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ImmuneApp for HLA-I epitope prediction
and immunopeptidome analysis

Haodong Xu 1,2,7 , Ruifeng Hu 2,3,4,7, Xianjun Dong 3,4, Lan Kuang1,
Wenchao Zhang1, Chao Tu1, Zhihong Li 1 & Zhongming Zhao 2,5,6

Advances in mass spectrometry accelerates the characterization of HLA
ligandome, necessitating the development of efficient methods for immuno-
peptidomics analysis and (neo)antigen prediction. We develop ImmuneApp,
an interpretable deep learning framework trained on extensive HLA ligand
datasets, which improves the prediction of HLA-I epitopes, prioritizes neoe-
pitopes, and enhances immunopeptidomics deconvolution. ImmuneApp
extracts informative embeddings and identifies key residues for pHLAbinding.
We also present a more accurate model-based deconvolution approach and
systematically analyzed 216 multi-allelic immunopeptidomics samples, iden-
tifying 835,551 ligands restricted to over 100 HLA-I alleles. Our investigation
reveals the effectiveness of the compositemodel, denoted as ImmuneApp-MA,
which integrates mono- and multi-allelic data to enhance predictive perfor-
mance. Leveraging ImmuneApp-MA as a pre-trained model, we built Immu-
neApp-Neo, an immunogenicity predictor that outperforms existing methods
for prioritizing immunogenic neoepitope. ImmuneAppdemonstrates its utility
across various immunopeptidomics datasets, which will promote the dis-
covery of novel neoantigens and the development of new immunotherapies.

The adaptive immune system is capable of recognizing and killing the
infected and malignant cells that present non-self and aberrant pep-
tides by cytotoxic T cell receptors binding to antigens1–3. In humans,
among all the factors needed for CD8+ T lymphocytes to initiate an
immunogenic reaction, the critical gatekeeping step is the availability
of peptides bound by human leukocyte antigen (HLA) class I mole-
cules; this phenome has the potential for many clinical applications,
such as malignant tumors, and cancer immunology4–8. For instance,
tumor-specific antigens (neoantigens), which are newly produced in
the cells due to events such as somatic mutations, alternative splicing,
gene fusion, and viral infection, are pivotal in the process of immu-
noediting and represent an important class of anticancer therapeutic

targets for cytotoxic T cells9–13. While neoantigens can trigger a potent
anti-tumor immune response, personalized immunotherapy devel-
oped against them has now been used in clinical trials in a variety of
solid tumors6,14–16. Moreover, understanding the specific epitopes of
SARS-CoV-2 that are targeted by T cells through their T-cell receptors
(TCRs) will facilitate peptide-based vaccine development17–19. There-
fore, the identification and characterization of the landscape of the
peptides exhibited by HLA-I molecules is an urgent need.

Early experiments conducted both in vitro and in vivo were
designed to elucidate the binding characteristics of diverse peptide-
HLA pairs, revealing allele-specific motifs within the presented
peptides20–25. In vitro, studies have been primarily on quantifying the
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binding affinity between particular peptides and their corresponding
HLA complexes through hypothesis-driven competitive binding
assays25. Recent advancements in liquid chromatography and mass
spectrometry (LC–MS/MS) techniques enhance the precision for
extracting peptide-HLA (pHLA) complexes from cellular and tissue
samples, enabling large-scale assays on the spectrum of peptides that
are bound to HLA molecules22,23,26–31. Accordingly, the Human Immu-
nopeptidomeProject (HIPP)was formed to construct a comprehensive
map of the human immunopeptidome. For example, Sarkizova et al.
thoroughly profiled more than 185,000 peptides in across 95 mono-
allelic cell lines for HLA-A, -B, -C, and -G. Their study substantially
enhanced our understanding of HLA-associated peptidome in humans
and illuminated the variety and complexity of endogenous HLA
ligands22. Moreover, many clinical immunopeptidomics studies have
been conducted recently for cancer immunotherapy26,32–35. The adop-
tion of a multi-omics integration strategy, which combines immuno-
peptidomics, transcriptomics, and ribosome profiling, has emerged as
a powerful approach for identifying numerous canonical or non-
canonical tumor antigens tailored to individual patients15,26,28,29,36–39.
This integrated approach aids in the advancement of customized anti-
cancer or anti-virus vaccines with the potential to target patient-
specific antigenic profiles, thus enhancing the efficacy of immu-
notherapeutic interventions.

In parallel with these technological advancements, computational
approaches for pHLA binding prediction have undergone rapid
growth. Initially, the methods have been developed only using MHC-
peptide binding affinity data40–43. With the rapidly growing immuno-
peptidomics data, investigators have integrated such datasets into
their prediction models22,24,44–51. Several initiatives leverage the unam-
biguous nature of mono-allelic ligands associated with precisely
defined HLA alleles from genetically engineered cells22,46. Moreover,
noteworthy contributions have been made by Gfeller et al., Bassani-
Sternberg et al., Morten Nielsen et al., and Bulik-Sullivan et al., along-
side other research entities, towards the utilization of multi-allelic
immunopeptidomics datasets, i.e., comprising peptides correspond-
ing to multiple cognate HLA alleles, to advance antigen presentation
prediction24,44,45,47,52,53. Recent computational algorithms, including
clustering-based deconvolution45, iterative assignment47, and direct
modeling24, have been released with the capacity to attribute multi-
allelic ligands to individual MHC restrictions. For example, MixMHCp
is capable of deconvoluting and assigningMHCrestrictions through an
unsupervised method45.

Utilizing amixturemodel algorithm,MixMHCp creates clusters of
peptides and identifies bindingmotifs within a variety of datasets from
MS with poly-specificity. Following this, it links each cluster to a spe-
cific HLA molecule, relying on the principles of co-occurrence and
exclusion forHLA alleles. TheNNAlign_MA algorithmusesmono-allelic
ligands, which are restricted to specific HLA molecules, to pretrain a
pan-specific prediction model47. This model then predicts all possible
HLA molecules for a given ligand and determines HLA molecule
restriction by identifying the highest rescaled prediction value. These
methods have facilitated the expansion of training datasets and dee-
pened our comprehension of the underlying principles governing
pHLA binding and presentation. Through the integration of both
multi-allelic and single-allelic ligands, predictors such as
NetMHCpan4.149, MixMHCpred 2.250 and MHCflurry-2.051, and other
tools have been developed and widely adopted. Additionally, certain
algorithms are designed to exclusively model MHC-peptide binding,
while others broaden their focus to incorporate more determinant
factors of antigen processing and its presentation on the cell surface.
Despite discrepancies regarding the optimal approach to modeling
MHC-peptide binding, there exists a consensus that immunopepti-
domics has enabled the generation of large-scale ligands, thereby
substantially enhancing approaches for the prediction of peptides
bound HLA molecules. Computational prediction of antigen

presentation holds promise for identifying neoantigens and accel-
erating immunogenicity evaluation. However, most neoantigens lack
immunogenic properties.54,55. Additionally, experimentally confirming
immunogenicity requires considerable resources; it is crucial for (neo)
antigen prediction methods to prioritize a significant proportion of
immunogenic candidates among their top-ranked predictions. This
prioritization is essential because only a limited number of top-ranked
candidate neoantigens are subjected to clinical testing and practical
application.

The growing immunopeptidomics datasets have formed an
expanding repertoire of annotated HLA-associated peptides. Conse-
quently, the development of efficient tools for deciphering immuno-
peptidomics data and more robust (neo)antigen presentation
predictors is urgently needed. To tackle these challenges, we intro-
duced ImmuneApp, a robust computational tool designed to facilitate
the prediction of antigen presentation, assessment of neoepitope
immunogenicity, and comprehensive immunopeptidomics analysis,
all with heightened precision (Fig. 1). ImmuneApp leverages an inter-
pretable, attention-based hybrid deep learning framework specifically
designed for predicting HLA-I epitopes, trained on a dataset com-
prising 349,650 ligands. ImmuneApp enables the extraction of infor-
mative embeddings and the identification of critical residues
governing peptide-HLA (pHLA) binding specificity. Thorough assess-
ments conducted on independent mono-allelic datasets revealed that
ImmuneApp outperforms current methods for predicting antigen
presentation. Furthermore, we developed a more accurate, model-
based deconvolution method and applied it to 216 publicly available
multi-allelic immunopeptidomics samples, deconvoluting 835,551
ligands restricted to 104 distinct HLA-I alleles. We then evaluated the
efficacy of a composite model, namely ImmuneApp-MA, which inte-
grates both mono and multi-allelic data types to enhance predictive
performances. To enhance our tool in clinical settings, we employed
ImmuneApp-MA as a pre-trainedmodel for deep transfer learning on a
newly curated immunogenicity training dataset, resulting in the
development of a novel immunogenicity predictor called ImmuneApp-
Neo. Remarkably, ImmuneApp-Neo exhibited a substantially higher
positive predictive value (PPV), with a 2.1-fold improvement when
compared to all other models, in the identification of immunogenic
neoepitopes. Finally, wedeveloped anonline platform (https://bioinfo.
uth.edu/iapp/) to facilitate multitasking functionalities, including
antigen presentation prediction, immunogenicity assessment, and
analysis of immunopeptidomics cohort datasets. We applied Immu-
neApp to the disease-related immunopeptidomics datasets sourced
from tumor tissues and cancer biopsies. This application showcased
the robustness of our method in various tasks such as quality control,
binding annotations, HLA assignment, motif discovery and decom-
position, and antigen presentation prediction in a sample-specific
manner.

Results
Deep learning modeling pHLA presentation based on single-
allelic eluted ligands
Using our collected single-allelic MS-eluted ligands data (Supplemen-
taryData 1), we initially built the ImmuneApp-ELmodel to estimate the
probability of a peptide’s presentation by HLA-I molecules. This initial
model was trained on 349,650 ligands covering 149 distinct HLA-I
alleles, as well as 17,482,200 (50-fold excess) randompeptides. Briefly,
ImmuneApp-EL took encoded matrixes of the peptides and pseudo-
sequences of HLA alleles on the BLOSUM50 substitutionmatrix. Then,
the inputmatrixes were fed into a convolutional neural network (CNN)
long short-term memory (LSTM), and attention modules for training.
To accurately capture the inherent properties of peptide-HLA binding
during training, features obtained from different parts of the neural
network were retrieved from various layers, and then they were com-
bined (Fig. 1a). To address the sample imbalance issue and enhance the
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robustness of the model, ImmuneApp-EL was implemented using a
balanced class-weight approach and the ensemble learning strategy,
resulting in the creation of 25 different models (see “Methods”). These
models output an average score, representing the likelihood of the
query ligand binding to the HLA molecule.

To evaluate the accuracy and robustness of our method, we
compared ImmuneApp-EL with six peer methods using an external
single-allelic set of 43,866 ligands (Supplementary Data 2). These
methods are NetMHCpan-4.1 (rank and score), MixMHCpred-2.1 and
2.2 (rank and score), MHCflurry-2.0 (rank and score), HLAthena (rank
and score), TransPHLA, and MHCnuggets-2.4. To ensure the ortho-
gonality of the independent test set, we excluded any ligands that
overlapped with the training data from the test dataset. A total of
2,471,337 random peptides served as negative data. We calculated
three evaluation metrics: the area under the receiver operating char-
acteristic curve (AUROC), the area under the precision-recall curve
(AUPRC), and the PPV. Our findings, illustrated in Fig. 2a and Fig. S1,

demonstrated that ImmuneApp-EL enhances EL predictive perfor-
mance, achieving a mean AUROC of 0.9576 and a mean AUPRC of
0.6139 when stratified by HLAs. The top-performing method among
previous approaches was MHCflurry-2.0, which recorded a mean
AUROC of 0.9370 (score) and a mean AUPRC of 0.5334 (rank). Addi-
tionally, the median PPV values across alleles for eachmethod were as
follows: 0.7656 for ImmuneApp-EL scores, 0.7085 for MHCflurry-2.0
(both ranks and scores), 0.6883 for NetMHCpan-4.1, 0.6703 for HLA-
thena ranks, 0.6538 for MixMHCpred-2.2 scores, 0.5806 for
MixMHCpred-2.1 scores, 0.6077 for TransPHLA, and 0.4631 for
MHCnuggets-2.4. ImmuneApp-EL excelled in distinguishing MS hits
from decoy peptides based on PPV values. Furthermore, we enhanced
our evaluation by implementing a more detailed stratification that
considers both HLA and peptide length. In this analysis, ImmuneApp-
EL once again surpassed all other tools, achieving mean AUROC and
AUPRC values of 0.9406 and 0.5820, respectively. In contrast, the top-
performingmethod among its peers,MHCflurry-2.0, recorded average
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Fig. 1 | The framework,model architecture, andutility of ImmuneApp forHLA-I
antigen prediction and immunopeptidome analysis. a The deep learning fra-
mework for prediction of human leukocyte antigen (HLA) class I antigen pre-
sentation. ImmuneApp took encoded matrixes of the peptides sourced from mass
spectrometry-eluted HLA ligands or peptides with binding affinity (BA) measure-
ments, and pseudo-sequences of HLA alleles on the BLOSUM50 substitution
matrix. Then, the input matrixes were fed into a convolutional neural network
(CNN) and long short-term memory (LSTM) with attention modules for training.
Features obtained from different parts of the neural network were retrieved from

various layers, and then they were combined. A probability of the likelihood of
antigen presentation in the setting of certain HLA class I alleles is produced by the
output layer that implements a sigmoid nonlinear transformation. b ImmuneApp
provides various presentation prediction capabilities, including eluted ligand (EL)
likelihood estimate, in vitro BA measurements, and immunogenicity prediction.
c ImmuneApp provides one-stop analysis, statistical reports, and visualization for
immunopeptidomics data, such as quality control, binding annotations, HLA
assignment, motif discovery and decomposition, and antigen presentation pre-
diction on a sample-specific basis.
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Fig. 2 | The validation performance andmodel interpretability of ImmuneApp.
a Benchmark comparison of ImmuneApp, NetMHCpan-4.1, MHCflurry 2.0,
MixMHCpred 2.1&2.2, HLAthena, MHCnuggets-2.4, and TransPHLA. Mean AUROC,
AUPRC, and PPV with 95% confidence interval (CI) stratified by HLA (n = 24) and
both HLA and epitope length (n = 96) were calculated, followed by two-tailed Wil-
coxon signed-rank test to estimate adjusted P-values. b Uniform Manifold
Approximation and Projection (UMAP) visualization of ligands (red) and random

peptide (blue) representations in different layers for HLA alleles of A*02:01 (upper)
and A*11:01 (lower). c The attention architecture implemented in the ImmuneApp.
d Sequence motifs and accumulated attention scores for the peptides binding to
HLA alleles of A*11:01 (left) and A*02:01 (right). e Structural data (PDB ID: 3RL1)
supports the motif revealed by ImmuneApp for peptide presented by HLA-A*11:01.
Source data are provided as a Source Data file.
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AUROC and AUPRC values of 0.9189 and 0.5343, respectively.
ImmuneApp-EL also excelled compared to all other methods in terms
of PPV. Overall, these results confirm that our model outperforms
prior tools, demonstrating its efficacy in recognizing presented
antigens.

ImmuneApp facilitates informative embeddings and captures
pHLA binding motif
The hidden layers in ImmuneApp enable the mapping of peptides to a
lower dimensional representation space, which couldbe extracted and
visualized. Thus, we visualized the numeric embeddings of ligands and
random peptides for several well-characterized HLA alleles (Fig. 2b,
Fig. S2), such as A*02:01 and A*11:01. Our model demonstrated the
ability to hierarchically capture a more effective and interpretable
representation of pHLA complexes. Specifically, at the input layer, the
extracted features for ligands and random peptides were mixed.
However, as the predicted features passed through the deep learning
framework, the model began differentiating between ligands and
random peptides. In the fully connected layer before the output, we
found the ligands and random peptides could be separated, and they
were grouped into two distinct clusters by the low-dimensional pro-
jection. The results proved that the deep learning-based embeddings
could well represent the information on binding specificities of pHLA
complexes.

Furthermore, we elucidated black boxes of deep learning by
interpreting the weights learned by the attention layer in the Immu-
neApp (Fig. 2c). Importantly, consistent amino-acid preferences were
observed at critical peptide positions for several HLA alleles (Fig. 2d,
Fig. S3) whose binding motifs have been illustrated in Motif Viewer of
NetMHCpan56 or the MHC Motif Atlas57. For example, the amino acid
lysine (Lys, K) at position9was characterized as an anchor residuewith
the highest weight for the peptides binding to HLA-A*11:01. Structural
analyses revealed that the lysine residue at the C terminus participated
in a dense network of hydrogen bonds with neighboring residues in
the bound HLA molecule (PDB ID: 6JOZ). This finding underscores the
biological significance of the binding motifs identified by ImmuneApp
(Fig. 2e, Fig. S4). In summary, through interpretable, learned features
and weights, we demonstrated that our model could automatically
learn informative embeddings and capture critical amino acids that
contributed to defining HLA-binding motifs during the training.

Model-based approach improves multi-allelic immunopepti-
domics deconvolution
Immunopeptidome data present significant complexity due to the
presence of multiple HLA alleles on the cell membrane. A major chal-
lenge inmodeling and analyzingmulti-allelic data is the deconvolution
of immunopeptidomics, which involves assigning a ligand to its cor-
responding allele. By decoding the weights learned by the attention
layer, we have shown that the mono-allelic model (ImmuneApp-EL)
exhibits high accuracy and robustness, enabling effective capture of
binding motifs. Considering the superior performance of the trained
model, here we here introduced a model-driven deconvolution
method to transform immunopeptidomics data into pseudo-mono-
allelic ligands. Briefly, we made predictions for all HLA alleles anno-
tated for each sample, and raw scores were calibrated using percent
rank values against a reference set of 500,000 random peptides.
Subsequently, for each sample, we excluded allele-peptide pairs with a
predicted binding rank greater than 20% to remove potential con-
taminants. Additionally, we selected the allele-peptide pair with the
lowest rank, signifying the strongest binding affinity (the best binder),
while disregarding all other pairs (Fig. 3a).

Our method was compared with NetMHCpan4.1 and
MixMHCpred 2.2, which utilize NNalign-MA and MixMHCp for the
deconvolution of immunopeptidomics data, respectively. We curated
a dataset of 435,397 eluted ligands covering 86 HLA alleles from 47

recently published samples (Supplementary Data 3). Initially, AUROC,
AUPRC, and PPVwere computed to evaluate the capacity of predictors
in recognizing true ligands within extensive random peptide libraries.
Our method, as illustrated in Fig. 3b and Fig. S5, enhanced EL pre-
dictive performance, achieving a mean AUROC of 0.9650 and a mean
AUPRCof 0.7600when stratified by samples. In contrast, NetMHCpan-
4.1 yielded a mean AUROC of 0.9155 and a mean AUPRC of 0.6071,
while MixMHCpred-2.2 produced a mean AUROC of 0.9029 and a
mean AUPRC of 0.6328. Notably, the PPV values across samples for
each method were 0.8747 for our approach, 0.7689 for NetMHCpan-
4.1, and 0.7970 for MixMHCpred-2.2. These results indicated that our
method ismore effective in identifyingHLA-boundpeptides present in
patient-derived tumor tissues or cell lines. We further enhanced our
evaluation by implementing amore detailed stratification, considering
both sample and peptide length. Once again, our method surpassed
the other two tools, achieving mean values of 0.9239 for AUROC,
0.6410 for AUPRC, and 0.7913 for PPV (see Fig. 3c). In contrast,
NetMHCpan-4.1 recorded amean AUROC of 0.8550, a mean AUPRC of
0.5080, and a mean PPV of 0.6750. Similarly, MixMHCpred 2.2
obtained a mean AUROC of 0.8518, a mean AUPRC of 0.5367, and a
mean PPV of 0.7103. Compared to these two well-established tools
trained on immunopeptidomics data, our approach demonstrated
improvements of 8.06%, 19.43%, and 11.40% in AUROC, AUPRC, and
PPV, respectively. We further explored the congruence between HLA
binding motifs derived from deconvolution and motifs identified by
single-allelic ligands. The average Pearson’s correlation coefficient
(PCC) was calculated across alleles (Fig. 3d). The motifs for HLA-I
alleles identified in mono-allelic data showed a high degree of simi-
larity to those found inmulti-allelic samples, and ourmethod achieved
higher average PCC values among alleles when compared to
NetMHCpan4.1 and MixMHCpred 2.2, indicating its capability for
accurately assigning a peptide to its cognate allele inmulti-allelic data.
The improvement is statistically significant (adjusted P < 0.05, two-
tailed Wilcoxon signed-rank tests) (Fig. 3c, d).

Integrating large-scale immunopeptidomes improves the pre-
diction of antigen presentation
Considering the abundance of publicly accessible immunopepti-
domics data fromvarious tumor samples and cell lines, weposited that
systematically integrating all high-quality datasets would enhance the
pHLA representation in the training data and lead to more accurate
predictions. To achieve this, we further collected and processed 216
publicly available multi-allelic immunopeptidomics samples. The final
curated dataset comprises 969,435 ligands restricted to 110 HLA-I
molecules (Supplementary Data 4). Employing our model-driven
deconvolution method, we transformed immunopeptidomics data
into pseudo-single-allelic ligands, successfully mapping 835,551
ligands (86.19%) to 104 alleles. Themotifs for HLA-I alleles identified in
mono-allelic data showed significant similarity to those in multi-allelic
samples (Fig. S6), indicating that our approach effectively assigns
peptides to their corresponding alleles in multi-allelic data. After
removing duplicates, we obtained a total of 328,227 unique allele-
ligand pairs. Subsequently, we merged the mono-allelic and pseudo-
mono-allelic data, resulting in 573,453 unique allele-ligand pairs cov-
ering 162 alleles (Supplementary Data 5). This final dataset was utilized
to train a mixed prediction model, ImmuneApp-MA.

We benchmarked the performance of ImmuneApp-MA against all
other tools, including ImmuneApp-EL, while allele-ligand pairs over-
lapping with the new training data were removed from testing data. As
illustrated in Fig. 4a and Fig. S7, ImmuneApp-MAachievedmeanvalues
of 0.9496 for AUROC, 0.4710 for AUPRC, and 0.6347 for PPV. It out-
performed ImmuneApp-EL in AUROC, AUPRC, and PPV, and sig-
nificantly surpassed other methods, including NetMHCpan-4.1,
MixMHCpred-2.1 and 2.2, MHCflurry-2.0, HLAthena, TransPHLA, and
MHCnuggets-2.4. Among these peer methods, MHCflurry-2.0
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Fig. 3 | The framework and performance of model-based approach for multi-
allelic immunopeptidomics deconvolution. a The framework of the deconvolu-
tion method to convert multi-allelic immunopeptidomics data into pseudo-mono-
allelic. Using a mono-allelic model, predictions weremade for all HLA alleles (up to
six) of each sample. Tomake the predicted scores for different alleles comparable,
raw scores were calibrated using percent rank values from a background set of
500,000 random peptides. Peptide was assigned to the allele with the lowest rank
(best binder). b Benchmark comparison of our approach, NetMHCpan-4.1 and
MixMHCpred 2.2, to retrieve HLA-bound peptides observed in patient-derived
tumor datasets. AUROC, AUPRC, and PPV stratified by samples (n = 47) were cal-
culated. cMean AUROC, AUPRC, and PPV values with 95% confidence interval (CI)

stratifiedby both samples and epitope length (n = 317) were calculated, followed by
a two-tailed Wilcoxon signed-rank test for adjusted P-values. d Average Pearson’s
correlation coefficient (PCC) among alleles (n = 24) for HLA binding motifs identi-
fied by single-allelic ligands and revealed by our approach, NetMHCpan-4.1, and
MixMHCpred 2.2. Two-tailed Wilcoxon signed-rank test was used for the calcula-
tion of P-values. Bars representmeans and error bars are 95%CIs. e Sequence logos
of binding motif for HLA-1 alleles revealed by our approach from 47 multi-allelic
immunopeptidomics samples compared to that fromexternalmono-allelic ligands.
Among the two logos of the same HLA allele, the left one was obtained by decon-
volution, and the right one originated from mono-allelic ligands. Source data are
provided as a Source Data file.
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performed best, with amean AUROC of 0.9195 (score), a mean AUPRC
of0.3849 (rank), and ameanPPVof0.5740 (rank).We further stratified
the results by HLA alleles and peptide length, as shown in Fig. 4b.
ImmuneApp-MA yielded mean AUROC and AUPRC values of 0.9355
and 0.4704, respectively, while the top peer method, MHCflurry-2.0,
produced a mean AUROC of 0.9036 (score) and a mean AUPRC of
0.4156 (rank and score). ImmuneApp-MA also demonstrated superior
PPV compared to all other peer predictors. Overall, ImmuneApp-MA
surpassed all peer methods with this more detailed stratification, and

the improvement was statistically significant (adjusted P <0.05, two-
tailed Wilcoxon signed-rank test, see Fig. 4b and Fig. S7).

Transfer learning strategy enhances neoepitopes immunogeni-
city screening
One significant application of antigen presentability lies in the identi-
fication of neoepitopes, which offers considerable potential for
immunotherapies. Neoepitope-directed therapy represents a promis-
ing strategy aimed at harnessing the host immune response against

Fig. 4 | Benchmark comparison of composite model ImmuneApp-MA that
integrates both mono and multi-allelic immunopeptidomics data. a. AUROC,
AUPRC, andPPV values for each allele in the externalmono-allelic EL testing dataset
for ImmuneApp-MA, ImmuneApp-EL, NetMHCpan-4.1, MHCflurry 2.0,
MixMHCpred 2.1&2.2, HLAthena, MHCnuggets-2.4 and TransPHLA. b. Mean

AUROC, AUPRC, and PPV values with a 95% confidence interval (CI) stratified by
both HLA and epitope length (n = 96) were calculated, followed by a two-tailed
Wilcoxon signed-rank test for adjusted P-values. Source data are provided as a
Source Data file.
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tumor neoantigens to eliminate cancer cells. Neoepitopes-directed
therapy is a promising strategy for targeting the host immune
response against tumor neoantigens to eradicate cancer cells. Accu-
rate predictions of immunogenic neoepitopes are essential for iden-
tifying potential targets for immunotherapeutic strategies, including
adoptive cell therapy and peptide-based vaccines. Nonetheless, most
neoantigens lack immunogenic properties, and there is currently no
high-throughput method available for experimentally verifying their
immunogenicity. Therefore, it is essential for (neo)antigen prediction
methods to emphasize a considerable proportion of immunogenicity
within their highest-ranking prediction scores, as only a select few
candidate neoantigens ranked at the top undergo clinical testing and
practical application. Using a carefully curated neoepitope dataset
consisting of 349 immunogenic and 1838 non-immunogenic neoepi-
topes (Supplementary Data 6), we first assessed the capability of
ImmuneApp-MA for prioritizing immunogenic neoepitopes and com-
pared it to nine peer tools. The PPV values calculated for these meth-
ods were ImmuneApp-MA (0.3720), ImmuneApp-EL (0.3595),
MHCflurry 2.0 (0.3356), NetMHCpan-4.1 (0.3313), PRIME 2.0 (0.3200),
PRIME 1.0 (0.2418), MixMHCpred-2.2 (0.3222), HLAthena (0.3063),
TransPHLA (0.2654), andMHCnuggets-2.4.0 (0.2154). ImmuneApp-MA
had the best performance and improved the performance of immu-
nogenic neoepitope prediction.

The current availability of neoepitopes capable of eliciting a
clinically detectable antigen-specific immune response is restricted.
Motivated by the growing utility of big pre-trained models in biome-
dicalmulti-omics analysis in recent years, we investigated the potential
enhancement of neoantigen immunogenicity prediction through the
utilization of deep transfer learning. We applied the ImmuneApp-MA
as pre-trained model to employ deep transfer-learning on a new
curated immunogenicity training data, resulting in the creation of a
novel immunogenicity predictor named ImmuneApp-Neo (Fig. 5a). To
evaluate the prediction performance of ImmuneApp-Neo, we calcu-
lated the PPV among the top n outputs (PPVn), which indicates the
proportion of the top n pHLAs that are genuinely immunogenic.
Additionally, we computed other metrics such as AUROC and AUPRC.
By plotting PPVn against all numbers of neoepitopes, our analysis
demonstrated that ImmuneApp-Neo outperformed all other pre-
dictors in immunogenic neoepitope prediction (Fig. 5b). To summar-
ize this PPVncurve, themean PPVnwas illustratedwith 95%confidence
interval (CI) whiskers in Fig. 5c, revealing that ImmuneApp-Neo
attained a mean PPV of 0.7151, significantly surpassing the best peer
method, MHCflurry 2.0, which only achieved a mean PPV of 0.3356.
This result underscores the effectiveness of transfer learning for
immunogenicity prediction, as ImmuneApp-Neo notably out-
performed ImmuneApp-MA, which had a mean PPV of 0.3711. Fur-
thermore, ImmuneApp-Neo demonstrated higher AUROC and AUPRC
values of 0.7928 (Fig. 5d) and 0.5542 (Fig. 5e), respectively, out-
performing all peer methods. Collectively, ImmuneApp-Neo exhibited
a substantially greater PPV, with a 2.1-fold improvement compared to
other models in identifying immunogenic neoepitopes. Our study
highlights the importance of integrating and utilizing large-scale
immunopeptidome data from clinical samples to investigate immu-
nogenicity in a more relevant physiological context.

Discussion
In recent years, extensive MS-eluted MHC ligand data have become
available, allowing for a comprehensive characterization of the MHC-
presented ligandome. Leveraging these datasets, we created Immu-
neApp, a versatile toolbox designed for predicting and analyzing
antigen sequences presented on specific HLA-I types. ImmuneApp can
be employed for three primary tasks (Fig. 1b, c). First, by integrating
large-scale immunopeptidomics data, we developed a novel pan-
specific algorithm named ImmuneApp-MA to enhance the accuracy of
HLA-I antigen presentation predictions. Second, by decoding the

weights learned by the attention layer, we show the deep-learning
framework enables accurate capture of binding motifs and thus
developed a model-based method to improve the deconvolution
analysis of immunopeptidomics for assigning multi-allelic ligandome
to cognate alleles. Third, by employing ImmuneApp-MA as a pre-
trained model for deep transfer learning on the curated immuno-
genicity dataset, we created a novel immunogenicity predictor named
ImmuneApp-Neo, which outperformed nine leading methods in the
identification of immunogenic neoepitopes. Collectively, by broad-
ening the training datasets and refining the algorithms, our Immu-
neApp demonstrated enhanced prediction capabilities for both HLA-I
ligands and neoepitopes.

The quality and depth of training data are two crucial factors in
computational models. Benefiting from our collected 349,650 mono-
allelic ligands, we developed an accurate model-driven deconvolution
method for reprocessing 216 immunopeptidomics samples, success-
fully deconvoluting 835,551 ligands. The pseudo-mono-allelic ligands
were integrated, resulting in an expansion of the training set size. In
our composite model (ImmuneApp-MA), integration of both data
types could enhance predictive performance. Specifically,
ImmuneApp-MA demonstrated the highest predictive capability,
notably surpassing seven peer methods across various HLA loci and
peptide lengths. In addition, we explored the interpretability of the
model. Most neural networks for predicting molecular properties and
biological activities act as black boxes. However, ImmuneApp is easily
interpretable because it implements an attention-based hybrid deep-
learning framework for predictingHLA-I epitopes. The hidden layers in
ImmuneApp enabled the mapping of peptides to a lower-dimensional
representation space that could be extracted and visualized. Our
results indicated that the deep learning-based embeddings effectively
represented the binding specificities of pHLA complexes. Further-
more, by decoding the learned features andweights,wedemonstrated
that our framework could effectively extract interpretable patterns.
This feature is supported by existing structural data, and our analysis
validated the biological significance of the bindingmotifs identified by
ImmuneApp. Of note, this analysis does not aim to replicate already
established and well-characterized HLA-I binding motifs. While some
prediction algorithms, such as MixMHCpred and those based on
position weight matrices (PWMs), are designed for easy interpret-
ability in motif discovery, our method differs by offering additional
layers of interpretability beyond traditional PWM-based methods. Our
model could automatically learn and identify critical amino acids that
define HLA-binding motifs during training, providing both interpret-
ability and predictive capabilities essential for immunopeptidomics
analysis and HLA-I ligand prediction.

An accurate prediction of immunogenic neoepitopes helps iden-
tify potential targets for the design of immunotherapeutic strategies,
such as adoptive cell therapy and peptide-based vaccines. While the
primary objective of (neo)antigen prediction is to screen for valid
neoepitopes that elicit a clinically relevant antigen-specific immune
response, the availability of immunogenicity data for training deep
learning models is limited. To tackle this data scarcity issue and
enhance the effectiveness of our tool in clinical applications, we initi-
ally trained the base models on presentation data and then employed
transfer learning using immunogenicity data to create ImmuneApp-
Neo. We subsequently evaluated ImmuneApp-Neo alongside nine
relatedmethods using an independent dataset focused on neoepitope
immunogenicity. Our evaluation revealed that ImmuneApp-Neo
demonstrated high precision, significantly surpassing other methods
in immunogenicity prediction. Moreover, we observed that evenwhen
transfer learning techniques were not used, ImmuneApp-MA was still
superior to other methods, suggesting that integration and utilization
of large-scale immunopeptidomes data from (clinical) samples is
essentially needed. This infers the use of the model to study immu-
nogenicity in a more relevant and physiological context.
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Fig. 5 | The transfer-learning framework and validation performance of
ImmuneApp-Neo for immunogenicity prediction. a The development of
ImmuneApp-Neo with a transfer-learning strategy for immunogenicity prediction.
ImmuneApp-Neo was trained on new curated immunogenicity data by retraining
the last three fully connected layers of the mixed prediction model ImmuneApp-
MA, which outputs the neoepitope immunogenicity score. b PPVn was calculated
for all benchmark methods, including ImmuneApp-Neo, ImmuneApp-MA, Immu-
neApp-EL, PRIME 1.0&2.0, NetMHCpan-4.1, MHCflurry 2.0, MixMHCpred 2.1&2.2,

HLAthena, MHCnuggets-2.4, and TransPHLA, as the fraction of neoepitopes that
are immunogenic within the top n predictions (value of n ranges from 1 to 349).
c Mean PPVn with a 95% confidence interval (CI) for all methods are shown. It
summarizes the PPVn curves for all valid choices of n (n = 349). d, e Mean AUROC
(d) and AUPRC (e) were calculated for all benchmark methods for neoepitope
immunogenicity prediction. Bars represent means and error bars are 95% CIs.
Source data are provided as a Source Data file.
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To make ImmuneApp easy to use, we developed an online plat-
form (https://bioinfo.uth.edu/iapp/) with multi-tasking functionalities,
including antigen presentation prediction, immunogenicity assess-
ment, and immunopeptidomics data analysis. We also implemented a
module to predict the binding affinities between peptides and pan
HLA-I molecules, trained by over 200,000 quantitative BA measure-
ments (Fig. S8). We applied ImmuneApp to analyze multiple immu-
nopeptidomics datasets from melanoma tumor tissues14, lung, and
gastric cancer biopsies15 as case demonstration (Figs. S9–13), such as
quality control, motif analysis, and pHLA binding and deconvolution.
For example, ImmuneApp provided quality control analysis to deter-
mine the general quality of immunopepitdomic data. Our results
indicated low-quality metrics of immunopeptidomic data in lung and
gastric cancer biopsies, whereas three melanoma tumor tissues yiel-
ded high-quality immunopeptidomic data. Recent advances in pMHC
profiling techniques have indeed reduced the minimum sample input
requirements from an initial count of over 109 cells to 107 cells. How-
ever, this reduction does not completely eliminate the substantial
limitation it imposes on the clinical applicability of the method. The
paucity ofmaterial in clinical samples, such as those obtained through
fine needle biopsies, often proves inadequate for extensive pMHC
profiling. This demands the development of more sensitive and high-
throughput technologies for the efficient detection of MHC-presented
ligands. Moreover, we implemented both unsupervised gibbscluster
and supervised allele-specific approaches for motif analysis. The for-
mer is a standard GibbsCluster58 run using all peptides, while the latter
is dependent on the results of our model-based deconvolution to
assign multi-allelic data to cognate alleles. For large-scale immuno-
peptidomic data, installation of ImmuneApp on the local computer is
recommended.

Our evaluation of ImmuneApp has provided promising results.
It offers an alternative tool for HLA-I epitope prediction and
immunopeptidome analysis. However, there are several limita-
tions. First, ImmuneApp is restricted to operating solely on HLA-I
data, while some other methods are capable of predicting both
HLA-I and HLA-II presentation. We intend to augment our dataset
by incorporating additional publicly available multi-allelic HLA-II
immunopeptidomic data, and subsequently expand the tool’s
functionality for predicting and analyzing HLA-II antigen pre-
sentation. Second, in our assessment of immunogenicity, we only
considered the probability of antigen presentation by HLA-I
molecules. Although this parameter represents a pivotal determi-
nant of immunogenicity, it is imperative to incorporate various
other intrinsic factors to enhance the accuracy of immunogenicity
prediction. Such factors include but are not limited to, proteasomal
cleavage preferences, TAP transport efficiency, physicochemical
properties such as hydrophobicity, and TCR recognition. More-
over, validation of predicted outcomes through additional experi-
ments, encompassing both mass spectrometry assays and
immunogenicity assays, is typically needed. Third, emerging evi-
dence suggests a correlation between higher mutational burden
and enhanced antitumor activity following CTLA4 or PD-1 block-
ade. The quantity of neo-peptides originating from somatic muta-
tions, gene fusions, alternative splicing, and related factors,
appears crucial for predicting the efficacy of immunotherapy59.
Consequently, the development of robust methods for neoantigen
selection under the selective pressure exerted by immune check-
point blockade will likely be important for refining our approach
for clinical applicability. Finally, inherent biases within MS data,
such as the overrepresentation of “flyable” peptides, pose chal-
lenges to detectable ligand repertoire and consequently influence
the acquired binding motifs. Consequently, to gain a more com-
prehensive understanding of HLA antigen presentation, advanced
equipment specifically designed for high-throughput detection of
MHC-peptide interactions is essential.

Methods
Mass spectrometry-eluted HLA ligands
Mono-allelic data. Single-allelic EL datasets were collected and pro-
cessed from the training data of NetMHCpan-4.149 and MHCflurry-2.051,
which was carefully processed and filtered from publications by Sarki-
zova et al.22 and Abelin et al.46 as well as MS hits from the IEDB43, Sys-
teMHC Atlas60, and established datasets from their previous versions.
Moreover,multiple HLA-I peptidomics from studies by Jappe et al.61 and
Faridi et al.62 were obtained. These datasets were then integrated and
duplicate entries were removed. All peptides employed in the new
training dataset were filtered to only include 8 to 15 amino acid long
peptides, resulting in 349,650 ligands restricted to 149 distinct HLA-I
alleles. We referred these to the MONOALLELIC training data (Supple-
mentary Data 1). To benchmark the predictors in this study, we col-
lected an external single-allelic dataset from a recently published HLA-I
peptidomics63. This dataset contained 43,866 HLA-I ligands; it was not
included in the training of any previous predictors. This dataset was
referred to as MONOALLELIC-testing data (Supplementary Data 2).

Multi-allelic data. To increase the number of ligands and encompass a
wider array of HLA-I alleles, we incorporated publicly available multi-
allelic HLA peptidomics data, where the precise HLA class I restrictions
hadnotbeen experimentally established.Only sampleswith confirmed
HLA-I typing were utilized. We categorized all curated samples into
two groups. MULTIALLELIC-Recent included 47 samples from four
recently published HLA-I peptidomics studies35,63–65. It contained
435,397 eluted ligands covering 86 different HLA alleles (Supplemen-
taryData 3). This datasetwas not used to train any previous predictors.
Therefore, it was employed to benchmark the predictors developed in
this study and others in a multi-allelic setting. This benchmarking
involved assessing the predictors’ performance in identifying true
ligands within extensive random peptide libraries and comparing the
consistency of HLA binding motifs derived through deconvolution
with established motifs. MULTIALLELIC-All comprised 948,160 iden-
tified ligands from 216 samples representing 110 different HLA alleles
(Supplementary Data 4, MUTLIALLELIC-Recent was included). This
dataset was transformed into pseudo-mono-allelic data using our
developed deconvolution method, which was then combined with the
actual mono-allelic data to train a comprehensive model. Notably, all
data were obtained from the original publications without being fil-
tered by any HLA-I ligand predictors. This approach ensures that our
dataset remains free from biases introduced by such filtering.

Quantitative binding affinity measurements
The most widely used dataset of MHC-I binding affinity was originally
acquired from the IEDB43. To develop a model capable of predicting
peptide binding to various MHC molecules, especially in humans, we
also incorporated another dataset from Pearson et al.66. The final
dataset included over 200,000 quantitative BA measurements across
peptides and 190MHC-I alleles (SupplementaryData 7). The IPD-IMGT/
HLA database was used to retrieve the MHC molecule sequences. The
following equation was used to convert the peptide–MHC binding
affinities represented as IC50 in nM units:

Transformed score = 1� log Affinity measurementð Þ
log 50000ð Þ ð1Þ

The neoepitope immunogenicity dataset
We extracted immunogenicity data from the training datasets of
PRIME-1.055 and PRIME-2.050, as well as data obtained from the IEDB on
December 19, 2023. The training datasets used from PRIME-1.0 and
PRIME-2.0 included neoepitopes, viral antigens, and cancer-testis
antigens. The first training datasets used in PRIME-1.0 and PRIME-2.0
included neoepitopes, viral antigens, cancer-testis antigens, and 9-mer
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peptides that were chosen at random from the human proteome to
serve as negative examples. Objectives of our queries to the IEDB
included human hosts, infectious illnesses, T-cell tests, linear peptides,
andMHC-I restrictionof our queries to the IEDB includedhumanhosts,
infectious illnesses, T-cell tests, linear peptides, and MHC-I restriction.
After eliminating overlapping datawith all previously curateddatasets,
the final immunogenicity data included a total of 5050 immunogenic
neoepitopes and 7745non-immunogenic ones.We refer to these as the
IMMUNOGENIC training data. We employed deep transfer learning on
this immunogenicity data, resulting in the creation of a novel immu-
nogenicity predictor. Further, to benchmark the immunogenicity
predictors developed here, and others, an external immunogenicity
dataset was compiled by collecting NEPdb67, Neopepsee68, TESLA54,
and the data from 16 cancer patients using the MANAFEST assay69,70.
After excluding overlaps with all other single- and multi-allelic pepti-
domics, as well as the IMMUNOGENIC-training data, we compiled 349
immunogenic neoepitopes and 1838 non-immunogenic ones (see
Supplementary Data 6, IMMUNOGENIC-testing data).

Decoy selection
The negative datasets were constructed by randomly picking
peptides (decoys) in the UniProt human reference proteome
(UP000005640_9606) that did not overlap with the identified ligands
(hits). We constructed a pool of random peptides (8–15 amino acids
long) and sampled a large number of length-matched decoy peptides
with the observed allele to avoid bias. We excluded all peptides,
including both hits and decoys, that contained non-canonical amino
acids. Decoy generation for benchmarking purposes was conducted
separately from the decoy generation employed duringmodel training.

Peptide representation
MHC sequences and peptides are used as input by the ImmuneApp
architecture. These sequences were both encoded using the common
BLOSUM50 substitution matrix, with each residue represented by its
corresponding row in the matrix. peptides with 8–15 amino acids long
were converted as a 30-mer sequence by combing left and right-
aligned representations, since our deep learning networks demand
fixed-length inputs. The central gaps of peptides with less than 15
residues were filled with zero padding. For instance, “FLLVTLAIL” is
represented by concatenating “FLLVTLAILXXXXXX” (left aligned), and
“XXXXXXFLLVTLAIL” (right aligned), yielding the 30-mer sequence
“FLLVTLAILXXXXXXXXXXXXLIALTVLLF”. This design was primarily
motivated by structural research on peptide-MHC complexes. Pre-
vious studies revealed that the termini of peptides often play a more
critical role in binding than the central regions, as they are typically
positioned in two specific binding pockets within the peptide binding
grooves. Therefore, each ligand is encoded into a 30 × 20matrix using
such a pair-end approach.

HLA allele representation
The 34 amino acids derived from the multiple sequence alignment
were used by the neural network to represent MHC-I molecules.
According to the NetMHCpan tool, this representation is referred to a
“pseudo-sequence”. These residues were in close proximity to the
peptide residues, specifically within 4.0 angstroms. The entire set of
chosen locations were 31, 33, 48, 69, 83, 86, 87, 90, 91, 93, 94, 97, 98,
100, 101, 104, 105, 108, 119, 121, 123, 138, 140, 142, 167, 171, 174, 176, 180,
182, 183, 187, 191, 195, based on HLA-A*01:01 protein residue number-
ing (IMGT accession HLA00001), starting from 1. Using the
BLOSUM50 substitution matrix, each amino acid was converted to a
36 × 20 matrix-vector, much as the ligand encoding.

Deep learning techniques
ImmuneApp implements a novel pan-allele MHC-I binding model that
supports variable-length peptides of 8–15 amino acids. This model is

developed using a hybrid deep learning architecture, which autono-
mously identifies critical residues and distinguishing features within
the peptides. The architecture consists of five primary parts: a feature
encoding module, a convolutional module, an LSTM module, an
attention module, and an output layer. Themodel initially runs via the
convolutional module (ConV) for initial feature extraction after pas-
sing the first feature encoding module through it:

Convol Lð Þij =
XR�1

r =0

XC�1

c =0
KM

rcLi + r, c ð2Þ

where L stands for the input antigen or MHC pseudo-sequence, i and j
represent the indices for the output position and the kernel, respec-
tively. KM serves as a convolutional kernel by a R ×C weight matrix,
where R denotes the kernel’s window size, and C represents the input
dimension. To reduce the dimensionality of the MHC initial feature
map, a max-pooling operator was implemented after the
convolutional layer.

To effectively capture the intricate long-range relationships
within the sequence, themodel passes the extracted featuremaps into
an LSTM layer. The LSTM unit consists of four components: an input
gate, a forget gate, an output gate, and a single cell that can recall
characteristics across any time period. Specifically, taking a peptide

with length T as input xp
n oT

p= 1
in LSTM, and for each position t, define

the input gate as It, forget gate as Ft, output gate asOt, hidden state as
Ht and cell state as Ct. The steps in the LSTM training procedure are as
follows:

Ft = σ Wf × xt , Ht � 1
� �

+bt

� �
ð3Þ

It = σ WI × xt , ht � 1
� �

+ bI

� � ð4Þ

Ct = Ft ×Ct�1 � It × tanh WC × xt , ht � 1
� �

+ bC

� � ð5Þ

Ot = σ WO × xt , ht � 1
� �

+bO

� � ð6Þ

Ht = Ot × tanh Ct

� � ð7Þ
To learn all the hidden features within the LSTM layer and assign

greater weight to critical locations, recurrent outputs are densely
connected to an attention module. Mathematically, the attention
mechanism generates an output vector by using the variables Bt

� 	T
t = 1

from LSTM layer. As demonstrated below:

αt =
exp w Bt

� �� �
PT

i = 1 exp w Bi

� �� � ð8Þ

As =
XT

t = 1
αtBt ð9Þ

where w denotes a neural network calculating a scalar weight. A fully
connected layer is formed by concatenating the outputs fromboth the
LSTM and attention modules. The output layer applies a sigmoid
nonlinear transformation to generate the probability of antigen pre-
sentation for specific HLA class I alleles.

Deconvolution of multi-allelic immunopeptidomics data
Using our curated MONOALLELIC training data, a new pan-binding
prediction model (ImmuneApp-EL) was generated to estimate the
likelihood that a query peptide is presented by an HLA-I allele. This
training dataset encompassed 149 alleles and comprised 349,650 EL
alongside 17,482,200 decoy peptides. To address the sample imbal-
ance issue and enhance the robustness of the model, ImmuneApp-EL
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was implemented using a balanced class-weight approach and the
ensemble learning strategy. Specifically, “compute_class_weight”
function (Python package sklearn) was applied to calculate class
weights, which were added during the model fitting. Moreover, dif-
ferent batch sizes (2048, 4096, 8192, 16,384, and 32,768) were set. For
each batch size, the MONOALLELIC-training dataset was divided in a
4:1 ratio, allocating data for training and validation. The number of
training epochs was determined based on themaximization of AUPRC
on the validation dataset, with a cap of 100 epochs imposed. The
training process is repeated five times to ensure every subset is used
for both training and testing (likefivefold cross-validation), resulting in
the generation of 25 models. The final prediction score for each query
was the average of the 25 models’ outputs.

Using ImmuneApp-EL, we developed a model-driven deconvolu-
tion method to transform immunopeptidomics as pseudo-single-
allelic ligands. For each sample, we initially made predictions for HLA
alleles. To make the predicted scores for different alleles comparable
in a sample set, we calibrated raw scores using percent rank values. To
this end, percentileofscore function (Python package stats) was used
to compute thepercentile rankof a score for eachallele relative to a list
of scores in a background set of 500,000 decoy peptides. For each
individual sample, we eliminated all allele-peptide pairs that had a
predicted binding rank exceeding the 20% threshold, thereby dis-
carding peptides that were unlikely to bind to any of the specified
alleles. In instances where multiple alleles were predicted to bind with
a particular peptide, the allele-peptide pair that had the lowest binding
rank (indicating the strongest binder) was chosen.

Development of integrative antigen presentation model and
immunogenicity predictor
Encouraged by the previous evidence that integrating multi-allelic
ligands could improve the performance of antigen presentation pre-
diction, we further processed and incorporated available immuno-
peptidomics data to enhance model training. The final curated multi-
allelic dataset comprises 969,435 ligands restricted to 110 HLA-I
molecules from 216 samples. By employing our model-driven decon-
volution method, we mapped 835,551 ligands to 104 alleles and
obtained 328,227 unique HLA allele-ligand pairs. Subsequently, the
mono-allelic and pseudo-mono-allelic datasets were merged. After the
removal of duplicates, we compiled a total of 573,453 unique allele-
ligand pairs representing 162 alleles (Supplementary Data 5). This
comprehensive dataset was utilized as the final training set for amixed
prediction model, ImmuneApp-MA, following the aforementioned
training strategy. In addition, accurate prediction of immunogenic
neoepitopes, especially within the top-ranked outputs, helped in
identifying potential targets for immunotherapeutic approaches,
representing a challenge for most antigen-binding related predictors.
Using the integrative antigen presentation model as a pre-trained
model, we leveraged deep transfer learning into a curated dataset of
immunogenicity to develop a new immunogenicity predictor. The
training strategy involved fine-tuning the final three dense layers of the
mixed prediction model using the immunogenicity dataset (Immu-
neApp-Neo). We chose the five models with the best performance as
the basemodel for transfer learning. In this study, neural networks are
built with Keras 2.3 (https://keras.io/) and the Tensorflow backend in
Python 3.7. To accelerate the gradient descent during training, we run
on an NVIDIA Tesla T100 GPU server with CUDA 7.5 on our GPU
clusters.

Comparison to existing methods
To further assess the performance of our models, we conducted sev-
eral benchmarking analyses using external immunopeptidomics sam-
ples, encompassing bothmono-allelic andmulti-allelicdatasets, aswell
as neoepitope immunogenicity data. We compared with seven meth-
ods: NetMHCpan-4.149, MHCflurry 2.051, MixMHCpred 2.1 and 2.250,

HLAthena22, MHCnuggets-2.471, TransPHLA72, and PRIME 1.0 and 2.050.
The PRIME tool was added only for the comparison of immunogeni-
city. These methods are well-established and widely used in the field.
Both percentile rank outputs and prediction scores were used for
comparative analysis. Three evaluation metrics, AUROC, AUPRC, and
PPV, were calculated as follows:

Sensitivity =
N correct predicted hitsð Þ

N all hitsð Þ ð10Þ

Specificity =
N correct predicted decoysð Þ

N all decoysð Þ ð11Þ

Recall =
N correct predicted hitsð Þ

N correct predicted hitsð Þ+ N incorrect predicted decoysð Þ
ð12Þ

Precision=
N correct predicted hitsð Þ

N correct predicted hitsð Þ+N incorrect predicted hitsð Þ
ð13Þ

PPV=
N correct predicted hitsð Þ

N all hits predicted positiveð Þ ð14Þ

N represents the total predicted results. AUROC scores were
derived from the area under the curves representing sensitivity and
1 − specificity. AUPRC scores were determined from the area under the
precision and recall curves. PPV highlighted the predictor’s ability to
prioritize true hits.

Benchmarking of antigen presentation prediction. The
MONOALLELIC-testing dataset comprises 43,866 HLA-I ligands. This
dataset was excluded from the training sets of all previous predictors
so that it could provide an unbiased evaluation. A set of randomly
selected peptides from the human proteomewas utilized as negatives,
with a 50-fold excess, to compute AUROC, AUPRC, and PPV for all
predictors evaluated in this study (ImmuneApp-EL and ImmuneApp-
MA) and other tools, including MixMHCpred 2.1&2.2, HLAthena,
NetMHCpan-4.1, MHCflurry 2.0, MHCnuggets-2.4, and TransPHLA.

Benchmarking of immunopeptidomics deconvolution. To assess
model performance with multi-allelic samples, 435,397 eluted ligands
obtained from 47 recently published samples (the MULTIALLELIC-
Recent benchmark) were used. These ligands were considered posi-
tives and were combined with a large number of randomly selected
peptides. We evaluated our approach and other tools in two ways.
First, AUROC, AUPRC, and PPV were calculated to assess the effec-
tiveness of predictors in identifying true ligands within large random
peptide libraries. Moreover, we examined the congruence between
HLA binding motifs obtained through deconvolution and motifs
identified by single-allelic ligands. Average PCC values among alleles
were calculated. We assessed our methods in comparison with
NetMHCpan4.1 and MixMHCpred 2.2, which employ NNalign-MA and
MixMHCp for immunopeptidomics deconvolution, respectively.

Benchmarking of neoepitopes immunogenicity. To assess the
potential clinical significance, we performed a comparative analysis of
all predictors developed in the present study against peer tools for
screening immunogenic neoepitopes. The dataset under evaluation
included 349 immunogenic and 1838 non-immunogenic neoepitopes
collected from diverse databases and studies (IMMUNOGENIC-testing
data). It is crucial for antigen prediction methods to prioritize a sig-
nificant proportion of immunogenicity in their top-ranking prediction
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scores, as only a select few candidate neoantigens ranked at the top
undergo clinical testing and practical application. Therefore, PPV was
computed to evaluate the immunogenicity prediction for Immu-
neApp-Neo, ImmuneApp-MA, ImmuneApp-EL, PRIME 1.0 and 2.0,
HLAthena, NetMHCpan-4.1, MixMHCpred 2.1&2.2, MHCflurry 2.0,
TransPHLA, and MHCnuggets-2.4.

Implementation of ImmuneApp online platform
ImmuneApp implements four main modules: “Discovery”, “Analysis”,
“Results” and “Controller”. In the backend, three well-trained deep
learning models (ImmuneApp_BA, ImmuneApp_MA and Immu-
neApp_Neo) are used for the predictions of binding affinities, ligand
probabilities, and immunogenicity as well as immunopeptidomic
analysis, respectively. The “Controller” module checks the input data
format, sends the data from frontend interfaces to the backend, cre-
ates the results using models, and then provides the results on the
“Results” page. The “Discovery” module accepts two input types:
“FASTA” and “Peptide”. Users can directly copy the input data to an
online submission text box. Moreover, MHC molecules and the pep-
tide length (only FASTA input) need to be specified for running pre-
diction. The “Analysis” module accepts clinical immunopeptidomic
samples as input, together with MHC molecules. The input sample(s)
can be directly copied to an online submission text box or uploaded
from the user’s local disk. Sample identity should be specified. This
module provides intuitive report for personalized analysis, statistical
reports, and visualization of results for immunopeptidomic data. We
implemented both pages in a responsive manner by using the HTML5,
CSS, Bootstrap3, and JavaScript. Additionally, the “Controller” is called
through Ajax technology to submit jobs, retrieve data, and show
results. There is no limit to thenumber of tasks submittedby eachuser.
ImmuneApp can automatically handle the jobs in a queue, which
allows up to five jobs to execute concurrently.

Motif analysis and discovery for immunopeptidomics data
We implemented both unsupervised gibbscluster and supervised allele-
specific approaches for motif analysis. The unsupervised GibbsCluster
employs a standard GibbsCluster execution utilizing all available pep-
tides. For this analysis, the parameters set were based on the recom-
mended defaults for class I peptides provided by the GibbsCluster-
2.0 server: “-g 1-6 -T -j 2 -C -D 4 -I 1”. The grouping exhibiting the highest
Kullback–Leibler distance (KLD) score will be detailed in the report.
Additionally, the allele-specific approach relies on the outcomes of our
model-driven deconvolution method, which transforms immunopepti-
domics into pseudo-mono-allelic data for each allele. For peptides not
predicted to bind to any allele, GibbsCluster was executed with the
previously mentioned parameters and a range of “-g” values from 1–5.
This approach enabled GibbsCluster to identify multiple groups within
these unannotated peptides, with the grouping displaying the highest
KLD score being highlighted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available and detailed in
Supplementary Data 1-7. The datasets of curated mono-allelic HLA-I
ligands are available in Supplementary Data 1 and Supplementary
Data 2. The datasets of multi-allelic HLA-I immunopeptidomics are
available in Supplementary Data 3 and Supplementary Data 4. The
dataset of merged mono-allelic and pseudo-mono-allelic ligands used
to train the compositemodel is included in Supplementary Data 5. The
dataset of HLA-I neoepitopes is available in SupplementaryData 6. The
dataset of MHC class I binding affinity is available in Supplementary
Data 7. The sequences of differentMHCmoleculeswere obtained from

the IPD-IMGT/HLA Database (https://www.ebi.ac.uk/ipd/imgt/hla/).
Relevant raw datasets for each figure are provided in the Source Data
file. Source data are provided with this paper.

Code availability
Researchers can run ImmuneApp online at https://bioinfo.uth.edu/
iapp/. For commercial usage inquiries, please contact the authors. The
source codes are implemented in Python and are freely available at
GitHub73, with https://doi.org/10.5281/zenodo.13357725.
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