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Impact-based forecastingof tropical cyclone-
related human displacement to support
anticipatory action

Pui Man Kam 1,2 , Fabio Ciccone1, Chahan M. Kropf 1,3, Lukas Riedel 1,3,
Christopher Fairless1 & David N. Bresch 1,3

Tropical cyclones (TCs) displacemillions every year.While TCs pose hardships
and threaten lives, their negative impacts can be reduced by anticipatory
actions like evacuation and humanitarian aid coordination. In addition to
weather forecasts, impact forecast enables more effective response by pro-
viding richer information on the numbers and locations of people at risk of
displacement. We introduce a fully open-source implementation of a globally
consistent and regionally calibrated TC-related displacement forecast at low
computational costs, combining meteorological forecast with population
exposure and respective vulnerability. We present a case study of TC Yasa
which hit Fiji in December 2020.We emphasise the importance of considering
the uncertainties associated with hazard, exposure, and vulnerability in a
global uncertainty analysis, which reveals a considerable spread of possible
outcomes. Additionally, we perform a sensitivity analysis on all recorded TC
displacement events from 2017 to 2020 to understand how the forecast out-
comes depend on these uncertain inputs. Our findings suggest that for longer
forecast lead times, decision-making should focus more on meteorological
uncertainty, while greater emphasis should be placed on the vulnerability of
the local community shortly before TC landfall. Our open-source codes and
implementations are readily transferable to other users, hazards, and
impact types.

Human displacement occurs when people are forced to leave their
homes or places of habitual residence due to external events such as
natural extreme weather hazards1. Every year, weather extremes cause
millions of people around the world to be displaced. Tropical cyclones
(TCs) account for the second largest contribution to these human
displacements after floods, with an average of 9.3million people being
displaced every year between 2017 and 20202. The duration of dis-
placement and its humanitarian impact vary widely: from short-term
pre-emptive evacuations to long-term displacement if houses or
community infrastructures are significantly damaged, or people lose
access to their economic activities. To cope with the post-disaster

recovery, international and national assistance for humanitarian
response and relief funds are often required. The range of assistance
includes providing emergency shelter, clean water and food, health
care, psychological support, and long-term community and livelihood
recovery and restoration3,4.

Anticipatory actions can help to reduce the negative impacts of
extreme weather events. Examples of anticipatory actions include eva-
cuation planning, emergency protection, and humanitarian aid coordi-
nation. The World Meteorological Organization (WMO) proposed the
WMO Coordination Mechanism (WCM)5 and a pilot project
Weather4UN5 that enable access toweather and climate information and
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the provision of expert advice from WMO Members to the member
states and other humanitarian agencies. Another similar scheme is the
Forecast-basedfinancing (FbF)proposedby the International Federation
of Red Cross and Red Crescent Societies (IFRC)6. It is a specific financial
scheme that allows access to financial resources based on scientific
forecasts and risk analysis for humanitarian actions agreed in advance.
The allocation of the funds is automatically released when a certain
forecast threshold is reached, which allows mitigation measures to take
place prior to the hazard and thus reducing impacts7.

Currently, the planning for anticipatory action is mostly based on
weather forecasts, which may potentially miss crucial nuances required
to minimise negative impacts. For instance, knowing whether the same
intensity of stormhits a populated city or a scattered rural area, or being
awareof the resilience of thedirectly affected community,will in general
lead to different preemptive measures. At the moment, this auxiliary
information is indirectly taken into account by decision-makers who use
expert knowledge and past experiences to guide their assessments, but
there is rarely a systematic quantification available.

An impact forecast moves a step forward from conventional
weather forecasts to give information on how the weather will affect
people. It systematically translates theweather information into risk by
combining it with social variables8. There have been multiple emer-
gency evacuation decisions support tools for tropical cyclones in the
US that combine weather forecast with traffic information to support
evacuation plannings (e.g. Harris et al.9, Davidson et al.10, and Blanton
et al.11), and establishing platforms that provides weather risk com-
munication with integrates societal information flow (e.g. CHIME;
Morss et al.12). Currently, there are however no tools that provide
globally consistent impact information for human displacement. Here
we introduce a proof-of-concept implementation of a global TC-
related displacement impact forecast, that could provide more com-
parable, standardised, and less singular information to support
decision-making for anticipatory action.

We use the open-source probabilistic natural catastrophe risk
assessment platform CLIMADA (CLIMate ADAptation)13 for the dis-
placement impact forecast. The platform is widely used in long-term
weather and climate impact assessments for building insurance and
other socioeconomic impacts14–20, and has also been used for estab-
lishing operational impact forecasts for building damages fromwinter
storms21. CLIMADA generates risk information and quantifies socio-
economic impacts by integrating hazard, exposure, and vulnerability
data. In our study, we forecast the number of people who are at risk of
being displaced due to upcoming TC events by combining datasets
from i) TC track forecasts and their associated windfields as hazard, ii)
the global population distribution as exposures, and iii) the vulner-
ability of people being displaced represented by a univariate impact
function relating the TCwind speed to the probability of displacement
at a given location, see Fig. 1.

In typical disaster risk assessments, risks are quantified by con-
sidering long-term aggregated average impacts from past events13.
However, when it comes to forecasting a single event, we argue that it is
important tonotonly consider themostprobableoutcomebut also look
at the overall distribution of plausible forecast outcomes when deciding
on the anticipatory action. The uncertainties in the forecasted impact
arise from the complex interplay between the meteorological forecast
variability based on the ensemble forecast system22,23, and uncertainties
associated with all other input data. We will show that it is crucial to
account for uncertainties in all inputs to provide amore comprehensive
perspective on the forecasted outcomes. Furthermore, to make this
uncertainty practical in the context of decision-making, we conduct
sensitivity analyses to gain a deeper understanding of how the relevant
outcomes depend on these uncertain inputs.

Here we demonstrate the TC impact forecast for displacement by
performing an analysis for the TC Yasa that hit Fiji in December 2020
and caused the displacement of 23,414 people2,24. We chose Fiji as a

demonstrating case as the Pacific Islands are an under-studied region,
and while the island characteristics enable a showcase of hit-or-miss
scenarios, the probability of whether there will be impacts are
important when providing the forecast information.

We first forecast risk of displacement by considering only the
meteorological forecast variability. Then we quantify the full uncer-
tainty range of forecast outcomes that includes uncertainty from the
exposures and vulnerability. We repeat the calculation using a quasi-
Monte Carlo sampling method to cover a wide range of possible input
variations25,26, and a sensitivity analysis to attribute which input varia-
tions contributemost to the overall uncertainty.We alsogeneralise the
main findings by performing the same displacement forecast analysis
at different lead times prior to the landfall for all past TC events which
have displacement records from 2017 to 20202. Our results provide
decision-makers with a wide range of possible outcomes and guidance
on which input variations should be considered for better-informed
decisions on anticipatory actions.

Results
Impact forecast for TC Yasa
Here we first demonstrate the displacement forecast by performing a
case study of the TC Yasa, which passed through Fiji on 17 December
2020. TC Yasa reached category 5 of the Saffir-Simpson wind scale,
with maximum sustained winds reaching 146 kts (75.1m/s) before
making its landfall in Fiji27. The cyclone was the strongest since TC
Winston in 2016 andwas themost destructive cyclone in Fiji during the
cyclone season 2020–2021, damaging infrastructure, buildings and
agricultural areas24. IDMC has recorded 23,414 people on the Fijian
islands as being displaced2.

Figure 2a shows a spatially explicit map of the forecast-ensemble-
averaged displacement in Fiji, overlayed with the 51 ensemble forecast
TC tracks from the Integrated Forecasting System maintained by the
European Centre for Medium-Range Weather Forecasts (ECMWF-
IFS)22,23. The exposure is the static estimation of population distribution
asdescribed in subsection “Population exposures”of section “Methods”,
and the impact function (or vulnerability curve) is a calibrated function
that minimises the relative errors over all the recorded displacement
events in the Pacific Island region, detailed in subsection “Calibration of
impact functions for human displacement” of section “Methods”. The
average forecasted number of people at risk of displacement in Fiji is
172,000 (orange dashed line in Fig. 2b), whilst the total number of dis-
placed people ranges from 3500 to 450,000 based on the maximum
1-minute sustained wind fields calculated from the 51 ensemble forecast
TC tracks. The distribution of the number of displaced people per
ensemblemember, as shown in Fig. 2b, is right skewedwith a long tail of
high impacts. The large displacement uncertainty here only comes from
the spread of the TC tracks. The magnitude of the impact mainly
depends on whether the TC hits themain island and passes through the
populated cities, or remains mostly over the ocean. The case that gives
the highest number of people who could be potentially displaced fea-
tures a forecastedTC track that crosses Fiji’smain islandofViti Levunear
the populated cities such as Suva, Lautoka and Nadi, whereas the lowest
numbers come from tracks that do not make landfall and pass the
Northeastern side of Fiji.

Global uncertainty and sensitivity analysis
An effective impact forecast should not only include the variability of
the meteorological forecast, but also the uncertainties within the
exposure information and impact functions21,25,28. Here we include the
uncertainties from the total population count and replace the single
impact function with an ensemble of functions, with each member
calibrated against a past event to represent the range of plausible
functions (detailed in subsections “Calibration of impact functions for
human displacement” and “Uncertainty and sensitivity” of section
“Methods”). Note that this calibration method differs from the one

Article https://doi.org/10.1038/s41467-024-53200-w

Nature Communications |         (2024) 15:8795 2

www.nature.com/naturecommunications


used for Fig. 2, as discussed in section “Discussion”. We ran the impact
forecast model more than 8000 times with each run randomly sam-
pling parameters for eachmodel component (meteorological forecast,
exposures, and impact functions). The computational time of this
uncertainty distribution starting from theTC forecast tracks extraction
is around 10minutes on a MacBook Pro equipped with 2.3 GHz Quad-
Core Intel Core i7 and 16 GB random-access memory (RAM).

Figure 3a shows the probability distribution of the global uncer-
tainty analysis. The resulting distribution is even more right-skewed
compared to 2b) (meteorological variability plot), yielding an average

of 123,391 people in Fiji being displaced by TC Yasa, but with the
average and peak probability closer to the reported number of dis-
placements by the IDMC.

Furthermore, the corresponding first-order sensitivity analysis
shown in Fig. 3 indicates that the overall impact forecast uncertainty is
most sensitive to the uncertainty from impact functions (sensitivity
index 0.411), with themeteorological forecast uncertainty alsomaking
a substantial contribution (0.320) at twodays lead time of the forecast.
The sensitivity index for the total population, on the other hand, is very
small (0.005).

Weather Forecast Impact Forecast
(Displacement Risk)

Better support to 
Anticipatory Action  

noitubirtsiD ytilibaborPpaM tcapmI

Tropical Cyclones Forecast
(Hazard) 

Population Settlement
(Exposures)

Impact Function
(Vulnerability)

Fig. 1 | Schematic illustration of the displacement impact forecasting system
implemented inCLIMADA.The spatially explicit risk of displacement is calculated
based on weather forecasts as hazard, population settlement as exposures, and

vulnerability information. CLIMADA facilitates the production of different sum-
marising risk metrics and plots13,25. Maps and plots are plotted using python
package Cartopy and Matplotlib55,56.
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Displacement impact forecast at different lead time
We repeat the preceding analysis for lead times ranging from 3.5 days
until just before landfall at intervals of 0.5 days. Figure 4a shows the
kernel density fit to the probability distribution of the global uncer-
tainty of the displacement impact forecast at different lead times. The

distribution is more spread out for longer lead times, but narrows for
the forecast close before landfall.

Figure 4b shows the first-order Sobel sensitivity index29 of all the
uncertain input parameters. We observe a general decreasing trend of
the sensitivity index for the meteorological forecast, while an

Fig. 3 | Uncertainty and sensitivity analysis for the forecasted TC displacement
in Fiji. a Probability distribution of the forecasted potential number of displaced
people in Fiji due to TC Yasa with two days’ lead time for each impactmodel run in
the global (including exposure, hazard and vulnerability uncertainty) uncertainty
and sensitivity analysis. The black dashed line indicates the number of reported
displacements from IDMC. The orange dashed line represents the forecastedmean

from the 51 ensemble members of the TC forecast (from Fig. 2a), and the purple
dashed line represents the mean forecasted displacement from the global uncer-
tainty and sensitivity analysis56. b The Sobol first-order sensitivity indices for the
total number of displaced people, the error bars represent the 95th percentile
confidence interval for each index obtained from the Saltelli57 algorithm56. c The
largest Sobol first-order sensitivity indices at each grid point55–57.

Fig. 2 | Forecasted displacement in Fiji by tropical cyclone Yasa. a The forecast-
ensemble-averaged impactmap55,56 of displacement by TCYasa in Fiji as forecasted
at 00:00 UTC on 15 December 2020, 2 days before the TC landfall. The black line
shows the observed best track of TC Yasa from IBTrACS27. Grey lines show the
ensembleof ECMWF forecastedTC tracks,with the blue and red lines indicating the

best and worst case scenarios with respect to the forecasted total number of dis-
placements. b Distribution of the forecasted potential number of displacements in
Fiji basedonwind fields calculated from 51 ensemblemember tracks shown in (a)56.
The vertical lines indicate the reported (black) and the mean forecasted (orange)
displacement.
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increasing trend for the impact function. In the meantime, the index
for the change in total population remains close to zero at all forecast
lead time.We remark that the increase in sensitivity to the vulnerability
uncertainty at shorter lead times cannot be equatedwith an increase in
uncertainty from vulnerability, but only that the relative contribution
to the total uncertainty fromvulnerability increases, and from forecast
decreases.

Uncertainty and sensitivity analysis for past TC displacement
events from 2017 to 2020
We ran the same uncertainty and sensitivity analysis on the total
number of displaced people for worldwide recorded TC events from
2017 to 2020 at lead times from 3 to 0.5 days before landfall. We find
the impact forecast for displacement show a bias of overestimation
when comparing to the reported number of displacement from IDMC
(see Fig. S6.) Details of the impact forecast validation and biases are
included in the supplementary information S4.

Figure 5 summarises the distributions of first-order sensitivity
indices for all TC events. Similar to the trends identified in Fig. 4b, the
median of the first-order sensitivity index for meteorological fore-
cast is the largest when the forecast lead time is longer, but decreases
closer to the TC landfall. The impact function’s sensitivity index, in
contrast, is smaller with longer lead times but increases over time.
Hence, on average over all considered events, we find that the rela-
tive contribution to the overall uncertainty from the forecast is lar-
gest at long lead times, and from vulnerability at short lead times.
This overall trend does however not hold for all individual cases as
exemplified with TC Harold in the Supplementary Figs. S4 and S5 for
which also at long lead times the sensitivity to the vulnerability
uncertainty is largest. Note that the forecast uncertainty for TC
Harold is comparable to TC Yasa even though the sensitivities are
different.

Discussion
Our work shows that it is possible to provide spatially explicit impact
forecasts for tropical cyclones-related displacement from publicly
available data in near-real time. We combine the tropical cyclone (TC)
track forecasts from ECMWF with the population exposure and vul-
nerability of displacement in the open-source probabilistic risk

assessment platform CLIMADA to forecast the displacement risk by
TCs. We demonstrate the impact forecast for displacement with TC
Yasa that hits Fiji in December 2020. We argue that our probabilistic
approach ismore useful than a deterministic model. The spread of the
displacement predictions reflects the statistical uncertainty in the
model, and it is important to consider the full uncertainty distribution
when making decisions for anticipatory action, rather than only
employing the often-used ensemble-averaged metrics. We show that
the modelled impact follows a strongly skewed distribution, and thus
the averaged impact cannot reflect the full rangeof possible outcomes.
Importantly, the tail risk of high-impact scenarios, which can be the
triggers for major disasters, is inadequately represented by average
measures and must be derived from a quantified uncertainty
distribution.

Uncertainty around the impact forecast stems from the interplay
between meteorological forecast variability, uncertainties from the
population number estimation, and the spread of the impact func-
tions. In general, it is difficult to exhaustively characterise all uncer-
tainties of input data25,28, and one should always carefully consider
whichelements are needed for thepurposeof themodelling task30. For
impact-based forecast for anticipatory action planning, it is important
to understand what individual events are plausible (e.g., will the TC hit
the Eastern or the Western part of the area?) instead of summary
values (e.g., the median outcome of the TC forecast impacts is in both
the Eastern and Western areas), where the latter is more common in
risk assessment. The chosen uncertainties in this study reflect this
purpose where data is available. For the hazard, we consider the
individual outcomes from each forecast ensemble member as a
representation of the meteorological uncertainty.

For the vulnerability, qualitative impact data are often not avail-
able. To the best of our knowledge, IDMC provides the most com-
prehensive and consistent source of global displacement data, and
hence we use the IDMC displacement data for impact function cali-
bration for the global consistency. At the same time, despite many
efforts from IDMC dedicated to systematically collecting and harmo-
nising displacement data, data gaps and inconsistencies remain31.
Some of these gaps stem from the variability in reporting, for instance,
displacement can be described as “homeless” or “moved”, or included
in the category “directly affected” 31. In order to capture all the

Fig. 4 | Uncertainty and sensitivity analysis for the forecasted TC displacement
in Fiji at different forecast lead time. a Probability distribution of the impact
forecast at different forecast lead times ranging from 3.5 days to 0 days from the
landfall of TC Yasa at Fiji, with the black dashed line indicating the number of

reported displacement from IDMC and the red dashed line the mean forecasted
displacement56. b First-order sensitivity indices of the different uncertainty para-
meters for the total number of displaced people at different forecast lead times.
The error bars represent the 95th percentile confidence interval for each index56.
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plausible displacement outcomes from the TC events, we consider the
ensemble of individual impact functions calibrated to best represent
each recorded displacement event in the used IDMC database (per
region). This is in contrast to calibrating one optimal impact function
that minimises errors for all past events at once (which is the impact
function used in estimating displacement with meteorological uncer-
tainty only in subsection “Impact forecast for TC Yasa” of section
“Results” and Fig. 2), and subsequently sample the uncertainty from
the confidence interval of the optimisation process itself. The latter is
typically done in climate risk assessment studies and is best suited to
estimate the average impact over many events and its uncertainty.

For the exposures, due to a lack of uncertainty information from
the population data layer provider, we only vary homogeneously the
total population, which can be understood as a proxy for the move-
ment of people in the area. Importantly, our analysis demonstrates the
importance of performing a global uncertainty analysis (i.e., varying all
input data simultaneously)28 since it is the interplay of hazard, expo-
sure and vulnerability that can lead to extreme scenarios (e.g., a strong
TC hitting directly highly populated cities with large displacement
vulnerability).

To understand how the relevant outputs depend on uncertain
inputswe alsoperforma sensitivity analysis. Conducted at various lead
times, we observe that in general meteorological uncertainties play a
dominant role at larger forecast lead times, whereas local vulnerability
becomes more significant as TCs approach landfall and forecast
uncertainty reduces. This finding offers valuable insights for decision-
makers, guiding their considerations when devising anticipatory
actions at different points in time. In situations with longer lead times,
decision-makers may find it beneficial to seek expert input from
meteorologists regarding the TC’s expected path and further cyclo-
genesis. On the other hand, as the TC approaches landfall, involving
individuals with local community knowledge becomes crucial for
effective planning of anticipatory action. However, we also point out
that there are large variations of the sensitivity indices for both
meteorological forecast and impact function (error bars in Fig. 5).
There can be large lead times where the uncertainty contribution from
the meteorological forecast is little but the contribution from the
uncertainty of impact functions is large, and vice versa for shorter lead

times. For example, this was the case with TC Harold, which impacted
Vanuatu and displaced 80,000 people in April 2020 (further details in
Supplementary Information S3). Such instances could be related to the
fact that some meteorological situations are easier to predict than
others.

Several sources of uncertainty are not represented in our model
setup which if included could add more nuances to the previous
conclusions from the uncertainty and sensitivity analysis at different
lead times. Here we model population displacement as a direct func-
tion of TC wind speeds, but we acknowledge that the relationship
between displacements andTChazards ismuchmore complex. On the
physical hazard side, displacement occurs not only due to damages
from wind, but also due to storm surge, flood and torrential rain.
However, since both surges and rain correlate to the TC wind speed32,
the latter is often taken as aproxyof theoverall TChazard intensity33,34.
In addition, our model does not resolve the compounding risks if
multiple hazards occur at the same time or in close succession. We
choose the simpler single-hazard approach because TC wind speed
can be provided by computationally inexpensive models, and con-
sidering multiple and compound hazards strongly increases model
complexity35. In estimating population distribution, it is crucial to
recognise that locational uncertainty stems from the accuracy of
estimating densely populated clusters, which could be a significant
parameter in uncertainty analysis. However, due to the lack of uncer-
tainty information, we only apply a uniform scaling uncertainty of the
total population. This likely explains the low sensitivity to the expo-
sures. It is imperative to understand that this does not mean that the
exposures’ uncertainties are not important. It only means that the
impact forecast is not sensitive to homogeneous scaling of the popu-
lation. The uncertainty and sensitivity analysis can only represent what
is used as input for the model28.

Furthermore, our model only considers displacement as a direct
impact of hazards. But people can also be displaced by indirect
impacts such as the loss of access to basic services (e.g., water provi-
sion) due to cascading failures of critical infrastructures18. Our impact
functions are calibrated using the IDMC recorded displacement
attributed to TC eventswhich include peoplewho have been displaced
due to indirect impacts. Maximum sustained wind speed is generally

Fig. 5 | Sensitivity analysis of the TC displacement forecast for events between
2017–2020. First-order sensitivity indices at different lead time from +3.0 days to
+0.5 days for all tropical cyclone events causing displacement between 2017 and

2020 (174 total number of events). The orange lines represent the median of the
indices, the boxes show the inter-quartile range, and the whiskers show the 95th
percentile of the distribution56.
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considered a good proxy for compound damages afflicted by TCs32,34.
Thus, themodelled total impact in the area affected by TCwind should
reflect displacement from direct and indirect causes, but only in areas
of high wind speeds. The model could further be improved by incor-
porating TC sub-hazard footprints like rainfall and storm surge, or
explicitly model displacement triggered by housing damages, loss of
livelihoods or loss of access to critical infrastructures36. Themodelling
of the impacts of compound hazards is an ongoing scientific effort
(e.g. Rossi et al.36 and Stalhandske et al.37).

We further remark that for the planning of anticipatory action, not
only the displaced people, but also the people that may decide to
remain in the impacted area38, or even become trapped there if escape
routes are blocked39,40 may be of relevance. Those trapped are often
the most vulnerable, but this effect is not captured in our analysis.
Additionally, displacement is only one of the numerous socio-
economic impacts related to TCs. While forecasts of asset damages
and other impacts are possible with approaches similar to ours, we
focus on displacement because it is arguably themost relevant impact
for humanitarian agencies. Future research is encouraged to disen-
tangle the complex nature of disaster displacement and incorporate
them in the next iterations of impact forecast systems, and to integrate
additional types of impact for a more complete picture on impending
disasters.

Impact information provided on top of the weather forecasts can
support humanitarian communities to prepare properly before
hazards strike and to act more efficiently. Our presented disaster
impact forecast system is open-source and based on solely open-
access data which allows any actor even with limited resources to run
themodel at a low operational cost. Our code and implementation are
also transferable to other users (e.g. meteorological services, busi-
nesses, governments, individuals), hazards (e.g., floods, heatwaves,
storm surges, drought), and impact types (e.g. displacement, mortal-
ity). We hope the versatility of our work encourages the ongoing
development of impact forecasting systems and fosters collaborative
efforts between the risk modelling community and relevant
stakeholders.

Methods
Risk assessment platform CLIMADA
We use the open-source probabilistic risk assessment platform CLI-
MADA v3.3 for our displacement impact forecast written in
Python13,41,42. CLIMADA is designed to simulate the interactions of
weather- and climate-related hazards, the exposure of people or assets
to the hazard, and the vulnerability of those exposed people or assets
in a globally consistent fashion.

We use the tropical cyclone weather forecast as hazard with the
population as exposure and their displacement vulnerability as an
impact function to predict the number of people at risk of displace-
ment. We forecast the spatially explicit displacement number at 150
arc second resolution on land (~4 km) globally.

TC track ensemble forecasts and derivation of TC windspeed
as hazard
We take the maximum 1-minute sustained wind speed at 10 m above
the ground as a proxy of the TChazard intensity. The TCwind speed is
derived from the TC track forecast from the European Centre for
Medium-Range Weather Forecasts Integrated Forecasting System
(ECMWF-IFS)22,23, updated in real-time at 00:00 and 12:00 UTC every
day. The ECMWF-IFS forecast products consist of a high-resolution
deterministic run and 51 ensemble members. We consider only the 51
ensemblemembers for the displacement risk impact forecast. Each TC
track forecast consists of the forecasted positions, central pressure,
ambient pressure, and maximum wind speed, available at 6-hour
intervals for 240 h, which we further interpolate to 1-hour intervals.
The real-time TC forecast tracks are openly accessible from the

ECMWF servers via file transfer protocol (FTP)43, and are piped to
CLIMADA through its tropical cyclone forecast modules. Past TC track
forecasts from 2017 to 2020 are available from the THORPEX Inter-
active Grand Global Ensemble (TIGGE) project44. In total, there are 161
displacement events around the globe from the IDMC database with
matched ECMWF TC archived forecast tracks2.

The TCwind speed is then computed at a horizontal resolution of
150 arc seconds on land and 1800 arc seconds on sea from the TC
ensemble forecast tracks, based on the revised hurricane
pressure–wind model by refs. 13,45.

Population exposure
For the exposure dataset, we take the spatially explicit representation
of the world’s population from the Gridded Population of the World
(GPW v4) dataset46, openly accessible from the Socioeconomic Data
and Application Center (SEDAC). The dataset is created by uniformly
distributing the numbers of people from census data or population
figures provided by national statistics offices at the smallest adminis-
trative unit, without considering any ancillary sources.

Calibration of impact functions for human displacement
The vulnerability of people to displacement by TCs is represented by
mathematical functions (named impact functions in the CLIMADA
terminology, and often called vulnerability curves) relating the TC
wind speed to the percentage of people displaced at a location. Prior
studies have focused on defining impact functions for TC-related
building asset damages in terms of monetary values33,47,48. To the best
of our knowledge, there is no research yet on impact functions for
displacement due to TCs. In general, the impact functionsmust always
be calibrated for the data (exposure and hazard) at hand. This can be
done via numerical optimisation and may be complemented by
empirical knowledge49 or expert knowledge14. Of central importance is
choosing a calibration method suitable for the purpose of the model.
Here we assume a sigmoid curve functional form and calibrate a set of
impact functions using the reported displacement data from the
Internal Displacement Monitoring Centre (IDMC) database (accessed
in September 2022). This approach differs from previous approaches
that used housing damage as a proxy to estimate displacement50 and
whichhave been suspected to provide a conservative estimate likely to
underestimate displacement3. Our approach in particular strives to
reproduce the total reported displacement per TC event. It thus
implicitly includes the effects of all TC sub-hazards (wind, flood,
surge), preemptive measures such as evacuation, as well as regional
and cultural differences.

We calibrate the displacement impact functions to the reported
displacement data from the IDMC database for events recorded from
2008 to 2020. These reported numbers of displacements can vary
from a few persons to millions in some high-impact events2. IDMC
systematically collects displacement data fromgovernmental and non-
governmental institutions post-disasters, and dedicated efforts to
verify and harmonise data to ensure their interoperability. All the data
are curated in the global database aggregated at country level2, and the
analyses are presented in the IDMC yearly Global Report on Internal
Displacement (GRID) (e.g., GRID 202351). In this study, we take the 394
events for which IDMC has reported new displacement due to TCs as
the impact data for the impact function calibration.

The hazard events are represented by the 1-min maximum sus-
tained wind speed at 10 m from surface derived from the corre-
sponding historical TC tracks from the International Best Track
Archive for Climate Stewardship (IBTrACS)27, and the associated wind
speed computed from the45 model as implemented in CLIMADA42. We
note that there might exist biases in terms of the TC hazard intensity
between these historical tracks and the ECMWF forecast tracks52,53 (c.f.,
subsection “TC track ensemble forecasts and derivation of TC wind-
speed as hazard” of section “Methods”) used for the impact forecast.
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The displacement obtained with ECMWF tracks (0.5-days lead-time)
shows an overestimation as compared to both the reported displace-
ment from IDMC and the modelled displacement using IBTrACS, even
though ECMWF tracks have a low-intensity bias. This is likely because
the tracks from the ECMWF numerical weather predictions are simu-
lated for longer times than is recorded by IBTrACS (see detailed dis-
cussion in the supplementary information S4). Currently no bias
correction is made, but this could be addressed in future iterations of
the model. As exposures, we use the global static population layer
described in subsection “Population exposure” of section “Methods”.

To account for the local adaptation to TC around the globe, one
would ideally calibrate the vulnerability at high resolution.However, due
to the rare nature of TCs, reported displacement data is only available
for a few locations aggregated at country levels. To ensure sufficiently
robust statistics, we group countries into ten different regions with at
least 19 reported TCs and derive separate impact functions for each one
of them (see Fig. S1 in the supplementarymaterial).We use the 9 regions
defined by Eberenz et al.48, and we additionally separate Oceania into
two regions: Australia and New Zealand, and the Pacific Islands. The
Pacific Islands region impact functions are used for the displacement
estimation in Fiji due to TC Yasa in Figs. 2–4.

We consider two optimisation options for the calibration. In both
cases, we use the same third-order sigmoid-type candidate function.
For the results shown in Fig. 2 where we use a single deterministic
impact function, we calibrate one impact function per region which
minimises the root mean square fraction (RMSF) error over all events
in the region. This is designed to minimise the spread of relative error
of single events. For all the uncertainty results shown in Figs. 3–5where
we use a family of functions to capture uncertainty, we instead cali-
brate one impact function per historical event by minimising the root
mean square error. Thus, instead of one impact function per region,
one obtains a bundle of impact functions per region. The details of the
calibration and the resulting set of functions are shown in the sup-
plementary information.

Uncertainty and sensitivity
To characterise the weather forecast uncertainty alone (c.f. Fig. 2), the
impact is computed separately for each of the forecast ensemble
members with exposures and impact function remaining constant.

In general, however, an impact forecast depends non-linearly on
the three input variables exposures, impact function and hazard.
Therefore, uncertainties in each componentmay interact non-linearly.
To capture these effects, we perform a global (as opposed to one-at-
the-time) uncertainty and sensitivity analysis28. The uncertainty ana-
lysis gives information on the spread of the output variables (here the
number of displaced people). The sensitivity analysis provides indices
that subsume the sensitivity of a model output variable to the uncer-
tainty of each input parameter25,28.

To compute the global uncertainty distribution and sensitivity
indices (c.f. Figs. 2, and 4) we use a standard quasi-Monte-Carlo
numerical simulation approach25,54. We consider in addition to the
forecast ensemble members one uncertainty parameter for the expo-
sures and impact function each. For the exposures, we varied the total
value of the population estimate uniformly between [80%, 120%]. For
the uncertainty distribution of the impact functions per region, we use
all the impact functions in a region that lie within the 80% confidence
interval around the calibrated best estimate (the light blue lines in
Fig. S2). We remark that this discrete uncertainty distribution covers a
larger interval than the 80% interval of the error from the RMSF opti-
misation over all events in a region (c.f. supplementary material). We
argue that this larger uncertainty range better represents the varia-
bility in vulnerability and is thus well-suited for impact forecasting.

Using the Sobol sampling algorithm26, we generate a total ofmore
than 8000 samples of the three input parameters. For each sample, we
compute the impact at each exposure location, and from this the total

number of displaced people. For the sensitivity analysis, the same
samples areused to compute thefirst-order Sobol sensitivity indices as
defined in Saltelli & Annoni29 for the total number of displaced people,
which characterise how much each individual input parameter con-
tributes to the output metrics’ variance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The real-time updated TC tracks forecast are distributed under the
Creative Commons CC-4.0-BY licence, accessible through the ECMWF
website (https://www.ecmwf.int/en/forecasts/datasets/wmo-essential)
and can be retrieved through the CLIMADA platform. The archived TC
forecast tracks are available through the TIGGE platform (https://www.
ecmwf.int/en/forecasts/datasets/wmo-essential). For the observed
historical TC tracks used for impact function calibration, the tracks are
distributed under the IBTrACS website (https://www.ncei.noaa.gov/
products/international-best-track-archive). All tracks can be imported
to the CLIMADA platform for calculating impacts. The recorded dis-
placement data are publicly accessible via IDMC displacement data-
base (https://www.internal-displacement.org/database/displacement-
data). The exposure population data is obtained from the Gridded
Population of the World (GPW v4) dataset, openly accessible from the
Socioeconomic Data and Application Center (SEDAC) (https://doi.org/
10.7927/H4JW8BX5).

Code availability
All code necessary to reproduce the analysis is made available on
https://github.com/manniepmkam/TC_displacement_forecast and
permanently stored at https://zenodo.org/doi/10.5281/zenodo.
13342825.
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