
Article https://doi.org/10.1038/s41467-024-53452-6

Multi-trait association analysis reveals
shared genetic loci between Alzheimer’s
disease and cardiovascular traits

Fotios Koskeridis 1,2,3 , Nurun Fancy 3,4, Pei Fang Tan5,6, Devendra Meena1,
Evangelos Evangelou1,2, Paul Elliott 1,3, Dennis Wang 5,6,7,
Paul M. Matthews 3,4, Abbas Dehghan 1,3 & Ioanna Tzoulaki 1,3,8

Several cardiovascular traits and diseases co-occur with Alzheimer’s disease.
We mapped their shared genetic architecture using multi-trait genome-wide
association studies. Subsequent fine-mapping and colocalisation highlighted
16 genetic loci associated with both Alzheimer’s and cardiovascular diseases.
We prioritised rs11786896, which colocalised with Alzheimer’s disease, atrial
fibrillation and expression of PLEC in the heart left ventricle, and rs7529220,
which colocalised with Alzheimer’s disease, atrial fibrillation and expression of
C1Q family genes. Single-cell RNA-sequencing data, co-expressionnetwork and
protein-protein interaction analyses provided evidence for different mechan-
isms of PLEC, which is upregulated in left ventricular endothelium and cardi-
omyocytes with heart failure and in brain astrocytes with Alzheimer’s disease.
Similar common mechanisms are implicated for C1Q in heart macrophages
with heart failure and in brain microglia with Alzheimer’s disease. These find-
ings highlight inflammatory and pleomorphic risk determinants for the co-
occurrence of Alzheimer’s and cardiovascular diseases and suggest PLEC, C1Q
and their interacting proteins as potential therapeutic targets.

Alzheimer’s disease (AD), the most common cause of dementia, is a
leading health challenge for our times. More than 55 million people
worldwide were estimated to be living with dementia in 2020 with
60% -70% of them being AD cases1,2. AD has been considered a brain-
specific disease whose primary pathology is confined to the brain.
However, accumulating evidence suggests mechanistic links
between awide range of cardiovascular (CV) abnormalities and AD3–5.
Epidemiological studies and experimental data have shown con-
sistent associations between manifestations of clinical CV diseases
such as coronary artery disease (CAD), atrial fibrillation (AF) and
stroke, with higher risk of AD6–8. Several hypotheses have been

proposed to explain this. Indeed, atherosclerosis, the main under-
lying cause of CV diseases, also has profound consequences on the
cerebrovascular system. These include reduced blood flow and
potential vascular damage in the brain, impaired cerebral perfusion,
and associations with inflammation and oxidative stress, all of which
are factors that can contribute to neurodegenerative pathology and
increase the risk of AD9. Beyond atherosclerosis, other hemodynamic
effects associated with hypertension, arteriosclerosis and sub-
sequent aortic stiffening have been associated with cerebrovascular
damage and cognitive function, potentially accelerating the onset
and progression of AD10.
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AD and CV traits also share common genetic determinants11.
Genome-wide association studies (GWAS) have identified genetic risk
loci for both AD and pathological CV traits and identified common
genetic factors that may refer to the shared underlying pathways. One
example of such genes is apolipoprotein E (APOE), which encodes a
lipid-transport protein involved in cholesterolmetabolism12, that is the
strongest genetic risk factor for AD13,14 and a risk factor for adverse CV
traits, including CAD15 and myocardial infarction16. Nonetheless, the
precise mechanisms and molecular processes that modulate the AD
and CV link remain elusive. A deeper understanding of their shared
genetic architecturewill provide insights into potentially common and
distinct aetiologies of these conditions. Identifying shared targets and
mechanisms that confer functional effects could lead to the discovery
of interventions that address both neurodegenerative andCVdiseases.

Here, we further investigated the commonalities in the genetic
architecture of AD and CV traits and identified potential pleiotropic
loci affecting multiple traits aiming to define common targets for
therapeutic modulation. We explored a wide range of CV abnormal-
ities and two common main risk factors, atherosclerosis and blood
pressure (BP), proposed to underlie both CV and AD, to investigate
differentmolecularpathways thatmay link differentCVmanifestations
to AD.Weperformed a large-scalemulti-trait GWAS analysis on AD and
CV traits, followed by genetic colocalisation analysis to highlight can-
didate pleiotropic genes and their tissue sites of action. To further
characterise biological pathways involved in both diseases, we lever-
aged data from single-cell RNA-sequence for differential gene
expression with disease to explore relevant gene co-expression net-
works and protein-protein interactions in the brain and CV tissues. A
schematic overview of the study is presented in Fig. 1.

Results
Multi-trait genetic association analysis identifies 5 novel AD loci
and 9 shared loci between AD and CV traits
We performed five pairwise multi-trait analyses of GWAS (MTAG)17 on
AD and CAD, AF, stroke, carotid intima-media thickness (cIMT), and
systolic and diastolic blood pressure (SBP, DBP). We examined the

bivariate genetic correlation between AD and the examined CV traits
(Supplementary Table 1) and visually illustrated the MTAG results
alongside those from the original GWAS (Supplementary Fig. 1-6).
Across all pairwiseMTAG analyses, we identified 27 unique genetic loci
associated with AD at genome-wide significance (GWS) level
(P < 5 × 10−8) corresponding to 114 unique single-nucleotide poly-
morphisms (SNPs) (Supplementary Data 1). Out of the 27 AD loci, 5
were novel (not within ±500 kilobases (kb) of the previously knownAD
loci) and among them rs73069394 (ULK4) displayed the strongest
association (Table 1).

To further validate the associations of the novel AD loci, we
applied summary data-based Mendelian randomisation (SMR)18 and
heterogeneity in dependent instruments (HEIDI) using gene expres-
sion data from relevant brain tissues. SMR analysis suggested a
potentially causal association between ULK4 expression in the hippo-
campus and AD risk (βSMR = 0.04, PSMR = 3.4 × 10−10

, PHEIDI =0.22). SMR
was not possible for the remaining loci due to unavailability of gene
expression data.

Furthermore, we found 1222 top signals associated with different
CV traits at GWS level in 740 genetic loci (Supplementary Data 2). Of
these, 13 novel loci were highlighted for CAD (N = 4), cIMT (N = 8) and
stroke (N = 1) (Table 1). Overall, 15 of the unique AD SNPs (9 loci) were
additionally associated at GWS level with at least one of the examined
CV traits (Supplementary Data 3).

A colocalisation analysis defines genetic loci shared by AD and
different CV traits
Using the Hypothesis Prioritisation in multi-trait Colocalization
(HyPrColoc)19methodon all 767MTAG-reported loci (27 AD + 740CV),
we identified 21 loci which colocalised between AD and CV traits with a
posterior probability (PP) > 0.5 (Fig. 2, Supplementary Data 4). Most
colocalised loci were found either between AD and AF (7 loci)
or between AD and DBP (7 loci). Substantial evidence for
colocalisation was observed for a locus at chr8:124,608,614 ± 200 kb
(RN7SKP155) associated with AD and cIMT (PP = 1) and a
locus at chr11:47,391,948 ± 200 kb (SPI1) associated with AD and DBP

Fig. 1 | Study design schematic overview. AD Alzheimer’s disease, AF atrial fibrillation, CAD coronary artery disease, cIMT carotid intima media thickness, BP blood
pressure, CV cardiovascular, HF heart failure. Created in BioRender. Wang, D. (2023) BioRender.com/q29l509.
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(PP = 0.95). Among the 21 loci with evidence for colocalisation, there
were three loci for which a single candidate causal variant explained a
large proportion of the association: rs11786896 (mapped in PLEC;
colocalised with AD-AF; PP =0.97; 86% of PP explained by SNP),
rs7529220 (mapped in HSPG2; colocalised with AD-AF; PP = 1; 90% of
PP explained by SNP) and rs429358 (mapped in APOE; colocalisedwith
AD-CAD; PP =0.57; 93% of PP explained by SNP). Although rs11786896
in PLEC is not classified as a novel AD locus due to its proximity to a
previously reported variant (rs34173062 in SHARPIN), the two loci are
in linkage equilibrium (r2 =0.006) and the regional plots suggest it
likely represents a different independent signal (SupplementaryFig. 7).

Gene expression colocalisation analysis prioritises causal genes
shared by AD and CV traits
To identify potential pleiotropic causal genes for the colocalised loci,
we tested the colocalisation of AD and CV traits with the expression of
nearby genes in 48 tissues using expression quantitative trait loci
(eQTL) data from Genotype-Tissue Expression (GTEx) in the 21 colo-
calised loci.We found thatAD and at least oneCV trait colocalised in 16
lociwith expression of one ormore genes in the same tissue, for a total
of 53 associationswith 43 genes (Supplementary Fig. 8, Supplementary
Data 5). Of these, 20 associations were found for AF (in 6 loci with 17
genes), 22 for DBP (6 loci with 16 genes), 3 for stroke (1 locus with 3
genes) and 8 for cIMT (3 loci with 6 genes).

In two loci, a single candidate causal variant explained the colo-
calisation of AD, CV trait and tissue-specific gene expression:
rs11786896 (PLEC) and rs7529220 (HSPG2). The intronic variant
rs11786896 (PLEC) explained the colocalisation of AD and AF with
expression levels of PLEC in the cardiac left ventricle (PP = 0.99, %PP
explained by SNP = 99%) and skeletal muscle (PP = 0.92, %PP explained
by SNP = 98%) (Fig. 3). rs11786896was associatedwith increased riskof
AD (Odds Ratio, OR = 1.02, P = 5 × 10−8), increased risk of AF (OR = 1.02,
P = 1.1 × 10−6) and lower expression of PLEC in cardiac left ventricle

(Beta = −0.71, P = 5.9 × 10−13), as well as in skeletal muscle (Beta = −0.3,
P = 7.7 × 10−7).

The intergenic variant rs7529220 (HSPG2) explained the coloca-
lisation of AD and AF with expression levels of C1QA (PP =0.85,
%PP = 82%), C1QB (PP =0.83, %PP = 97%) and C1QC (PP =0.61,
%PP = 99%) in breast mammary tissue. The variant was associated with
higher risk of AD (OR = 1.01, P = 1.7 × 10−8), higher risk of AF (OR = 1.01,
P = 2.7 × 10−10) and increased expression of C1QA (Beta = 0.19,
P = 2.4 × 10−4), C1QB (Beta = 0.17, P = 2.6 × 10−4), and C1QC (Beta = 0.15,
P = 8.1 × 10−4) in mammary tissue.

PLEC and C1Q are differentially expressed in the left ventricle
with heart failure
Defining the cells inwhich target genes are expressed anddirections of
expression associated with disease risk and with disease is important
for predicting the directions of effect for potential therapeutic mod-
ulation. Therefore, we tested the expression patterns of the 43 genes
indicated by the colocalisation analysis across cell types in single-cell
RNA from the heart to discover whether differences in differential
expression with disease were consistent with those predicted for dis-
ease risk. PLEC was expressed in all cell types found in the cardiac left
ventricle, while C1Q was expressed only in macrophages (Fig. 4A, B).
PLEC was differentially expressed with heart failure (HF) relative to
healthy controls with upregulated expression in the endothelium (log2
fold change, log2FC =0.40, P = 0.015) but downregulated in macro-
phages (log2FC = −0.59, P = 6.7 × 10−5). There was only a trend for dif-
ferential expression with HF in cardiomyocytes (log2FC =0.91,
P =0.06). All C1Q associated genes were downregulated in cardiac
macrophages (C1QA, log2FC = −1.39, P = 1 × 10−6; C1QB, log2FC = −1.34,
P = 3.5 × 10−5; C1QC, log2FC = −1.28, P = 1.4 × 10−4).

We explored differential expression with HF further by con-
structing high dimensional weighted gene co-expression networks
(WGCN) for PLEC and C1Q to identify modules of highly correlated

Table 1 | Novel genetic loci associated with the examined traits in a genome-wide significance level (two-sided P < 5 × 10-8)

SNP Chr Pos EA OA MAF Beta P Gene

Alzheimer’s disease

rs7529220 1 22282619 T C 0.139 −0.01 1.7 × 10-8 HSPG2

rs11692604 2 19947507 C T 0.483 0.01 4.1 × 10-8 AC019055.1

rs73069394 3 41787233 A G 0.188 0.03 1.5 × 10-29 ULK4

rs77399788 5 123003001 G A 0.058 0.03 1.8 × 10-10 KRT18P16

rs56365761 19 39148103 G A 0.436 −0.01 4.6 × 10-8 ACTN4

Coronary artery disease

rs2552527 2 218688596 G T 0.409 −0.02 2.0 × 10-8 TNS1

rs748431 3 14928077 G T 0.395 0.02 3.5 × 10-8 FGD5

rs11723436 4 120901336 G A 0.327 0.02 2.7 × 10-8 RP11-700N1.1

rs15052 19 41813375 C T 0.158 0.02 3.6 × 10-8 HNRNPUL1:TGFB1

Carotid intima-media thickness

rs10064683 5 95567760 A G 0.352 0.02 1.3 × 10-8 CTD-2337A12.1

rs6904596 6 27491299 A G 0.082 0.04 1.2 × 10-8 HNRNPA1P1

rs56118607 9 127898024 A G 0.124 0.03 3.8 × 10-8 SCAI

rs1887182 10 97013497 G T 0.467 0.02 1.0 × 10-8 PDLIM1

rs11029956 11 27355804 A G 0.340 0.02 7.4 × 10-9 CCDC34

rs12370774 12 106510413 T C 0.097 −0.04 3.4 × 10-8 NUAK1

rs76064118 19 2235284 T C 0.053 0.06 4.8 × 10-8 PLEKHJ1

rs1034565 22 19984211 T C 0.284 0.03 9.8 × 10-9 ARVCF

Stroke

rs2284665 10 124226630 T G 0.197 −0.01 4.4 × 10−8 HTRA1

SNP Single-nucleotide polymorphism; Chr Chromosome; Pos Position; EA Effect allele; OA Other allele; MAF Minor allele frequency; Beta Effect size estimate; P Two-sided P-value; Gene
Mapped gene.
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genes across cell types. We generated 12 gene co-expression modules
in cardiac endothelial cells, 14 in cardiomyocytes and 6 in macro-
phages (Supplementary Data 6). A differential module eigengene
analysis indicated that the module including PLEC was upregulated in
cardiac vascular endothelial cells and cardiomyocytes in HF cases
relative to the healthy controls and downregulated in macrophages
with dilated cardiomyopathy (dCM) cases relative to healthy controls
(Supplementary Data 7). The C1Q-containing module also was down-
regulated in cardiomyocytes in HF cases relative to healthy controls
and downregulated in macrophages in dCM cases relative to healthy
controls. Gene-set enrichments for biological processes defined the
pathways most highly enriched in PLEC-containing modules (Supple-
mentary Data 8), which included the “vascular endothelial growth
factor receptor-2 signalling” and “endothelium development” path-
ways in endothelial cells (Fig. 4C) and many pathways related to
mitochondrial oxidative metabolism in cardiomyocytes (Supplemen-
tary Fig. 9). In macrophages, the module including C1Q genes was
enriched for “complement activation” and “synapse pruning” path-
ways, among others (Supplementary Fig. 10, Supplementary Data 9).

PLEC and C1Q interactomes are enriched in cardiomyocytes,
cardiac vascular endothelial cells and macrophages
To gain insights into the potential functional roles of proteins, we
performed cell-specific protein-protein interaction (PPI) analyses on
the set of colocalised candidate genes by constructing their protein
interactomes across cell types of human cardiovascular tissue (Sup-
plementary Data 10 and 11). The PLEC interactome was upregulated in

a pathway related to “ribosomal small subunit assembly” in endothelial
cells (Fig. 4D) and upregulated in a “SRP-dependent co-translational
protein targeting to membrane” pathway in cardiomyocytes (Supple-
mentary Fig. 11). Additionally, an interactome containing both PLEC
and NDUFS3 was enriched with HF and was upregulated in the path-
ways related to “aerobic electron transport chain” in endothelial cells
(Fig. 4D) and “acetyl-CoA biosynthetic process from pyruvate” and
“energy coupled proton transport” in cardiomyocytes (Supplementary
Fig. 11). In macrophages, the PLEC-NDUFS3 interactome in HF was
enriched for “mitochondria electron transport of cytochrome c to
oxygen” while C1Q interactome was enriched for “cell junction dis-
assembly” (Supplementary Fig. 12).

PLEC is differentially expressed in brain astrocytes and is
upregulated in AD
We also tested the expression of the 43 genes from our colocalisation
analysis across different cell types in post-mortem human brain sam-
ples.PLECwas highly expressed in astrocytes and (to a lesser degree) in
neurons. C1Q genes were expressed primarily in microglia (Fig. 5A, B).
PLEC was significantly upregulated in astrocytes from AD donors
relative to non-diseased control donors (log2FC = 1.01, P =0.003). C1Q
genes were not significantly differentially expressed in microglia but
consistently showed lower mean expression with AD (C1QA:
log2FC= −0.46, P =0.23; C1QB: log2FC = −0.5, P =0.3; C1QC:
log2FC=0.14, P =0.9).

We explored the cell-specific differential expression of these
and co-expressed genes further withWGCNA, which identified 14 gene

Alzheimer’s disease
Atrial fibrilla�on
Coronary artery disease
Caro�d in�ma -media thickness
Stroke
Systolic blood pressure
Diastolic blood pressure

Fig. 2 | Circularfigure visualising regionalplots on the colocalised loci between
Alzheimer’s disease (AD) and cardiovascular traits (CV). The figure presents the
distribution of P-values (–log10P) from MTAG with inner orientation (P-values are

derived from two-sided statistical tests). The annotations show the mapped genes
of the AD/CV top lead SNPs on the colocalised loci.
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co-expression modules in astrocytes and 8 in microglia (Supplemen-
tary Data 12). Differential module eigengene analyses showed that
the PLEC-containing module was upregulated in astrocytes and
the C1Q-containing module was downregulated in microglia (Supple-
mentary Data 13). Gene-set enrichment for biological processes iden-
tified 25 associated pathways for the PLEC-containing module
in astrocytes including “neuron projection morphogenesis” and
“extracellular structure organisation” and 25 associated pathways for
the C1Q genemodule inmicroglia including the “positive regulation of
intrinsic apoptotic signalling” (Supplementary Fig. 13, Supplementary
Data 14).

We further explored the discordant directions in C1Q expression
between eQTLs and post-mortem brain single nuclei data in relation
to the beta-amyloid pathology load in microglia. For subjects with
lower beta-amyloid load in the brain, we observed an increasing
expression of C1Q in concordance with eQTL but subjects with higher
beta-amyloid load showed decreased expression (Supplemen-
tary Fig. 14).

PLEC, NDUFS3 and C1Q interactomes are enriched in astrocytes
and microglia
A PPI analysis on candidate gene networks highlighted that the PLEC-
NDUFS3 interactome alsowas enriched in both astrocytes andmicroglia
in AD cases compared to controls (Supplementary Data 10, 15 and 16).
Associated functional pathways were enriched for the “aerobic electron
transport chain” and “SRP−dependent co-translational protein targeting
tomembrane”pathways in the astrocytes (Fig. 5D). Inmicroglia, the C1Q
interactome was enriched in “SRP−dependent co-translational protein
targeting to membrane” pathway (Supplementary Fig. 15).

Discussion
We adopted a comprehensive approach to understand the co-
occurrence between AD and various CV diseases and traits based on
several multi-trait GWAS to characterise their shared genetic archi-
tecture. Convergent evidence from colocalisation between AD, AF and
eQTLs prioritised two genetic regions that each included a single
candidate causal variant (rs11786896 which was an eQTL for PLEC and
rs7529220 which was an eQTL for C1QA, C1QB, and C1QC) shared
between AD and AF. Single-cell RNA-sequence data, co-expression
network and protein-protein interaction analyses together were con-
sistent in showing that PLEC is upregulated in left ventricular endo-
thelium and cardiomyocytes with HF and in brain astrocytes with AD.
By contrast, while C1Q genes are predicted to be upregulated with
greater disease risk in cardiac macrophages for HF and in brain
microglia for AD, we found opposite directions of difference with
disease for both. We explored differences in the direction of changes
from early disease (low beta-amyloid pathology load) to late (high
beta-amyloid pathology load) for microglia and found the congruence
with directions predicted for disease risk in early disease that was lost
with in later disease progression. Our findings provide new insights
into genetic pleiotropic effects and potential shared mechanisms
causally related to both AD and CV traits.

Our study highlighted 5 not previously reported AD loci including
SNPs located in or near HSPG2, AC019055.1, ULK4, KRT18P16 and
ACTN4. Of them, the intronic variant rs73069394 (ULK4) showed the
strongest association with AD and was also GWS associated with DBP.
The locus did not show evidence for colocalisation between AD and
DBP suggesting this variant is not likely the causal one for both traits.
Apart from DBP, GWAS studies have shown associations between this

Fig. 3 | Regional plot on the colocalised locus of candidate causal variant
rs11786896 (mapped in PLEC) for Alzheimer’s disease (bottom), atrial fibrilla-
tion (middle) and the expressionquantitative trait loci (top) for the associated

tissues. The x-axis presents the chromosomal positions of single-nucleotide
polymorphisms, while the y-axis shows the negative logarithm to base 10 of P-
values (–log10P) from two-sided statistical tests.
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locus and schizophrenia and bipolar disorder20. The role of theULK4 in
relation to neurodegeneration is little studied but the gene function
shows biological plausibility to AD. ULK4 protein is involved in the
regulation of autophagy and plays multiple roles in brain function
including neuronal growth, endocytosis and myelination which are
pathways implicated to AD pathology20,21. Here, we also provided
additional evidence from SMR analysis supporting a potentially causal
association between expression levels of ULK4 and AD.

Out of the several CV traits and diseases examined with AD, the
largest number of pleiotropic signals with ADwas observed for AF and
BP highlighting the importance of pathways related to these CV traits
in explaining comorbidities with AD. Numerous observational studies,
provide growing evidence that BP andAF are associatedwith cognitive
impairment, risk of AD and other dementias22,23. The suggested
mechanistic linksbetween these traits andAD involvea combinationof
cerebrovascular damage, neuroinflammation, amyloid-beta accumu-
lation, oxidative stress, and endothelial dysfunction24,25. However, it is
unclear whether the diseases have a shared pathophysiology or whe-
ther the relationship arises as downstream consequences of BP and AF
(e.g., stroke).

Here we provide evidence suggesting a shared genetic determi-
nant that may contribute to the pathophysiology of AF and AD. The
colocalised intronic variant rs11786896 within the plectin gene (PLEC)
was associated with lower expression of PLEC in the cardiac left ven-
tricle (and skeletal muscle) and increased the risk of both AD and AF.
Furthermore, PLEC was upregulated in left ventricular endothelium
and cardiomyocytes in HF cases and in brain astrocytes in AD cases. A
low-frequency missense variant in PLEC has been previously

associated with atrial fibrillation in a whole-genome sequencing data26

whereas another missense variant has been linked to structural
brain connectivity27. The intronic variant highlighted in this analysis
has been previously associated with right ventricular structure and
function28 but has not been identified in GWAS studies as an AD or AF
signal. PLEC is a member of a protein family, named plakins, with
a crucial structural role in the cytoskeleton influencing cell archi-
tecture and tissue integrity and a partially functional role in the
assembly, positioning, and regulation of signalling complexes29,30.
Previous studies of human tissues or preclinical models provide
independent evidence for an association of plectin with diseases
including AD and AF26,31.

Plectin is highly expressed in the central nervous system, espe-
cially at the interfaces between glia and pial cells and between glia and
endothelial cells and is thought to be important to blood-brain barrier
and pial surface integrity32. Plectin deficiency in mice has been asso-
ciated with diminished learning capabilities and reduced long‐term
memory compared to wild-type littermates33. Here we provide evi-
dence that the risk of AD may be affected via functions of plectin in
astrocytes34. Astrocytes playmultiple roles, central to the pathology of
AD, including metabolic support for neurons, modulation of brain
microvascular function and, through activities associatedwith thoseof
microglia, inflammatory responses34,35. We hypothesise that these
functional roles are mediated in part by interactions of plectin with
intermediate filaments (IFs),microtubules and actinfilaments34. IFs are
important structural components of the cytoskeleton with crucial
roles in synaptic activity, neurogenesis and repair after brain injury36.
Differences in expression of plectin modulate neuronal function and
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Fig. 4 | Single-nuclei transcriptomes of cardiac tissue for genes increasing the
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vesicular trafficking generally and interactions with tau suggest
potential roles specific to AD33,37,38.

The role of PLEC in AF has been largely hypothesised to act via
structural effects on the heart and cause electrophysiological
abnormalities26. Here, we also show evidence for upregulation of PLEC
in cardiomyocytes of HF patients. Therefore, in accordance with the
hypothesised mechanisms linking PLEC to AD above, PLEC may play
related roles in cardiomyocytes for assembling and mobilising the
intermediate filaments and their networks. These effects further
modulate contractile function in cardiomyocytes and inflammatory
responses in macrophages which may further contribute to AF39.

Another colocalised variant between AD and AF, the intergenic
rs7529220, which is located 19 k upstream from Heparan Sulfate Pro-
teoglycan 2 (HSPG2) and 21 k downstream from Chymotrypsin Like
Elastase 3B (CELA3B), was associated with increased risk of AD and AF
and higher expression of three genes of the Complement Component
1, Q Subcomponent (C1Q) family (C1QA, C1QB, C1QC) in breast mam-
mary tissue (and, by inference, in brain vasculature) and is a previously
unreported locus for AD. The variant is located 680 kb downstream of
C1Q genes. The complement system plays a central role in synaptic
remodelling in the brain and in cellular damage response more gen-
erally in the body40,41. We hypothesise that greater expression of C1Q
may lead to higher activity of the complement system which in turn
may potentiate synapse loss in early AD42. Similarly, C1Q has roles in
the genesis of atherosclerotic plaques43 and in the regulation of early

stages of inflammatory responses to the cardiomyocyte injury asso-
ciated with a range of cardiac traits44.

The variant rs429358, located within APOE, showed evidence for
colocalisation between AD and CAD. However, further investigation
using eQTL could not prioritise any shared gene within the locus
expressed in the examined tissues. Given APOE’s well-established role
in AD and its potential involvement in other CV traits, including CAD45,
it is plausible that the locus affects the two traits independently
through different pathways (horizontal pleiotropy) or through a
shared gene expressed in tissues other than those examined in
our study.

Our study had several strengths. First, we secured high statistical
power for our study by including GWAS with substantial sample sizes
ranging from 185,000 to 1,000,000 participants and we boosted the
power even higher by performing suitable multivariate methods.
Second,we combined advancedmethodsof genetic epidemiology and
basic sciences and sought to provide supporting evidence from a
variety of data. Third, exploring a wide spectrum of CV diseases pair-
wise enabled a comprehensive investigation into the diverse shared
mechanisms underlying the relationship between different manifes-
tations of CV conditions and AD.

However, a number of limitations alsomust be acknowledged.We
restricted our analyses to a population of European ancestry. The lack
of genetic diversity may have hampered the possibility of detecting
other relevant variants. Additionally, we did not investigate a
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considerable portion of the genetic predisposition coming from rare
variants (MAF < 1%) as we excluded them from our analyses. This
exclusion is a restriction of theMTAGmethod, in order tomitigate the
risk of false-positive findings and biased results. Another limitation of
using MTAG is that genetic variants that are not present in at least one
GWAS dataset of each AD-CV pair were excluded from the corre-
sponding pairwise MTAG analysis, and therefore some variants tested
in one pairwise MTAG may not be tested in another. GWAS compares
the cases we are studying with controls, but due to comorbidity, the
number of other diseases might be higher in cases than in controls. As
we used summary statistics without access to individual-level data, we
couldn’t examineor address this heterogeneity. Despite this limitation,
the identified shared genes remain valid and important for under-
standing their genetic connections. Moreover, we used statistical
methods to detect pleiotropy, and therefore considered a genetic
locus pleiotropic if it was statistically significantly associated with two
or more phenotypes. However, this approach for identification of
pleiotropic genes may not always highlight shared biological path-
ways, as the identified genes could affect the traits independently via
different pathways (horizontal pleiotropy), or they could even be
expressed in different tissues in response to different signals46,47. The
GWAS for AD combined clinically diagnosed cases of AD with AD-
proxy status (inferred based on whether the parent was diagnosed
with dementia). The correlation between the GWAS with and without
the ‘AD-by-proxy’ cases was high13 adding to the validity of this
approach. Nonetheless, the inclusion of individuals with parental AD
diagnoses in the original GWAS may have introduced greater hetero-
geneity and increased probability of misclassification, suggesting that
some of our observed associations might be misestimated or influ-
enced by other types of dementia. Considering the systemic nature of
AD, which encompasses multiple pathways and various tissues, our
study conducted a thorough investigation across all tissues, assuming
correlations amongmany eQTLs across different tissues. However, it is
important to acknowledge that some eQTLs from tissues not directly
linked to ADorCV traits could represent false positive associations. To
mitigate this, we validated our findings using single-cell and single-
nuclei data obtained frombrain tissue samples of AD cases and cardiac
tissue samples from individuals with HF. Furthermore, due to a limited
number of cells for specific cell types, we had to combine single-cell
data from multiple samples. We focused on tissue samples that were
already enriched for cardiomyocytes, endothelium, andmacrophages.
Moreover, the expression for some candidate genes in our data was
limited and thus additional sequencing data and reads are needed to
investigate them further. Additional RNA sequencing data of different
AD and CV conditions would probably be even more informative.
Finally, epidemiological data frequently encounter challenges in clar-
ifying pathogenic mechanisms. Although we provided evidence from
mechanistic experiments, the exact biological processes involved
cannot be inferred. Furtherwork is needed to validate our findings and
the suggested disease pathways.

In conclusion, we performed a multi-trait analysis on AD and CV
traits and a subsequent colocalisation analysis detecting 16 shared
genetic loci and furtherprioritising twoshared causal variants between
the aforementioned traits. Our findings define shared mechanisms for
AD and different CV diseases. The complement system has been
explored as a target for preventive or disease-modifying therapies in
CV disease48 and AD49. Our work suggests that plectin or members of
its interactome could offer new and potentially promising targets for
preventive and therapeutic medicines with benefits across these
common comorbid disorders.

Methods
Study population
We restricted our study to a population of European ancestry.We used
the summary statistics from seven GWAS on the following diseases:

AD13, AF50, CAD51, cIMT (see Supplementary Methods), stroke52, SBP53,
and DBP53. We selected these datasets based on the sample size (with
preference for larger GWAS), the quality of the phenotypic data, the
date of publication (favouring more recent studies), and their rele-
vance to our research questions. Supplementary Table 2 lists basic
characteristics of all included GWAS datasets.

Genotypic quality control
The seven initial datasets contained genotyped and imputed SNPs
ranging from 7 to 34million SNPs. We included in the analysis only
SNPs that were present in both datasets (AD and the examined CV
trait). Furthermore, we excluded all insertions, deletions, and rare
variants (minor allele frequency; MAF <0.01), variants with sample
sizes < 2/3 of the 90th percentile and palindromic SNPs. Finally, more
than 5.75million SNPs were included in the analysis.

Multi-trait association analysis
We performed five bivariate analyses on AD and a different each time
CV trait (1. AF, 2. CAD, 3. cIMT, 4. Stroke, 5. SBP-DBP) usingMTAG17. We
calculated the genetic correlation between the traits and further cor-
rected our data for sample overlap using bivariate linkage dis-
equilibrium (LD) score regression as implemented in MTAG. Each
MTAG analysis generated distinct trait-specific datasets (11 in total: 5
with AD plus 6 with CV traits) containing the trait-specific effect esti-
mates for the included SNPs after leveraging for genetic correlation of
the examined traits. As a result, the summary statistics fromMTAG can
be interpreted as similar to those from a univariate single-trait GWAS17.

Functional mapping and annotation
We used Functional Mapping and Annotation of GWAS (FUMA)54 to
functionally analyse all the generated summary results fromMTAG. All
the genome-wide significant (GWS) SNPs (P < 5 × 10−8) were initially
clumped (r2 <0.6) to determine the coordinates of the genomic risk
loci and then clumped again (r2 < 0.1) to define independent signals.
SNPs in pairwise LD at 0.1 ≤ r2 <0.6 or SNPs located closer than 500 kb
were assigned to the same LD block. SNPs that survived the second
clumping were the independent signals. Independent SNPs with the
smallest P-value in each LD block were defined as the top signals while
the remaining were secondary signals. We further performed annota-
tion and gene prioritisation analysis including all SNPs that survived
the first clumping. We used the European sample of 1000 Genome
Project Phase 355 to calculate pairwise LD between SNPs. SNPs were
positionally mapped to their nearest protein-coding genes (Ensembl
build v92).

To ensure the robustness of our findings, we considered only
MTAG loci if the respective top variants were also associated with the
examined trait (P <0.01) in the corresponding original GWAS with a
concordant direction of effect (between MTAG and the original
GWAS). To identify the unique AD top and secondary independent
signals for AD, we gathered independent signals from all pairwise
MTAG analyses and excluded duplicate signals or proxies (within
±500 kb or LD r2 >0.1), keeping the strongest signal with the smallest
P-value.

Novel loci definition and replication
A signal indicated by MTAG was considered novel if its top variant
achieved genome-wide significance (P < 5 × 10−8) in the MTAG results
and was also significant (P < 0.01) in the included original univariate
GWAS with a concordant direction of effect (between MTAG and the
original GWAS). Additionally, the top variant should not be located
within ±500 kb or in LD (r2 > 0.1) with previously reported loci. For AD,
in addition to the included GWAS study13, novel loci were compared to
two previously published key GWAS studies56,57.

We applied SMR18 and HEIDI analysis to investigate whether
expressions of the novel AD MTAG-identified genes in relevant brain
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tissues were causally associated with AD risk. SMR was performed by
integrating summaryeQTLdata fromGTEx version 858 in hippocampus
and cortex (SNPs within 1Mb of the transcription start site with
P < 1 × 10−5) and AD summary statistics from MTAG.

Trait-trait and trait-eQTL colocalisation analysis
We used HyPrColoc R package19 to perform colocalisation analysis.
HyPrColoc is a Bayesian divisive clustering algorithm for identifying
shared genetic associations between traits in a genomic region using
GWAS summary statistics. We performed this method to identify
colocalised loci between AD andCV traits and prioritise causal variants
explaining the shared association.

We performed a trait-trait colocalisation analysis for each top
signal indicated fromMTAG in a region ±200 kb from the top SNP. We
considered variant-specific priors for our analyses, which assumes that
the probability of a variant being colocalised with a set of traits
decreases as the number of the set of traits increases. The variant-
specific priors model requires the specification of two priors. We
specified the prior probability that a variant is associated with a single
trait only at P = 1 × 10−4 and a conditional prior probability that a variant
is associated with an additional trait given that it is already associated
with another trait at Pc = 0.02.

A PP > 0.5 was considered adequate evidence that the examined
traits colocalise in the locus. We divided the evidence of colocalisation
into two categories: (1) considerable evidence (0.5 < PP<0.75) and (2)
strong evidence (PP≥0.75). To deal with spurious pleiotropy, we
restricted the analyses to regionswith at least one SNPwith P< 5× 10−4 in
the respective univariate GWAS. Additionally, we visually inspected the
colocalised loci by constructing suitable regional plots. The variants
explaining at least 80% of the shared association were considered can-
didate causal. To limit the probability of false positive findings, we con-
sideredas causal thevariants thatwereassociated (P<0.01)withbothAD
and the respective CV trait in the respective included univariate GWAS.

For the loci found to colocalise in the trait-trait colocalisation
analysis, we further performed trait-expression quantitative trait loci
(eQTL) colocalisation using AD, CV trait and eQTL from 48 tissues,
retrieved from Genotype-Tissue Expression version 7 (GTEx v7),
implementing the sameparameters and approach asdescribed in trait-
trait colocalisation. The trait-eQTL colocalisation analysis was con-
ducted to detect shared genes between the traits and investigate the
tissues they are expressed.

Single-cell and single-nuclei data acquisition
We used Gene Expression Omnibus59 (GEO) to retrieve data for single
cells of the left ventricle from 6 heart failure (HF) cases and 7 healthy
controls60, left ventricular single nuclei from 13 dilated cardiomyo-
pathy (dCM) cases and 25 healthy controls61, and post-mortem brain
single nuclei from 9AD cases and 8 healthy controls62. To deal with the
small sample size in cardiac single-cell data, individuals with either
coronary heart failure or dCM were considered HF cases.

Quality control of single-cell and single-nuclei data
Toquality control (QC) thedatawe implemented the scFlowpipeline63.
Samples with < 100 cells in cardiac data and < 200 cells in brain data
were removed. For brain data, Ambient RNA profiles were performed
using EmptyDrops64.We restricted theminimumnumberof expressive
features to 300 for cardiac data and 100 for brain data. For
cardiomyocyte-enriched samples, we set the minimum library size per
cell to 1000while keeping the default value for the rest cell types. Only
genes with a minimum of 2 counts in at least 3 cells were included.
Doublet cells and non-annotated genes were removed. After QC, there
was adequate sample to analyse cardiomyocyte-enriched (2,989 cells
from 2 HF cases and 5 controls) and endothelium-enriched single cells
(2,269 cells from 4HF cases and 4 controls), macrophage single nuclei
(207,345 nuclei from 13 dHF and 25 controls), astrocyte (34060 nuclei

from 25 AD cases and 24 controls), and microglia single nuclei (15292
nuclei from 25 AD cases and 24 controls).

Single-cell and single-nuclei data integration, clustering and
cell-type annotation
Cells that successfully passed the QC were integrated across samples
using the linked inference of genomic experimental relationships
(LIGER) method65 defining a parameter lambda = 5 and selecting a
sample-specific optimum value for parameter K: cardiomyocyte-
enriched single cells (K = 25), endothelium-enriched single cells
(K = 30), macrophage single nuclei (K = 40), and brain single nuclei
(K = 20). A dimensionality reduction was performed by implementing
the uniform manifold approximation and projection (UMAP)66 algo-
rithm to generate two-dimensional embeddings of the LIGER inte-
grated factors using the first 10 principal components (PCs) on heart
single cells, the first 60 PCs on heart single nuclei and the first 30 PCs
on brain single nuclei. We subsequently detected cell clusters of the
UMAP embeddings implementing the Leiden community detection
algorithm67 using a sample-specific parameter k: cardiomyocyte-
enriched (k = 9) and endothelium-enriched single cells (k = 10), heart
single nuclei (k = 45), and brain single nuclei (k = 50). Following clus-
tering, we used the Expression Weighted Celltype Enrichment
(EWCE)68 algorithm to perform a cell-type prediction on cell clusters
using previously reported reference datasets for cardiac single cells69,
cardiac single nuclei61 and brain single nuclei70.

Differential gene expression analysis
A differential gene expression (DGE) analysis was performed sepa-
rately for each cell-specific sample on all candidate genes detected
from trait-eQTLcolocalisation analysis.We investigated the expression
of the genes in the RNAseq data and included only genes expressed in
at least one cell type of the examined tissues. We followed a general-
ised linear mixed model approach as implemented in MAST71 after
excluding genes expressed in < 10% of cells. Units for differential
expression were defined as log2 fold change (log2FC) per unit change
of the respective contrast. We considered as meaningfully differen-
tially expressed genes those with a log2FC ≥0.25 and a nominal
P-value < 0.05.

Weighted gene co-expression network
We further constructed cell type-specific co-expression networks on
selected candidate genes using high dimensional weighted gene co-
expression network analysis (hdWGCNA)72 R package. We applied the
K-Nearest Neighbours algorithm to identify groups of similar cells by
means of transcriptomics (metacells) and constructed ametacell gene
expression matrix. We constructed the co-expression network using
the lowest soft power threshold that has a Scale Free Topology Model
Fit ≥0.8. Genes that were not grouped into any co-expression module
were excluded (“grey” module). We also excluded modules with < 20
genes. We obtained the module eigengene values, which describe the
expression patterns of entire co-expressionmodules, and performed a
differential module eigengenes analysis applying a Mann-Whitney U
test. To reduce false-positive findings due to multiple testing inflation,
we implemented the Benjamini-Hochberg false discovery rate (FDR)
method73. We also conducted a pathway enrichment analysis using
Enrichr v.3.0 R package74 and analysed only gene-sets with at least
20 genes.

Protein-protein interaction analysis
We used the STRINGdb75 R package to analyse the full protein-protein
interaction network data from STRING v11 database76. We expanded
the candidate set of genes from the trait-eQTL colocalisation analysis
by incorporating genes with protein-protein interactions (experi-
mental evidence≥ 700) with the candidates. Using the previously
constructed cell type-specificmodules fromhdWGCNA,we performed
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an enrichment analysis per module on candidate genes between the
module and reference set using Fisher’s exact tests. The Benjamini-
Hochberg FDR approach was used to correct for type I error inflation
due to the multiple testing error.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics from the GWAS included in this study are
publicly available and can be retrieved from GWAS Catalog under the
accession codes GCST007320 (AD), GCST006414 (AF), GCST003116
(CAD), GCST006906 (stroke), GCST006624 (SBP) and GCST006630
(DBP). Heart single-cell data from the left ventricle tissue were down-
loaded from Gene Expression Omnibus (GEO) under accession codes
GSE109816 (cardiomyocytes-enriched samples) and GSE121893 (nor-
mal digested samples). Single-nuclei data for the left ventricular tissue
were retrieved fromGEOunder accession codeGSE109816. The single-
nuclei RNA sequencing data for human post-mortem brain samples
from AD and Control samples were retrieved from GEO under acces-
sion code GSE160936. The MTAG summary statistics generated in this
study have been deposited in NHGRI-EBI GWAS Catalog under acces-
sion codes GCST90449053 (AD from AD-AF MTAG), GCST90449054
(AF), GCST90449055 (AD from AD-BP MTAG), GCST90449056 (SBP),
GCST90449057 (DBP), GCST90449058 (AD from AD-CAD MTAG),
GCST90449059 (CAD), GCST90449060 (AD from AD-cIMT MTAG),
GCST90449061 (cIMT), GCST90449062 (AD from AD-stroke MTAG),
and GCST90449063 (stroke). All other data generated in this study are
provided with this published article (and its supplementary informa-
tion files).

Code availability
No previously unreported custom computer code or mathematical
algorithm was used to generate results central to the conclusions.
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