBS-T) 3 times for 10min each. Incubation with
the secondary antibodies was performed for 3 h at 37 °C followed by
three washes with 0.1% PBS-T for 10min each. In some conditions, gels
were additionally stained by NHS-ester (Merck, cat#08741) diluted at
10μg/ml in PBS for 90min at room temperature. After the final
staining step, gels were then washed with 0.1% PBS-T three times for
15min each and expanded overnight by incubating in bulk ddH2O at
room temperature. After the second round of expansion, gelswere cut
into square pieces (0.5 cm×0.5 cm) and mounted by a coverslip in a
fixed position for imaging.

Proximity ligation assay (PLA)
PLA assay was performed to detect in situ protein interaction using a
commercial kit (Sigma-Aldrich, cat#DUO92008, DUO92001,
DUO92005, and DUO82049). Ookinetes were fixed with 4% paraf-
ormaldehyde for 30min, permeabilized with 0.1% Triton X-100 for
10min at room temperature, and blocked with a blocking solution
overnight at 4 °C. The primary antibodies were diluted in the Duolink
Antibody Diluent and incubatedwith ookinetes in a humidity chamber
overnight at 4 °C. After removing the primary antibodies, the ooki-
netes were rinsed twice with wash buffer A. The PLUS and MINUS PLA
probes were diluted in Duolink Antibody Diluent and ookinetes were
incubated in a humidity chamber for 1 h at 37 °C. Next, ookinetes were
rinsed twice with wash buffer A and incubated with the ligation solu-
tion for 30min at 37 °C. Followed by twice rinses with wash buffer A,
ookinetes were incubated with the amplification solution for 100min
at 37 °C in the dark. After rinsing twice with 1× wash buffer B and once
with 0.01× wash buffer B, ookinetes were stained with Hoechst 33342
andwashed twicewith PBS. Imageswere captured andprocessedusing
identical settings on a Zeiss LSM 880 confocal microscope.
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Software, program, database, and tool used
The genomic sequences of parasite genes are downloaded from the
PlasmoDB database (https://plasmodb.org/plasmo/app/)66. We pro-
vided a table (Supplementary Table 3) showing all homologs for the
seven putative DHC proteins in three Plasmodium species including P.
yoelii, P. berghei, and P. falciparum. The sgRNA of target genes are
designed using the program EuPaGDT (http://grna.ctegd.uga.edu/)67.
For quantification of protein expression in immunoblot, the blot band
intensity is quantified using Fiji software68. For quantification of pro-
tein expression in IFA, images are acquired under identical parameters.
Fluorescent signals are quantified using ZEN Microscopy Software
from ZEISS, and 20 cells are chosen in each group. The 3D surface
topology reconstruction of Z-stack images is quantified by Imaris X64
9.2.0. All graph-making and statistical analysis was performed using
GraphPad Prism 8.0 with either a two-tailed Student’s t-test or
Mann–Whitney U-test as appropriate. Data collected as raw values are
shown as mean ± SEM or mean± SD or means only if not otherwise
stated. Details of statisticalmethods are reported in the figure legends.
p-values were indicated in the figures with a value < 0.05 considered
significant. n represents the sample size in each group or the number
of biological replicates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data in this study are submitted as supplementary source
files. Source data are provided with this paper.
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