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Deep learning resilience inference for
complex networked systems

Chang Liu 1,2,5, Fengli Xu1,2,5, Chen Gao1,2, ZhaochengWang1,2, Yong Li 1,2 &
Jianxi Gao 3,4

Resilience, the ability to maintain fundamental functionality amidst failures
and errors, is crucial for complex networked systems. Most analytical
approaches rely on predefined equations for node activity dynamics and
simplifying assumptions on network topology, limiting their applicability to
real-world systems. Here, we propose ResInf, a deep learning framework
integrating transformers and graph neural networks to infer resilience directly
from observational data. ResInf learns representations of node activity
dynamics and network topology without simplifying assumptions, enabling
accurate resilience inference and low-dimensional visualization. Experimental
results show that ResInf significantly outperforms analytical methods, with an
F1-score improvement of up to 41.59% over Gao-Barzel-Barabási framework
and 14.32% over spectral dimension reduction. It also generalizes to unseen
topologies and dynamics and maintains robust performance despite obser-
vational disturbances. Ourfindings suggest that ResInf addresses an important
gap in resilience inference for real-world systems, offering a fresh perspective
on incorporating data-driven approaches to complex network modeling.

Complex systems indiversedomains, including ecology, biochemistry,
and physiology, are commonly characterized as networked systems
with interconnected nodes and weighted links1–4. Resilience5–7, defined
as the capacity to maintain functionality under perturbations, is a
fundamental property of these systems. The foundational insights into
resilience can be traced back to Robert May’s seminal work8, where he
pioneered the investigation of stability equilibrium in these networked
systems. In 1973, Holling9 conceptualized the notion of resilience as
the degree of external perturbations a system can endure, but he
provided limited insights on the empirical measurements. Later
studies10 further analyzed the responses of networked systems to
perturbations, evaluating the connectivity in the context of node and
edge disruptions. The concept of network resilience was formally
defined recently5, articulating that a resilient system should invariably
converge to adesired, non-trivial stable equilibriumafter perturbation.
Prior research11,12 indicates that the loss of resilience often has

extensive implications. For instance, in ecological systems, the decline
in resilience can precipitate mass species extinctions13. This under-
scores the profound consequences of resilience loss and highlights the
urgent need for approaches to predict and mitigate such outcomes.

Generally, given a complex networked system G = (V, A) with N
nodes, we use V to represent the node set and A to represent the
weighted interaction matrix, where Aij 2 R denotes the interaction
intensity between node i and j. The activity of a specific node i is
represented as xi, governed by the following non-linear differential
equation:

dxi

dt
= FðxiÞ+

XN
j = 1

AijGðxi, xjÞ, ð1Þ

where F(xi) on the right side signifies the self-dynamics of node i,
G(xi, xj) characterizes the interaction dynamics between node i and j.
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The solution pattern of stable equilibrium for Equation (1) describes
system resilience. The system is resilient if there is a non-zero unique
stable equilibrium that indicates its functional state. Otherwise, it is
non-resilient if there are stable dysfunctional equilibria that can trap
the system or the system lacks the stable equilibrium, exhibiting
chaotic behavior.

Noteworthy contributions5,14–17 have sought to provide analytical
estimates for resilience of N-dimensional systems with complex
interactions between components by reducing them to tractable one-
dimensional systems based on mean-field theory, spectral graph the-
ory, etc. Despite their groundbreaking successes, these approaches
oftenmake strong assumptions about network topology anddynamics
for analytical feasibility18. We use the classic Gao-Barzel-Barabási
(GBB)5 framework as an example to explore the constraints of these
assumptions. Specifically, GBB computes a single resilience parameter
βeff 2 R for a networked system. The system is deemed resilient only if
its resilience parameter exceeds a certain critical threshold, i.e.,
βeff > β

c
eff (Fig. 1d–f). However, the accurate estimation of βeff and βc

eff

relies on the strong assumptions that node activity dynamics can be
described with linear equations and the degrees of interconnected
nodes are almost mutually independent. We evaluate GBB on several

synthetic networked systems governed by representative
mutualistic19, gene regulatory3, and neuronal dynamics20 (Dynamics
and datasets in Methods). In all three settings, we observe that inac-
curate inferences consistently occur in networked systems with posi-
tive or negative assortativity. Taking the systems with mutualistic
dynamics as examples, they areboth inferred tobe non-resilient due to
their βeff <β

c
eff (Fig. 1d). However, the networked system with negative

assortativity is, in fact, resilient (Fig. 1a, red color), because its network
activity consistently converges to a single equilibrium (Fig. 1g, red
curve). These findings demonstrate that classic analytic models often
yield inaccurate inferences when their foundational assumptions are
violated. Therefore, accurately inferring network resilience remains an
unresolved challenge in practice, largely due to the divergence
between the simplifying assumptions of current analytical frameworks
and the complexities encountered in real-world contexts.

In this study, we demonstrate how deep learning methods can
effectively leverage the increasingly available observational data to
extend the idea of resilience inference to real-world complex net-
worked systems. We design a powerful deep learning framework that
effectively integrates Transformer and Graph Neural Network (GNN)
architectures, facilitating the learning of Resilience Inference
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Fig. 1 | Example cases of simplified analytical inferences. We perform case stu-
dies on networks with mutualistic (parameter setting:
B = 0.1, C = 1, K = 5, D = 5, E = 0.9, H = 0.1) (a), gene regulatory (parameter setting:
f = 1, h = 2, B = 1) (b), and neuronal (parameter setting: μ = 3.5, δ = 2) (c) dynamics.
Specifically, we first plot the 1-D resilience function condensed by GBB from the
original high dimensional equations, where we show the stable equilibrium of xeff
(Supplementary Equation (11)) givenβeff (Supplementary Equation (12)).We analyze
pairs of networks that have similar βeff under GBB framework but different assor-
tativity measured by degree correlation coefficient r. Network (I),(II),(V), and (VI)
are all inferred as non-resilient by the classic GBB framework because

βeff <β
c
eff (d, f). On the contrary, Network (III) and (IV) are inferred as resilient with

βeff >β
c
eff (e). We further simulate the node activities using the corresponding

dynamics for 100 times with varying initial conditions (Dynamics and datasets in
Methods) on each network, and employ kernel density estimation (KDE) plot to
visualize the distribution of its stable states. However, the ground truth simulations
show Network (II), (III) and (VI) are resilient because they have a unique, non-trivial
stable states (〈x〉 > 0), while Network (I), (IV) and (V) are non-resilient for having
more than 1 stable states or only 1 trivial stable state (〈x〉 = 0) (g–i). Therefore,
Network (II), (IV), (VI) are inaccurately inferred by the classic analytic model GBB,
and they all have negative or positive assortativity.
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representations (ResInf for short) across various complex networked
systems. Specifically, ResInf employs stacked Transformer encoder
layers21 to generate representations for the governing equations of
node activity dynamics by modeling the complex correlations among
node activities, which is subsequently merged with topological
representations through GNN’s message passing mechanisms22–26. The
learned representations for multiple observations are aggregated and
projected into a specialized 1-dimensional decision space, termed ‘k-
space’. This space enables precise classification of resilient systems
and provides insights on the systems’ closeness to critical thresholds
that indicate shifts in resilience status.

We employ ResInf on real-worldmicrobial systems in a laboratory
setting where traditional analytical approaches are infeasible due to
the unavailability of definitive governing equations for node activity
dynamics. Our numerical results demonstrate that ResInf achieves an
impressive accuracy rate, attaining an F1-score of up to 0.829 on
average. Additionally, when assessed on synthetic networked systems
driven by three representative equations, i.e., mutualistic, gene reg-
ulatory, and neuronal dynamics, ResInf markedly outperforms its
conventional counterparts, achieving a maximum F1-score improve-
ment of up to 41.59% and 14.32% compared to Gao-Barzel-Barabási
(GBB) framework5 and spectral dimension reduction (SDR) approach14,
respectively. If we train ResInf on data covering different patterns of
resilience loss, including phase shifts and the emergence of alternative
stable states, it can effectively capture these underlying patterns and
leverage such generalizable knowledge to infer the resilience of sys-
tems with previously unseen dynamics. Importantly, ResInf maintains
robustness under various types of observation noise, including miss-
ing or spurious links in network topologies and inaccuracies in node
activity trajectories. These findings demonstrate that carefully
designed deep learning models can effectively exploit observational
data for complex systemanalysis and suggest that the proposedResInf
framework can be adapted to diverse real-world complex systems
without the crutch of oversimplifying assumptions.

Results
ResInf framework
Herewe formulate the resilience inferenceproblem investigated inour
work. We denote a complex networked system with N nodes as
G = (V, A) with node set V and adjacency matrix A 2 RN ×N , where
Aij 2 R denotes the interaction intensity between node i and j. Its node
activities at time step t are denoted as xðtÞ 2 RN . The resilience of the
networked system, i.e., the label, can be represented by a binary vari-
able y ∈ {0, 1}. The system is resilient (y = 1) if node activities con-
sistently converge to a non-zero and unique equilibrium regardless of
initial node activity conditions. Otherwise, the system is non-resilient
(y =0) if there are stable dysfunctional equilibria that can trap the
system or it lacks the stable equilibrium, only exhibiting chaotic
behavior. Based on this definition, we can determine labels of system
resilience through the observation of node activities without knowing
underlying dynamics equations, i.e., Equation (1) of the system. Our
objective is to infer the resilience y of the system in advance from a
data-driven perspective. The input data comprises system topology,
i.e., A 2 RN ×N , which describes interactions between components,
and node activities X 2 RM ×N ×d containing x(t) of M observed tra-
jectories with the first d initial steps where the resilience of system
remains unknown to us. Each trajectory is initiated with a unique node
activity condition.

To address the problem, we present a deep learning Resilience
Inference framework (ResInf, Fig. 2). Specifically, ResInf leverages
stacked transformer networks21 as a dynamics encoder to learn dense
representations for the underlying node activity dynamics from the
input node activity trajectories X without any prior knowledge (Sup-
plementary Fig. 1)21,27. Different trajectories are encoded in parallel,
thus the module produces M node activity dynamics representations

for each node. Moreover, we design a topology encoder that uses
graph neural network (GNN)22 to model the non-Euclidean network
topology from the input adjacency matrix A with a message-passing
mechanism that recursively aggregates features from neighboring
nodes (Supplementary Fig. 2). It can generate discriminating topolo-
gical representations for each node’s multi-hop neighborhood28. We
use node activity dynamics representations from the dynamics enco-
dermodule as the input of the topology encodermodule, which treats
them as the initial node features and incorporates themwith topology
information via the message passing GNN layers, thereby incorporat-
ing information of node activity dynamics to the produced topological
representations. Subsequently, these learned representations are
transmitted to and consolidated by a virtual global node, providing a
holistic system representation describing system-level characteristics.
Owing to the parallel processing of different trajectories in afore-
mentioned procedures, we obtain M system representations, each
capturing knowledge from an input node activity trajectory and inte-
grating information from network topology. Given that network resi-
lience is characterized by achieving a consistent stable equilibrium
across different trajectories, we develop a trajectory aggregator
designed to harnessM system representations derived from different
trajectories. It uses the self-attention network to assign weights of M
system representations dynamically and fuses them to a final system
representation accordingly (Supplementary Fig. 3). The fused system
representation is then projected to a 1-dimensional k-space with the
fully connected network, which facilitates informative visualization
and accurate resilience inference. We illustrate more technical details
of ResInf in Methods.

Resilience inference of real-world microbial systems
Microbial systems are ubiquitous in the real-world and essential for
organic decomposition and nutrient cycling. Therefore, their resi-
lience significantly contributes to the ecological balance. We employ
the empirical data collected by a recent study that investigates
dynamic species compositions in bacterial microcosms29, where
abundances of species and competition interplay between them cor-
respond to node activities and network topology, respectively. Each
data contains abundances of species from the same microbial com-
munity observed via laboratory experiments. Resilience of these sys-
tems are determined by fluctuation intensity of observed species
abundances, which is consistent with the existing work29 (Real-world
microbial systems in Methods). Species abundances of non-resilient
microbial systems with intense competition often exhibit chaotic
fluctuations, as opposed to that of resilient systemsmarked by a stable
equilibrium30. We illustrate examples of the relative species abun-
dances of resilient and non-resilient microbial systems in Fig. 3a. Real-
world microbial systems often exhibit complex intrinsic activity
dynamics among diverse types of bacteria29,31, rendering them inap-
plicable for analytical approaches since such behavior cannot be
concisely described by equations but can only be assessed through
observations. Therefore, we employ our data-driven approach ResInf
on microbial systems as a case study to validate its real-world perfor-
mance. For each system, we input species abundances to the model
along with a complete network with uniform edge weight as the
default topology, following the maximum entropy principle. We ran-
domly split the real-worldmicrobial systems into training and test sets
(85% vs 15%).

We compare ResInf with several representative data-driven base-
lines, including two deep learning architectures—the multilayer per-
ceptron model (MLP), long short-term memory model (LSTM)32, and
two graph kernel-basedmodels—shortest path kernelmodel (SP)33 and
propagation kernel model (PROP)34 (Supplementary Note 1.1 ~ 1.4). We
utilize the F1-score (Evaluation metrics in Methods), a combined
metric of precision (how many inferred resilient systems are actually
resilient) and recall (howmany resilient systems are correctly inferred)

Article https://doi.org/10.1038/s41467-024-53303-4

Nature Communications |         (2024) 15:9203 3

www.nature.com/naturecommunications


to quantify the performances of models. Figure 3b demonstrates that
ResInf can achieve a high F1-score of 0.829 ±0.028 in inferring the
resilience of real microbial systems, which surpasses competitive
baselines LSTM by 34.14%. It shows that deep learning architectures
without specific designs for resilience inference are usually sub-
optimal for the problem, which can also apply to graph kernel-based
models SP and PROP that regard node activities as static features
neglecting their temporal dependencies. Conventional analytical fra-
meworks (for example, GBB) are even not applicable in this scenario
since we cannot describe the system with explicit dynamics equations
to find a theoretical bifurcation point. The results demonstrate that
our data-driven deep learning framework, ResInf, effectively extends
resilience inference to real-world microbial systems without prior
knowledge and assumptions, holding promising potential for resi-
lience inference across various networked systems even if their node
activity dynamics are complex and difficult to describe explicitly.

In broader scenarios where real-world systems have not yet col-
lapsed and only limited training data are available from the system
under investigation, directly training ResInf becomes impractical. To
avoid collecting large amounts of training data in the wild or labora-
tories, we propose an alternative approach that leverages simulated
data to train ResInf, where node activity trajectories are generated by

solving dynamics equations on synthetic topologies. We use these
microbial systems as a representative test dataset to validate our
approach. Specifically, we evaluate the performances of models when
trained solely on simulated data from SIS dynamics (Dynamics and
datasets in Methods) and subsequently apply them to infer the resi-
lience of these real-world microbial systems (Fig. 3c, details in Sup-
plementary Note 2). The results demonstrate that ResInf achieves a
competitive F1-score of 0.807 ± 0.016. Notably, this performance
shows slight differences from the F1-score of 0.829 ±0.028 obtained
when the framework is trained directly on laboratory-collected data
from real microbial systems. It underscores the practical applicability
of ResInf in real-world scenarios, eliminating the need and effort for
extensive data collection from both laboratories and real
environments.

Resilience Inference of Synthetic Networked Systems
To evaluate the performance of ResInf across various scenarios, we
further conduct resilience inference experiments on synthetic net-
worked systems governed by three representative dynamics, i.e.,
mutualistic, gene regulatory, and neuronal dynamics. Specifically, we
use the network topologies empirically collected fromecosystems and
cells for mutualistic and regulatory systems5,35, respectively. Besides,
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topological representations for each node’s multi-hop neighborhoods; k-space
projector aggregates the representations for node activity dynamics and topolo-
gies via a virtual global node, and employs a multi-head self-attention network to
fuse the representations learned from various trajectories dynamically. Subse-
quently, it uses a dimension reduction network to project the aggregated repre-
sentation to a 1-dimensional k-space, facilitating accurate resilience inference with
linear classifiers.
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we use the classic Erdős-Rényi36 and Barabási-Albert37 models to gen-
erate topologies for systems governed by neuronal dynamics, which is
consistent with the setting in previous study38. Moreover, it is of great
importance to examine the resilience inference performance in the
scenarios in which the networked systems experience specific per-
turbations. Therefore, we follow the settings in existing works5 to
perform random perturbations of node removal, link removal, and
globalweight changes on the synthetic networked systems (Simulating
critical events in Methods). Finally, the proposed ResInf and baseline
models are trained on a randomly sampled subset of the synthetic
networked systems, and evaluated on a test set with previously unseen
networked systems. Besides the aforementioned four data-driven fra-
meworks, including MLP, LSTM, SP, and PROP, we also introduce two
conventional models—Gao-Barzel-Barabási (GBB)5 and spectral
dimension reduction (SDR)14 frameworks (Supplementary Note 1.5 ~
1.6). GBB offers a dimension reduction approach that effectively
reduces an N-dimensional system into a one-dimensional degree-
related β-space, subject to the constraint of neutral assortativity
topology. SDR utilizes the dominant eigenvalue α of the system
topology to achieve accurate dimension reduction grounded in a
theoretical premise. These two approaches are exemplarymethods for
estimating resilience of networked systems from the analytical
perspective.

The experiment results demonstrate ResInf consistently outper-
forms all baseline models in F1-score across networked systems gov-
erned by mutualistic, gene regulatory, and neuronal dynamics
(Fig. 4a–c). For example, ResInf registers an F1-score of 0.977 ±0.005
on networked systems with mutualistic dynamics, while the F1-scores
of classic analytical model GBB and SDR are 0.690 ± 0.015 and
0.858 ±0.007, respectively, despite GBB and SDR leverage explicit
node activity dynamics equations. Therefore, based on just a few initial
observed node activities about investigated systems compared to
existing analytical frameworks, the superior performance of ResInf
indicates that it effectively captures the underlying resilience loss
patterns and the complex interplay between topology and node
activity dynamics fromobserved data, shedding lights on the potential
of learning-based approaches in understanding complex networked

systems. ResInf also outperforms all data-driven baselines, i.e., LSTM,
PROP, SP, and MLP. It is worth pointing out that LSTM and PROP have
comparable performance with GBB and SDR, but only ResInf sig-
nificantly outperforms GBB and SDR in all settings (p < 0.01, two-sided
Student’s t-test). Besides, we find that ResInf consistently has the best
performance on each subset of the networked systems classified by
the aforementioned perturbation types (Supplementary Fig. 5) and in
different hyper-parameter settings (Supplementary Note 4, Supple-
mentary Figs. 12–13). Furthermore, we evaluate our framework ResInf
on synthetic data with low and high assortative topologies (Supple-
mentary Fig. 6 and Supplementary Tables 6–7). The results reveal that
the performance of GBB is inferior on high-assortative networks
compared to low-assortative networks. Although SDR shows some
improvement, there still remains a noticeable gap in its performance
on networks with mutualistic dynamics. On the contrary, our ResInf
frameworkdemonstrates consistent performance across both types of
networks, with no discernible difference in its efficacy. Beyond the
application to mutualistic, gene regulatory, and neuronal networks,
our developed framework can also explore the resilience of other
systems with different node activity dynamics and structural proper-
ties (see Supplementary Note 3 and Supplementary Fig. 7 for human
interactions with epidemic spreading cases). The above results
demonstrate that ResInf canmake accurate resilience inference across
networked systems with various settings, representing an important
methodological advance that outperforms the state-of-the-art analy-
tical model without leveraging explicit dynamics equations.

Generalizability of ResInf
The networked systems under consideration may emerge in new
contexts where node activity dynamics parameters, or even the
underlying equations themselves, differ from existing data, thus hin-
dering the application of analytical approaches that rely on compre-
hensive knowledge of systems’ node activity dynamics. Furthermore,
the lack of labels for these new systems also impedes our ability to
directly retrain themodels and extend their applicability to such novel
contexts. In this section, we assess the out-of-sample inference per-
formance of ResInf, demonstrating its generalizability across both
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Fig. 3 | Resilience inference of real-world microbial systems. Data of each
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munity observed during 11 days of laboratory experiments29. The resilience of
systems (i.e., labels) are determined by the fluctuation intensity of species abun-
dances (the coefficient of variation, Real-world microbial systems in Methods).
a Relative species abundances of resilient (without black slash) and non-resilient
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different species. Species abundances of the non-resilient microbial system display
persistent fluctuation and cannot converge to a stable equilibrium. b F1-scores of
different models trained on real-world microbial systems. We employ species

abundances of the first three days along with a complete network with uniform
edgeweight as the default topology (following themaximumentropyprinciple) for
both training the model and inferring the resilience of microbial systems. We
randomly splitmicrobial systems into training and test sets (85% vs 15%). c F1-scores
of differentmodels trainedon simulated systems (SupplementaryNote 2). It should
be noted that conventional analytical frameworks (for example, GBB) are not
applicable in this scenario since we cannot describe the system with explicit
dynamics equations. Bars represent the average values, and error bars represent
the standard deviation (n = 35 with different random seeds).
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dynamics parameters and dynamics equations, which underscores the
model’s effectiveness in adapting to systemswith varying node activity
dynamics.

Networked systems with similar functions in the real-world often
share identical forms of node activity dynamics, while the parameters
governing these dynamics are usually different. For instance, the
intrinsic mechanisms of self-growth and pairwise symbiotic effects on
species abundances can be similarly described across a majority of
ecosystems, however, the environmental capacities that support spe-
cies vary significantly among them7,39. An intuitive idea is to leverage
data from other systems with similar functions to enhance the resi-
lience inference of the system under investigation, which necessitates
that the inference model generalizes across various dynamics para-
meters. To assess such generalizability of ResInf, we generate node
activities within networks using the same dynamics equations but with
varyingparameter settings (SupplementaryTable4),whicharedivided
into training and test parameter settings with the ratio of 2:1. We train
the models using networks configured with training parameter set-
tings and subsequently evaluate them using those with unseen test
parameter settings. Results for mutualistic, regulatory, and neuronal
dynamics as depicted in Fig. 5a–c indicate that our model achieves the
highest out-of-sample performance, with average F1-scores of 0.921,
0.892, and 0.924, respectively, demonstrating its superior general-
izability. It reveals that ResInf effectively captures the common
intrinsic dynamics form through the training data with different
dynamics parameter settings.

Another crucial issue concerns whether ResInf can benefit from
training on data of other systems, even those with different dynamic
equations, and directly infer the resilience of investigated systems,
which broadens the practical applications of our framework but also
necessitates generalization across different dynamics equations. Pre-
vious works7,40 have established that the resilience loss patterns of
network systems governed by diverse dynamic equations can be
classified into twomain categories: phase shifts and the emergence of
alternative stable states. For instance, Fig. 1g shows that network sys-
tems with mutualistic dynamics may undergo a transition from a
region with a unique, non-zero equilibrium to another region with the
emergence of multiple stable equilibria, where the system can be
trapped in an undesired dysfunctional equilibrium. From Fig. 1h, gene
regulatory networks may shift to a death equilibrium where all nodes

have zero activity and can never recover to their functional equili-
brium. Therefore,we hypothesize that ifwe train our ResInf framework
on a dataset of diverse network systems covering both categories of
resilience loss patterns, it should be able to generalize to network
systems governed by novel dynamic equations that are previously
unseen in the training set. To test this hypothesis, we introduce two
new forms of node activity dynamics equations: susceptible-infec-
tious-susceptible (SIS) dynamics41 and inhibitory dynamics42 (Dynam-
ics anddatasets inMethods). SIS and inhibitorydynamicsbelong to the
categories of phase shifts and the emergence of alternative stable
states, respectively. We construct the training set based on network
systems governed by these two dynamics equations and test ResInf on
the network systems governed by mutualistic, gene regulatory, and
neuronal dynamics. As shown in Fig. 5d–f, we find that ResInf can
achieve good performance and consistently outperforms all baseline
models, even if it is tested on networkswith new formsof node activity
dynamics that have not been seen in the training set. It registers F1-
scores of 0.862 ± 0.025, 0.889 ±0.023, and 0.887 ±0.019 on net-
worked systems with mutualistic, regulatory, and neuronal dynamics,
respectively, while other methods lose generalizability and havemuch
worse performance. It is worth pointing out that analytical models
(GBB and SDR) are not applicable in this generalization scenario
because the dynamic equations of testing networks are unknown to
the resilience inferencemodel. These results suggest ResInf indeedhas
good generalizability, i.e., a representative training set is sufficient for
ResInf to perform well in novel network systems with unknown node
dynamic equations. We conduct further experiments where we train
ResInf on networkswith either SIS or inhibitory dynamics and evaluate
its generalization performance on mutualistic, regulatory, and neuro-
nal networks. We find that ResInf shows better generalizability when
the resilience loss patterns of training networks cover those of the test
samples (Supplementary Fig. 8a–c). It indicates that having network
systems with the same category of resilience loss patterns in the
training set ensures the generalization performance of ResInf. This
requirement can be easily satisfied in various scenarios, and
researchers can conveniently construct adequate training sets as we
illustrated above.

Beyond assessing performance across various dynamics para-
meters and equations, we demonstrate that ResInf maintains its
superior generalizability when tested on network topology types
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Fig. 4 | Resilience inference performance on synthetic networked systems.We
evaluate resilience inference performance of ResInf along with other baseline
methods on synthetic network datasets. These datasets include mixed types of
perturbed networks of mutualistic (a), gene regulatory (b), and neuronal (c)
dynamics, respectively (Supplementary Table 2). The parameter of each dynamics
is the setting outlined in index 1 of Supplementary Table 4. The dataset of each
dynamics contains 2000 samples, which are partitioned into training, validation,

and test sets at a ratio of 8:1:1. For the mutualistic, gene regulatory, and neuronal
dynamics, we consider 10, 5, and 11 different initial conditions, respectively. Box
plots depict the median (central line) of F1-scores (n = 35 with different random
seeds), the first and third quartiles (box), whiskers extending to 1.5 times the
interquartile range from the first and third quartiles, respectively, and outliers are
represented as individual points.
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distinct from those used during training. After training on Erdős-Rényi
networks with SIS and inhibitory dynamics, ResInf consistently obtains
the best F1-scores among all baselines, surpassing over 0.818 on
Barabási-Albert (scale-free) networks as well as empirical networks
with mutualistic, regulatory, and neuronal dynamics, respectively
(Supplementary Fig. 9). The GNN-based topology encoder of ResInf is
capable of learning generalizable knowledge for resilience inference
without making assumptions regarding topologies or relying on spe-
cific network structures, which significantly enhances the general-
izability of ResInf to previously unseen topology types.

Resilience Inference from Noisy Data
Empirical measurements of real-world networked systems are often
compromised by noise. Consequently, we evaluate the robustness of
our model’s performance in the presence of various types of
observational noise, including noisy node activity trajectories,
missing links, and spurious links. Specifically, we simulate noisy
node activity trajectories by introducingGaussian noise governed by

a specified noise-to-signal ratio (NSR). Furthermore, missing and
spurious links are simulated by randomly removing or adding a
fraction of links to reproduce inaccurately estimated node
interactions43,44.

As depicted in Fig. 6a–c, it is evident that ResInf exhibits the best
resilience inference performance when various levels of observational
noise are introduced to the node activity trajectories. Taking the per-
formance on mutualistic networks as an example, the F1-score of
ResInf is 0.964 ±0.011 in the absence of observational noise (NSR = 0),
and it still remains at 0.854 ±0.017 when NSR increases to 1, i.e., the
power of the noise is as strong as the original node activity trajectories.
The desirable noise-resistant feature of ResInf can be explained from
the following aspects: first, the Transformer-based dynamics encoder
can model temporal correlations and intrinsic dynamics of node
activity from observed data and filter out uncorrelated noises
adaptively45–47. The added noise is stochastic in nature, which will not
easily blur the average, intrinsic patterns of system dynamics. Second,
the topology encoder leverages graph neural network with amessage-
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Fig. 5 | Generalizability ofmodels.Wedemonstrate the generalizability ofmodels
across varying dynamics parameters and dynamics equations. a–c Generalizability
of models across varying dynamics parameters of mutualistic (a), gene regulatory
(b), and neuronal (c) dynamics. For each dynamics, we randomly choose six of nine
parameter settings (Supplementary Table 4) for generating training data. We
employ each parameter setting to simulate node activity trajectories for 1000
perturbed networks via node removal from empirical networks and combine all
data of different parameter settings, formulating 6000 samples. To facilitate the
training process, we randomly select 1000 samples to construct the training set.
Similarly, we employ each of the other three unseen parameter settings to simulate
node activity trajectories for 200 perturbed networks via node removal from
empirical networks and combine all data of different parameter settings, for-
mulating 600 samples and randomly selecting 200 samples to construct the vali-
dation/test set.d–fGeneralizability ofmodels across different dynamics equations.
We employ three parameter settings of SIS and inhibitory dynamics

(Supplementary Table 5) to simulate nodeactivity trajectories for randomnetworks
with (N, p) uniformly sampled from [30,60) and [0.05,0.25), respectively. We syn-
thesize 1600 samples under each parameter setting of each dynamics and combine
all generated samples, then randomly select 1600 samples as the training set. To
construct the validation/test set, we use mutualistic (d), gene regulatory (e), and
neuronal (f) dynamics, respectively. We also employ three parameter settings of
each dynamics (Index 2–4 of Supplementary Table 4) to simulate node activity
trajectories for 160 random networks with the same (N, p) distributions as the
training set. For mutualistic, gene regulatory, neuronal, SIS, and inhibitory
dynamics, we consider 10, 5, 11, 11, and 11 different initial conditions, respectively.
Box plots depict themedian (central line) of F1-scores (n = 35with different random
seeds), the first and third quartiles (box), whiskers extending to 1.5 times the
interquartile range from the first and third quartiles, respectively, and outliers are
represented as individual points.
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passing mechanism, which acts as a special form of Laplacian
smoothing on the network, reducing the noise transmitted from
neighboring nodes26,48. Therefore, the impact of noisy node activities
can be significantly diminished, ensuring that the inference perfor-
mance remains almost unaffected. It should be noted that analytical
models GBB and SDR have access to precise governing dynamics
equations and do not rely on observed activities. Consequently, they
are unaffected by observational noise in node activity trajectories,
making them not directly comparable in this context. Therefore, we
assess the robustness of ResInf and analytical frameworks against the
intrinsic uncertainty of the dynamics itself. Specifically, we introduce a
stochastic term of Gaussian white noise with variance η into the
ground truth dynamics equations to generate node activity

trajectories. This uncertainty introduces a fundamental limitation in
accurately describing the dynamics of node activities. From the results
presented in Supplementary Fig. 10, we observe a significant decline or
fluctuation in the performance of analytical frameworks, attributed to
their reliance on estimating resilience solely by analyzing critical
points from precise dynamics equations. Thus, these frameworks lack
adaptability to real scenarios where dynamics are also influenced by
intrinsic stochastic noises. In contrast, ResInf maintains remarkable
performance at η = 0.4, exhibiting less susceptibility to the uncer-
tainties of dynamic environments. These results further substantiate
ResInf’s superior capability in learning node activity dynamics and
resilience patterns directly from observed data, showcasing a notable
advantage over traditional frameworks.
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Fig. 6 | The robustness of resilience inference against observational noises.We
employ the same datasets, data split ratios, the number of initial conditions con-
sidered, and dynamics parameter settings as in Fig. 4. In contrast, we introduce
observational noises into their node activities or network topologies. We repeat all
experiments with 35 different random seeds, corresponding to different inference
model initialization and split for datasets. a–c Noisy node activity: we evaluate the
models' performance when various intensity levels of Gaussian noises are added to
the observed node activity trajectories. Higher noise-to-signal ratio indicates

stronger noise. GBB and SDR are left out in this comparison because they are not
affected bynodeactivity trajectories. Instead, GBBandSDR rely on explicit network
dynamic equations that are not available to other methods. d–f Missing link: we
evaluate the models' performance on networked systems with 5 ~ 30% links ran-
domly removed. g–i Spurious link: we randomly add 5 ~ 30% links to pairs of nodes
that are not originally connected and evaluate the models' performance on the
perturbed networked systems. Centers represent the average values, and shadings
represent the standard deviation (n = 35 with different random seeds).
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Regarding the noise in network topology, it has been found that
ResInf can achieve a high F1-score of 0.933 ±0.015 on mutualistic net-
works, evenwith 30%of theoriginal linksmissing (Fig. 6d). Additionally,
ResInf maintains a high F1-score of 0.945 ±0.013 on mutualistic net-
works evenwhen the rate of spurious links reaches 30% (Fig. 6g). ResInf
displays similar performance curves across various levels of network
topology noise in different settings (Fig. 6d–i). Conversely, the analy-
tical frameworks GBB and SDR exhibit a notable decline in performance
with increasing noise levels from missing and spurious links, high-
lighting their significant dependence on accurate network topologies.
For example, on mutualistic networks, the F1-score of GBB significantly
reduces from 0.691 ± 0.027 to 0.521 ±0.026 as the percentage of
missing links increases from 0% to 30%. The performances of MLP and
LSTM remain unchanged with varying percentages of missing or spur-
ious links, as they solely model the node activity trajectories. However,
the significant performance gains of ResInf over MLP and LSTM
underscore the importance of effectively representing network topol-
ogies. We further assess the models’ robustness against the missing
nodes, including cases where a fraction of nodes remains undetected
either persistently or at a randomly chosen time step (Supplementary
Fig. 11). These results further demonstrate thatResInf is better equipped
to handle the effects of noisy network topologies and to ensure its
potential efficacy in real-world applications. Given the correlated
activities of real connected nodes, the dynamics encoder is capable of
learning the activity dynamics of each node, accounting for influences
from actual neighboring nodes. As resilience is inherently a network-
level property, the network aggregator in the k-space projector (Fig. 2)
adaptively aggregates information across the entire network. This
approach effectively mitigates the impact of missing nodes or links,
thereby enhancing the framework’s robustness. In conclusion, these
experimental results demonstrate that ResInf can still produce reliable
inferences even in the presence of significant noise affecting both
observed node activities and network topologies, highlighting a critical
feature of ResInf that ensures its adaptability to real-world systems.

Visualization in 1-dimensional Decision Space
Beyond the empirical accuracy of resilience inference, the capability to
visualize a system’s proximity to the critical threshold of resilience loss
within a low-dimensional decision space has profound implications for
various applications. Such ability would allow stakeholders to make
informed operation or management decisions in complex networked
systems, which has been a useful feature of analytical approaches. In
our study, ResInf uses k-spaceprojector tomap thenetworked systems
into a condensed 1-dimensional k-space (Fig. 2), which facilitates
accurate resilience inferencewith a simplemonotonic classifier (ResInf
framework in Methods). Therefore, the system representation in k-
space can serve as an informative visualization of the system’s resi-
lience property. Experiments on previously mentioned synthetic net-
worked systems show most resilient (red) and non-resilient (blue)
systems are linearly separable in k-space (Fig. 7a–c). Specifically, by
choosing a linear decision boundary with maximum likelihood kc, we
canclassify the resilience systemswith anF1-score of0.933–0.987. The
distance to the decision boundary in k-space indicates the system’s
proximity to the critical point of resilience loss. Therefore, k-space
representations serve as an informative visualization tool and a reliable
indicator of the system’s resilience, offering a concrete way to inter-
pret resilience inference results.

We compare the learned k-space with the β-space and α-space
(Supplementary Note 1.6) generated by the analytical models GBB and
SDR, respectively. We find the distributions of resilient and non-
resilient systems have a larger overlap in β-space and α-space
(Fig. 7d–i). For example, 47% of resilient mutualistic systems have β
values smaller than the analytically inferred critical threshold βc

eff ,
which will lead to inaccurate classification. As a result, the resilience
inference enabled by β-space and α-space has significantly lower F1-

score compared to ResInf. Additionally, we explore the ratio of true
and false positives (inferred resilient systems) using the condensed
1-dimensional parameters and the decision spaces of GBB, SDR, and
ResInf through the receiver operating characteristic (ROC) curve. The
ROC curve indicates the trade-off between the true positive rate and
the false positive rate as the discrimination threshold (ResInf frame-
work in Methods and Supplementary Note 1.5–1.6) is varied. The area
under the ROC curve (AUC) comprehensively quantifies both the
sensitivity (the proportion of true positives correctly identified) and
specificity (the proportion of false positives correctly avoided) of the
model. An AUC of 1 indicates a perfect inference model, while an AUC
of 0.5 signifies a model that performs no better than random chance
(Evaluation metrics in Methods). We demonstrate ROC curves on the
investigated dynamics systems (Fig. 7j–l) and find that AUCs of ResInf
among these systems are all near to 1, outperforming the analytical
framework. It shows that ResInf exhibits superior diagnostic accuracy.
This performance underscores the effectiveness of ResInf in achieving
a high true positive rate while maintaining a low false positive rate,
demonstrating its superior capability of distinguishing between resi-
lient and non-resilient networks and the reliable of employing deep
learning approaches to resilience inference problems.

Discussion
In this paper, we propose a powerful deep learning framework, ResInf,
to infer the resilience of complex networked systems solely based on
the observational data of their topologies and node activities. It acts as
a data-driven method that relieves the unrealistic assumptions of
network topology and dynamics in previous state-of-the-art analytical
approaches, e.g., the requirements of low assortativity topology, linear
node activity dynamics, and knowing the explicit equations of node
activity dynamics. The removal of these prerequisites largely broadens
the application scenarios for more general complex networked sys-
tems, such as complex contagion in social networks41,49, energy
transmission inpower grids50,51, andpredatory behavior in foodwebs52,
where the underlying dynamics often differs from case to case and
cannot be known beforehand. Our experimental results demonstrate
that ResInf exhibits strong generalizability across various networks
with previously unseen dynamics of different equations and para-
meters. Particularly, by training on network data with the identified
two main resilience loss patterns7, ResInf consistently achieves
superior performance on existing known node activity dynamics, such
as mutualistic, gene regulatory, and neuronal dynamics, even when
these dynamics are not present in the training set. Furthermore, ResInf
demonstrates consistent generalizability acrossvariousnetwork types,
highlighting its ability to learn transferable knowledge for resilience
inference. This underscores themodel’s applicability to awide rangeof
practical scenarios, particularly when encountering novel real-world
network topologies and node activity dynamics. While the existing
known node activity dynamics fall into the above two resilience loss
patterns, future advances in this fieldmay identify novel resilience loss
patterns beyond these two categories,which could lead to sub-optimal
performance of ResInf when such previously unseen patterns are
emerging. Nevertheless, we can address this challenge by incorporat-
ing these novel patterns into the training set, thereby ensuring the
generalizability of ResInf. Besides, as an analogy to the analytical β-
space5 and α-space14, our ResInf model canmap networked systems to
a learned k-space where the resilient property of a given system can be
more granularly gauged as the distance to critical threshold kc, pro-
viding clear interpretable information on the system’s current resi-
lience status. As such, the system’s k value serves as an insightful
indicator that offers interpretability and fine-grained resilience
assessment. Therefore, ResInf represents as a paradigm shift to data-
driven resilience inference in empirical complex networked systems
with interpretability. Beyond this, our recent work38 paves the way to
revive non-resilient networks. It suggests that non-resilient networks
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can be recovered to resilient ones by utilizing appropriate network
restructuring and single-node reigniting strategies. ResInf can effec-
tively guide such strategy design (Supplementary Note 5, Supple-
mentary Fig. 14). Specifically, after implementing network
restructuring and reigniting, we input the restructured network and
initial time steps of node activities into ResInf. The mapped k point of
the recovered network in the k-space acts as an indicator to ascertain
the resilience recovery, which, in turn, enables us to refine and opti-
mize the designed recovery strategy. This perspective shifts the focus

of restoration from isolated interventions to a more integrated and
systemic approach by prioritizing the network’s structural integrity
and the synergistic relationships among its components, which is
essential for addressing complex real-world challenges.

To advance the depth andbreadth of networked system resilience
research, we suggest two potential directions for future investigation.
First, despite the increasingly available observational data of complex
networks, it remains a challenging task to sense high-quality node
activity trajectories and topology in real-world networked systems,

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Pr

ob
ab

ilit
y 

de
ns

ity
F1-score = 0.987 kc

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
k

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.936kc

0 5 10 15 20 25 30

βeff

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.742βc
eff

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

βeff

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.793 βc
eff

2 4 6 8 10

βeff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.811 βc
eff

0 5 10 15 20 25 30
α

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.837αc

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
α

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.889αc

0 2 4 6 8 10 12
α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ob

ab
ilit

y 
de

ns
ity

F1-score = 0.811 αc

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

AUC-GBB = 0.965
AUC-SDR = 0.974
AUC-ResInf = 0.991

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

AUC-GBB = 0.899
AUC-SDR = 0.976
AUC-ResInf = 0.987

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e 
(T

PR
)

AUC-GBB = 0.956
AUC-SDR = 0.953
AUC-ResInf = 0.982

k-
sp

ac
e 

(R
es

In
f)

β-
sp

ac
e 

(G
BB

)
α -

sp
ac

e 
(S

DR
)

R
O

C
 C

ur
ve

  
Mutualistic dynamics Gene regulatory dynamics Neuronal dynamics

b ca

e fd

h ig

k lj

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
k

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ob

ab
ilit

y 
de

ns
ity

Resilient sp.
Non-resilient sp.

F1-score = 0.933 kc

Fig. 7 | Visualizing networked systems in 1-dimensional decision space. We
illustrate the probability distributions of k and βeff and α for networked systems
with mutualistic (a, d, g), gene regulatory (b, e, h), and neuronal (c, f, i) dynamics,
taking one experiments of Fig. 4 for each dynamics as examples. The critical
thresholds inferred by ResInf, kc, are shown as the grey dashed lines in (a–c). The
critical thresholds computed by GBB, βc

eff , are shown as grey dashed lines in (d–f).
We also show the critical threshold from SDR, αc (g–i). We find resilient and non-

resilient samples (resilient sp. and non-resilient sp.) aremore linearly separable in k-
space than β-space and α-space, which demonstrates the stronger resilience pre-
diction capability of our proposed approach ResInf. j–l We illustrate the receiver
operating characteristic (ROC) curve of GBB, SDR, and ResInf with the same
experiment settings as Fig. 4 as well as the corresponding average AUC. Trans-
parent lines represent experiments with different random seeds (n = 50), and solid
lines represent the average ROC curve.
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which often requires extensive laboratory environments29. As a result,
it underscores the growing necessity for advanced complex network
simulators. A promising research direction is to leverage generative AI
frameworks to build learn-to-simulate models49,53,54, which has the
potential to go beyond the simple theoretical models36,37 to generate
more accurate simulation for wide-range of complex systems. Fur-
thermore, while our proposed ResInf offers insights into the resilience
inference challenge, the development of methods to enhance system
resilience directly by AI methodologies is also promising for the
research field. AI can be leveraged to build an optimizationmodel that
maximizes system resilience with a given budget, e.g., adding several
critical links or dropping several weakly connected nodes. This would
significantly amplify the impact of network resilience research as it
extends to broader downstream applications55 where enhancing resi-
lience is crucial. To conclude, ResInf can serve as a proof-of-concept
that exemplifies the potential of data-driven methods in network
resilience research, demonstrating a promising avenue for innovating
complex system studies with AI methods.

Methods
ResInf framework
Dynamics encoder. As previously mentioned, the underlying
dynamics of networks mainly manifest themselves in node activities.
Thus, to effectively capture node activity dynamics to infer their resi-
lience, we develop a dynamics encoder inspired by Transformer21,56

(Supplementary Fig. 1). We input the node activity trajectories
X 2 RM ×N ×d , where d,M, N denote the used length of trajectories, the
number of trajectories, and the number of nodes, respectively. For
node i, its activity of the p-th trajectory can be denoted as Xp

i 2 Rd × 1.
First, we transform activities of nodes at each time step with a shared
multilayer perceptron (MLP), denoted as fin : R! Rde , that is,
epi = finðXp

i Þ, where de denotes the embedding size at each time and
epi 2 Rd ×de . We also add positional embeddings to the input embed-
dings to mark the relative positions, i.e., epi  epi +PE. At each time
step t of the total d time steps, positional embeddings are formulated
as PEðt, 2nÞ = sinðt=100002n=de Þ, PEðt, 2n+ 1Þ = cosðt=100002n=de Þ, where
the second element in the tuple of the subscript (2n and 2n + 1) cor-
responds to the index of elements in positional embeddings. Each
dynamics encoder layer comprises a self-attention sub-layer and a
fully-connected feed-forward sub-layer. A residual connection is
established between these two sub-layers, which is subsequently fol-
lowed by the application of layer normalization57. Taking the input e as
an example, the output of the sub-layer can be formulated as
LayerNorm(e + Sublayer(e)).

The self-attention sub-layer consists of multiple attention heads,
which enable ResInf to concurrently integrate information from dif-
ferent representation subspaces while simultaneously account for
diverse positional contexts. For the attention head j, taking the input
epi as an example, the result embeddings can be obtained from the
querymatrixQj and key-value pairsKj andVj, which can be formulated
as:

headj = softmax
QjK

T
jffiffiffiffiffiffi

dk

p
 !

Vj , ð2Þ

Qj = epi W
Q
j ,Kj = e

p
i W

K
j ,Vj = e

p
i W

V
j , ð3Þ

where WQ
j 2 Rde ×dk , WK

j 2 Rde ×dk , and WV
j 2 Rde ×de are trainable

parameters. Fusing the information from h attention heads, we can
derive themulti-head encoded representation,which also serves as the
output of the self-attention sub-layer, formulated as:

Self � attentionðepi Þ=Concatðhead1, head2, . . . , headhÞWO, ð4Þ

where WO 2 Rh�de ×de are trainable parameters. Therefore, the final
output of the self-attention sub-layer can be formulated as:

~epi =LayerNormðepi +Self � attentionðepi ÞÞ, ð5Þ

where ~epi 2 Rd ×de represents the final output from the self-attention
sub-layer.

The fully-connected feed-forward sub-layer comprises two linear
transformation layers, with a ReLU activation function applied in
between them. The output of the feed-forward sub-layer can be for-
mulated as:

Feed� forwardð~epi Þ=ReLUð~epi W1 +b1ÞW2 +b2, ð6Þ

whereW1 2 Rde ×dh , b1 2 Rdh ,W2 2 Rdh ×de and b2 2 Rde are trainable
parameters. Therefore, the final output of the fully-connected feed-
forward sub-layer can be formulated as:

êpi =LayerNormð~epi + Feed� forwardð~epi ÞÞ, ð7Þ

where êpi 2 Rd ×de represents the final output from the fully-connected
feed-forward sub-layer.

During the encoding process, epi serves as the input to the first
layer of the dynamics encoder, yielding the output êpi . Subsequently,
êpi becomes the input for the next layer of the dynamics encoder if we
usemultiple layers of the dynamics encoder. The output from the final
layer of the dynamics encoder, denoted as Zi

p 2 Rd ×de , plays the role
of the node activity dynamics representation for node i of the p-th
trajectory. It should be noted that all nodes and trajectories, i.e.,
(i, p) ∈ {1, 2, ⋯ , ∣V∣} × {1, 2, ⋯ , M}, are encoded via the dynamics
encoder in a parallel manner. We integrate the output representations
of the last time step for nodes as their final node activity dynamics
representations of the p-th trajectory, which is denoted as Zp 2 RN ×de .

Topology encoder. We design a graph neural network (GNN)22 with
multi-hop message passing to model the impact from multi-hop
neighborhoods of nodes (Supplementary Fig. 2). Given an adjacency
matrix A, we design the message passing operator Ψ as
Ψ= IN �D

�1
2

in AD
�1

2
out, where the diagonal element in the i-th row of Din

andDout denotes the in-degree and out-degree of node i, respectively.
The l-th layer message passing can be formulated as follows:

ZðlÞp = tanhðZðl�1Þp WðlÞF Þ+ tanhðΨZðl�1Þp WðlÞG Þ, ð8Þ

where ZðlÞp represents node representations after l layers of message
passing. WðlÞF 2 Rde ×de and WðlÞG 2 Rde ×de are trainable transformation
matrices of the l-th layer, respectively. Since resilience is a system-level
property, we introduce a virtual node to fuse the messages from all
individual nodes called global pooling. With the virtual global node,
the expanded node representation matrix of the p-th trajectory after
the l-th message passing layer is denoted as Z*ðlÞ

p 2 RðN + 1Þ×de .

k-space projector. We introduce an attention module that can effec-
tively integrate the embeddings of M trajectories (Supplementary
Fig. 3). Inspired by the existing work58, we design pooling layers that
can adaptively capture crucial information for each of the M trajec-
tories. Specifically, we calculate the average and max pooling of Z*ðlÞ

p ,
denoted as ZðlÞavg 2 RM × 1 × 1 and ZðlÞmax 2 RM × 1 × 1, respectively. Then the
attention weight of trajectories can be calculated as:

Att= σðMLPðZðlÞavgÞ+MLPðZðlÞmaxÞÞ, ð9Þ

where Att 2 RM × 1 × 1 and σðxÞ= 1
1 + e�x is the sigmoid activation

function.
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After that, we fuse representations from allM trajectories with the
attention weight, formulated as

Z=
XM
p= 1

Attp � Z*ðlÞ
p , ð10Þ

where Attp 2 R denotes the attentionweight of the p-th trajectory and
Z 2 RðN + 1Þ×de is the final representation of all nodes. We derive the
network representation by employing the final representation of the
virtual node, denoted as eG. Subsequently, we propose an MLP-based
resilience predictor that leverages eG 2 Rde to infer the resilience of
the network (Supplementary Fig. 3). In this predictor, we first map the
network to a scalar k of 1-dimensional k-space and then provide the
inferred network resilience ŷ as follows:

k =MLPðeGÞ, ð11Þ

ŷ=Hðσðwk +bÞ � γÞ, ð12Þ

where w,b 2 R are the trainable weight and bias, respectively. σ( ⋅ )
denotes the sigmoid activation function, i.e., σðxÞ= 1

1 + e�x, and H( ⋅ )
represents the Heaviside step function. Without loss of generality, we
set γ = 0.5 as the resilience inference threshold. Since the function
f(k) = σ(wk + b) − δ ismonotonic, there is only one zero point, kc, which
is defined as the critical threshold in k-space. k < kc and k > kc lead to the
different prediction ŷ, indicatingwhether the network is resilient (ŷ= 1)
or not (ŷ=0).

The loss function used to train ResInf consists of two parts: binary
cross-entropy term and l2-regularization term, which is described as
follows:

L= � 1
S

XS
i = 1

yi logðŷiÞ+ ð1� yiÞ logð1� ŷiÞ+ λjjΘjj2, ð13Þ

where L is the loss function we aim to minimize. ŷi denotes the resi-
lience inference result ofResInf for the i-th sample, and yi represents its
resilience i.e., label. S denotes the number of training samples. Θ
denotes all trainable parameters in ResInf and λ is a hyperparameter to
control the relative weight of l2-regularization term. We use the Adam
optimizer59 to minimize the loss function during training.

Real-world microbial systems
The dataset is comprised of species abundances of different microbial
communities observed during 11 days of experiments. Each microbial
community belongs to one of the species pool sizes: 3 species, 6 spe-
cies, 12 species, and 24 species, and is cultivated under one of the high,
medium, or low nutritional conditions. Previous research29 demon-
strates that high nutritional conditions and larger species pool sizes
foster intense competition among species, driving the system to a non-
resilient phase featured by chaotic abundance fluctuations, as
opposed to a resilient phase marked by stable abundance
equilibrium30. To differentiate between resilient and non-resilient
communities and determine their resilience labels, consistent with the
existing work29, we calculate the average coefficient of variation (CV)
of observed species abundance of Day 7 ~ 10 in the community. It
corresponds to the average value of the standard deviation for the
abundance of each species over these days, scaled by the average
species abundance of these days, which can be represented as follows:

CV=
hStdof xiðtÞi
hMeanof xiðtÞi

, ð14Þ

where t runs from 7 to 10, and xi(t) is the i-th element of x(t) at the time
t. Systems with CV in this time interval lower than a threshold 0.25 are

considered converged to a stable equilibrium as resilient systems29. If
CV is larger than the threshold, the investigated systems are non-
resilient. A high CV indicates that the system lacks a desired stable
equilibrium and is instead trapped in persistent fluctuations.

Simulating critical events
With the synthetic and empirical networks, we simulate critical events
thatmay result in resilience loss by employingperturbations according
to the experimental setup outlined in previous study5. These pertur-
bations include node removal, link removal, and global weight per-
turbation, which are described as follows.

Node removal. To model node failure in networked systems, we
randomly select and remove n nodes (n <N) and their associated links.
After the deletion, we reconstruct the derived giant component of the
network and eliminate the isolated nodes.

Link removal. To model the critical events on interactions
between nodes, we randomly select and remove m links, where m is
less than the total number of links ∣E∣. We also eliminate the isolated
nodes from the derived giant component.

Global weight perturbation. To model the impact of environ-
mental changes on a global scale, we introduce a macroscopic per-
turbation that affects all link weights in the network. Specifically, we
apply a random factor, denoted as rij, to shift the weight of the edge
between node i and j such that Aij is replaced with rijAij. The rij value is
drawn from a uniform distribution with a mean of r < 1. As a result, the
network is transformed into a perturbed state where the interaction
weights are reduced to a fraction r of their original value.

Evaluation metrics
F1-score. The primary metric employed to evaluate the model’s
inference ability is the F1 score. The F1-score for positive samples can
be formulated as:

F1� score = 2
precision � recall
precision + recall

= 2
TruePositive

2 � TruePositive + FalsePositive + FalseNegative ,

ð15Þ

TruePositiveðTPÞ=
XP
i= 1

1 yi = 1 ^ ŷi = 1
� �

, ð16Þ

FalsePositiveðFPÞ=
XP
i = 1

1 yi =0 ^ ŷi = 1
� �

, ð17Þ

TrueNegativeðTNÞ=
XP
i = 1

1 yi =0 ^ ŷi =0
� �

, ð18Þ

FalseNegativeðFNÞ=
XP
i= 1

1 yi = 1 ^ ŷi =0
� �

, ð19Þ

precision=
TP

TP+ FP
, ð20Þ

recall =
TP

TP+ FN
, ð21Þ

wherePdenotes the number of all test samples, yi is the resilience label
of the i-th system, and ŷi denotes the resilience inference result from
themodel.We can similarly calculate the F1-score for negative samples
by interchanging the roles of “positive” and “negative” in the
computation process of Equation (15). Given the potential imbalance
between positive and negative samples in test datasets, we report the
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weighted average of F1-score forpositive samples and that for negative
samples,where theweights are determinedby thenumber of instances
in each class.

Receiver operating characteristic curve (ROC). ROC curve demon-
strates the performance of inference models with varying discrimina-
tion threshold γ in Equation (12), illustrating the true positive rate
(TPR) with respect to the false positive rate (FPR). For example, if we
lower the threshold γ in Equation (12), more samples will be regarded
as resilient networks (ŷi = 1), thus increasing the number of false
positive as well as true positive samples and corresponding to a dif-
ferent point on the curve. TPR and FPR can be formulated as follows:

TPR=
TP

TP+FN
, ð22Þ

FPR=
FP

FP+TN
, ð23Þ

where TP, FP, TN, FN are defined in Equation (16–19).

Area under the ROC curve (AUC). Area Under the ROC Curve (AUC)
quantifies the overall ability of the model to discriminate between
classes across all possible thresholds γ in Equation (12), offering a
comprehensive assessment of the model’s performance. Essentially, a
higher AUC value for themodel indicates that it is more likely to rank a
randomly selected positive instance higher than a randomly chosen
negative one, i.e., higher value of σ(wk + b) in Equation (12), for this
positive sample. AnAUCof 1.0 indicates a perfect inferencemodelwith
flawless predictive capability, while an AUC of 0.5 signifies a model
performing no better than random guessing.

Dynamics and datasets
Mutualistic dynamics. The mutualistic dynamics can be formulated
as:

dxi
dt

=B+ xi 1� xi

K

� � xi

C
� 1

� �
+
XN
j = 1

Aij

xixj
D+ Exi +Hxj

: ð24Þ

where B denotes the incoming rate for species i from neighbor eco-
systems. K indicates the environment carrying capacity, and C
expresses the Allee effect, implying when xi < C there is a negative
effect for node activities. The third term describes symbiotic interac-
tionswith the saturated effect for the positive contribution of node j to
the activity of node i. We illustrate the dynamics parameter settings for
experiments in Supplementary Table 4. Mutualistic dynamics can
encounter a bifurcation, where the systemundergoes a transition from
the resilient phase with only a single desired stable equilibrium xH to
the non-resilient phase where both desired equilibrium xH and
undesired equilibrium xL are stable, indicating that non-resilient
networks can collapse to undesired equilibrium xL in the face of
massive perturbations or low initial conditions of node activities.

We retrieve empirical networked systems from the existing
works5,60 and the Interaction Web Database (IWDB)35, which contains
mutualistic systems such as plant-ant, plant-pollinator, and anemone-
fish. The detailed information is shown in Supplementary Table 1.
Taking the mutualistic system of plant-ant as an example, the system
consists of a plants and b ants, forming an bipartite networkBwith the
size of a × b. Then we project the bipartite network to plant/ant set,
resulting in two networks which contain a plants (BI) and b ants (BII),

respectively. Link weights BI
ij in the projection network of plant

between node i and j can be formulated as BI
ij =
Pb

k = 1
BikBjkPa

s = 1
Bsk

. The

formula indicates that the symbiotic interaction between plant i and j

depends on two aspects: (i) the number of ants with which both plant i
and j have interactions; (ii) the number of plants with which the ant k
has interactions. The increase of the number in (i) will strengthen the

weight BI
ij , while the increase of the number in (ii) will have the

opposite impact. We conduct a similar procedure to the projection

network of ant BII to calculate its link weight BII
ij . After the network

projection, theremay be isolated nodeswhose activities no longer rely
on the primary structure of the network. Hence, we remove these
isolated nodes and reconstruct the giant component of the network,
which is a connected sub-network containing the maximum propor-
tion of the original network’s nodes. To model the effect of critical
events that can lead to resilience loss, we apply perturbations of dif-
ferent intensities, including the random removal of nodes and links,
and global perturbation on link weights, to giant components of net-
works (Simulating critical events inMethods). The statistics of datasets
comprising the derived networks are illustrated in Supplementary
Table 2. We then obtain their node activity trajectories by simulating
differential equation groups (24) of mutualistic dynamics using the
fourth-order Runge-Kutta stepper61 with M different initial activities
sampled from a logarithmic scale [10−2, 101) for each node. The term-
inal simulation time is Tmax = 200. The ground truths of network resi-
lience aredeterminedby node activities atTmax.Weobtain the average
terminal activity hxendim of nodes for each of M trajectories, respec-
tively, and calculate the sum of distances between each average
activity hxendim and theirmean value hxendi, which is denoted asD1, i.e.,

D1 =
PM

m= 1 xend

� �
m � xend

� �			 			
2
. In addition, we useK-means to cluster

these M average activities into two classes and calculate the sum of
distances between each average activity hxendim and its cluster center

xcenter
m , which is denoted as D2, i.e., D2 =

PM
m= 1 xend

� �
m � xcenter

m

		 		
2
. If

D2<
D1
10, we think the clusters generated fromK-means aremore reliable

and regard the network as non-resilient, with two stable equilibria xH

and xL.

Gene regulatory dynamics. The gene regulatory dynamics can be
formulated as:

dxi

dt
= � Bxfi +

XN
i = 1

Aij

xh
j

xh
j + 1

, ð25Þ

which is also called Michaelis-Menten dynamics3. f can represent
degradation (f = 1) or dimerization (f = 2), and the second term
describes genetic activation,whereh is theHill coefficient and explains
the degree of collaboration in gene regulation. We illustrate the
dynamics parameter settings for experiments in Supplementary
Table 4. xL = 0 (also 〈x〉 = 0) is the trivial and undesired stable
equilibrium. Resilient systems have another desired equilibrium xH

where the average node activity 〈x〉 > 0. Non-resilient systems cannot
stay in xH, indicating cell death with only zero node activity (〈x〉 = 0).

We collect empirical regulatory networks from yeast62 and E.coli63,
whose detailed information is shown in Supplementary Table 1. Since
these networks are directed, we focus on their strongly connected
components, where there is a path in both directions between each
pairof nodes, and adopt the samekindsofperturbations asmutualistic
networks. The statistics of datasets comprising the derived networks
are illustrated in Supplementary Table 2. Node activity trajectories of
these networks are obtained from differential equation groups (25) of
gene regulatory dynamics using the fourth-order Runge-Kutta
stepper61 withMdifferent initial activities sampled from[3, 10) for each
node, and the terminal simulation time is Tmax = 200. The ground
truths of network resilience are determined by node activities at Tmax.
We obtain the average terminal activity of nodes forM trajectories and
further calculate theirmean value hxi. If hxi<10�5, we can approximate
hxi=0 and the network will be non-resilient.
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Neuronal dynamics. The neuronal dynamics can be formulated as

dxi
dt

= � xi +
XN
j = 1

Aij
1

1 + eμ�δxj
, ð26Þ

which is also called Wilson-Cowan dynamics20,64. Since each node
receives cumulative inputs from all of its neighbors, higher in-degree
nodes benefit from their surroundings by having a larger aggregate
activation signal. We illustrate the dynamics parameter settings for
experiments in Supplementary Table 4. Non-resilient neuronal net-
works exhibit either a bi-stable phase with both stable desired and
undesired equilibria xH and xL, respectively, or have only a single
undesired stable equilibrium xL. Resilient neuronal networks only have
a single desired equilibrium xH.

Following existing researches38, we use Erdős-Rényi36 and
Barabási-Albert37 models to create neuronal networks, whose detailed
information is shown in Supplementary Table 1. We obtain their giant
components and adopt the same kinds of aforementioned perturba-
tions. The statistics of datasets comprising the derived networks are
illustrated in Supplementary Table 2. Node activity series of these
networks are simulated with differential equation groups (26) of neu-
ronal dynamics using the fourth-order Runge-Kutta stepper61 with M
different initial activities sampled from [10−2, 101) for each node, and
the terminal simulation time is Tmax = 200. The ground truths of net-
work resilience are determined by node activities at Tmax. First, via the
same approach as in mutualistic networks, we calculate and compare
D1 and D2 to find networks with two stable equilibria xH and xL, and
regard them as non-resilient. For the remaining networks, we regard
those whose unique stable equilibrium is closer to xH than xL as resi-
lient networks. Otherwise, we consider themasnon-resilient networks.

SIS dynamics. The susceptible-infected-susceptible (SIS) dynamics41

can be formulated as:

dxi

dt
= � δxi +

XN
j = 1

Aijð1� xiÞxj , ð27Þ

which describes the spreading phenomena of the epidemic. The node
activity xi represents the infection probability of node i and Aij denotes
the infection rate fromnode j to node i. δ >0denotes the curing rate of
node i. The parameter settings are detailed in Supplementary Table 5.
Without loss of generality, we define SIS networks with equilibrium
xL = 0 (also 〈x〉 = 0) as non-resilient networks, while those with
equilibrium xH > 0 (also 〈x〉 > 0) are resilient networks. We employ
equation groups (27) with the fourth-order Runge-Kutta stepper to
simulate node activity trajectories for networks withM different initial
activities sampled fromauniformdistribution [0, 1) for eachnode, and
the terminal simulation time is Tmax = 8:5. The ground truths of
network resilience are determined by node activities at Tmax. We
obtain the average terminal activity of nodes for M trajectories and
further calculate theirmean value hxi. If hxi<10�5, we can approximate
hxi=0 and the network will be non-resilient.

Inhibitory dynamics. The inhibitory dynamics42 can be formulated as:

dxi
dt

= c+ xi 1� xi

f


 �
xi

b
� 1

� �
+
XN
j = 1

Aij
xi

1 + xj
, ð28Þ

which models inhibition between genes65 or between hosts and
pathogens42. The self dynamics describes the logistic growth with the
Allee effect, and the interaction dynamics capture the inhibition,
where the population of i grows linearly with xi, but when xj → ∞, the
rate approaches zero. Therefore, the population of j will inhibit the
growth of i. The parameter settings are detailed in Supplementary
Table 5. Inhibitory dynamics encounter a bifurcation, where the

system transits from the resilient regime with a desired unique equi-
librium xH to the non-resilient regime with both the desired equili-
brium xH and the undesired equilibrium xL. Consequently, the system
can collapse to xL in the face of massive perturbations or low initial
conditions of node activities.Weemployequations group (28)with the
fourth-order Runge-Kutta stepper to simulate node trajectories for
networks withM initial activities sampled from a uniform distribution
[0, 1] for each node, and the terminal simulation time is Tmax = 20. The
ground truths of network resilience are determined by node activities
at the terminal time Tmax. Similar to the process of mutualistic
dynamics, we calculate D1 and D2 for each network and regard
networks with D2<

D1
10 as non-resilient networks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data of topologies and node activity trajectories used in this study
are available and can be freely accessed through GitHub (https://
github.com/tsinghua-fib-lab/ResInf)66. The empirical network topol-
ogy data is also available at the InteractionWebDatabase (http://www.
ecologia.ib.usp.br/iwdb/resources.html), Copenhagen Network Study
(https://doi.org/10.6084/m9.figshare.7267433), SocioPatterns Project
(http://www.sociopatterns.org/datasets), and https://github.com/
jianxigao/NuRsE. The laboratory microbial systems data is also avail-
able at https://www.science.org/doi/10.1126/science.abm7841. Source
data are provided with this paper.

Code availability
All codes used for data generation, simulation, and analysis in this
research aredeposited inGitHub (https://github.com/tsinghua-fib-lab/
ResInf) and Zenodo66.
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