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Generalizable and automated classification
of TNM stage from pathology reports with
external validation

Jenna Kefeli1, Jacob Berkowitz2,3,5, Jose M. Acitores Cortina 2,3,5,
Kevin K. Tsang2,3,5 & Nicholas P. Tatonetti 1,2,3,4

Cancer staging is an essential clinical attribute informing patient prognosis
and clinical trial eligibility. However, it is not routinely recorded in structured
electronic health records. Here, we present BB-TEN: Big Bird – TNM staging
Extracted fromNotes, a generalizablemethod for the automated classification
of TNM stage directly from pathology report text. We train a BERT-based
model using publicly available pathology reports across approximately 7000
patients and 23 cancer types.Weexplore the use of differentmodel types, with
differing input sizes, parameters, and model architectures. Our final model
goes beyond term-extraction, inferring TNM stage from context when it is not
included in the report text explicitly. As external validation, we test our model
on almost 8000 pathology reports from Columbia University Medical Center,
finding that our trained model achieved an AU-ROC of 0.815–0.942. This
suggests that our model can be applied broadly to other institutions without
additional institution-specific fine-tuning.

Cancer stage, an important diagnostic and prognostic clinical attri-
bute, is frequently used to identify patients for clinical trial recruitment
and research cohort construction. While not routinely captured in the
electronic health record, stage information can be found in patient
pathology reports. Tumor registries, tasked with manually identifying
stage from clinical notes and pathology reports, can take up to 6
months from diagnosis to extraction, at which point the opportunity
for clinical trials or other treatments may have passed1,2. A shortage of
cancer registry specialists suggests that this lead time may become
even longer3. In this study, we present BB-TEN: Big Bird—TNM staging
Extracted from Notes, a transformer-basedmethod for the automated
classification of TNM stage from pathology report text across 23 can-
cer types. Transformer-based methods have been applied to other
clinical text4, but have not been widely applied to pathology reports.
We demonstrate that BB-TEN is generalizable to an independent
institution, suggesting other institutions can use ourmethod in an off-
the-shelf capacity.

Extraction of cancer stage has been an ongoing effort. Previous
studies have focused on single cancer types5–8, used smaller-sized
training5,6,9 or testing5,6,9,10 datasets (<1000 reports), and have relied on
single-institution data without external validation and without proven
generalizability6,10. In comparison, our work was performed on
an initial pan-cancer dataset with approximately 7000 reports and
then shown to extend in a generalizable fashion to an external pan-
cancer dataset of almost 8,000 reports. Some studies required addi-
tional data beyond pathology report text as model input5,6,10,11. For
ease-of-use, BB-TEN only requires the pathology report text as input
and does not necessitate the inclusion of any other patient data types.
In terms of methods, two studies employed older NLP methods (reg-
ular expression and customized rule-based approaches)6,10, one uti-
lized traditional machine learning methods5, and another used a
hybrid transformer-embedding and deep learning model11. In com-
parison, ourmethoduses a recently-developed long-input transformer
that directly ingests clinical-length pathology reports and fully incor-
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porates long-range dependencies between tokens in model training.
Further, these studies have not made their models publicly available,
whereas we are releasing our trained TNM models to be directly uti-
lized by other institutions. Finally, the use of state-of-the-art generative
Large LanguageModels (LLMs), likeOpenAI’s GPT4, hasbeen explored
for prompt-based extraction of staging information from pathology
reports7–9,12. These large models offer advantages over smaller trans-
former models in that they may require fewer training examples.
However, the costs are significant, either inAPI access charges or in the
hardware they require to run locally, their use may not be suitable for
sensitive health information, and may be prone to hallucinations13. In
contrast, we show that smaller transformer models, like BERT, achieve
superior performancewith fewer resources and no requirement to use
third-party APIs.

The majority of prior work classified patients into broad TNM
categories that do not cover the entire spectrum of clinical values5,6,11,
whereas in this study we classify reports specifically into clinically
relevantTNMcategorizations. Eachof the possible category valueswas
tailored to conform with current clinical usage and optimize for
downstream utility. For example, we predict the full range of N (0–3)
vs. binary N (0–1) because there are major distinctions in prognosis,
suggested treatment, and research cohort selection across different
N-values for different cancer types. In addition, granularizing N is a
substantially more difficult classification task. Other research
studies5,6,10,11 achieved high AU-ROC for prediction of binaryN (0–1), as
did we in preliminarywork; we ultimately selected (0–3) because (0–1)
is a crude approximation for staging and not sufficient for a clinically
useful end-model.

Similarly, prioritizing clinical relevance, we predict the full clini-
cally actionable range of M, which is (0–1), as compared to resource11

whichpredictsM as (0–1, X). In preliminarywork, we achievedhighAU-
ROC for M (0–1, X); however, we removed X as a possible prediction
value to follow official AJCC guidelines, which call for the removal of X
from the pathologic staging vocabulary because X is a non-clinically

actionable category [https://www.facs.org/media/j30havyf/ajcc_
7thed_cancer_staging_manual.pdf]. Overall, our prediction categories
and model output are more clinically relevant in light of current
medical vocabulary and conform more closely with AJCC guidelines,
particularly as compared to Preston, S. et al.11.

In this study, we utilize recent advances in natural language pro-
cessing to classify cancer stage directly from pathology report text14.
We specifically use a new variant of the large languagemodel BERT15,16,
whichhas a larger input capacity thanprevious versions, and show that
our model performs better than standard BERT models. We also
compare to a state-of-the-art LLM, Llama 3, and show that the BERT-
based model performs better than the base Llama 3 model and better
than the fine-tuned Llama 3model in two out of three tasks with faster
training time and fewer computational resources. To our knowledge,
this is the first application of high-input capacity LLMs, i.e., LLMs for
which long-input can be directly inputted without further modifica-
tion, to pathology report text for classificationof anyprediction target.

Results
Our overall approach consisted of (1) training a model using publicly
available pathology reports and then (2) applying our trainedmodel to
a set of independent reports for validation of generalizability (Fig. 1A).
Cancer stage consists of three elements: tumor size (T), regional lymph
node involvement (N), and distant metastasis (M). Our prediction task
consisted of classifying reports into TNM staging categories, with a
separate model trained for each variable.

First, we selected 9523 pathology reports from The Cancer Gen-
ome Atlas (TCGA)14,17. The availability of TNM annotation in the TCGA
metadata varied: 6887 reports were documented with known tumor
size (T), 5678 reports with known regional lymph node involvement
(N), and 4608 reports with knownmetastasis (M). All TNM values were
based on pathologist review of relevant histology slides. Patients with
knownT andN values spanned 23different cancer types,while patients
with knownM status corresponded to 21 cancer types. Due to the large
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Fig. 1 | Methodological overview and database summary statistics. A Depiction
of overall method. Top: Dataset separation into training/validation and held-out
test sets (TCGA), as well as external validation (CUIMC). Bottom: Example TCGA
pathology reports, inputted into separate transformer models to for TNM stage
prediction. B Token distribution for TCGA training set reports. The ClinicalBERT

(CB) tokenizer was used to tokenize reports into pre-defined CB vocabulary. C Per-
class distribution of TCGA pathology reports with TNM staging annotation. The
distributionof TNMvalues varied substantiallybetween cancer types. x-axis labeled
as TCGA cancer-type abbreviations.
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number of contributing pathologists and institutions represented in
the TCGA dataset (Fig. S1), we observed that report structure, com-
position, and terminology varied greatly, even amongst single cancer-
type subsets.

The complexity and size of the dataset suggested that a LLM
would be appropriate, and that such a model should be generalizable
once trained. To this end, we tested three pre-trained LLMs for our
classification task16,18,19 (Methods). Two models were pre-trained on a
large set of publicly available clinical notes20. The first, ClinicalBERT
(CB)18, has been widely used in the field of clinical natural language
processing, but is limited in both training and application by its max-
imum input capacity (512 tokensper document). Indeed,we found that
over 66%ofTCGA reports are greater than 512 tokens in length (Fig. 1B,
Table S1). The second model, Clinical-BigBird (CBB)16, recently
released, has a vastly increased document input capability (4096
tokens per document) with proportionally fewer model parameters.
The third model we evaluated was the most recent LLM release from
Meta, Llama 3, which has state-of-the-art performance on common
benchmarks21.We exploredboth the basemodel (zero-shot) and afine-
tuned version.

Classification was divided into individual tasks due to differences
in patient training set size based on TNM status. Each classification
target was assigned different integer-value ranges based on standard
clinical use: T-values were in [1, 2, 3, 4], N-values were in [0, 1, 2, 3], and
M-values were binary, [0, 1]. We denote these ranges as T14, N03,
and M01 (Fig. 1C). We divided TCGA patients into training, validation,
and held-out test sets. We selected the best-performing BERT-based
model for each target based on validation set optimization. Themodel
type that performed best across all three targets was CBB. We varied
input size, finding that CBB models parameterized with larger input
sizes generally performed better—CBB with 2048 input tokens per-
formed best for T14 and N03 targets, and CBB with 1024 input tokens
for the M01 target (Table S2). Validation set performance ranged from
0.82–0.96 AU-ROC. We then evaluated best-model performance on
TCGA held-out test sets, with AU-ROC ranging from 0.75–0.95 (Figs.
S2 and 3). The TCGA test sets were completely independent of the
training dataset for each target. For comparison, we repeated this

analysis to evaluate the performance of Llama 3. We found the base
model achieved F1s of 0.70, 0.84, and 0.81 for T14, N03, and M01,
respectively. We then fine-tuned Llama 3 using the same experimental
set up as the BERT-based models and the model achieved F1s of 0.78,
0.88, and 0.92, for T14, N03, and M01, respectively. BB-TEN out-
performed the base Llama 3 for all three classification tasks and out-
performed the fine-tuned Llama 3 (Llama3-FT)model for T14 andM01.
We also performed a running time analysis and found that CB, BB-TEN
(CBB), and Llama3-FT, took 3min, 7.2min, and 64.8min, to train one
epoch, respectively (Table S6).

We further evaluated our best-performing models on an inde-
pendent set of pathology reports. We selected all pathology reports
from Columbia University Irving Medical Center (CUIMC) from
2010–2019, and matched with tumor registry TNM annotation based
on report date and diagnosis (see section “Methods”). As in the TCGA
dataset, there was uneven coverage of TNM annotation across
patients: 7792 patients corresponded to known T status, 6140 patients
corresponded to known N status, and 2245 patients corresponded to
known M status (Table S3). Patients with T status spanned 42 primary
cancer sites; patients with N status spanned 41 primary cancer sites,
and patients with M status spanned 40 primary cancer sites (Fig. S4).

The final models were not fine-tuned on CUIMC reports, but
rather applied directly in an off-the-shelf capacity. We found that BB-
TEN performed well, with AU-ROC ranging from 0.815–0.942
(Fig. 2A–D). For themulti-class targets T14 andN03, we found that per-
class performance was consistently high (Fig. 2A, B). To ascertain
whether the use of the CBB model type (with its increased complexity
andmuch larger input size)made a difference in application to CUIMC
data, we compared the best-performing CB model (as determined on
the TCGA validation set) to the best-performing CBB model for the
N03 task. We found that the best CB model performed at AU-ROC of
0.779,whereas thebestCBBmodel producedAU-ROC0.912onCUIMC
data (Table S4).

Finally, we testedwhether including protected health information
(PHI), such as name, date of birth, MRN, and gender, would have any
impact on model performance for T14. We found that the best-
performing model had a very slight improvement in performance

.C.B.A
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Target TCGA AU-ROC 

(internal validation) 

TCGA AU-ROC

(held-out)

CUIMC AU-ROC 

(external validation)

T14 0.959 0.945 0.942

N03 0.938 0.939 0.912

M01 0.823 0.750 0.815

Fig. 2 | Performance of final models. A–C External validation using CUIMC data.
Per-Class ROC Curves for each model: Tumor size (T14), Regional lymph node
involvement (N03), and Distant metastasis (M01). D Best-performing models

applied to TCGA held-out and CUIMC pathology reports. Models were selected
based on TCGA internal validation set performance.
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(difference in AU-ROC of 0.0001) when PHI was removed (Table S5).
Given the small difference in performance, we do not consider PHI
exclusion to be a necessary requirement for the use or application of
our models.

Discussion
Automating the classification of cancer stage from pathology reports
would result in shorter turn-around time for clinical trial patient
selection and research cohort construction. This would allow more
patients to be routinely surveyed for inclusion in clinical trials and
research studies. Automated stage annotation may be utilized in
facilitating automated pathology report review for clinical use and
prognostication, and in developing multi-modal models that combine
both image and text, particularly as medical centers are increasingly
digitizing pathology slides22.

In this study, we applied a recently released transformer model,
with higher input capacity than the traditional BERTmodel, to achieve
consistently high predictive performance acrossmultiple independent
datasets. Importantly, we have made our models publicly available.
Unlike other studies in clinical NLP, our models were trained on fully
de-identified pathology reports, and therefore do not necessitate
specialized approaches, such as differential privacy or federated
learning, for theirdissemination. Further, ourmodelswere trainedon a
highly diverse dataset spanning over 500 tissue source sites (Fig. S1),
whereas previous studies have utilized data from a much narrower
variety of sources – for example, one study only drew from 28 sites11.
As we have demonstrated, the TNM models are consistently perfor-
mant across institutions. We found that our TCGA-trained models
performed as well on the CUIMC report set as on the TCGA held-out
test set (Fig. 2D), suggesting that they are indeed generalizable. Many
CUIMC reports did not contain explicit staging terms (15.3% of T14,
20.3% of N03, and 94.7% of M01 reports), suggesting that the models
exhibit increased performance by going beyond direct extraction,
inferring stage classification from context. Finally, we compared our
BERT-based models to more recent state-of-the-art generative LLMs.
Specifically, we evaluated the performance of Meta’s newest release,
Llama 3, and discovered that our BERT-based models performed bet-
ter and faster. While the generative models provide generally strong
performance across a wide range of NLP benchmarks, our results
indicate that BERT-based models can be quickly and effectively tuned
for specific classification tasks. This makes these models especially
suitable forusewith sensitive healthcaredata,wheredatamust be kept
inside the institution, and across a wide range of computational
infrastructure. Future work should focus on additional testing at
external institutions to further validate the generalizability of our TNM
models.

Although promising, our method has a number of notable lim-
itations. Firstly, we abstracted the values of T, N, andM, converting for
example T1a to T1. Re-training our models on a larger set of pathology
reports would allow for a more detailed prediction target. Second, we
were limited by our computational memory allotment, restricting the
number of tokens per report to 2,048. If computational capacity were
increased, one may extend to 4,096 tokens in order to capture longer
reports at full length. Third, we developed our models based on cur-
rent AJCC23 definitions of stage; ourmodel would need to be re-trained
if AJCC definitions were substantially updated.

In addition, theM01model did not perform as well as the T14 and
N03 models overall. This is likely due to a number of factors inherent
to the TCGA training data: (1) M01 was a particularly imbalanced
dataset, with only 6.7%of reports havingM1 annotation (Fig. 1C) due to
TCGAdesignpreference for non-metastatic cases, (2)many reports did
not contain M0 or M1 explicitly, as compared to the other targets
(95.1% of reports did not contain explicit M01, as compared to 66.5%
for N03 and 35.8% for T14), and (3) TCGA annotations for M01 were at
times inconsistent with report text (see section “Methods”). The M01

model is limited by the quality of the input data on which it is trained.
In future work, the M01 model may be improved by training on a
dataset with a great number of M1-annotated pathology reports and
more consistent ground truth annotation.

Methods
The research performed complies with all relevant ethical regulations;
the institutional and IRB that approved the study protocol are
Columbia IRBnumberAAAL0601. IRBwaived informedconsent for the
study due to its retrospective and anonymized nature, minimal risk
and lack of patient contact.

TCGA pathology report dataset construction with TNM
annotation
Pathology reports and associated TNM clinical metadata were down-
loaded from the TCGA Genomic Data Commons (GDC) data portal
from https://portal.gdc.cancer.gov. Reports were initially stored in
PDF format; in previous work, we converted the TCGA pathology
report corpus to machine-readable plain text using OCR, performed
extensive curation, and fully characterized the final TCGA report set.
The final dataset spanned 9,523 reports, with 1:1 patient:report ratio14.

TNM staging annotation was contained within the clinical meta-
data providedby TCGA. The TNMstaging attribute used in this study is
pathological stage, i.e., stage based on pathologist assessment of
patient tumor slide(s) combined with previous clinical results. This
value is distinct from clinical stage as provided by TCGA; we chose
pathological rather than clinical staging for ground truth as (1) it is
considered the diagnostic gold standard during the course of
patient care and (2) information concerning pathologic staging is
contained within report text. Staging was determined in a systematic
manner by TCGA across all patients17. All data used for ground truth
labeling was derived from the TCGA metadata as provided by the
TCGA data portal.

TNM values were abstracted to numerical values, without addi-
tional letter suffixes—For example, N1B was converted to N1. Data
availability, or TNM coverage, varied. A given report may have had no
associated TNM data, full associated TNM data, or some combination
of associated TNM values. Due to the difference in coverage, we
separated the data by TNMdata availability for individual classification
tasks. Each target dataset consisted of non-uniform target value dis-
tributions, as displayed in Fig. 1C, to varying degrees.

Finally, TCGA annotation ofM01was found to be inconsistent.We
examined a random sample of 10 pathology reports, with 5 reports
annotated asM0 and 5 reports annotated asM1 in the TCGAmetadata.
We found that 5/5 reports annotated as M0 were labeled consistently
with the AJCC definition of M0. However, we found that 2/5 reports
annotated asM1were not labeled consistently with the AJCC definition
of M1 (distant metastasis), but rather contained characteristics similar
to the reports labeledM0. From this, we observe that the ground truth
labels for the M01 target may not be uniformly accurate, as they were
found to be at times inconsistent with the AJCC definitions of distant
metastasis and inconsistently applied among reports.

Comparison of clinically pre-trained BERT-based models
For each target, we performed fine-tuning experiments using two
model-types, CB18 and CBB16. Both models had been pre-trained on a
set of clinical notes (MIMIC III20). CB has consistently performed at a
high level across a variety of clinical natural language processing
tasks24–26. Model CB contains 108.3M parameters and is based on the
classic BERT architecture15. CB is, however, very limited by amaximum
input document length of 512 tokens. As a result, reports longer than
512 tokens are truncated during training, and text beyond 512 tokens is
not used for model learning. In addition, when applying the model to
an external dataset, reports must again be truncated to 512 tokens, so
that any information contained within text beyond 512 tokens is not
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applied toward model prediction. As many real-world reports are
longer than 512 tokens, this is a serious limitation.

Amore recentmodel, CBB, has 128.1Mparameters and adopts the
computationally-optimized BigBird architecture27. Bigbird is based on
the BERT architecture but differs in the specification of the attention
mechanism. Briefly, a sparse attention mechanism allows for longer
inputs to be computationally tractable, providing linear run-time with
number of input tokens (compared to the quadratic run-time of BERT)
and better performance on benchmark tasks27. As a result, model CBB
has a vastly increased document length capacity (4096 tokens), which
allows the use of entire-length reports in both training and application.
For example, in the TCGA pathology report dataset, over 66% of
reports in the TCGAdataset contain >512 tokens (Table S1), while 12.9%
have report length >2048 tokens, and only 0.7% have reports >4096
tokens.

Multi-class classification tasks utilizing the TCGA pathology
report dataset
We separated reports into reports with M01 annotation, reports with
N03 annotation, and reports with T14 annotation. M01 annotation had
the least coverage in the TCGA dataset overall. Each report set was
divided into training (70%), validation (15%), and held-out test (15%)
sets. As each patient corresponded to a single report, no patient
spannedmore than one train/validation/test (TVT) subset. In addition,
when separating the reports into TVT subsets, we balanced on TNM
value composition so that the same balance of values was consistent
across TVT subsets. This allowed for fair comparison of performance
across TVT subsets, with no TVT subset having a greater imbalance
than the dataset overall.

Independentmodelswere trained andhyperparameter-optimized
for each of M01, N03, and T14 classification targets separately, as
specified below. We evaluated model performance based on macro
AU-ROC and per-class AU-ROC (in a one-vs-all capacity). Each target
was evaluated separately.

Hyperparameter optimization, model fine-tuning, and model
selection
ClinicalBERT andClinical-BigBird. For hyperparameter optimization,
we performed an iterative grid search across two learning rates, three
batch sizes, and three random seeds (used for train/validation split).
Due tomemory limitations, themaximum number of input tokens per
document that we were able to implement was 2048 input tokens. We
used 512 input tokens for CB (themaximum allowed by the CBmodel),
but for CBB we experimented with 512, 1024, and 2048 (the maximum
allowed by our hardware). We fine-tuned each model for 30 epochs.
Run-time of CBB experiments was substantially longer than that of CB
experiments, with 2048 input token CBB (CBB-2048) instantiations
taking almost 24 hof training run-timeper parameter combination.We
evaluated model performance depending on TCGA validation set AU-
ROC, selecting the best finalmodel per target based on thismetric. We
found that CBB-2048was the bestmodel type for T14 andN03 targets,
whereas CBB-1024 was the best for theM01 target (Table S2). The final
TNM models are made publicly available through Huggingface
(https://huggingface.co), which is a widely used Python library for
publishing and downloading LLMs.

Llama 3. Llama 3, developed by Meta AI, is a large-scale language
model with 8 billion parameters, designed to capture a wide range of
general knowledge and demonstrate state-of-the-art performance on
various natural languageunderstandingbenchmarks. To adapt Llama3
for our specific clinical classification tasks, we employed the Low-Rank
Adaptors (LoRa)methodology, which allows for efficient fine-tuning of
large pre-trained models. LoRa introduces low-rank matrices to mod-
el’s attention and feed-forward layers, enabling us to update only a
small subset of the model’s parameters while keeping the rest frozen.

This approach significantly reduces the computational resources
required for fine-tuning and allows for rapid adaptation to new tasks.
For the fine-tuning process, we initialized Llama 3 with its pre-trained
weights and introduced LoRa adaptors with rank: r = 16 and scaling
factor alpha = 16. We fine-tuned the model on the TCGA Pathology
Report Dataset, targeting the classification layers for the M01, N03,
and T14 staging annotations. The fine-tuning was conducted over 3
epochswith a batch size of 16 and a learning rate of 3e-4.We tested the
fine-tuned model as well as the base model.

Evaluation of training time
In order to compare the different models’ training time, we set an
experiment with the same conditions for the three models. We used
one instance of NVIDIA A100 GPU. The specifications for this model
include 80GB of memory and 2 TB/s of memory bandwidth. The
results can be seen in Table S6, showing the direct correlation between
parameters and training time.

Characterization of CUIMC pathology report dataset
We retrieved all reports from the CUIMC pathology report data-
base, between 2010–2019. We removed empty reports and outside
consultation reports. We selected for reports with the surgical
pathology label, as this label indicated histopathology slide analysis
in contrast to other report types generated by the pathology
department. Report text remained intact, not pre-processed. TNM
stage annotation data were located in a separate metadata table,
derived from the tumor registry. We selected for patients with non-
empty TNM values.

We employed three attributes to match report text to patient
TNM annotation: patient ID, report date (matched to TNM diagnosis
date), and TNM-primary site (Fig. S4). Patient ID was matched exactly
across the twodatabases. For date-matching, we allowed up to 90days
between report date and diagnosis date, as there is a lead-time/delay
between pathologist documentation and official tumor registry stage
extraction. We observed that the number of reports overall, as well as
the number of reports per patient, increased as the time-window was
expanded from 0 to 90 days. Additionally, we observed that a single
patient may have multiple pathology reports potentially associated
with a given TNM annotation, within the same time-window. We
therefore imposed an additional matching requirement to ensure
report-annotation relevancy, selecting themost relevant report as that
which has the greatest number of report string matches to the TNM-
associated primary site value. At this stage, the vast majority of
patients were associated with a single TNM-report match. However, in
the event thatmultiple reports were equally relevant, we concatenated
reports to ensure that all relevant TNM-information would be
captured.

In the final CUIMC dataset, most reports had associated T14
annotation, and the least number of reports had M annotation, similar
to the TCGA dataset (Table S3A). We tabulated the class imbalance for
each target (Table S3D). We found that T4 and N3 are the least-
prevalent classes per target, as was the case for the TCGA report set
(Fig. 1C). We also found that the proportion of M1 is higher in the
CUIMC dataset (20.1%) as compared to the TCGA dataset (6.7%). The
range of diseases is larger for the CUIMC reports as compared to TCGA
reports: The TCGA dataset ranged from 21–23 cancer types, whereas
the CUIMC dataset spans 40–42 primary sites (although these terms
are not directly comparable). We plotted the primary site distribution
for each target report set (Fig. S4), finding that the distributions are
similar across the three targets. As in theTCGAdataset, breast and lung
are two of the most prevalent cancer sites, across all three targets.
Finally, using theCBB tokenizer, we computed token statistics for each
target dataset (Table S3C). Overall, we found that CUIMC pathology
reports were longer than TCGA pathology reports, both on average
and at maximum report length.
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Additionally, we explored the demographics of our dataset and
included them Table S3B.

Application of TCGA-trained models to CUIMC dataset
TNM models were applied directly to the entire CUIMC report set
(without any additional fine-tuning). As before, we calculated AU-ROC
to evaluatemodel performance.We found that, as for TCGA validation
and held-out test sets, M01 was the least well-performing model (as
compared to the T14 and N03 models).

We compared the CUIMC performance of our TNM models to
those of Abedian et al. 5,10, which was the most comparable to ours in
terms of the use of pathology report text as sole input, the predicted
TNM target value ranges (T14, N03, and M01), and the inclusion of
multiple cancer types in both train and test sets. Abedian et al.
reported F1, rather than AU-ROC. We computed F1 for our models and
compared our results to the pan-cancer test set results in ref. 5
(Table S3E). We found that our T14model performed on-par with5, our
N03 model performed somewhat better, and our M01 model per-
formed substantially better than the equivalent model in ref. 5.

Weperformed three additional experiments toprobeour external
validation results. First, although we found that the CBB model-type
achieved the best performance on the TCGA report set, we were
interested inwhether this result would hold for CUIMC reports. To test
this, we applied the best-performing TCGA-trained CB model to the
CUIMC report set to predict the N03 target. There was a large differ-
ence in performance across all evaluation metrics, including overall
macro and per-class AU-ROC between CB and CBB (Table S4). CBB
likely performed better thanCB due to its increased complexity as well
as its increased input token size (Table S3C).

Second, we tested whether our primary parameter for report-
diagnosis matching, number of days between diagnosis and report
date, had any impact on CUIMC performance. We ran the TCGA-
trainedmodels onCUIMCdata for each target separately for 0, 10, and
30days; we compared the results to the performancewe achievedwith
90-day report-matching (Fig. S5). In this sensitivity analysis, we found
that AU-ROC remained stable as the number of dayswas varied. For the
multi-class targets, T14 and N03, we plotted per-class changes over
time, finding that there is a slight increase in per-class AU-ROC as the
number of days increases. The magnitude of AU-ROC increase across
number of days varies by class. The least-prevalent classes (e.g., T4 and
N3) have the largest gain in AU-ROCasnumber of days increases; this is
likely due to the increased likelihood of report relevance as number of
days increases.

Finally, we tested the removal of PHI, such as medical record
number, date of birth, etc., from the preamble of each report for the
T14 target. In the CUIMC dataset, most of the patient-identifying text
was located in the first few lines of each report (whereas diagnosis
information was not typically contained in this preamble section). Our
hypothesis was that themodelmayperformbetter without extraneous
patient details, particularly as these types of details had not been seen
by the model when trained on the de-identified TCGA report set.
However, we observed only a 0.0001 AU-ROC gain when PHI was
removed (Table S5). We determined that PHI removal was not neces-
sary for external validation, as increased pre-processing effort would
potentially lead to only a very small performance gain.

Software requirements
For the training and testing of our model, we utilized the following
Python (version 3.12) packages: numpy (version 1.26.4) for numerical
computations, pandas (version 2.2.2) for data manipulation and ana-
lysis, scikit-learn (version 1.4.2) for machine learning algorithms, scipy
(version 1.13.0) for scientific computing, seaborn (version 0.11.2) for
data visualization, transformers (version 4.40.2) for natural language
processing, and torch (version 2.3.0) for deep learning. Specifically, for

the llama3 model, we employed accelerate (version 0.30.0) for opti-
mizing training speed, bitsandbytes (version 0.43.1) for efficient
computation, evaluate (version 0.4.2) for performance assessment,
huggingface-hub (version 0.23.0) for model sharing, and peft (version
0.10.0) for parameter-efficient fine-tuning.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from theTCGAand theCUIMCEHRwereused in this analysis. The
data supporting the findings described in this manuscript are available
in the article and in the Supplementary Information or from the cor-
responding author upon request. The TCGA pathology report text can
be found at https://github.com/tatonetti-lab/tcga-path-reports under
anMIT License. De-identifieddata from theCUIMCEHR (i.e., pathology
reports) will be made available in a controlled access manner. Con-
trolled access is required due to the sensitivity of the data in the
pathology reports used in this study. Researchers who wish to access
the datamust be trained in and abide by HIPAA policies andmay reach
out to the corresponding author to initiate thedata access requestwho
will respond to each request within 30 days. Data access and use
agreements will be determined by CUIMC according to institutional
published guidelines.

Code availability
Python scripts used in this study can be found onGithub: https://github.
com/tatonetti-lab/tnm-stage-classifier28 Models generated by this
study can be found on Huggingface: https://huggingface.co/jkefeli/
CancerStage_Classifier_T https://huggingface.co/jkefeli/CancerStage_
Classifier_N https://huggingface.co/jkefeli/CancerStage_Classifier_M.
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