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Deep-prior ODEs augment fluorescence
imaging with chemical sensors

Thanh-an Pham 1,4 , Aleix Boquet-Pujadas 2,4 , Sandip Mondal3,
Michael Unser 2 & George Barbastathis 1,3

To study biological signalling, great effort goes into designing sensors whose
fluorescence follows the concentration of chemical messengers as closely as
possible. However, the binding kinetics of the sensors are often overlooked
when interpreting cell signals from the resulting fluorescence measurements.
We propose a method to reconstruct the spatiotemporal concentration of the
underlying chemical messengers in consideration of the binding process. Our
method fits fluorescence data under the constraint of the corresponding
chemical reactions andwith the help of a deep-neural-network prior.We test it
on several GCaMP calcium sensors. The recovered concentrations concur in a
common temporal waveform regardless of the sensor kinetics, whereas
assuming equilibrium introduces artifacts. We also show that our method can
reveal distinct spatiotemporal events in the calcium distribution of single
neurons. Our work augments current chemical sensors and highlights the
importance of incorporating physical constraints in computational imaging.

Biological organisms transmit information by altering the spatio-
temporal concentration of certain chemical species1. For instance,
calcium ions (Ca2+) act asmessengers in a wide range of physiological
processes such as cell motility and differentiation, cardiac contrac-
tion, wound response, or brain signaling2,3. In particular, the con-
centration of calcium exhibits multiple temporal profiles within and
across brain cells, each with a unique waveform that encodes a
potentially different message4–6; and this is independent of whether
the cells are electrically excitable4,7. For neurons, this diversity is
known to play a role in the cellular mechanisms of synaptic
plasticity4,5 and brain memory6. For astrocytes, it is a sign of specia-
lization to the heterogeneity of synaptic inputs7–10. Many chemical
species other than Ca2+ are involved in biological signaling. For
example, hydrogen-peroxide (H2O2) waves play a key role in trans-
mitting information within plants11,12.

To study cell signaling in living organisms, researchers use che-
mical sensors13. More precisely, an important subset of chemical sen-
sors aredesigned to report on thepresence of certain chemical species
of interest (CSI) such as Ca2+ 14.

Their fluorescence changes upon binding to the CSI15,16, indirectly
measuring its concentration. This makes it possible to follow the
evolution of dynamic processes through space and time with little
invasiveness13.

The ability of chemical sensors to report on cell signaling has been
key tomany studies17–20. However, the timescale of the binding kinetics
limits the resolution of the observations and, therefore, the range of
dynamic processes that can be studied21–23. If the concentration of the
CSI varies at a similar timescale—as is often the case in neuroscience—
the fluorescence might not reflect the underlying concentration
accurately23,24. This has led researchers into a quest for sensors that are
faster and less obscured by the chemical reaction behind the binding
process. The example par excellence is the GCaMP family of calcium
sensors, which has recently reached its eighth iteration (jGCaMP821)
since 200116.

Overall, new generations of sensors often translate into new
discoveries3,25–27, but experimental design still requires great care in
considering the binding kinetics. The non-linearities in the binding
process and the speed of its kineticsmight offer a deformed picture of
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the underlying CSI waves and introduce time lags24,28,29. In spite of this,
fluorescent signals are sometimes interpreted in place of the CSI23,24. In
the few cases where the underlying chemical reaction is considered, it
is presumed at equilibrium30–32, which is not always justified. The noise
inherent to the chemical reaction, as well as that introduced by the
acquisition process, are additional challenges to the interpretation of
the fluorescence signals.

In this work, we aim to augment chemical sensors by separating
the behavior of the CSI from that of the sensors. The final goal is to
paint a more accurate picture of the behavior of the underlying CSI by
attempting to recover its concentration. This entails accounting for the
different kinetics of the sensors, as well as for the non-linearity and
time dependency of their interactions.

We first show that overlooking the binding process—e.g., con-
sidering the reaction at equilibrium—can deform the shape of the CSI
wave considerably, and introduce other artifacts such as time lags. Our
main contribution is then the formulation of an inverse problem that
recovers the spatiotemporal concentration of the CSI from images of
the fluorescence emitted by its corresponding chemical sensor. The
resulting variational framework accounts explicitly for the non-linear
binding reaction outside of equilibrium and imposes a deep neural
network prior to the spatiotemporal distribution of the CSI. The prior
is based on a reparameterization of the concentration using our pro-
posed adaptable latent space that does not require training. In part,
this is possible because we inform the inverse problem with the
ordinary differential equations (ODE) that model the binding
phenomenologically.

We first validate the accuracy of our reconstructions using simu-
lations of calcium sensors with realistic parameters and in vitromixing
experiments. We then apply our method to real calcium-imaging data
ofmouse neurons. The calcium concentration thatwe recover shows a
common waveform regardless of the sensor used when the stimuli are
similar. By contrast, the corresponding fluorescence signals are
amorphous and vary considerably across the sensors. Moreover, our
method recovers a CSI-concentration map that is regular in space and
time, enabling the observation of distinct spatiotemporal events
within single cells without the need for averaging. This effect translates
into a denoised fluorescence signal too. Preliminary experiments on
simulated hydrogen-peroxide sensors in plant leaves were also pro-
mising and can be found in our recent conference abstract33. In con-
trast to calcium sensors, the fluorescence of these H2O2 sensors
decreases upon binding.

We would like to note that our framework is not meant to sub-
stitute careful experimental design, but to augment the information
providedbychemical sensors.One should still askwhether the kinetics
of the sensors are adequate for the signals under study, whether the
binding model is accurate, and whether the mere presence of the
sensor affects thenaturalphysiologyof theprocess under study. These
caveats are discussed throughout the main text and the
Supplementary.

Results
Principles of our framework
Physical model. We start by modeling the binding process. Our aim is
to relate the concentration of the CSI with the fluorescence that is
emitted from the sample.We consider a CSI such as Ca2+ or H2O2with a
concentrationof c(x, t) inside the sample. TheCSI binds to the chemical
sensor to form a fluorescent compound. Let s(x, t) and sb(x, t) denote
the concentrations of the sensor andof thefluorescent compound. The
binding process can then be modeled with the reversible reaction

s +nHc"
kf

kb
sb, ð1Þ

where nH > 0 denotes the Hill coefficient, and kf, kb are the kinetic
rates of the binding and unbinding processes, respectively. We
understand (1) as a phenomenological model that can potentially
hide multiple reactions34 or dependent binding sites31 behind frac-
tional Hill coefficients (see “Methods” and the Supplementary). This
is a common interpretation among experimentalists and requires a
measurement of nH, kf, and kb. The chemical reaction in (1) can be
modeled with an ordinary differential equation (ODE) that inter-
relates the temporal variations in the concentrations of the three
species. While the fluorescence emitted by the sensors depends
mainly on the concentration of the fluorescent compound sb, we can
link it to the concentration c of CSI via the ODE. Therefore, wemodel
the predicted fluorescence asHðx, t; c, g0, qeÞ, where (1) is an implicit
constraint, and g0(x), qe(x) are the fluorescent background and a
concentration-to-fluorescence factor31 (see “Methods”). These two
additional variables account for several unknown factors such as the
quantum yield or the small emissions of the unbound sensor, which
can vary over the field of view due to multiple factors such as the
length of the optical path to each pixel (ref. 31, Section 10.3.1]. They
could also act as low-order corrections for small kinetic changes, for
example for those originating from surface-to-volume variations
within a cell. While we chose (1) for its generality as an
phenomenological model, other ODE systems tailored to specific
sensors can be plugged-in seamlessly into the rest of our framework.
Relatedly, the recovered concentration will be unitless unless the
experiments are calibrated (see Methods).

Inverse problem. Equipped with the physical model, we now present
our variational framework to recover the concentration distribution
fromfluorescence images (Fig. 1). To this end,we formulate the inverse
problem

c?, g?
0,q

?
e

� � 2 arg min
c, g0,qe

D Hðc, g0, qeÞ, gm

� �
+Rðc, g0, qeÞ,

ð2Þ

where one searches for the concentration c(x, t), background g0(x),
and scaling qe(x) that best fit the fluorescence measurements gm(x, t).
In (2), D is a data-fidelity term. It enforces that the predicted
fluorescence Hðc, g0,qeÞ (Fig. 1B) is close to the fluorescence
measurements gm (Fig. 1A). The binding model in H ensures that the
predicted fluorescence is consistent with the chemical equations.
Mathematically, however, data fidelity is not enough to single out a
solution: many concentration distributions can give rise to similar
measurements. The addition of a regularization term R takes care of
this so-called illposedness by enforcing additional properties that one
expects from a realistic distribution of the concentration and of the
background. For similar reasons, it is convenient that g0(x), qe(x) only
vary spatially so that one can extract the static information from the
many images in a video.

Deep spatiotemporal prior. In the majority of problems that are
computationally similar to (2), the term R only enforces spatial
regularity35–37. Imposing temporal regularity realistically with such
regularization terms is complicated; it might require an accurate
model of any underlying motion38,39.

To mitigate the illposedness of problem (2) in both space and
time, we propose to use the framework of deep spatiotemporal
priors instead40–42. (See Supplementary Notes 1 and 2 for a thorough
comparison of the methods). In our case, we express the distribu-
tion of the concentration as the output of a neural network
c(x, t) = fθ(x, z(t)) parameterized by θ, and by a latent vector z(t) that
is time-dependent (Fig. 1B). This results in a model
H f θðx, zðtÞÞ, g0,qe

� �
where the concentration is regularized

Article https://doi.org/10.1038/s41467-024-53232-2

Nature Communications |         (2024) 15:9172 2

www.nature.com/naturecommunications


implicitly (in space–time) by the restriction of the latent variables to
a manifold, whereas g0, qe are regularized explicitly in space (see
“Methods”). Note that the network is never trained.

In summary, the framework that we propose combines the
information contributed by the physical model of the chemical reac-
tion with the regularity of the neural-network parameterization. We
call this approach deep-prior ODEs.

Parametric latent space. In addition, we propose a modification of
deep priors so that they are better adapted to the dynamics of che-
mical sensors. In previouswork41, the latent space of the deep prior in a
Fourier-ptychography method was a straight line with equidistant
samples for lack of structuredmotion. In ref. 40, the latent space of an
MRI algorithm was a helicoidal curve to reproduce the periodicity of
the samplemovements. In biological signaling, however, samples may
alternate between fast and slow dynamics in an unknown manner. To
capture such heterogeneity, we propose to represent our latent space
with a flexible parametric curve (see “Methods”).

We provide the mathematical description and implementation of
our framework in the “Methods”. Find also an extended description
thereof in the Supplementary Notes 1 and 2. There, we also present a
more technical comparison to the state of the art. We refer to our
framework as DUSK for “Deep-prior odes for Uncoupling Sensor
Kinetics” (Fig. 1).

Baseline method: reaction at equilibrium
To study the effects of overlooking the sensor kinetics, we consider an
alternative method where we assume that the ODE that models (1)
reaches the steady state instantly (i:e:, dsb

dt =0). This is standard

practice in calcium imaging30,31. It leads to the nonlinear pointwise
function

Hðx, t; c, g0, qeÞ= g0ðxÞ+qeðxÞ
cðx, tÞnH

kb
kf

+ cðx, tÞnH
ð3Þ

for the fluorescence of the sample.
In other words, the binding process is assumed to be much faster

than the temporal variations of the CSI concentration. In our experi-
ments, we will compare this baseline method to DUSK. For maximum
fairness, we always equip the baseline method with the same deep
spatiotemporal prior. We remark, however, that this already con-
stitutes an improvement over considering (3) alone.

Calcium imaging in the brain
We developed our framework with the intention of augmenting any
fluorescent chemical sensor. While other experimental models might
standmore to gain fromour framework, in this article, our case study is
neuronal calcium imaging with GCaMP. More than for its extensive
practical importance, we chose this modality because of the avail-
ability of rich datasets with accompanying electrophysiological mea-
surements. These are useful as a pseudo groundtruth because of the
“reproducibility” of action potential (AP) signals.

In principle, the study of neuronal activity is less vulnerable to
misinterpreting fluorescent signals because it focuses exclusively on
action potentials. Since APs are spikes, they are usually estimated
directly from the fluorescence using spike-deconvolution
algorithms43–46. For fast sensors, simplified spike-to-fluorescence

Fig. 1 | Proposed deep spatiotemporal prior for the uncoupling of sensor
kinetics (DUSK). A Left: Measured fluorescence with GCaMP sensors that bind to
Ca2+. Right: Predicted fluorescence with the proposed method. B DUSK recovers
the spatiotemporal distribution of a chemical species. Left: Our method recovers

the Ca2+ concentration by fitting the fluorescence measurements in consistency
with the chemical reaction (top) and with the help of a deep-image prior (bottom).
The predicted (denoised) fluorescence (A, right) is a byproduct of this. Right: Ca2+

distribution recovered by DUSK.
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models are sometimes enough to recover the presence of APs21,44, but
the shape of the measurements is better recovered when sensor non-
linearities are accounted for28,47. This is especially true in rapid suc-
cessions of APs because the fluorescence does not add linearly in time.
On the other hand, measurement noise is usually tackled by averaging
the fluorescence signal over an entire cell21. Only recently have there
been attempts to denoise the fluorescence signal, notably with the
help of deep learning48,49.

While APs are admittedly the final goal of many studies in neural
circuits, all these methods are not applicable to cells that are not
electrically excitable such as astrocytes, or plants cells in general.
Moreover, they do not consider the concentration of the CSI, which
can carry information in its waveforms, even in cells that do generate
APs4,6. For these reasons, some works do tackle the problem of reco-
vering quantitative calcium signals by developing new protocols or
sensors30,50–55 while being mindful of potential physiological

alterations56,57. Some of these approaches estimate the concentration
of calciumby experimental calibration; they often directly assume that
the spatiotemporal distribution of the CSI is similar to the one of the
fluorescence signal or—more rarely—presume that the chemical reac-
tions are at equilibrium30,31, which is still only adequate for certain
combinations of sensor and signal speed. We explore this with our
framework.

DUSK recovers the CSI in simulations
To assess the accuracy of DUSK in realistic conditions, we developed a
simulation pipeline. We used it to simulate the spatiotemporal evolu-
tion of CSI concentration in an astrocyte-like sample (Fig. 2B, Bran-
ches). The CSI binds with the sensors as it propagates through the
branches of the sample by diffusion (Fig. 2A, Ground truth). Wemodel
this with a set of reaction-diffusion PDEs. The constants are taken from
experimental values for the jGCaMP8s sensor. The fluorescent

Fig. 2 | DUSK recovers the concentration of CSI accurately in simulations.
A Reconstruction of simulated data. Top row: XY image at frame 29. Bottom row:
Maximum-intensity projection along Y. From left to right: Measured fluorescence,
fluorescence denoised (predicted) by DUSK, ground-truth concentration, con-
centration estimated by DUSK, and concentration estimated by the baseline
method (which assumes that the reaction is at equilibrium). The RSNR over the
whole spatiotemporal volume is indicated at the bottom of each of the two
methods. Images are saturated for the sake of visualization. B Top image: Time lag
(in number of frames) of the traveling wave for the concentration recovered by
DUSK. For each pixel, the time lag is defined as the frame atwhich the wave reaches

its maximal value. Bottom image: Branches obtained by segmenting the temporal
maximumprojection of the concentration recovered byDUSK.C Temporal profiles
of the fluorescence (top row) and of the concentration (bottom row) on the veins
(left column) and over the background (right column) for different methods. The
temporal profiles were temporally shifted according to the time lag of the traveling
wave. The solid curve is the median, and the interquartile range (25th and 75th
percentiles) is shaded. D Temporal profiles of the concentration in the veins (top
row) and over the background (bottom row). The solid curve is themedian, and the
interquartile ranges are shaded (25th and 75th percentiles). The concentration
recovered from simulated data is downsampled by the factors D = 1, 2, 4, 8.
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measurements were computed according to our physical model. We
corrupted them with Poisson noise to model the emission and acqui-
sition process (Fig. 2A, Measured). While the simulations evolve via
diffusion, we remark that our reconstructionmethod does not assume
so; DUSK is completely agnostic to the underlying transport mechan-
ism. See “Methods” for a more detailed description of the simulations.

In Fig. 2A, we show how DUSK is able to recover the CSI con-
centration accurately over both time and space from the measured
fluorescence. The accuracy of DUSK over time is especially noticeable
in themaximum intensity projection (MIP). There, we can observe how
the DUSK concentration propagates through the branches similarly to
how the ground-truth one does. As seen in Frame 29, DUSK also cap-
tures the heterogeneous spatial distribution of the ground-truth CSI.
An additional by-product of DUSK is that it denoises the image mea-
surements (Predicted (DUSK), Supplementary Movie 1). We also eval-
uated the accuracy of the reconstruction quantitatively using the
regressed signal-to-noise ratio (RSNR) (see “Methods”). We found that
the recovered CSI had an RSNR of 12.52dB. To illustrate the impor-
tance of considering the binding kinetics, we then applied the baseline
method to the samemeasuredfluorescence for comparison. As seen in
the MIP, the assumption of equilibrium introduces temporal artifacts
that hide the astrocyte branches. Another consequence is that the CSI
appears spatially homogeneous (Frame 29). The much lower RSNR of
1.31dB achieved by the baselinemethod is in agreement with our visual
assessment.

As the CSI propagates through the sample, it creates a traveling
wave. At different parts of the cell, the CSI concentration reaches its
maximumvalue at different timepoints. The spatial regularity ofDUSK
allowed us to compute the time lag of this wave at each point in space
(Fig. 2B). This kind of information is generally more difficult to obtain
because most methods require averaging over the cell body. We used
the computed time lags to align the CSI concentration temporally,
creating amedianwaveformthat couldbe representative of a stimulus-
response (Fig. 2C). To avoid interferences, we split the signal into the
cell and the background. We compared the waveforms resulting from
the concentration recovered by DUSK and by the baseline method
(with the samedeep imageprior). By design, bothmethods recover the
fluorescencewave accurately. However, the assumptionof equilibrium
in the baseline method not only introduces a time lag in the CSI con-
centration but also deforms the wave significantly. Conversely, DUSK
captures the behavior accurately, even for the low signal in the back-
ground. Together with Fig. 2A, these experiments suggest that, in
some cases, it is important to uncouple the behavior of the CSI from
that of the sensor. This is especially relevant because our simulations
follow the time scale of chemical sensors that are used in practice. We
reached similar conclusions with other simulations (see Supplemen-
taryNote 1), aswell aswith our preliminary analysis ofH2O2 signaling in
simulated plant leaves33. In that case, the sensors had very different
kinetic coefficients and, contrarily to most sensors, their fluorescence
decreased upon binding.

To further assess the influence of the kinetics on the accuracy of
the reconstruction, in the Supplementary Note 4 we perform simula-
tions with different pairs of binding rates. The results show that DUSK
remains accurate across a wide range of values, while the assumption
of equilibrium would require very high rates to recover a signal as fast
as that in Fig. 2.

Finally, we also studied the robustness of DUSK with respect to
the imaging rate. To do so, we recovered the CSI concentration using
all the fluorescence measurements available (D = 1), every other image
(D = 2), and every 4th image (D = 4). This D stands for the down-
sampling factor in the forward model (see “Methods”). We then com-
puted the median waveform of the reconstructed CSI for each D
(Fig. 2D). For reference, D = 1 is equivalent to an imaging rate with a
time step that is half as small as the half-rise of the sensor. Therefore,
we assessed whether for D > 1 the imaging rate would be sufficient to

capture the behavior. Remarkably, we found that the waveforms
recovered by DUSK remained qualitatively close to the ground truth.
The RSNRs over the spatiotemporal distribution corroborated our
observation quantitatively as they only decreased slightly with D, D =
1: 13.31 dB, D = 2: 12.31 dB, and D = 4: 10.91 dB. From another perspec-
tive, this reflects the ability of DUSK to interpolate between
measurements.

DUSK recovers neuronal calcium activity from fluorescence
measurements
Having validated our framework, we applied DUSK to the calcium
imaging of neurons. We used an extensive dataset where several types
of GCaMP reporters were imaged under similar conditions using a two-
photon microscope21. We remark that our work does not aim at deci-
phering neuronal spikes, but at uncoupling the behavior of the sensors
from the one of calcium. Therefore, we leveraged the richness of this
neuronal dataset to compare the underlying calcium signals obtained
by applying DUSK to different sensors. In particular, we considered
three GCaMP sensors (jGCaMP8s, jGCaMP7f, and jGCaMP8m), each
with different kinetics and sensitivity (see Extended Data Table 3 from
Zhang et al.21).

Each fluorescence sequence in the dataset is paired with electro-
physiological measurements that monitor the membrane voltage
inside certain regions of interest (ROI). AP spikes are the main source
of calcium rises in this dataset. Since our interests are not APs, we do
not aim at imposing sparsity on the signal for spike deconvolution45.
Instead, we have used the electrophysiological measurements as
indicators of expected increases in calcium.

Before diving into the reconstruction of calcium in vivo, we tested
our method under controlled conditions. In particular, DUSK was able
to recover the concentration of calcium accurately in mixing and
unmixing experiments with the different sensors (see Supplemen-
tary Note 3).

We then proceededwith in vivo experiments. In Fig. 3, we present
an example reconstruction for each of the sensor types. Similarly to
the simulations,weobserve thatDUSKhas a strongdenoising effect on
the fluorescence images (two first rows in Fig. 3A–C). The fluorescent
decay after a burstof actionpotentials is clearly observable in theMIPs.
On the other hand, the concentration profiles consistently exhibit
bursts thatprecede and are shorter than theirfluorescent counterparts
(Supplementary Movies 2–4).

We also compared the concentration with the electro-
physiological measurements. To this end, we computed the temporal
trace (median and interquartile) over a biological ROI (Fig. 3D–F, see
AP marks in golden). The interquartile in the measured fluorescence
(first row) is higher than in the predicted fluorescence (second row),
which corroborates the denoising effect of DUSK. Both the fluores-
cence and the concentration profiles are well aligned with the APs
(golden rods) detected with the electrophysiological measurements.
Not only the bursts of calcium concentration are shorter than their
fluorescent counterparts, we also observe a sharper rise inmost cases.
Spike-related concentration peaks are thus more distinguishable. For
example, the concentration in the first AP burst of Fig. 3D has a higher
sensitivity index (d0

C =2:578, see “Methods”) than that of the corre-
sponding measured fluorescence (d0

M = 1:141), or of the predicted
fluorescence (d0

P = 1:407).
We found that the scaling qe(x) recovered by DUSK was largely

homogeneous, with the typical example having a very small standard
deviation across the image, e.g., 1.155 ± 0.004. This suggests that the
spatial effects listed in “Physical model”, such as the difference in
optical paths, play a minor role.

The spatiotemporal detail of DUSK provides rich insights
We first assessed whether DUSK does address the temporal deforma-
tion induced by the binding process. We applied DUSK to multiple
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samples expressing the jGCaMP8s, jGCaMP8m, or jGCaMP7f sensors.
We then identified events where a single AP was recorded by the
electrophysiological measurements. For each of the sensors, we
computed the median temporal profile of the (normalized)

concentration and of the measured fluorescence over the ROIs of the
samples (Fig. 4A). We observe that the resulting fluorescence profiles
of the three sensors are qualitatively different (right plot). This is in
agreement with the diversity of sensor kinetics. The half-decay times

Fig. 3 | DUSK recovers the calcium concentration from real fluorescence
measurementsofdifferent chemical sensors. A–C. Reconstructionof real data for
jGCaMP8s (A), jGCaMP7f (B), and jGCaMP8m (C). From top to bottom in each panel:
Measured fluorescence (Meas. F.), predicted fluorescence (Pred. F.), and estimated
concentration (Conc.). From left to right in each panel: XY views at the indicated
frame andmaximum-intensity projection along Y. Images are saturated for the sake

of visualization.D–F Temporal profiles for each row in A–C resulting from a spatial
average over the region of interest. The curves correspond to themedian trace, and
the shaded regions are the interquartile ranges (25th and 75th percentiles). The
golden rods indicate the occurrence of action potentials detected from the elec-
trophysiological measurements (E Physio., olive signal). The red, dashed lines
indicate the time range displayed in the maximum-intensity projections in (A–C).
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reported in ref. 21 for jGCaMP8s (t8s1=2 = 188ms) and jGCaMP8m
(t8m1=2 = 38ms) match well with our estimated fluorescence profiles. By
contrast, the median concentration profiles that DUSK estimated for
the three sensors exhibit a short, transient calcium response that is
very similar across the sensors (left plot). This is in spite of the large
sample variability and the three different kinetics. It is also relative to
the 8.2ms frame period of the image data. The CSI responses recov-
ered by DUSK for a burst of two and three APs were also similar across
the three sensors (see SupplementaryNote 9). Overall, this experiment
is further validation of the capability of DUSK touncouple thebehavior
of the sensors from that of the CSI.

Next, we evaluated the behavior of the transient response of
calcium to the underlying bursts of APs. In general, if each AP elicits
an increase in calcium, the last AP in a burst should occur before the
calcium concentration reaches its maximum. We thus computed
the difference between the rise time of the CSI response and the
duration of the burst. We did this over multiple spatial ROIs and

burst types (between 2 and 7 APs per burst). In Fig. 4B, we display a
box plot of this time difference for each sensor. The median time
difference is positive for all sensors. This confirms that calcium
normally reaches its maximum concentration after the last AP. Note
that this evaluation is rather conservative because a burst of APs
may saturate the sensor signal, or the calcium response itself58,
before the last AP occurs.

In our framework, the concentration and predicted fluorescence
are denoised without averaging over a spatial area. This property
allowed us to analyze the spatial behavior of the CSI in more detail. In
Fig. 4C, we display time-lapse images of a burst of APs. As indicated by
the arrows, spatiotemporal patterns are more evident in the con-
centration than in the fluorescence. In this example, an early and a late
calcium rise occurs at the top and bottom of the ROI, respectively,
showing spatial delayswithin the cell body. This type of patternmay be
related to the calcium waves and sparks that are known to occur in
some neurons53,59,60.

Fig. 4 | The spatiotemporal detail of DUSK provides rich insights. A Temporal
median profile of the concentration and fluorescence responses to one action
potential for the sensors jGCaMP8s (16 samples), jGCaMP8m (18 samples), and
jGCaMP7f (12 samples). All the profiles were aligned with respect to the action
potential (t =0). Time points were plotted if there were more than 3 samples.
Shaded areas indicate the interquartile (IQR) range. B Time difference between the
rise times of the concentration and the duration of the corresponding n action-
potential bursts. Box-and-whisker plots indicate the median and 25th–75th per-
centile range; bottom (top) whiskers indicate the smallest (largest) data value that

is larger (smaller) than the 25th (75th) percentile ±1.5 IQR. Source data are provided
as a Source Data file. C Spatially heterogeneous activity. Consecutive frames of
measured (top row), predicted (middle row) fluorescence, and concentration
(bottom row) for jGCaMP8s. For the sake of visualization, the concentration is
displayed with the Hill coefficient (i.e., cnH ). D Maps of time lag with two different
time resolutions. The continuous temporal representation of DUSK allows us to
sample the concentration at any rate. E Optimized latent vectors with L = 3. The
frameswith synaptic activities (golden dots) are clustered in the latent spaceeven if
they are apart in time.
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Figure 4A is a good example of the non-linear time-dependent
relation between the CSI and the fluorescence: three different and
rather flat fluorescence profiles lead to a very similar CSI profile with a
peaked waveform. Similarly, the non-linearity and time dependency
hide a lag not only over time but also over space in Fig. 4C. In Sup-
plementary Note 5, we present three additional examples of how these
effects make the fluorescence significantly different than the CSI. In
one of them, two synchronized and very similar fluorescence profiles
give rise to two desynchronized CSI waveforms of different
magnitudes.

To visualize the interaction between the spatial and temporal
heterogeneity of the concentration, we computed spatial maps of the
time lag as in Fig. 2B. These maps make spatiotemporal events more
evident. For the experiment in (Fig. 4D), the map outlines a distinct
area with a longer time lag (red, orange). This is in line with our
observations of the delays in Fig. 4C. We then leveraged the con-
tinuous representation (10) that underlies the CSI in DUSK. By sam-
pling this function at four times (Δt = 2.05ms) the experimental
acquisition rate of Δt = 8.20ms, this representation allowed us to
explore the reconstructions inmore detail. In particular, the right area
of the ROI appeared constant in Fig. 4D—left, but the transition
between the different high-lag regions became clearer when sampled
at a higher rate in Fig. 4D—right.

We believe that the versatility of DUSK is, in part, due to the
adaptability of this continuous latent space. The latent vectors seem to
display a recurring behavior once optimized. In Fig. 4E, we present the
latent curve (10) of some illustrative examples. There, we can see that
the AP events (golden dots) tend to cluster in the latent space asmuch
as the parameterization of the curve allows. This indicates that the
latent vectors are optimized in a way that helps capture the different
dynamics within the signal.

Discussion
We have proposed a variational formulation with a deep spatio-
temporal prior to recovering the concentration of a CSI from noisy
fluorescent images of chemical sensors.

DUSK was accurate at recovering the spatiotemporal concentra-
tion of CSI in reaction–diffusion simulations. Conversely, the
assumption of equilibrium deformed the CSI and introduced artifacts
such as time lags. In real data, the rise time of the CSI profiles recov-
ered byDUSKwas in agreement with the duration of the underlying AP
bursts, which were measured independently. DUSK was also accurate
in the mixing and unmixing experiments. Moreover, the CSI profiles
recovered in response to similar stimuli were consistent across the
different sensors in spite of their different fluorescence profiles. This
doubles as a validation of our framework. It also highlights the
importance of uncoupling the CSI from the sensor. Distinguishing
whether different fluorescent responses correspond to the same
underlying CSI profile could be key to deciphering the function behind
the different calcium waves. Since the chemical reactions are non-
linear, this uncoupling becomes even more relevant when the stimuli
come in bursts. Indeed, on top of correcting for the time lags, DUSK
also corrected the deformations induced by the nonlinearity of the
binding process. This is perhaps most clear when comparing the
fluorescence to the concentration in Fig. 4A, but is also notable in the
rest of the figures (see Supplementary Notes 4, 5, 7, too). Taking into
account that APs lead to CSI concentrations of similar magnitude, we
expect other experimental settings might benefit even more
from DUSK.

The temporal scale of the biological signals that can be studied
is limited by the sensor and by the acquisition setup61. When the
time scale of the signal is much faster than the binding kinetics,
information is lost because any change in fluorescence becomes
negligible compared to the compounding of the detector and shot
noise. In principle, this loss is irreversible up to the prior.

Nonetheless, it appears that accounting for the binding process
might help establish these limits more clearly and—perhaps—push
them (see Supplementary Note 4). That DUSK could recover similar
information for sensors of different speeds is promising from this
perspective. The rise time is usually the main consideration when
choosing a sensor. However, a smaller decay time leads to less
saturation, and a stronger signal leads to less noise. We found that
these two factors were key to the well-posedness of the inversion
from fluorescence to concentration, while the final temporal reso-
lution of the CSI profiles was less affected by slower rise times upon
uncoupling. Such insight might help guide the design of new sen-
sors and suggests incorporating the inversion of the binding pro-
cess as an additional consideration. One byproduct of DUSK is a
denoising effect on the measurements. This might be of interest by
itself and is the aim of recent works that denoise fluorescence
images before further processing48,49,62,63. (See Supplementary
Notes 2 and 6 for a comparison and amore thorough discussion.) In
DUSK, however, this effect happens as a result of jointly considering
the binding process and estimating a CSI with spatiotemporal
priors. As a consequence, averaging over the cell body is not
necessary to achieve a signal that is interpretable. Indeed, DUSK
yields heterogeneous spatiotemporal maps of the CSI in addition to
the standard temporal profiles of the fluorescence. We have found
that our time-lag maps highlight how different regions in the cells
might be delayed. The ability to distinguish these spatial patterns
could be helpful in the study of presynaptic regions by outlining the
local accumulation of calcium5. It may even be more relevant in
astrocytes, where the onset of calcium signaling is less synchro-
nized, and thus averaging ismore detrimental24. Our framework also
has the potential to mitigate “the oversimplification of slow Ca2+

waves” in astrocytes23,24, for example, by accounting for the long
decay times.

We found that the latent space of DUSK may act similarly to a
classifier by constructing a subspacewhere similar events, such as APs,
becomeclustered. This couldbe leveraged for spike detection. It could
even bemore relevant for classifying the signature of different calcium
waves in cells that are not electrically excitable. Exploring these sub-
spaces could yield a succinct, low-dimensional interpretation of the
distinguishing features of the waveforms.

The accuracy of DUSK is limited by the suitability of the under-
lying model (see Supplementary Notes 3, 7, and 8). Fortunately, the
characterization of the kinetics is already a key part of the design and
testing of sensors64.Wedid not account for the diffusionof the sensors
because they are expressed constitutively, which should promote a
more constant and homogeneous distribution. As in standard setups,
experimental calibration is also required by DUSK if the exact con-
centration of CSI is of interest30,50–53. However, the spatiotemporal
distribution itself does not require calibration inDUSK.We remark that
DUSK should be regarded as a way to augment chemical sensors and is
notmeant to substitute careful experimental design. For example, one
important question is whether the presence of the sensor itself per-
turbs the dynamics under study (other than through the chemical
interaction modeled in this work).

We set out to recover the concentration of a CSI from fluor-
escent chemical sensors. However, the same principles of DUSK
readily translate to sensors with a response signal that can be
modeled with ODEs. One example is H2O2 sensors for plant
imaging32,33. Another example is genetically encoded voltage indi-
cators (GEVI)65. They are designed to report on membrane potential
via fluorescent emission. Similarly to GCaMP, the design of GEVIs
wrangles over low rise times, long decay, and low sensitivity
because they complicate the interpretability of the voltage signal66.
Accounting for the underlying kinetics could decrease the sensi-
tivity to these parameters, facilitate signal analysis, and help guide
sensor design.
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Methods
Physical model
We set out from the chemical reaction (1), which models the binding
process. We consider that the total number of sensors
stot(x) = s(x, t) + sb(x, t) is constant over time. We also assume that the
spatial diffusion of the sensor is negligible. Both assumptions are
common for fluorescent sensors31,67,68. The temporal evolution of sb is
then given by

dsbðx, tÞ
dt

= � kbsbðx, tÞ+ kf sðx, tÞcðx, tÞnH : ð4Þ

Rewriting (4) in terms of sb and dividing it by stot leads to

d~sbðx, tÞ
dt

= � kb~sbðx, tÞ+ kf ð1� ~sbðx, tÞÞcðx, tÞnH , ð5Þ

where ~sbðx, tÞ= sbðx, tÞ
stotðxÞ denotes the proportion of bound sensors.

We use g(x, t) to denote the fluorescence received by the imaging
setup, which is emitted by the sensors. We model it as

gðx, tÞ= g0ðxÞ+qeðxÞ~sbðx, tÞ, ð6Þ

where g0(x) and qe(x) are the fluorescent background and a
concentration-to-fluorescence factor, respectively31. These variables
indirectly account for several unknown factors such as the quantum
yield or the small emissions of the unbound sensor.

Together, Eqs. (5) and (6) relate the CSI concentration to the
fluorescence measurements. Our physical model is then

Hðx, t; c, g0,qeÞ= gðx, t; ~sb, g0,qeÞ,
where ~sbðx, t; cÞ satisfies ð5Þ: ð7Þ

Equation (7) can be understood as the following algorithm. (i) Solve (5)
for the proportion ~sbðx, t; cÞ=~sbðx, tÞ of bound sensors starting from a
given concentration c. (ii) Compute the fluorescence
gðx, t; ~sb, g0,qeÞ= gðx, tÞ using (6) given the solution~sb, as well as g0(x),
and qe(x). The resulting Hðx, t; c, g0, qeÞ is the spatiotemporal fluor-
escence predicted by the model given c, g0, qe.

Deep spatiotemporal prior
In the main text, we formulated our inverse problem as

c?, g?
0,q

?
e

� � 2 arg min
c, g0, qe

D Hðc, g0, qeÞ, gm

� �
+Rðc, g0, qeÞ:

ð8Þ

Our alternative regularization strategy consists of reparameterizing
the distribution of the concentration as the output of a neural network
c(x, t) = fθ(x, z(t))with the parametersθ, and the time-dependent latent
vector z(t). The minimization problem (8) then becomes

θ?, z?, g?
0, q

?
e

� � 2 arg min
θ, z, g0,qe

DðH f θðx, zðtÞÞ, g0, qe
� �

, gm

� �
+Rpðg0, qeÞ,

c?ðx, tÞ = f θ? ðx, z?ðtÞÞ:
ð9Þ

Note that we apply the deep prior to the concentration alone because
the background and the scaling do not have a temporal component;
we only regularize these two over space with Rp.

The benefits of this method are twofold. First, a spatial prior is
enforced by an untrained deep-image prior69,70. Second, we enforce
temporal regularity on the sequence by restricting the latent variables
to a manifold. A single neural network generates the whole sequence,
while the design of the latent vectors encodes the temporal proximity
of consecutive frames.

We remark that the resulting CSI concentration is in arbitrary
units. This is due to a lack of information such as the conversion effi-
ciency or the quantum yield. If at any point in space or time the con-
centration can be measured, this information can be readily
incorporated into DUSK for automatic calibration. Alternatively,
experimental procedures of calibration may be used to recover the
exact concentration afterwards30,50–53.

Parametric latent space. We propose a parameterization of deep-
image priors that adapts to the fast and slow dynamics that appear in
biological signaling. To this end, we represent our latent space with a
flexible parametric curve

zðtÞ=
XK�1

k =0

bkφ
t
Δt

� k
� �

: ð10Þ

Here, the latent vector is parameterized by a number K of shifted basis
functions φ( ⋅ ) with coefficients bk 2 RL71. We chose to use a basis of
cubic B-splines with a stepsize Δt. The coefficients bk are directly
optimized inplaceof zwhen solving (9). Thenumber of basis functions
(i.e., knots) determines the flexibility of the curve and, in consequence,
how much temporal regularity is enforced. The possibility of this
intuitive tradeoff is similar to that in more traditional regularization
methods such as total variation72.

Discretization of the physical model
To discretize (5) and (6), we sample ~sb, c, and g on an equispaced
spatial grid with Nx ×Ny points and at Nt = T/Δt time points with time
step Δt. Here, we assume that all the sampled functions are compactly
supported in the domain Ω× 0,T½ Þ with Ω � R2. The samples of ~sb, g
and c are concatenated into the matrices S,G,C 2 RN ×Nt with
N =NxNy, respectively. Similarly, the samples of g0 and qe are con-
catenated into the vectors g0,qe 2 RN

≥0. To solve (5), we use a back-
ward Euler scheme. We then obtain the discrete forward model
H : RN ×Nt ! RN ×Nt defined as

HpðC�nH Þ=g01
T
Nt

+diagðqeÞS, ð11Þ

where p= ½gT
0,q

T
e �

T 2 R2N
≥0, the symbol ð�Þ�nH denotes the Hadamard

power (i.e., each matrix element is raised to the power of nH), and the
entries of S are computed recursively

sn,nt
=

sn,nt�1 +Δtkf ðcn,nt
ÞnH

1 +Δtðkf ðcn,nt
ÞnH + kbÞ

, ð12Þ

for n = 1, …, N and nt = 1, …, Nt.

Problem formulation in the discrete domain
Now that we are equipped with a discretized physical model, we pre-
sent our variational framework to recover the concentration distribu-
tion from measured fluorescence images. In practice, we may acquire
the images at a time stepΔtM =DΔt (D 2 N) larger than the one used in
(11). To recover the concentration, we aim at solving the minimization
problem

ðC?,p?Þ 2 arg min
C2RN ×Nt ,p2R2N

kHpðC�nH Þ � Gk1
+ τpRpðpÞ+RCðCÞ,

ð13Þ

where MD 2 RNt × ðNt=DÞ encodes the downsampling operation and
the matrix G 2 RN × ðNt=DÞ denotes the measurements. The ℓ1-norm is
the data-fidelity term, which we found robust to the noise present in
the measurements. The regularization terms Rp : R2N ! R≥0 and
RC : RN ×Nt ! R≥0 enforce some prior knowledge about the
parameters p and the concentration, respectively. In this work, Rp
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only regularizes qe with the total variation and a small trade-off
parameter τp > 072.

Deep spatiotemporal priors in the discrete domain
To mitigate the illposedness of (13), we aim at enforcing some reg-
ularity along space and time on the concentration C. To that end, we
reconstruct the concentration using a deep spatiotemporal prior40–42.
In the framework of deep spatiotemporal prior, the concentration at
time t 2 0,T½ Þ is the output c(θ, t) = fθ(z(t)) of a convolutional neural
network fθ : RL ! RN parameterized by θ 2 RP . By design, the con-
centration is sampled on an equispaced spatial grid with N points, but
the time can be sampled arbitrarily.

To recover the concentration, we then optimize theminimization
problem

ðθ*,p*Þ 2 arg min
θ2RP ,p2R2N

≥0

kHpðCðθ,ΔtÞ�nH ÞMD � Gk1
+ τpRpðpÞ

ð14Þ

with

Cðθ,ΔtÞ= ½cðθ, 0Þ, cðθ,ΔtÞ, . . . , cðθ,ΔtðNt � 1ÞÞ�: ð15Þ

We represent our latent space with a parametric curve (see (10)) and
optimize the coefficients bk along the coefficients θ. With a slight
abuse of notation, the parameters θ will now encompass the coeffi-
cients fbk 2 RLgK�1

k =0 as well.

Architecture and optimization
The architecture of fθ is detailed in Table 1. The network layers are
applied sequentially from the top to the bottom of the table, starting
with an input of shape (1 × 3). It is noteworthy that the sequence of
concentration images is represented with an underparametrized
neural network. For instance, if (Nx ×Ny ×Nt) = (96 × 68 × 244) and
K = 30, L = 3, there are 149, 925 + 90 parameters to optimize, which
amounts to about 10% of the total number of recovered pixels. We do
not specify validation or training sets because our framework is
training-free, i.e., the network remains untrained.

We optimize all the variables in (14) using the AMSGrad
algorithm73 with a constant learning rate of 0.01, tolerance ϵtol = 10−12,
and a maximum number of iterations of 104. We set the tradeoff
parameter τp = 10−5. The number of knots K is optimized by grid search
either by maximizing a metric for simulated data or by visual inspec-
tion for real data. We enforce that ðg0Þk>0 and ðqeÞk>10�6 by pro-
jecting violating values to the respective bound after each gradient
update.

For k = 1, …, N, we initialize ðqeÞk =Q and ðg0Þk = minððGÞk, �Þ, i.e.,
with the minimal value reached during the measurements for each
pixel. In simulated data,Qwas chosen among the values [1, 10, 100] to
maximize the regressed signal-to-noise ratio (RSNR, see (18)). In real
data, we set toQ = 1 for all sensors but jGCaMP7f.We observed that the
DUSK results on jGCaMP7f were insufficiently fitting the measure-
ments. This is due to the neural network inability to reach very large
values of concentration that are imputable to the high Hill coefficient
of jGCaMP7f (nH = 3.1).

For numerical stability, we chose to include the effect of the Hill
coefficient in fθ such thatcðθ, tÞnH = fθðzðtÞÞ. Unless specifiedotherwise,
the estimates displayed are the nHth root of the output of fθ.

In Table 2, we present the kinetic coefficients. They were mea-
sured experimentally for the sensors in the datasets that we use from
ref. 21. These are the only hyper-parameters to set in our framework
other than the number of knots for the latent spline.

We set the time window 0,T½ Þ to avoid cutting the signal of
interest (i.e., during a burst of APs). In addition, the memory cost
could limit the duration of the sequence. However, it was not det-
rimental to the quality of reconstruction, as past values have little
impact on future values after some time. Note that the principle of
DUSK is not bound to a convolutional architecture with fixed spatial
discretization. There are alternatives with continuous spatial
representation74. Similarly, we adopt the backward Euler scheme for
temporal discretization for its efficiency and simplicity. Other
adaptive schemes are possible too.

All experiments were run on a Linux workstation with an Intel
Xeon Gold 6226R CPU (2.90GHz), 4 × 16Gb, and a GPU NVIDIA RTX
A6000 (48Gb).

Temporal regularity
In this work, the basis functions fφð� � tkÞgK�1

k =0 in (10) are cubic
B-splines. In Supplementary Note 10, we show the effect of our
temporal regularization on the recovered concentration distribu-
tion. By increasing the number of knots K, we can see that the
temporal traces over the ROI show fewer fluctuations in both the
predicted fluorescence and concentration traces. This behavior
corroborates well with the tradeoff parameters used in classical
spatial regularization.

Simulation pipeline
Using a space colonization method75, we designed an astrocyte-like
sample fully contained in the image domain Ω � R2 (see Fig. 2B,
bottom). We used a 2D reaction-diffusion equation to simulate the
propagation of the CSI, where the diffusion coefficient in the branches
(Ωbranches⊂Ω) is higher than in the background. The concentration
thus propagates rapidly along the branches, and slower elsewhere.
Here, the signal contains two distinct traveling waves with little dis-
persion: One wave in the branches with higher velocity and amplitude,
theotherone in thebackgroundwith lower velocity and amplitude.We

Table 1 | Architecture of the network fθ

Layers Output shape

FC+ LReLU 1 × 16

FC+ Reshape 1 × 6 × 6

Conv + IN + LReLU 64 × 6 × 6

Upsampling + (Conv + IN + LReLU) 64 × 12 × 12

Upsampling + (Conv + IN + LReLU) 64 × 24 × 24

Upsampling + (Conv + IN + LReLU) 64 × 48 × 48

Upsampling + (Conv + IN + LReLU) 64 ×Nx ×Ny

Conv + ReLU 1 ×Nx ×Ny

Shape of initial input: (1 × 3). The shape of the input to any given layer is that of the output of the
previous layer. FC fully-connected layer with bias, LReLU leaky ReLU (slope 0.01), Conv con-
volutional layerwith (3 × 3) kernels and reflective boundary conditions, IN instance normalization
layer with learnable per-channel affine transform parameter vectors and ϵ = 10−582. Upsampling:
bilinear interpolation. This network consists of 149,925 learnable parameters forNx = 96,Ny = 68.

Table 2 | Parameters of the sensor kinetics

jGCaMP8s kf 8.09 × 10−4 s−1

kb 3.68 s−1

nH 2.2

jGCaMP8m kf 2.27 × 10−3 s−1

kb 1.82 × 101 s−1

nH 1.92

jGCaMP7f kf 1.32 × 10−6 s−1

kb 7.34 s−1

nH 3.1
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thus solve the partial differential equation

∂cðx, tÞ
∂t

=∇x � ðDðxÞ∇xcðx, tÞÞ+ krpðx, tÞcðx, tÞ
� kdðxÞcðx, tÞ+ sðx, tÞ,

∂pðx, tÞ
∂t

= � krpðx, tÞcðx, tÞ,

ð16Þ

where ∇x and ∇x ⋅ are the spatial gradients and spatial divergence,
respectively. The function D : Ω ! R≥0 is the spatially varying diffu-
sion coefficient. The quantity p : Ω×R≥0 ! R≥0 is a precursor in the

autocatalytic reaction p + c!kr 2 c with rate kr. The chemical species is
degraded at a rate kd : Ω ! R≥0. The spatially-varying decaying rate
allows us to obtain different traveling waves in the branches and
background. The source term s(x, t) models a stress signal that is
compactly supported in both space and time. More precisely, s is only
non-zeros and of value s0 = 1 in the two first frames andover a localized
area at the center of the image (i.e. , in the soma of the astrocyte). We
solve (16) with a backward Euler scheme and a finite element solver76

for the temporal and spatial discretization, respectively. To ensure
numerical stability, we simulate with the time step ΔtEuler = 0.5Δt and
downsample the computed concentration by two to get CGT.

The fluorescence images are then simulated using (11) with con-
stant parameters ðg0Þk =0:25 and ðqeÞk = 10 for k∈ [1, …, N]. The sen-
sors kinetics kf, kb correspond to the ones of the jGCaMP8s (Table 2)
but the Hill coefficient is set to nH = 1. The recorded measurement
images G 2 RN × ðNt=DÞ are then generated according to

G =Hp C�nH
GT

� �
+N, ð17Þ

where each (k, l)th entry of N 2 RN × ðNt=DÞ is a realization of a signal-
dependent Gaussian random variable N ð0,σ2

k, lÞ. We emulate Poisson
noise by setting σ2

k, l = ðHp C�nH
GT

� �Þ
k, l

=B with photon budget B = 25.
The size of the astrocyte-like sample is 40 × 40μm2, discretized

with (128 × 128) pixels (corresponding to a pixel length of ~0.3μm).We
acquired 128 frames at an acquisition rate of 200Hz (frame period of
5ms). We set the diffusion coefficient to D(x) = 3.91 ×= 10−4 μm2/s for
x∈Ωbranches, and to D(x) = 9.77 × 10−7μm2/s otherwise. The reaction
rate is set to kr = 1, and the decay rate is set to kd(x) = 0.03 for
x∈Ωbranches, and to kd(x) = 0.3 otherwise. We set the initial conditions
to c(x, 0) = 0 and p(x, 0) = 1 for x∈Ωbranches, and to p(x, 0) = 0.75
otherwise. We choose the Dirichlet boundary conditions (∂Ω =0). The
speed of the traveling wave then reaches about 31.25μm/s, which is
consistent with values measured in astrocytes77,78.

Quantitative evaluation of the performance
To measure the performance of reconstruction, we use the regressed
signal-to-noise ratio (RSNR) over the whole image sequence,

RSNRðC, ĈÞ= max
a, b2R

20log10
kCkF

kaĈ+b1N,Nt
� CkF

 !
, ð18Þ

where C and Ĉ are the ground truth and the reconstructed con-
centration, respectively. The RSNR adapts the standard signal-to-noise
ratio—which compares the magnitude of the error of the reconstruc-
tion to the magnitude of the ground truth—to account for possible
shifts and scalings of the signal. It is measured in a logarithmic scale
and bigger values indicate better performance.

To quantify the detectability of a peak (i.e., fluorescence or
calcium rise) within a spatial ROI, we compute a sensitivity index

defined as79

d0ðμs,μbg,σs, σbgÞ=
jμs � μbgjffiffiffiffiffiffiffiffiffiffiffiffi

σ2
s + σ

2
bg

2

q , ð19Þ

where μs, μbg (σs, σbg) denote the median value (median absolute
deviation) at the peak occurrence and in the background (e.g., before
the rise), respectively.

Remarks about the physical model
While originally intended as an integer value, note that the Hill
coefficient nH is now generally understood as an empirical indicator
of cooperative binding. In this interpretation, the coefficients often
take non-integer values, which can be indicative of additional
(hidden) sequential reactions34 or dependent binding sites31.
The coefficients kf, kb, nH in (1)—on which Hill’s equation is based—
are the ones that are usually measured experimentally when
designing (or using) new sensors. For example, the values in Table 2
were measured for the same GCaMP8 dataset that we use in this
article.

All this suggests that the behavior of some chemical sensors can
be approximated by the phenomenological reactionmodel (1) with the
three experimental parameters. We tested the quality of our recon-
struction usingmixing and unmixing experiments, where the behavior
of the underlying concentration is “known” (see Supplementary
Note 3). In addition, we offer further comments on the suitability of
model (1) in Supplementary Notes 7 and 8. When available, more
complex chemical models can be plugged into the framework seam-
lessly by changing (5) for another set of ODEs. This might yield better
estimates but requires (1) working out the model and (2) coming up
with ways to measure what are often (too) many parameters (see
Supplementary Note 7).

While the fluorescence of most sensors (e.g., GCaMP) increases
upon binding to the corresponding CSI as per (6), a few sensors see
their fluorescence decrease instead. More specifically, the light they
emit is proportional to the concentration of the unbound sensor. Such
sensors are readily compatiblewith our frameworkby simply replacing
~sb for s in (6). One example is the H2O2 sensors used to study signaling
in plants, which we explored in33.

Statistics and reproducibility
We applied our computational framework to experimental video data
of calcium sensors collected for21. These are available at80. The videos
that we analyzed were randomly selected from the 1.4 TB dataset for
jGCaMP8s, jGCaMP8m, and jGCaMP7f. No other data were excluded.
Sample sizes are specified in the manuscript for each experiment. We
did not use blinding or randomization because there were no experi-
mental groups.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data required to evaluate the conclusions of the paper can be
found in the paper or in the Supplementary Materials. We took the
real data of GCaMP sensors from the dataset80 of ref. 21. They
consist of two-photon microscopy videos of pyramidal neurons
from the mouse’s primary visual cortex. For numerical stability,
each video was divided by its 99th percentile, and isolated negative
values (that were due to registration) were set to 0. The mixing and
unmixing experiments were also performed in the context of ref. 21
and were kindly shared by the authors thereof. Source data are
provided in this paper.
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Code availability
The code is available at https://doi.org/10.24433/CO.5983205.v1 and
github.com/ThanhAnPham/DUSK (see81).
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