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Sensory experience steers representational
drift in mouse visual cortex

Joel Bauer 1,2,6,10 , Uwe Lewin 1,3,10, Elizabeth Herbert 4,
Julijana Gjorgjieva 4, Carl E. Schoonover 5,7, Andrew J. P. Fink 5,8,
Tobias Rose 1,9, Tobias Bonhoeffer 1 & Mark Hübener 1

Representational drift—the gradual continuous change of neuronal repre-
sentations—has been observed across many brain areas. It is unclear whether
drift is caused by synaptic plasticity elicited by sensory experience, or by the
intrinsic volatility of synapses. Here, using chronic two-photon calcium ima-
ging in primary visual cortex of female mice, we find that the preferred sti-
mulus orientation of individual neurons slowly drifts over the course of weeks.
By using cylinder lens goggles to limit visual experience to a narrow range of
orientations, we show that the direction of drift, but not its magnitude, is
biased by the statistics of visual input. A network model suggests that drift of
preferred orientation largely results from synaptic volatility, which under
normal visual conditions is counteracted by experience-driven Hebbian
mechanisms, stabilizing preferred orientation. Under deprivation conditions
these Hebbian mechanisms enable adaptation. Thus, Hebbian synaptic plas-
ticity steers drift to match the statistics of the environment.

A growing body of evidence indicates that stimulus-evoked neuronal
responses change gradually over days to weeks, even in the absence of
any experimental manipulation1–7. This phenomenon, now referred to
as representational drift8,9, varies widely in magnitude across sensory
and associative cortices, as well as stimulus types2–7,10.

Little is known about the causes of representational drift. Is it the
consequence of activity-independent, and therefore experience-inde-
pendent, synaptic volatility11–13, or does it reflect the effect of experience-
dependent synaptic changes14,15 ? If drift is caused by synaptic volatility
alone, its dynamics should resemble a random walk in stimulus repre-
sentation space8,16. Conversely, if drift is a function of experience, its
dynamics may be directed to reflect that experience. Several indepen-
dent observations in different brain regions have indicated that drift can
be sensitive to an animal’s experience between recordings. For example,
in the piriform cortex, the daily experience of an odorant halves the drift

rate to that particular stimulus5. Conversely, recent studies of factors
contributing to drift in spatial tuning of hippocampal place cells have
reported a destabilizing effect of experience17,18.

Historically, neuronal responses in primary sensory areas have
been considered relatively stable in adult animals. In the primary visual
cortex (V1), the stability and perturbation resistance of large-scale
functional maps for retinotopy, orientation, and ocular dominance19–22

suggest that these basic tuning features are stably encoded. More
recent chronic recordings of single-neuron activity in the mouse have
confirmed this high level of stability and perturbation-resistance for
certain aspects of V1 responsiveness, including preferred orientation
(PO), ocular dominance, and spatial frequency preference23–26. Other
measures, however, such as tuning curves3,27, especially for responses
to complex stimuli and natural movies10,27, have been found to drift to
varying degrees.

Received: 20 December 2023

Accepted: 8 October 2024

Check for updates

1Max Planck Institute for Biological Intelligence, Martinsried, Germany. 2International Max Planck Research School for Molecular Life Sciences,
Martinsried, Germany. 3Graduate School of SystemicNeurosciences, Ludwig-Maximilians-Universität München, Planegg, Germany. 4School of Life Sciences,
Technical University ofMunich, Freising, Germany. 5Mortimer B. ZuckermanMind Brain Behavior Institute, Department of Neuroscience, ColumbiaUniversity,
New York, NY, USA. 6Present address: Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK. 7Present
address: Allen Institute for Neural Dynamics, Seattle, WA, USA. 8Present address: Department of Neurobiology, Northwestern University, Evanston, IL, USA.
9Present address: Institute for Experimental Epileptology and Cognition Research, University of Bonn, Medical Center, Bonn, Germany. 10These authors
contributed equally: Joel Bauer, Uwe Lewin. e-mail: joel.bauer@ucl.ac.uk; mark.huebener@bi.mpg.de

Nature Communications |         (2024) 15:9153 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5858-166X
http://orcid.org/0000-0001-5858-166X
http://orcid.org/0000-0001-5858-166X
http://orcid.org/0000-0001-5858-166X
http://orcid.org/0000-0001-5858-166X
http://orcid.org/0009-0008-6388-7637
http://orcid.org/0009-0008-6388-7637
http://orcid.org/0009-0008-6388-7637
http://orcid.org/0009-0008-6388-7637
http://orcid.org/0009-0008-6388-7637
http://orcid.org/0000-0002-5893-9657
http://orcid.org/0000-0002-5893-9657
http://orcid.org/0000-0002-5893-9657
http://orcid.org/0000-0002-5893-9657
http://orcid.org/0000-0002-5893-9657
http://orcid.org/0000-0001-7118-4079
http://orcid.org/0000-0001-7118-4079
http://orcid.org/0000-0001-7118-4079
http://orcid.org/0000-0001-7118-4079
http://orcid.org/0000-0001-7118-4079
http://orcid.org/0000-0002-6397-1010
http://orcid.org/0000-0002-6397-1010
http://orcid.org/0000-0002-6397-1010
http://orcid.org/0000-0002-6397-1010
http://orcid.org/0000-0002-6397-1010
http://orcid.org/0000-0003-4191-3298
http://orcid.org/0000-0003-4191-3298
http://orcid.org/0000-0003-4191-3298
http://orcid.org/0000-0003-4191-3298
http://orcid.org/0000-0003-4191-3298
http://orcid.org/0000-0002-7156-4714
http://orcid.org/0000-0002-7156-4714
http://orcid.org/0000-0002-7156-4714
http://orcid.org/0000-0002-7156-4714
http://orcid.org/0000-0002-7156-4714
http://orcid.org/0000-0001-7897-6634
http://orcid.org/0000-0001-7897-6634
http://orcid.org/0000-0001-7897-6634
http://orcid.org/0000-0001-7897-6634
http://orcid.org/0000-0001-7897-6634
http://orcid.org/0000-0001-8367-9132
http://orcid.org/0000-0001-8367-9132
http://orcid.org/0000-0001-8367-9132
http://orcid.org/0000-0001-8367-9132
http://orcid.org/0000-0001-8367-9132
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53326-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53326-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53326-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53326-x&domain=pdf
mailto:joel.bauer@ucl.ac.uk
mailto:mark.huebener@bi.mpg.de
www.nature.com/naturecommunications


The PO of amouse V1 neuron—the contour orientation that elicits
the strongest response—has previously been reported to be relatively
stable23–26. This is puzzling in light of continuous synaptic changes in V1
(observed as dendritic spine turnover28–30), and reports that orienta-
tion tuning curves measured on separate days become progressively
more dissimilarwith time3,10,27. A columnar organization for orientation
preference, which exists in the visual cortex of many mammals, could
place anatomical constraints on PO drift by ensuring that the set of
synapses formingonto and retracting fromacortical neuronprefer the
same orientation7. However, rodents lack clear orientation columns31,
raising the question of how PO could be stable. This makes the PO of
neurons in mouse V1 an ideal model for studying the effect of
experience on drift.

Here, we use PO in mouse V1 to determine whether the dynamics
of representational drift dependon the animal’s ongoing experienceof
its visual environment. We hypothesize that PO stability emerges from
animals’ frequent experience of oriented contours during the normal
visual experience and that the consequent coactivation of similarly
tuned neurons maintains the existing connectivity in the network
against a background of continuous synaptic volatility5,12. Using
chronic two-photon calcium imaging in adult mice, we first show that
POundergoesmodest drift in V1 neurons.We then restrict the range of
orientations that the mouse experiences20,32,33 for several weeks by
applying cylinder lens goggles that limit visual input to contoursof one
orientation for severalweeks34–36.We find that thismanipulation biases
drift towards the remaining experienced orientation, but does not
affect drift magnitude. Finally, we build a network model of PO drift
and show that in this model, experience steers drift tomatch the input
statistics via Hebbian plasticity. This mechanism stabilizes PO under
normal visual conditions by counteracting the destabilizing effect of
synaptic volatility.

Results
PO of V1 neurons drifts over time
To characterize drift in the orientation tuning of V1 neurons, we first
quantified how the tuning of single cells changes over time. To this
end,wepresentedgratingsmoving in 12directions (six orientations) to
awake, adult mice on 12–15 days over the course of a month while
measuring neuronal activity using two-photon imaging of layer 2/3
cells expressing GCaMP6s24 (Fig. 1a; Supplementary Fig. 1a). All mice
were exposed to the full stimulus set on at least two separate days
before the start of the experiment to avoid confounding effects from
stimulus-response attenuation37. We found that the similarity of neu-
ronal responses between experimental sessions decreased as a func-
tion of time (Fig. 1b; Supplementary Fig. 1b), similar to previous reports
of representational drift in the visual cortex3,10,27.

We hypothesized that this decay in tuning curve similarity is at
least partly caused by shifts in the PO of neurons. Indeed, we found
neurons whose tuning curves shifted over days to weeks (Fig. 1c;
Supplementary Fig. 1c). To quantify these changes, we calculated the
PO for each repeatedly identified and responsive neuron (see Meth-
ods; Supplementary Fig. 2) on each day as the vector sumof responses
to the different orientations. Using a trial resampling approach
(bootstrapping, see Methods), we determined the 95% confidence
interval of this POmeasure for each day. If the confidence interval of a
neuron was above 45°, it was considered untuned (i.e., was considered
to have no PO) and excluded from further analysis for that day. We
determined the PO change of a neuron across two days to be sig-
nificant if the PO of each respective day was outside of the confidence
interval of the other day. On the population level, the POs of neurons
appeared more similar on two consecutive days compared to 20 days
apart (Pearson’s correlation: r = 0.968 and 0.80 respectively; Fig. 1d).
Quantifying this observation across sessions revealed that both the
relative number of significant PO changes (Fig. 1e) and the magnitude
of these PO changes (Fig. 1f, g) increased over time. Nevertheless, the

overall PO drift rate was low, with a median drift rate of ~0.3°/day
(calculated fromall 19–20 day intervals), in linewith findings that basic
visual tuning features are rather stable and show only limited repre-
sentational drift10,25,26.

Previous studies have raised the question of whether repre-
sentational drift may be due, at least in part, to changes in neuronal
firing caused by differences in animal behavior or state between ses-
sions rather than to actual changes in neural tuning38,39. In V1, beha-
vioral variables such as running have been shown to modulate the
activity of neurons40,41. However, running or behavioral state have
negligible effects on PO, specifically40,42–45. Thus, PO drift should be
largely robust to this confound. Indeed, while we observed slight
variability in PObetween running andnon-running trials within a single
session, it was too small to explain POdrift over several days (Fig. 1h; in
line with ref. 45). Additionally, we quantified running and arousal
modulation indices for each neuron and scaled these by the change in
running or arousal across session, in order to obtain an estimate of the
effective modulation by behavioral state. Excluding the 50% of PO
changes that weremost affected by behavioral state changes had little
effect on the overall PO drift (Supplementary Fig. 1d–g). The PO drift
we observed is, therefore, unlikely to be explained by behavioral
changes across days.

Visual experience steers PO drift
Representational drift of PO is moderate compared to drift in other
brain areas2,4,5. A potential factor that could stabilize responses to a
stimulus is how often it is experienced by the animal5. Therefore, we
hypothesized that the PO of neurons in V1 is stabilized by the frequent
occurrence of oriented contours during normal vision. To test this, we
used cylinder lens goggles34–36 to deprive mice of experiencing all but
one orientation (Fig. 2a). In the past, changes in neural representations
observed during baseline conditions have been referred to as drift,
while changes during or after experimental manipulations (e.g.,
monocular deprivation) were referred to as experience-dependent
plasticity or learning8. In this study, we will refer to all time-dependent
PO changes as drift, including the ones occurring during orientation
deprivation. This is because we consider representational drift to
encompass such experience-dependent changes in representations
and hypothesize similar synaptic mechanisms to underlie both
phenomena.

We found that applying the goggles continuously for four weeks
biased the distribution of POs towards the experienced orientation
(Fig. 2b; Supplementary Fig. 3a–c; two-sample T test, t(6)2.85,
p =0.029), consistent with single time point recordings in juvenile
mice35,36. Using longitudinal imaging, we characterized the change of
individual neurons’ PO over the course of the experiment. In our
analyses, we excluded neurons that gained or lost orientation tuning
(252 and 171 neurons, respectively, from a total of 835), focusing on
changes in PO. However, we found that the PO of neurons that gained
orientation selectivity over the course of the experiment tended to be
near the experiencedorientation, though this effectwasnot significant
(Supplementary Fig. 3d, e; one-sample T test on change in cell number
with relative PO between 0° and 45° t(6)2.1, p =0.080).

Defining the PO relative to the experienced orientation as rPO, we
calculated the overall PO convergence of the population towards the
experienced orientation (convergence: Δ|rPO|). We found that, on
average, the PO of neurons drifted towards the experienced orienta-
tion (Fig. 2c; Supplementary Fig. 4a). Notably, the size of this PO
convergence was dependent on the duration of orientation depriva-
tion (Fig. 2c).

This convergence towards the experienced orientation could be
explained by two possible factors: an experience-dependent change in
themagnitude of PO drift (Fig. 2d), and/or a bias in the direction of PO
drift towards the experienced orientation (Fig. 2e). Note, that drift
magnitude does not take the direction of the PO change into account,
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while convergence does. We found that the initial PO of neurons and
their drift magnitude were not correlated (Fig. 2f), and the overall PO
driftmagnitude of the populationwas largely unaffectedby the altered
visual experience (Supplementary Fig. 4b). Furthermore, shuffling drift
magnitude across the population while leaving cell-wise drift direc-
tions intact had little effect on the overall convergence (Fig. 2g).On the
other hand, most neurons’ PO drifted towards the experienced
orientation rather than away from it (Fig. 2h) and shuffling the drift

directions, while keeping cell-wise drift magnitudes intact, abolished
the population convergence entirely (Fig. 2i; Supplementary Fig. 4c).
Together, this demonstrates that depriving neurons of their PO does
not lead to larger drift magnitudes, but rather steers their drift direc-
tion towards the experienced orientation.

If the absence of experience of most orientations during depri-
vation is the cause of PO drift towards the remaining experienced
orientation, restoration of normal vision should recover the initial PO
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Fig. 1 | Preferred orientation of V1 neurons drifts over time. a Example field of
view from one mouse. Top: Average GCaMP6s (green) and mRuby2 (red) fluores-
cence, scale bar 100 µm. Bottom: imaging timeline of six mice, white squares are
days with imaging sessions. b Correlation of the pairwise signal correlation (PSC)
matrices compared across all imaging sessions of one mouse. Red: exponential
decay fit (y=0:31+0:43e�0:09*x). c Left: responses of an example neuron on 3 days.
Single-trial responses, gray, average black. Gray bars: stimulus window of 5 s,
grating directions indicated above. Scale bar: 100 ΔF/F. Right: polar plots of the
responses on the left, with gray lines indicating mean response. Preferred orien-
tation (PO) in blue with 95% confidence intervals (CI) as blue dashed lines. d Left:
POs 1 day apart. Two-sided circular-circular Pearson’s correlation r =0.968
(p < 1 × 10−16), n = 781 PO changes from 169 neurons from six mice. Right: POs
20 days apart. r =0.800 (p < 1 × 10−16), n = 360 PO changes from 170 neurons from
six mice. Red: significant changes, gray: non-significant changes. e Percentage of
concurrently tuned cells that significantly changed their PO vs. interval length. Six
individual mice as gray lines, with black line as mean with error bars as S.E.M. One-

way ANOVA F(61)14.98, p = 5.62 × 10−14. Asterisks indicate Dunnett’s post hoc test
(1–2days vs. all),p <0.05. fCumulative probability distributionsof the absolute size
of PO changes (|ΔPO|; drift magnitude) for different intervals. g Median drift
magnitude for all PO changes in black and only significant PO changes in red. Error
bars are bootstrapped 95% CIs. Two-sided Kruskal–Wallis test on all PO changes
(χ2(12) 864, p = 2.9 × 10−177, n = 468–4194 PO changes), and on only significant PO
changes (χ2(12) 122, p = 2.4 × 10−20, n = 188 to 347 PO changes). Asterisks indicate
Bonferroni corrected two-sided Mann–WhitneyU tests between 1 and 2 days vs. all
other intervals p <0.05. h Cumulative probability distribution of drift magnitude.
Cyan: 1–2 day intervals, n = 2147 PO changes from five mice; magenta: 19–20 day
intervals, n = 657 PO changes from fivemice; black: changes between still trials and
running trials within sessions, n = 152 PO changes from five mice. Two-sided
Mann–Whitney U test for within-session changes between running and still trials
compared to changes across short time intervals (U = 9.78 × 106, p = 1.04× 10−5), or
long time intervals (U = 1.11 × 106, p = 2.13 × 10−8). Source data are provided as a
Source Data file.
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distribution. Further, intermittent exposure to all orientations should
reduce the convergence effect. Indeed, we found that exposing the
awake mice to drifting gratings during imaging for a few hours every
seven days resulted in substantially lower convergence compared to
uninterrupted orientation deprivation (Supplementary Fig. 4d). We
also found that after ending deprivation, the initial distribution of POs
was largely recovered, as the population drifted in the opposite
direction than during the deprivation phase (Fig. 2j–l; Supplementary
Fig. 4e).

Taken together, these data show that while the magnitude of PO
drift of neurons in adult mouse V1 is unaffected by experience, the

direction of PO drift is determined by the distribution of experienced
orientations. Thus, PO drift is experience-dependent.

Hebbian plasticity and synaptic volatility can explain
experience-dependent PO drift
To understand the nature of synaptic plasticity, which could lead to
experience-dependent PO drift, we built a computational model of a
neural network subject to synaptic plasticity (Fig. 3a). Previous studies
have shown that synaptic changes can occur both in the presence and
the absence of neuronal activity or NMDA-receptor mediated
plasticity13,46–48. These activity-independent synaptic fluctuations are
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Fig. 2 | Orientation deprivation leads to PO convergence. a Photograph of a
visual scene in a mouse cage taken without (top) and with (bottom) cylinder lens
goggles (inset). Note that only one orientation is present in the bottom image.
b Distributions of POs relative to the experienced orientation (at 0°; relative PO:
rPO) before (gray) and after (green) 28d of orientation deprivation. Cell numbers
are shown as a percentage of the initial total cell count (835 neurons from seven
mice). Mean across mice with S.E.M error bars. c Median convergence (Δ|rPO|) for
different time intervals under normal visual conditions (black, six mice) and
orientation-deprived visual conditions (orange, eightmicedeprived for sevendays;
green, seven mice deprived for 28 days). Positive Δ|rPO| indicates changes towards
the experienced orientation. Error bars are bootstrapped 95% CIs. d PO con-
vergence could result from neurons whose PO is similar to the experienced
orientation (black triangle) drifting less than those with more dissimilar POs.
e Alternatively, neurons may drift towards the experienced orientation, while drift
magnitude is unaffected. f Initial PO difference from experienced orientation is
uncorrelated with drift magnitude (|ΔrPO|) after 28-day deprivation. Two-sided
Spearman’s correlation r = −0.034 (p =0.950, n = 414 neurons from seven mice).

g Median convergence (Δ|rPO|) before and after shuffling drift magnitudes. Error
bars are bootstrapped 95% CIs. Two-sided Wilcoxon signed rank z = 0.807,
p =0.419, (n = 414 neurons from seven mice). h Initial PO difference from experi-
enced orientation plotted against convergence (Δ|rPO|). n = 414 neurons from
seven mice. Gray areas indicate impossible values. i Median convergence (Δ|rPO|)
before and after shuffling drift directions. Error bars are bootstrapped 95% CIs.
Two-sided Wilcoxon signed rank z = 4.19, p = 4.94 × 10−5 (n = 414 neurons from
seven mice). j Distributions of POs relative to the experienced orientation (0°):
initial (gray), after 28d orientation deprivation (green), and after 21d of recovery
(blue). Cell numbers are shown as a percentage of the initial total cell count. N = 7
mice. Mean across mice with S.E.M error bars. k Relative change in cell numbers
from initial to post recovery, for twoPObins (±0° to ±45° and ±45° to ±90° from the
experienced orientation). Gray lines are seven individual mice, black line is mean.
Two-sided one-sample T tests were used to compare within bin changes (t(6)
−0.309, p =0.768 and t(6)0.998, p =0.357). l Median PO convergence during
orientation deprivation vs. during recovery with 95% CI (n = 335 neurons from
seven mice). Source data are provided as a Source Data file.
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referred to as intrinsic synaptic volatility12,49, here, synaptic volatility.
We, therefore, reasoned that the observed PO drift might be driven by
a plasticity rule combining experience-dependent Hebbian (H) chan-
ges and experience-independent synaptic volatility (ξ). We modeled
the change in feedforward synaptic weights from a cortical layer of
presynaptic neurons to a cortical layer of postsynaptic neurons as the
sum of H and ξ scaled by a synaptic weight-dependent propensity
function (ρ wð Þ): Δw=ρ wð Þ kH + ξð Þ (Fig. 3b). This propensity function
was inspired by experimental results showing that the magnitudes of
changes in spine size—commonly considered a proxy for synaptic
strength—is proportional to the initial size of the spines47,50–53. We

initialized the feedforward weights from orientation-tuned pre-
synaptic neurons as circularly-symmetric Gaussian distributions with
varying widths, resulting in orientation-tuned postsynaptic neurons
with varying tuning widths (Fig. 3a; Supplementary Fig. 5a–d). We
modeled the experience-driven component H as Hebbian changes—
i.e., the product of presynaptic and postsynaptic activities—in
response to a series of orientation stimuli, and ξ as a baseline random
synaptic change. The weights were subject to homeostatic normal-
ization on a slow timescale54–56 (four orders of magnitude slower than
Hebbian changes; see Methods) to preserve the total sum of input
weights per neuron.
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To model the experience of mice under baseline conditions,
reflecting normal vision, we stimulated the network with orientations
sampled uniformly from −90° to 90°. A ‘day’ in ourmodel consisted of
oneorientation stimulus per second for 12 hours. Themodel produced
PO drift similar to our experimental data, with the POs of neurons
drifting progressively over time (Fig. 3c, d; Supplementary Fig. 5e). To
mimic the effect of orientationdeprivation using cylinder lens goggles,
we stimulated the network with a single orientation, instead of all
orientations. Here, POs slowly drifted towards the experienced orien-
tation (Fig. 3f). Neurons that are tuned far from the experienced
orientation have weak connections with presynaptic neurons close to
the experienced orientation (Supplementary Fig 5a), and these are not
strengthened much due to the propensity function, raising the ques-
tion of how these neurons are able to drift towards the experienced
orientation.We find that these neurons shift because the synapses that
are already strong and close to the neurons’ own PO are strengthened
and that among these potentiated synapses, there is an asymmetry
favoring synapses that are closer to the experienced orientation
(Supplementary Fig 5f–h). However, day to day drift rate—not mea-
surable from experimental data directly—remained constant (Fig. 3e).
As in the experimental data described above (Fig. 2f), drift magnitude
was largely independent of the initial PO within 28 days of deprivation
(Fig. 3g; Supplementary Fig. 5i, j). However, the correlation between
drift magnitude and initial relative PO gradually increased with time
(Fig. 3h). This suggests that the lack of correlation between drift
magnitude and initial PO, within the timeframe tested experimentally
(Fig. 2f), was caused by synaptic volatility masking the effect of Heb-
bian plasticity, with the associated correlation only becoming evident
after much longer time intervals. The rate at which this correlation
increased was also strongly dependent on the relative strength of the
Hebbian component (Fig. 3h). Shuffling the magnitude or direction of
PO changes produced the same effect as in our data (Fig. 3i), demon-
strating that, both in experimental data andmodel, convergence of the
population was due to a bias in drift direction. In the model, Hebbian
changes drove directional PO changes and thus convergence towards
the experienced orientation (Fig. 3j; Supplementary Fig. 6b), while
synaptic volatility introduced non-directional drift (Fig. 3k; Supple-
mentary Fig. 6a). Importantly, baseline drift was highest in the absence
of Hebbian changes (Fig. 3k; Supplementary Fig. 6a). Hence, Hebbian
plasticity compensates for synaptic volatility under baseline condi-
tions, and steers drift when input statistics change.

Our model also aligned with the experimental effect of interrup-
tions during the deprivation period. Brief exposure to the full range of
orientation stimuli every seven days slowed down PO convergence by
transiently removing thedirectionalbias,while leavingdriftmagnitude
unaffected (Supplementary Fig. 6c). However, the model exhibited

much slower recovery on a population level than observed experi-
mentally. After deprivation had ended, the population displayed a
negative convergence (divergence) that grew with time (Fig. 3l), but
this never reached the magnitude observed in the experimental data
(Fig. 2k). Likewise, the population distribution only partially recovered
from the effect of deprivation, even after almost 3 years (Supple-
mentary Fig. 6d).

With this, ourmodel yields two specific predictions about POdrift
beyond what we have found experimentally. First, the slower recovery
of the original PO distribution in ourmodel suggests that the plasticity
rule employed is insufficient to fully explain the observed recovery in
V1. Additional mechanisms may be present in the mouse visual cortex
that accelerate recovery, such as backbone spines (synapses with little
or no plasticity)8. The second prediction is that removing the Hebbian
contribution experimentally would result in progressively larger PO
drift magnitudes, both during baseline and deprivation conditions
(Fig. 3k; Supplementary Fig. 6a, b). Thus, our model strongly suggests
that under conditions of normal visual experience, stimulus-driven
activity acts via Hebbian plasticity mechanisms to limit the destabi-
lizing effect of synaptic volatility.

Discussion
PO of V1 neurons undergoes representational drift
Previous studies have shown that representational drift occurs in the
visual cortex,mainly by quantifying the decay in response correlations
over time3,10,27. Some observations of drift have been explained by
time-varying changes in behavior38,39. We establish drift in the PO of
individual neurons, a canonical visual response property, and
demonstrate that these changes accumulate over time irrespective of
locomotion and arousal. Representational drift is thought to originate
from an accumulation of synaptic weight changes and synaptic turn-
over, while further response variability is caused by behavioral varia-
bility, internal state fluctuations, ormeasurement noise9. Time-varying
changes in behavior and signal-to-noise ratio can result in time-
dependent tuning curve changes that can be mistaken for repre-
sentational drift when measurements and state changes occur on
similar timescales39. PO is well-suited to distinguish representational
drift fromsuch variability for tworeasons. First, in contrast to tuning to
other visual features, PO is state-independent, i.e. it is unaffected by
running or behavioral state40,42–45. Second, a decrease in signal-to-noise
ratio reduces the accuracy of PO estimation but does not cause PO to
trend towards a specific value. This is in contrast to direction selec-
tivity, for instance, where a decrease in signal-to-noise would cause a
tendency towards lower estimates of selectivity. The confounding
effect of decreases in signal-to-noise ratio can, therefore, be mitigated
by applying a constant confidence threshold on PO changes.

Fig. 3 | Network model indicates PO drift is a trade-off between Hebbian plas-
ticity and synaptic volatility. a Model schematic: two-layer network with n
orientation-tuned presynaptic neurons (pre) connected topographically with
weights ðwÞ to n orientation-selective postsynaptic neurons (post). n = 500.
b Synaptic plasticity rule: weights ðwÞ are updated in proportion to the sum of
stimulus-driven changes (H; scaled by k) and synaptic volatility (ξ), both scaled by a
propensity factor proportional to initial weight (ρðwÞ). c POs of postsynaptic neu-
rons in themodel 20 days apart, under baseline stimulus conditions. dMedian drift
magnitude (|ΔPO|) increases over time, and is comparable under baseline (black)
and orientation-deprived (green) conditions. e Same as d but for mean drift rate
(|POday–POday–1|). fMedian convergence (Δ|rPO|) over time for baseline (black) and
orientation-deprived (green) conditions. g Initial distance from experienced
orientation (|rPO|) shows little correlation with drift magnitude after 28-day
deprivation. Two-sided Spearman’s correlation r =0.118 (p =0.008, n = 500).
h Spearman’s correlation between drift magnitude and initial distance from
experienced orientation (as shown in g) in networks with different ratios of Heb-
bian plasticity to synaptic volatility (H=ξ; see b). Synaptic volatility is constant,

while the Hebbian component is scaled by k. Correlation increases with longer
deprivation time. Large Hebbian plasticity component also leads to increased
correlation. Dashed lines indicate H=ξ ratio in the other panels and 28-day depri-
vation length. i Shuffling drift direction but not magnitude abolishes the median
convergence effect of themodel during orientationdeprivation. Green:model data
and shuffles (n = 500). Gray: experimental data from Fig. 2g, i, median convergence
and shuffles. Error bars arebootstrapped95%CIs;n = 414 neurons from sevenmice.
j Effect of omitting either the Hebbian or the synaptic volatility contribution from
the plasticity rule on PO convergence, during 28 days of orientation-deprived
conditions. k Effect of omitting either the Hebbian or the synaptic volatility con-
tribution from the plasticity rule on PO drift magnitude, during 28 days of baseline
stimulation conditions. l The model displays limited recovery after input statistics
return to baseline conditions. During recovery, median convergence is negative
and slowly increases in magnitude over time (blue), but is incomplete even after
1000 days (~3 years). Mean (solid line/data point) and standard deviation (shaded
region/error bars) over 50 model iterations. Source data are provided as a Source
Data file.
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What controls PO drift?
Isolating and quantifying drift in a fundamental visual response
property, PO, allowedus to explore themechanisms that underlie drift.
The cause of drift in neuronal tunings, such as the PO drift we observe,
may be the accumulation of synaptic strength changes and turnover
over time. Dendritic spine volume changes and turnover have been
used in the past to estimate the extent of these changes and clearly
demonstrate that some degree of change in connectivity does occur in
mouse V1. However, themajority of spines persist formanyweeks, and
there is no consensus on the degree of baseline synaptic changes or its
effect on neuronal response properties to date28–30,57. These synaptic
changes, while often associated with activity-dependent synaptic
plasticity46,58–60, also arise from activity-independent synaptic
volatility11,12,47–49,61. Accumulation of the apparently undirected activity-
independent component should, in principle, lead to progressive
changes in neuronal tuning. However, tuning curve similarity remains
relatively high, i.e., the signal correlation asymptotes far above zero
even after long time intervals3,10,23–26, raising the questionofwhatmight
limit the effect of synaptic volatility. Two potential mechanisms are
anatomical constraints and compensatory plasticity16,62,63.

Stability in neuronal tuning could arise from the anatomical con-
straints imposed by the spatial organization of axons and dendrites.
The tuning properties of neurons depend on the availability of
appropriate axons in the vicinity of their dendrites64, which is largely
determined during development, with little change observed during
adulthood65–67. The position of a neuron relative to a cortical map is,
therefore, expected to correlate with its tuning stability. In support of
this, a recent study inmouse somatosensory cortex found that layer 2/3
neurons tuned to the topographically aligned whisker are more stable
than neurons tuned to a surrounding whisker7. We speculate that in
mammals that have orientation columns in V1, neurons at the pinwheel
center, where more diverse inputs are available, should drift more than
those within an iso-orientation column68. However, as there is little
spatial organization of PO in rodent visual cortex31, PO drift of V1
neurons in mice should not be constrained by the availability of inputs.

Hebbian plasticity rules suggest that the repeated experience of
sensory stimuli can stabilize the connectivity between, and the tuning
of, co-tuned neurons through their coincident activity, ultimately
leading to slower drift8,16. This has been proposed for olfactory cortex,
where responses to odor stimuli are more stable for odorants that are
experienced more frequently5. We, therefore, hypothesized that
orientation tuning in V1 could be stabilized by the frequent experience
of all orientations. While we found that orientation deprivation had no
observable effect on the magnitude of PO drift within the time frame
tested, the direction of PO drift was biased towards the experienced
orientation, resulting in an overall convergence of PO towards the
remaining experienced orientation. This shows that visual experience
steers PO drift rather than limiting its magnitude.

Hebbian plasticity and synaptic volatility control PO drift
Using a computational networkmodel, we found that a combination of
synaptic volatility and Hebbian plasticity driven by visual experience
recapitulated the experimental dynamics of PO drift both during
normal vision and orientation deprivation. POs changed as a function
of time, and PO convergence increased as a function of deprivation
duration. There was also next-to-no correlation between the initial PO
of modeled neurons and the drift magnitude during deprivation,
within a timeframe corresponding to that of our experiments. Our
experimental findings, both during normal experience and depriva-
tion, are therefore compatible with the hypothesis that the dynamics
of PO drift in the mouse visual cortex are driven by a combination of
two synaptic processes, synaptic volatility and experience-dependent
Hebbian plasticity. However, this was only possible because of the
weight-dependent propensity function, which favored plasticity
changes at stronger synapses.

Beyond demonstrating plausibility, our theoretical model makes
several clear predictions. Completely removing the experience-
dependent Hebbian component increases drift under baseline condi-
tions but prevents convergence during orientation deprivation. Con-
versely, removing synaptic volatility reduces drift and allows faster
convergence. The model fits our data best when the contribution of
synaptic volatility exceeds Hebbian learning. These predictions could
be tested in future experiments using our paradigm while manipulat-
ing the relative ratio of the two synaptic plasticity components, e.g., by
transiently blocking NMDA receptor-dependent plasticity.

In the absence of the experience-dependent Hebbian component,
our model predicts that PO drift would increase. A recent study found
that PO changes were higher during a baseline ~8-day interval of nor-
mal vision compared to a subsequent ~8-day interval of dark
exposure69. The authors concluded that experience has a destabilizing
effect on tuning stability. This contrasts with both our experimental
and modeling findings. It may, however, be partially explained by the
sequential design of the dark exposure study. Over the first few suc-
cessive visual stimulation sessions, neural responses tend to decrease
and become sparser37. This could lead to larger tuning differences
between the control and dark exposure imaging sessions in the study
by Jeon et al.69. However, uniform dark exposure and partial visual
deprivation very differently affect input statistics, and the resulting
correlation structure of activity generates different outcomes70. We,
therefore, cannot exclude that there are additional mechanisms, not
contained within our network model, which are engaged during dark
exposure that cause lower drift magnitudes.

We suggest that experience-dependent synaptic changes exert a net
stabilizing force on visual representations in the presence of synaptic
volatility. This is similar to the stabilizing effect of the repeated experi-
ence of the same olfactory stimulus in piriform cortex5. In contrast,
recent experiments in the CA1 region of mouse hippocampus have
shown that repeated experience of the same environment leads to
drifting spatial tuning17,18, whereas the passage of time alone largely
affects response magnitude18. A higher rate of Hebbian plasticity at
hippocampal synapses may explain these results, as ongoing experience
could rapidly induce randomexploration of a solution space, as it occurs
for networks trained using stochastic gradient decent71,72. Alternatively,
the difference in the rate and experience-dependence of drift between
areas may be due to differences in the dimensionality, or degrees of
freedom, of the representations72. Whatever the reason, these recent
data, together with our own results, add to the growing body of work
showing that the phenomenon of representational drift, as well as its
mechanistic underpinnings, need to be interpreted in the context of the
specific computation, network architecture, processing hierarchy,
molecular cell type, and the ethological relevance of a circuit72,73.

Methods
Animals
All experimental procedures related to animal handling were carried
out in compliance with institutional guidelines of the Max Planck
Society and using protocols approved by the Regierung von Ober-
bayern (Beratende Ethikkommission nach §15 Tierschutzgesetz).
Female wild-type C57BL/6NRj mice (Janvier) were used for all experi-
ments in this study. Mice were housed at 55 ± 5 % humidity and
22 ± 1.5 °C under a 12-hour inversed light-dark cycle with food and
water available ad libitum. Mice were housed in large cages (GR900,
Tecniplast) with access to a running wheel and other enrichment
material such as a tunnel and a house. Animals were usually group-
housed, except for short time periods during recovery from surgery.

Cranial window implant and intrinsic optical signal imaging
targeted virus injections
In order to repeatedly measure visual tuning properties of neurons in
mouse V1, neurons were virally transduced with the genetically

Article https://doi.org/10.1038/s41467-024-53326-x

Nature Communications |         (2024) 15:9153 7

www.nature.com/naturecommunications


encoded calcium indicator GCaMP6s, and a cranial window implanted
over the visual cortex. Mice between P35 and P45 were anesthetized
using a mixture of Fentanyl (0.05mg/kg), Midazolam (5mg/kg), and
Medetomidine (0.5mg/kg), injected intraperitoneally. Anaesthesia
wasmaintained by injecting 25% of the original dose after the first two
hours and then every hour. All surgical equipment was heat sterilized
using a bead sterilizer and rinsed with ethanol. After checking for
anaesthesia depth using the toe pinch reflex, themicewere placedon a
thermostatically controlled heating blanket (set to 37 °C), and the head
was fixed in a stereotaxic frame. Carprofen (0.5mg/kg) was adminis-
tered subcutaneously as an analgesic. Throughout the procedure, the
eyes were kept moist and protected from debris using eye cream
(Isopto-Max). The scalp was disinfected using iodine and ethanol, and
lidocaine was applied as a local anaesthetic. The scalp was then
removed along with the periosteum, and the hair along the rim of the
wound was fixed using Histoacryl. The skull was roughened using a
scalpel, and a customaluminumheadbarwasfixedonto the skull using
superglue (Pattex Ultra Gel). Dental cement (Paladur) was used to
further secure the head-bar to the skull, cover the edges of the scalp
wound, and cover the exposed skull (except for where the craniotomy
would be placed). A rim of cement was built up around the front of the
craniotomy in order to form awell. Diluted ultrasonic gel (diluted with
cortex buffer in a ratio of 3:1; cortex buffer: in mM: 125 NaCl, 5 KCl, 10
glucose, 10 HEPES, 2 CaCl2, and 2MgSO4) was placed in this well, and a
10mm cover glass place over it, making sure to prevent bubbles. This
increases the optical transparency of the skull for subsequent intrinsic
optical signal (IOS) imaging.

The mice were then moved to an IOS imaging setup. An image of
the blood vessel pattern over the visual cortex was taken with 530 nm
illumination light (using a tandem 135mm f/2.0 and 50mm f/1.2
objective system, pco.edge 4.2 LT sCMOS camera or a Thorlabs
B-Scope equipped with a ×4 objective and a 1500 MonoChrome cam-
era). The skull was then illuminated with 735 nm light, and the focal
plane lowered to ~400 nm below the surface of the brain. A
700–740 nm bandpass filter was placed in front of the camera sensor.
The contralateral eye was covered with a cone made of tape and
drifting gratings were presented 7–14 times on a screen 16 cm in front
of the mouse (8 directions at 2 cycles/s and 0.04 cycles/° changing
direction every 0.6 s, presented for 7 seconds each time, with a hor-
izontal retinotopic position spanning0 to−30° azimuth). The resulting
intrinsic signal changes were analyzed using custom-written MATLAB
code. This allowed the localization of V1, to aid targeting of virus
injections.

Themicewere then returned to the stereotaxic frame, and a 4mm
craniotomy was performed using a high-speed micro drill with the
intended virus injection and two-photon imaging locations at the
center. The skull was kept moist using cortex buffer during drilling. A
4mm bone patch was removed, and the exposed cortex (still covered
by dura) was washed repeatedly with cortex buffer until any bleeding
stopped. The brain was covered with Gelfoam pieces soaked in cortex
buffer to keep it moist and protected from debris.

Before the surgery, borosilicate glass injection pipettes were
pulled (using a PC-97 pipette puller). Volumetricmarkings were drawn
onto the borosilicate capillaries before pulling (marks were drawn
every 1mm using a black permanent marker, corresponding to 45 nl).
The pipette tips were broken off so that the tip diameter was between
25 and 35 µm and beveled to a sharp point using a modified computer
hard disk (Canfield 2006). The pipettes were front-loaded with the
virus by placing a drop of virus on parafilm, lowering the pipette tip
into the virus drop, and applying negative pressure. The pipettes were
either loaded with a mixture of AAV2/1.1CamKII0.4.Cre.SV40 (titer 1-5
E8), AAV2/1.Syn.Flex.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (titer
1.28 E13) and AAV2/1.Syn.GCaMP6s.WPRE.SV40 (titer 6 E12), or AAV2/
1.Syn.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV40 (titer 1.2 E13). The loa-
ded pipette tips were kept on ice until use.

The pipette was placed into a patch pipette holder and inserted
300–400 µm into the cortex using a micromanipulator. After waiting
4–5min, virus was injected at ~50nl/min with a total volume of
150–250 nl. This was done using 30–40 psi with 20–40 msec pressure
pulses at 0.8Hz controlled by a pulse generator (Master-8) and a
pressure micro-injection system (Toohey Company). The pipette was
left in the cortex for another 4-5min before retracting it. The process
was repeated for 2–5 injection sites, with a spacing of 50–100 µm.
Throughout the injection procedure, the cortex was kept moist using
cortex buffer. After all injections were completed, the cortex was
covered with a 4mmcranial window (glass coverslip), secured in place
using super glue (Pattex Ultra Gel) around the rim of the craniotomy.
After allowing the glue to dry, dental cement was used to cover any
remaining bone and further secure the glass cover slip.

The mice were then administered 0.5–1ml Sterofundin
subcutaneously, and anesthesia was antagonized using Naloxone
(1.2mg/kg), Flumazenil (0.5mg/kg), and Atipamezole (2.5mg/kg) also
administered subcutaneously. The animals were kept in a warm
environment and observed for several hours before returning to their
home cage. Wet food was placed into the cages, and 0.5mg/kg of
Carprofen was administered for the first 3 days after surgery. Fluor-
ophores were allowed to express for 2–3 weeks before checking
expression. If excessive bone regrowth prevented imaging, a second
short surgery was performed to replace the cranial window and
remove any bone patches.

After surgeries, the mice were placed in a 14/10 h light dark-cycle
reversed room, so that the animals could be imaged during their dark
cycle. Mice were co-housed with conspecifics (littermates whenever
possible) in a large 1500 cm2 cage containing nesting material, dark
retreats and a running wheel. These conditions were upheld during
orientation deprivation.

IOS imaging and Cylinder lens goggle mounting
2–4 weeks after the virus injection, IOS imaging was repeated (as
described above) but without the use of ultrasound gel and using a
drifting and inverting checkerboard bar (Fourier stimulus) to map out
the retinotopic gradient across V174. This stimulus allowed for better
outlining of the V1 border. In these experiments, mice were
anaesthetized only lightly, with Fentanyl (0.035mg/kg), Midazolam
(3.5mg/kg) and Medetomidine (0.35mg/kg), injected intraperito-
nially. Anesthesia was maintained by injecting 25% of the original dose
every hour. For animals that would later undergo orientation depri-
vation, after IOS imaging custom aluminum goggle frames (without
cylinder lenses) were fitted to the animal’s head and adjusted using
tongs. The space between the frames and the eyes was such that the
animals could still clean their eyes with their forepaws. The goggle
frames were then attached to the head bars with small screws.

Chronic in vivo two-photon calcium imaging in awake mice
Prior to awake head fixation, mice were handled for five days to
accustom them to the experimenter, walking on a Styrofoam ball with
a fixed axis and brief head restraint. For imaging,mice were head-fixed
on an air-suspendedStyrofoamball, allowing them to run, under a two-
photon imaging system (Thorlabs Bergamo II). The two-photon system
was equipped with a pulsed femtosecond Ti:Sapphire laser (Spectra
PhysicsMaiTai DeepSee laser; tuned to 940nm for calcium imaging or
1050 nm for structural imaging), resonant and galvo scanningmirrors,
a ×16 NA 0.8 immersion objective (Nikon) and a piezoelectric stepper
for multiplane imaging. The photon collection pathway had a
720/25 nm short-pass filter followed by a dichroic beam-splitter
(FF560) that allowed simultaneous detection of green and red light
using two GaAsP photomultiplier tubes (PMTs; Hamamatsu) with
either a 500–550 nm or a 572–642 nm bandpass filter. The system was
controlled by ScanImage 4.275. Ultrasound gel (diluted 3:1 with water
and centrifuged to remove air bubbles) was applied over the cranial
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window implant, and the ×16 objective was immersed in the gel. Strips
of tape were used to shield the imaging window from external light.

During all imaging sessions, videos of both eyes were recorded
(Imaging Source infra-red camera, 30Hz), and running was tracked via
an infra-red sensor attached to the air-suspended Styrofoam ball. The
pupil diameters were extracted using DeepLabCut76 and averaged
across both eyes. The running/arousal modulation for each PO change
(i.e., for each neuron across each pair of sessions) was defined as the
correlation coefficient between the stimulus-response amplitude of
the neuron and the running speed/pupil diameter of the mouse,
multiplied by the average change in running speed/pupil diameter
across sessions, i.e.:

running modulation= corr running speed, stimulus response amplitudeð Þ
� Δrunning speed

ð1Þ

arousal modulation= corr pupil diameter, stimulus response amplitudeð Þ
� Δpupil diameter

ð2Þ

Mice were presented with visual stimuli on a gamma-corrected
LCD monitor (60Hz, 2560 × 1440 pixels, 27 inches) 16 cm from the
eyes. Light contamination during two-photon imaging was minimized
by shuttering the LCDmonitor77. The screen was either placed directly
in front of the mouse if imaging binocular V1 or offset when imaging
monocular V1, and the screen tilt was aligned to the angle of the
mouse’s head. The same screen position and screen angle were used
for repeated sessions of each mouse. Visual stimuli were generated in
MATLAB using the Psychophysics Toolbox78,79. The visual stimulus
consisted of a 25° radius (+12° fading-edge) sine wave grating drifting
in 12 directions (0.04 cycles/° and 3 cycles/s) on a gray background
with a stimulus duration of 5 s and an interstimulus interval of 6 s (gray
screen). The mice were presented with these stimuli on two separate
days before data acquisition began as part of habituation. On data
acquisition days, the stimuli were presented 32 times. During these
days, appropriate fields of view were identified and imaged during
stimulus presentation allowing for re-finding on subsequent days. We
re-found this imagingfieldof viewon subsequent days by searching for
the matching blood vessel pattern under widefield illumination. After
switching to two-photon imaging, we used custom-written MATLAB
code to overlay the live field of view over a template (average fluor-
escence image) acquired during the first imaging session. This align-
ment was significantly aided by the tdTomato structural marker. We
then adjusted the live position in X, Y, and Z until the two images were
perfectly aligned. During the experiment, if there was any slow drift in
depth this was manually corrected by the experimenter. Again, this
process was made significantly easier by the tdTomato structural
marker.

Orientation deprivation
Mice that underwent orientation deprivation were habituated to the
goggle frames for aminimumof four days before the baseline imaging
sessions. The goggle frames were removed when presenting visual
stimuli and recording neuronal calcium signals and were again fixed to
the animal’s head bar after the end of the imaging session. When
imaging was followed by orientation deprivation, the cylinder lenses
were pressed into the goggles (sometimes secured with super glue)
before attaching them to the animal’s head bar again. Mice were sub-
sequently returned to their home cage (which had stripes of black tape
oriented along the experienced orientation through the cylinder len-
ses). Alternatively, mice were housed in a cage with monitors around
two sides of the cage that presented slowly drifting full field gratings
moving in eight directions during the light cycle. The experienced
orientation through the cylinder lenses was between −22° to −45°.

Processing of in vivo two-photon calcium imaging data and
calculation of POs
Fluorescence traces from in vivo data were extracted either using
custom MATLAB software or Suite2P80. Both methods produced
average fluorescence FOV images, single neuron ROI average fluores-
cence over time, with ROIs independently calculated or drawn for each
day. To match ROIs from different sessions, we used a custom-written
MATLAB program, which registered the templates from different
sessions using affine transformation. If ROIs had more than 50%
overlap in their ROI masks, they were defined as putatively matched.
We then inspected the ROIs of eachneuronmanually. If any of the ROIs
of a neuron were not in the same location relative to local landmarks
(other neurons, blood vessels, axons, dendrites) or the neuron was no
longer clearly visible in one of the imaging sessions, the neuron was
excluded from the dataset. Only neurons that could be reidentified on
every imaging session were included in further analysis. We verified
this approach by employing an additional quantitativemethod. To this
end, we calculated pixel-wise correlations of ROIs for a subset of our
data. We plotted the distribution across all comparisons as-well-as the
minimum correlation for each neuron across all time points (Supple-
mentary Fig. 2a). Excluding neurons with a minimum ROI correlation
below 0.1, 0.25 or 0.5 did not substantially change the overall drift
magnitude (Supplementary Fig. 2b–e).

The calcium activity of a neuron was defined to be ΔF/F and was
calculated as:

ΔF=F =
ðFðtÞ � 0:7*ðFneuropilðtÞ � eFneuropilÞÞ � eFbaselineeFbaseline ð3Þ

Where F(t) is the green fluorescence trace of a neuron, Fneuropil tð Þ is the
neuropil green fluorescence trace, eFneuropil is the median of the neu-
ropilfluorescence trace and eFbaseline is themedian of all 1 s pre-stimulus
periods of the ROI fluorescence24.

The stimulus tuning curve of a neuron was defined as the mean
ΔF/F during the stimulus presentation across all trials for a given
grating direction (resulting in a vector length 12). To calculate the
pairwise signal correlation (PSC) matrix, the Pearson’s correlation
between the stimulus tuning curves of all pairs of neurons were cal-
culated (resulting in a square matrix size neurons x neurons). The
pairwise stimulus correlation matrix of each day was vectorized and
correlatedwith the vectorized PSCmatrix of every other day (resulting
in a square matrix size days x days).

For further analysis, the PO was calculated as follows. First, neu-
rons were tested for visual responsiveness. For each stimulus, a rank
sum test between the stimulus period mean ΔF/F and the pre-stimulus
periodmeanΔF/Fwas applied (with Bonferroni correction significance
threshold of p < 0.05). If a neuron’s ΔF/F was significantly above the
ΔF/Fduring the pre-stimulus period for any stimulus, itwas considered
visually responsive. Second, the PO of each neuron was calculated
using the vector sum across all responses:

X =
1

nrep*nstim

Xnrep

rep= 1

Xnstim

stim= 1

Rðstim, repÞ cosð2θðstim, repÞÞ ð4Þ

Y=
1

nrep*nstim

Xnrep

rep = 1

Xnstim

stim= 1

Rðstim, repÞ sinð2θðstim, repÞÞ ð5Þ

θPO =
1
2
arctan

Y
X

� �
ð6Þ

WhereRðstim, repÞ is the stimulus periodmeanΔF/Fper stimulus per trial,
θðstim, repÞ are the corresponding visual stimulus angles, nstim is the
number of different stimulus angles and nrep is the number of stimulus
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repetitions (usually 32). Bootstrap resampling across all stimulus
repetitions was applied in order to obtain a distribution of θPO. PO is
defined as the �θPO across all bootstrap samples. The 95% confidence
interval (upper POCI and lower POCI) was also calculated from the
distribution of θPO. If the difference between the upper POCI and lower
POCI was greater than 90°, then the neuron was considered not
orientation-tuned. A neuron was considered concurrently tuned
across a time interval, if it was both visually responsive and tuned on
both days. For these neurons the ΔPO was calculated. In order to
determine if the PO of a cell was significantly different on two separate
days, the PO of the second day had to be outside the PO 95%
confidence interval of thefirst day, and the POof the first day had to be
outside the PO 95% confidence interval of the second day.

The experienced orientation during orientation deprivation
was calculated by taking an image of the mouse, wearing the goggle
frames, from the center of the stimulus presentation screen. The
angle of the goggles in the image was measured using ImageJ. This
angle was adjusted based on the angle of the image presentation
screen to give the experienced orientation relative to the mouse. To
calculate PO convergence, the change in a neuron’s PO relative to
the experienced orientation (i.e., if it moved towards or away from
the experienced orientation, experienced), was calculated as fol-
lows:

for mice without goggles : Δ rPOj j= jPOt1 � experiencedj
�jPOt2 � experiencedj

ð7Þ

for orientation deprivation data : Δ rPOj j
= jPOpre � experiencedmousej � jPOpost � experiencedmousej

ð8Þ

Where experienced is the mean experienced orientation through the
cylinder lens goggles of all orientation deprived mice, and
experiencedmouse is the experienced orientation for the mouse from
which the neuron came.

Statistics
When normality could not be ruled out using the
Kolmogorov–Smirnov Goodness-of-Fit test, two-tailed two-sample
unequal-variance, Pearson’s correlation, one-way ANOVA, paired or
unpaired T tests were used.When normality was ruled out or could not
be assumed, Spearman’s correlation, the Wilcoxon signed-rank test,
the Mann–Whitney U test, or the Kruskal–Wallis test were used. In the
case of periodic variables, a von Mises distribution was assumed, and
circular statistics were used (circ_stats toolbox81). If ANOVA or
Kruskal–Wallis tests were significant, we used a Dunnett’s posthoc test
when data were parametric, or Mann–Whitney U tests with Bonferroni
corrected alpha thresholds when data were not parametric. Animal
number and cell or PO change numbers are indicated by capital and
lower case “n”, respectively, in the figure legends. Asterisks indicate
p values under significance threshold α =0.05 (*). Alpha values were
adjusted using the Bonferroni method for multiple comparison cor-
rection where necessary.

Network model
We considered a feedforward network in which N = 500 presynaptic
excitatory neurons with firing rates u drive N postsynaptic excitatory
neurons with firing rates v, via a matrix of synaptic connections W
and a linear response function such that v=WTu. Presynaptic neu-
rons were assumed to be tuned to a given orientation from 0° to
180°, and their firing rates weremodeledwith Gaussian tuning curves
centered at the orientation to which they were tuned. In the model,
we assumed that the drift in orientation tuning seen in our data can
be mainly explained by changes to the feedforward connectivity

between excitatory neurons in two cortical layers of the primary
visual cortex.

Learning rule. We found that the representational drift observed in
our data, both under baseline and deprivation conditions, can be
captured by three main assumptions:
1. Synaptic changes consist of a combination of both activity-

dependent synaptic plasticity in response to external stimuli,
represented by a Hebbian component H, and activity-
independentfluctuations in synaptic strength (synaptic volatility),
represented by a random component ξ .

2. Synaptic changes are scaled by a weight-dependent propensity
function, ρ wð Þ.

3. Synaptic weights are normalized by homeostatic mechanisms
acting on a slower timescale than the timescale of stimulus-driven
Hebbian plasticity.

We combined these assumptions into a learning rule which
describes the change in the synaptic strength wij connecting pre-
synaptic neuron uj to post-synaptic neuron vi as a weighted sum of
Hebbian H and random ξ changes, scaled by a weight-dependent
propensity function ρ wð Þ:

Δwij = ϵ � ρ
�
wij

� � kHij + ξ
h i

ð9Þ

The learning rate ϵ (1 × 10−4) scales the overall magnitude of the
weight update, and the scaling factor k determines the relative
impact of the Hebbian and random contribution to the total weight
changes in the model. We modeled the propensity function to be
weight-dependent ρ wð Þ= tanh 10wð Þ based on experimental
observations47,50–53. The Hebbian contribution Hij for each weight wij

was given by the product of presynaptic and postsynaptic activities
in response to each stimulus presentation:

Hij = ujvi ð10Þ

The random component ξ represents activity-independent
synaptic strength fluctuations, and was sampled independently for
each weight wij from a standard normal distribution at each weight
update:

ξ � Nð0, 1Þ ð11Þ
The weights were normalized on a timescale slower than Hebbian

activity-dependent plasticity, motivated by experimental findings of
slower homeostatic mechanisms such as synaptic scaling54–56. Follow-
ing the presentation of Nθ stimuli, we implemented a divisive nor-
malizationwhich preserves the total sum of incoming weightswij onto
each postsynaptic neuron i:

wij  
wijP
jwij

ð12Þ

Given that homeostatic plasticity is typically reported to occur on
a timescale of hours to days55, we assumed that this normalization
occurs once per day. Assuming each pyramidal neuron in the mouse
visual cortex experiences approximately one orientation stimulus
per second, we took Nθ to be (60 seconds) × (60minutes) × (12 waking
hours) = 43,200 stimuli per day. We then scaled the overall learning
rate ϵ to match the mean drift magnitude to that observed over the
experimental time frame.

Weight initialization. The population of N orientation-selective pre-
synaptic neurons had Gaussian-shaped tuning curves uniformly dis-
tributed across the space of oriented stimuli from −90° to 90°. The
input weights to the N postsynaptic neurons were initialized as
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Gaussians across the space of orientations, such that each post-
synaptic neuron inherited an initial tuning curve from its presynaptic
partners (Supplementary Fig. 5a). The drift rate of amodel neuron was
correlated with the width of its initial tuning curve (Supplementary
Fig. 5d). In the experimental data, the drift magnitudes were approxi-
mately log-normally distributed across neurons. To match this varia-
bility seen in drift magnitude, we, therefore, initialized the
postsynaptic tuning curves with widths sampled from a log-normal
distribution (Supplementary Fig. 5a, b).

PO and drift metrics. The PO of neurons in the network model was
calculated as follows: a series of orientation stimuli from −90° to
90° were presented to the network, and the PO of each neuron
was defined as the orientation that elicits the highest firing rate in
the postsynaptic neurons. Weights were frozen during this test
protocol and were not subject to synaptic plasticity. Drift mag-
nitude and convergence were defined as in the experimental
analysis, and drift rate was defined as the absolute circular dis-
tance between POs on consecutive days.

Visual experience conditions. To simulate the experience of a mouse
during baseline visual conditions, we repeatedly stimulated the net-
work with stimuli drawn uniformly between −90° to 90°. To mimic
orientation deprivation conditions, we stimulated the network instead
with a constant experienced orientation θ̂ (value selected randomly).
For the deprivation condition, as in the experiment, the network was
either stimulated constantly with the same orientation for 28 days, or
interrupted every 7days by a testprotocol inwhich a repeated series of
stimuli across the entire range of −90° to 90° were randomly pre-
sented. Weights were plastic and continuously updated by the exact
same learning rule during both baseline and deprivation conditions,
unless otherwise stated (Fig. 3h, j, k; Supplementary Fig. 6a, b). For all
experiments, a shortwarm-up period (2–3 days) of baseline conditions
was run to allow the weights to settle to a constant distribution before
measurement began.

Ratio of Hebbian plasticity to synaptic volatility contribution. Net-
work parameters (amplitude and offset of presynaptic firing rates,
overall weight scaling) were set such that when k = 1, the mean values
ofHij and ξ across neurons were equivalent under baseline conditions.
To modulate the relative strength of the Hebbian component with
respect to synaptic volatility (Fig. 3h), we therefore scaled k from 0 to
1. To determine the individual contributions of the Hebbian and ran-
dom component to the drift (Fig. 3j, k), we removed each component
respectively.

Recovery fromdeprivation. To test the recovery of orientation tuning
in the network after deprivation (Fig. 3l), we simulated Nd days of
deprivation conditions, followed by Nb days of baseline conditions,
maintaining the sameparameters throughout. The total directional PO
changes undergone during the deprivation period were then com-
pared to those during the following baseline period.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data are available at https://gin.g-node.org/Joel-Bauer/
orientation_tuning_drift. Source data are provided with this paper.

Code availability
The code is available at https://github.com/Joel-Bauer/orientation_
tuning_drift and https://github.com/betsyherbert/bauer-lewin-drift-
2024/tree/main.
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