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The biogeography of soil microbiome
potential growth rates

Zhenghu Zhou 1,2, Chuankuan Wang 1, Xinyu Cha3, Tao Zhou1,2,
Xuesen Pang1,2, Fazhu Zhao 4, Xinhui Han3, Gaihe Yang3, Gehong Wei5 &
Chengjie Ren 3

Soil microbial growth, a vital biogeochemical process, governs both the
accrual and loss of soil carbon. Here, we investigate the biogeography of soil
microbiome potential growth rates and show that microbiomes in resource-
rich (high organic matter and nutrients) and acid-neutral soils from cold and
humid regions exhibit high potential growth. Conversely, in resource-poor,
dry, hot, and hypersaline soils, soil microbiomes display lower potential
growth rates, suggesting trade-offs between growth and resource acquisition
or stress tolerance. In addition, the potential growth rates of soil microbiomes
positively correlates with genome size and the number of ribosomal RNA
operons but negatively correlates with optimum temperature, biomass
carbon-to-phosphorus and nitrogen-to-phosphorus ratios. The spatial varia-
tion of microbial potential growth rates aligns with several macroecological
theories. These findings not only enhance our understanding of microbial
adaptation to diverse environments but also aid in realistically parameterizing
microbial physiology in soil carbon cycling models.

The feedback between soil carbon (C) and climate change is fraught
with uncertainty in Earth System Models due to the vast variation in
model structure, parameter values, and initial conditions1,2. The
physiology of the soil microbiome mediates the biogeochemical
cycling of C, nitrogen (N), and phosphorus (P)3,4. Over seventy
microbial models have been developed to realistically model C
cycling in soils5. However, the current understanding of microbial
feedback to temperature and the corresponding representation in
soil C cycling models are incomplete. Soil microbial growth, a critical
microbial physiological trait, governs both the accrual, contributing
to soil non-living organic C through biomass turnover, and the loss,
through respiration metabolism, of soil C6,7. Therefore, under-
standing the response of microbial growth to climatic factors could
help better explain the global patterns of soil C under climate
change.

Growth of organisms, which integrates morphology with physio-
logical processes, is a fundamental ecological and evolutionary trait8,9.
The latitudinal/temperature compensation hypothesis suggests that
cold-adapted organisms from high latitudes have a growth advantage
to compensate for the low temperature and short growing season10–12.
However, trade-offs between growth and adaptation to stress sig-
nificantly influence the physiology and distribution of both macro-
species13 andmicro-species14. Specifically, organisms with high growth
rates are generally more vulnerable to environmental stress, such as
cold or arid climates15. Therefore, organisms in high-latitude regions
enduring cold stressmay have lowgrowth rates. These twocontrasting
mechanisms lead to different patterns of growth rates along latitu-
dinal/temperature gradients among different plant species16–21. The
biogeography of soil microbiome potential growth may also be asso-
ciated with microbial biomass stoichiometry. The growth rate
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hypothesis suggests that rapid growth results in a high demand for P
used in ribosomes for the synthesis of mRNA relative to the demand
for N, leading to a low N:P ratio in rapidly growing organisms22.
Although spatial variabilities in microbial stoichiometric ratios have
beennoted23,24, and aprevious global analysis found adecreasing trend
in microbial N:P with increasing latitude25, whether microbial growth
covaries with biomass N:P at a biogeographic scale is unclear. In
addition, microbial activity is known to be reduced with increasing
aridity; consequently, microbial strategies depend on the ability to
resist desiccation in more arid environments to continue the produc-
tion of C-rich organelles and molecules (increasing biomass C:N and
N:P)24. Therefore, trade-offs between microbial growth and stress tol-
erance may relate to microbial biomass stoichiometry. However,
measurements of the growth rates of soil microbiome at geographical
scale are limited, lagging substantially behind those for macro-organ-
isms, despite their crucial importance to terrestrial ecosystems26. A
recent substrate-independent approach using 18O-H2O incorporation
into DNA now allows to investigate the large-scale variation of micro-
bial growth rate under relative realistic condition.

Community aggregated microbial traits, like community-
weighted means of traits proposed for plants27, represent the aver-
age functional profile of thousands of microbial species co-existing
within a local habitat, which controls microbial metabolic potential
and their response to environmental changes28. Several microbial
traits, such as genome size (an expansion of metabolic capacities), the
number of ribosomal RNA operons (rrn copy number, a proxy of
maximum growth rate), and guanine plus cytosine content, were used
to construct the life history strategy scheme28,29. However, one of the
current challenges is the associationbetweenmicrobial traits and their
realistic adaptation to the environment in nature28. For example, the
strongest expectation is that oligotrophic microbes characterized by
smaller genome size are adapted to resource-poor soil30,31, however,
Wang et al.32 suggested that oligotrophicmicrobes tend to have larger
genomes. Experimental evidence linkingmicrobial traits fromomics to
ecological processes in nature is lacking. Therefore, exploring the
association between microbial growth and critical microbial traits
would help advance our understanding of the life history strategies of
soil microbiomes.

Here, we investigated the potential growth rate of the soil
microbiome using an 18O-labeled water approach on a national scale,
encompassing 112 sample sites (49 grasslands and 63 forests). This
survey spanned a broad spectrumof geoclimatic patterns. Specifically,
the latitude ranged from 18.4° to 53.3°N, the longitude ranged from
81.2° to 129.0°E, the mean annual temperature ranged from −4.8 °C to
24.4 °C, and the De Martonne aridity index (a greater aridity index
indicates a more humid climate) ranged from 7.5 to 93.5. As potential
drivers of microbial growth, we evaluated climate (mean annual tem-
perature and aridity index), edaphic properties (soil texture and pH),
microbial resources (soil organic C, total N, total P, dissolved organic
C, and available N), microbial community structure (dominant fungal
and bacterial phyla), and microbial traits (genome size, rrn copy
number, optimum temperature, andbiomass stoichiometry).Our aims
were to determine how microbial biomass-specific potential growth
rate (microbial growth rate per unit microbial biomass C, Gmass)
changes across geoclimatic gradients, identify the potential drivers of
this change, and investigate the implications for soil C cycling.

In this work, microbiomes in resource-rich (high organic matter
and nutrients) and acid-neutral soils from cold and humid regions
exhibit high potential growth rates. Conversely, microbiomes in
hypersaline soil from dry and hot regions display lower potential
growth rates. The potential growth rate of soil microbiomes positively
correlates with genome size and the number of ribosomal RNA oper-
ons but negatively correlates with optimum temperature, biomass
carbon-to-phosphorus and nitrogen-to-phosphorus ratios. Overall, the
spatial variation of microbial growth rates, driven by climate, edaphic

properties, microbial resources, community structure, and genome
traits, aligns with macroecological theories of the latitudinal/tem-
perature compensation hypothesis, the trade-off between growth and
stress survival, and the growth rate hypothesis. Our study also offers a
robust benchmark for microbial-explicit soil C models, because
microbial growth rate is a key parameter in these models.

Results and discussion
Biogeographical pattern of microbial growth rates
The potential Gmass of the soil microbiome exhibited significant spatial
variation on a national scale (Fig. 1a). Alpine and boreal forests had the
highest potential Gmass, whereas desert grasslands had the lowest
(Fig. 1b). The biome-specific potential Gmass was predominantly regu-
lated by aridity rather than mean annual temperature. First, the cor-
relation coefficient between potential Gmass and the aridity index was
greater than that between potential Gmass and mean annual tempera-
ture (Figs. 1b, c and 2a). Second, variance decomposition analysis
further showed that the aridity index explainedmoreof the variance in
potential Gmass than mean annual temperature (Supplementary Fig. 1).
The soil microbiome in dry soils exhibited lower potential Gmass

compared to that in humid soils (Fig. 1b), likely supporting the trade-
offs between growth and adaptation to drought stress33,34. Desiccation-
tolerant microorganisms produce and secrete mixtures of compatible
solutes to protect against drought, safeguarding sensitive molecules
and cells from desiccation damage35,36. Drought resistance, achieved
by active osmoregulation, requires significant C investment due to the
high energetic cost of osmolyte production37,38. Therefore, the soil
microbiome exposed to water stress likely possesses traits associated
with drought tolerance at the cost of growth29.

Despite the weak correlation between potential Gmass and mean
annual temperature (Fig. 2a), the negative effect of mean annual
temperature on potential Gmass was observed in both forest and
grassland ecosystems (Fig. 1c), corroborating the latitudinal/tem-
perature compensation hypothesis10–12. Adaptation to the short
growing seasons of cold ecosystems is another potential explanation
for this negative relationship between potential Gmass and mean
annual temperature. The soil microbiome in frozen soils is pre-
dominantly limited by the absence of liquid water rather than low
temperature39. Thousands of psychrophilic microbial taxa adapt to
cold environments through metabolic and structural adjustments40,
as indicated by high microbial diversity, biomass, and metabolic
activity during winter in cold ecosystems23,41,42. Additionally, dor-
mancy is a prevalent life history strategy among microbes43,44. Soil
microbial species may achieve cold resistance through dormancy,
while stress avoidance is typically linked with high growth rates45,46.
We found that the optimum temperature of the microbial commu-
nity in warm regions is greater than that in cold regions, and that the
optimum temperature also had a significant negative effect on
potential Gmass. Consequently, the soil microbiome of cold ecosys-
tems has adapted to low temperature and short growing seasons
with a high potential growth rate.

Microbial C:P and N:P adversely affected the potential Gmass

(Fig. 2b), supporting the growth rate hypothesis47. Thesepatterns were
consistent with a previous study that microbial growth of isolated
strains was negatively correlated with their biomass C:P and N:P from
leaf litter in a semi-arid Mediterranean grassland ecosystem48. High-
latitude regions had greater soil P than that in low-latitude regions
(Supplementary Fig. 2). We also found a negative effect of soil P on
microbial C:P and N:P (Supplementary Fig. 2). Therefore, P limitation
may also explain the low potential Gmass in low-latitude regions with
warm climates. It is noteworthy that the biomass N:P is not necessarily
equal to the N:P ratio derived from RNA and protein contents49,
because the storage of elements in excess, their reuse, and other
processes may cause significant variation in actual biomass N:P
ratios49,50. These mechanisms probably result in small correlation
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coefficients between potential microbial growth and biomass C:P or
N:P (Fig. 2), consistent with a previous study48.

The potential Gmass of the soil microbiome peaked in neutral pH-
balanced soils (Supplementary Fig. 3), indicating that extreme pH
directly impacts microbial physiology, reducing growth or selecting
for microbes investing in pH stress-tolerant traits at the expense of
fast growth potential. At local, regional, and global scales, soil pH
was found to be the dominant factor regulating the diversity, com-
munity structure, and community aggregated traits of the soil
microbiome28,32,51–53. Soil pH influences membrane-bound proton
pumps and protein stability; extreme pH levels can impose physiolo-
gical stress on microorganisms, reducing the net growth of specific
taxa when the soil pH deviates from a certain range51,54.

There are expected positive correlations between potential Gmass

and soil resources (soil organic C, dissolved organic C, total N, total P,
and available N; Fig. 2a) because the growth of almost all organisms is
resource limited evolutionarily. Potential Gmass was more closely rela-
ted to C than to nutrients (Fig. 2a), supporting the idea that microbial
growth isprimarily limited byCandonly secondarily by nutrients55.We
also found a positive correlation between potential Gmass and clay plus
silt content, probably because clay- and silt-size minerals increase the
capacity of soils to hold water, C, and nutrients.

Our measurements of microbial growth aggregate responses
from thousands of individual microbial species, each growing at dif-
ferent rates. Understanding individual taxonomic groups may provide
insights into how these microorganisms will impact soil C cycling
under future climate change scenarios6,56. In this study, both dominant
phyla of fungi and bacteria were found to influencemicrobial potential
Gmass. Specifically, potential Gmass was positively correlated with
Basidiomycota, Acidobacteriota, and Proteobacteria, but negatively
correlated with Ascomycota, Actinobacteriota, and Gemmatimonadota
(Fig. 2a). The former phyla predominantly occur in humid, resource-
rich soils (high organic matter and nutrients), whereas the latter phyla

are prevalent in regions with dry, resource-poor, hypersaline, and
alkaline soils (Fig. 2a).

Partial least squares path modeling showed that microbial com-
munity structure (dominant phyla of fungi and bacteria) influenced
potential Gmass indirectly by altering microbial traits (genome size, rrn
copy number, optimum temperature, and biomass stoichiometry)
rather than through a direct pathway (Fig. 3; Supplementary Table 1;
the insignificant pathway betweenmicrobial community structure and
potential Gmass was removed from themodel). Genome size is a crucial
life-history trait impacting the abundance, growth rate, metabolic
activity, and dispersal capability of soil microbiome28,30,32. A recent
global study28 and a recent national-scale survey across the US found a
negative correlation between genome size and soil pH57. Consistent
with these two studies, we found that humid regions with acidic soils
had greater bacterial genome sizes than arid regions (Supplementary
Figs. 3 and 4). However, fungal genome size peaked in neutral soils
with moderate humidity (Supplementary Figs. 3 and 4). Therefore, the
universal pattern of fungal genome size along environmental gradient
requires further study. The consistent positive effects of fungal and
bacterial genome size on potential Gmass align with a recent proposal
highlighting the dominant role of genome size in shaping the first
dimension of life history strategies, ranging from streamlined gen-
omes with simple metabolisms to larger genomes with expanded
metabolic capacities28. However, theoretical and laboratory studies
suggest that streamlined genomes are associatedwith rapid growth, as
smaller genomes reduce the nutrient demand for genome
replication58–60. Together with findings from Piton et al.28, we suggest
that the growth rate of the soil microbiome in nature may be less
constrained by genome size than by environmental stress and com-
munity interactions.

Spatial isolation is another important factor limiting microbial
growth in soil matrices61. A larger genome size would also increase the
metabolic pathways in such limited and variable space. Furthermore,

Fig. 1 | National pattern ofmicrobial growth rates. aOne-way analysis of variance
tests the differences in microbial biomass-specific potential growth rates (Gmass)
among ecosystems of desert grassland (n = 33), temperate grassland (n = 45), alpine
grassland (n = 69), tropical forest (n = 24), subtropical forest (n = 57), temperate
forest (n = 54), boreal forest (n = 30), and alpine forest (n = 24) (One-way analysis of
variance with two-sided test: F7,328 = 52.61, P <0.001). Lowercase letters above the
box indicate a significant difference among ecosystems (Duncan multiple

comparisons with two-sided test). Center line is the median. Box limits are the
upper and lower quartiles.Whiskers are 1.5 times interquartile range.bRelationship
between Gmass and aridity index (Two-sided test, y =0.76ln(x) – 2.49). MBC is
microbial biomass carbon. c Relationship between Gmass and mean annual tem-
perature within grasslands (Two-sided test, y = −0.12x +0.10) and forests (Two-
sided test, y = −0.02x +0.71). ln is natural logarithm. Source data are provided as a
Source Data file.
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the soil microbiome produces extracellular enzymes to break down
complex resources, and the subsequent uptake of dissolved organic C
depends on various membrane transporters29. Metabolic complexity
may favor soil microbiomes in producing diverse enzymes and in
uptake of diverse substrates, thus promoting microbial growth.
Additionally, rapid microbial growth requires a substantial increase in
cellular ribosomes compared to slow growth, as multiple rrn copies in
genomes help to effectively amplify rRNA gene dosage during rapid
growth62. Therefore, the rrn copy number has been suggested as a
predictor of microbial growth rate62, and a positive correlation
between potential Gmass and rrn copy number is shown here (Fig. 2b).

Our national-scale study had several limitations. First, our calcu-
lation of genome size was based on species-specific traits from NCBI
andGTDBdatasets (seeMethods). However, the genomesizes ofmany

microbial species were not reported in current datasets. Second, our
measurements of microbial growth were conducted under optimal
conditions, which may differ from patterns observed in the field.
Although the 18O-labeled water approach has been used to study
microbial growth in the field56, this method is challenging to imple-
ment on a national scale.

Implications for microbial strategies and soil C cycling
The spatial variation of microbial growth, driven by climate, edaphic
properties, microbial resources, community structure, and genome
traits, aligns with several macroecological theories. These include the
latitudinal/temperature compensation hypothesis, the trade-off
between growth and stress survival, and the growth rate hypothesis.
While omics datasets have been extensively utilized to quantify traits
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associated with microbial life history strategies, such as the
competitor-stress tolerant-ruderal28,63 and high yield-resource acqui-
sition-stress tolerance triangle29, growth remains a challenging prop-
erty to extract from these datasets due to an incomplete
understanding of its genetic determinants29. Additionally, maximum
potential growth rates estimated through genomic analyses or culture-
based experiments64,65 may not accurately reflect actual growth rates
in situ soils26,29,60. Our large-scale study shows that low resource
availability and high stress decrease potential growth rates, partly
consistent with the idea of trade-offs between growth and resource
acquisition or stress tolerance29.

Microbial growth rate is a key parameter in biogeochemical
models of C flux26. Our study offers a robust benchmark for microbial-
explicit soil C models. Furthermore, accelerated microbial growth is
likely to promote microbial necromass formation66, which has been
suggested to be more physically protected in organo-mineral asso-
ciations than plant-derived C, due to its closer proximity and interac-
tions with the soil mineral matrix67,68. Recent evidence indicates a
positive correlation between microbial C use efficiency and soil C
storage69, suggesting that acceleratedmicrobial growth could enhance
soil organic C storage. This is expected through ongoing iterative
cycles of microbial proliferation, growth, and death, particularly
leading to the incorporation of higher amounts of microbial-derived C
into stable formations, such as mineral-associated organic C66,70.

Methods
Sites and sampling
Complying with all regional laws and regulations for research sam-
pling, we sampled a total of 112 sites, comprising 49 grasslands and 63
forests, across China from June to August 2022, including 11 desert
grasslands, 15 temperate grasslands, 23 alpine grasslands, 8 tropical
forests, 19 subtropical forests, 18 temperate forests, 10 boreal forests,

and 8 alpine forests. At each site, we established three sample plots
within well-protected areas to minimize the effects of anthropogenic
disturbance. Theplots in grasslandsmeasured 5 × 5mandwere spaced
more than 10m apart, while the plots in forests measured 20 × 20m
and were spaced more than 30m apart. We collected topsoil samples
from the upper 0–20 cm layer at ten random locations within each
plot. These samples were then combined to form a composite sample
for each plot, yielding a total of 336 soil samples across China (Fig. 1a).
We sieved the fresh soil to 2mm, homogenized it, and removed fine
roots and other plant debris in the field. We stored 1 kg of soil from
each sample on ice and transported it to the laboratory within 48 h of
collection. Once the soil samples were transported to the laboratory,
each soil sample was homogenized and then divided into two sub-
samples. One subsample was air-dried, while the other subsample was
stored at -20°C for microbial analyses. We also recorded the latitude,
longitude, and elevation of the 112 studied sites. The mean annual
temperature and precipitation were extracted from WorldClim 2.0.
The De Martonne aridity index was calculated as the ratio of mean
annual precipitation to mean annual temperature plus 10 °C.

Edaphic factor analyses
Soil pH was determined in a 1:2.5 soil-to-deionized water mixture and
analyzed using a pH electrode (FE28-Standard, Mettler, Switzerland).
Soil texture was measured with a Malvern laser particle size analyzer
(MS2000; Malvern Instruments, Malvern, UK). Soil organic C was
measured using a Multi N/C 2100 s analyzer (Analytik Jena AG, Ger-
many) after the removal of inorganic C by hydrochloric acid. Soil
available N (ammonium and nitrate) was extracted with 2M potassium
chloride. Soil total N was extracted by digesting the soil sample with
sulfuric acid and adding copper sulfate and potassium sulfate, while
total Pwas extracted by digesting the soil samplewith sulfuric acid and
perchloric acid. All extracted solutions were analyzed for N and P

Goodness of fit: 0.55
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Fig. 3 | Conceptual diagram showing the biogeography of microbial
growth rates. The partial least squares path model depicts factors influencing
microbial potential growth rates through direct and indirect pathways. Blue and
red arrows indicate positive and negative effects, respectively, while the indicated
values on the arrows are the path coefficients for the inner model. The path coef-
ficients for outer models of the partial least squares path modeling are shown in
Supplementary Table 1. C is carbon, N is nitrogen, and P is phosphorus. The soil
microbiome in acid-neutral soils with high organic matter and nutrients (resource-

rich) in humid regions, dominated by Basidiomycota, Acidobacteriota, and Proteo-
bacteria, exhibits a large genome size and low biomass C:P and N:P ratios, indi-
cating a high potential growth rate. Conversely, in resource-poor, dry, and
hypersaline soils, the microbiome, dominated by Ascomycota, Actinobacteriota,
and Gemmatimonadota, displays a lower potential growth rate, suggesting that
resource acquisition and stress tolerance tradeoff with growth rate. Source data are
provided as a Source Data file.
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concentrations with an Auto Analyzer (BRAN+ LUEBBE-AA3,
Germany).

The funnel-filter paper-drainagemethod was used tomeasure the
maximumwater holding capacity71,72. Specifically, deionized water was
first used to pre-saturate the filter paper in the funnel. Then 10 g of air-
dried soil was placed into the wet filter paper funnel. The soil was
saturatedbywetting theouter rimof the exposedfilter paper.After the
soil was glistening and a small amount of water was showing on the
surface, the funnel was covered with cling film with small holes to
minimize evaporation. After 6 h, the drained soil wasweighed and then
oven-dried to obtain the dry weight.

Microbial biomass
Microbial biomass C, N, and P were measured using the chloroform
fumigation extractionmethod73. The frozen soil (stored at −20 °C) was
thawed on ice. The thawed soil was placed in a brownbottle for a 7-day
preincubation at 25 °C in the dark with 60% water holding capacity.
The bottle was covered with cling film with several holes, which
allowed gas exchange and slowed down water evaporation. We
adjusted the water-holding capacity on the fourth and seventh days
during preincubation. Our measurements were conducted in winter
with outdoor air temperature ranging from −10 to −30 °C, therefore,
the indoor high temperature (keeping at ~25 °C) environment had very
dry air. Therefore, we must adjust the water holding capacity every
three or four days (a lot of previous studies adjust the water holding
capacity every 1 week in carbon mineralization incubation experi-
ment). We found that the water content of most soil samples had
dropped lower than 50% water holding capacity before adding water.
After that, the soil was fumigated or unfumigated for 24 h at 25 °C. The
fumigated and unfumigated soil samples were used to extract C and N
with0.5Mpotassiumsulfate andPwith0.5Msodiumbicarbonate. The
C concentration in the extracts was determined by a Multi N/C 2100
analyzer (Analytik Jena AG, Germany), while the N and P concentra-
tions were analyzed with an Auto Analyzer (BRAN+ LUEBBE-AA3,
Germany). Microbial biomass C, N, and P were calculated as the dif-
ference between fumigated and nonfumigated subsamples multiplied
by the respective conversion factors, i.e., 0.45, 0.45, and 0.40 for C, N,
and P, respectively.

Microbial growth
We determined microbial growth using the substrate-independent
method, which involves the incorporation of 18O from water into
microbial genomic DNA (dsDNA74). Ten grams of soil was placed in a
50ml tube for a 7 days preincubation at 25 °C in the dark with 60%
water-holding capacity (as in the preincubation described above). We
adjusted the water-holding capacity on the fourth day during pre-
incubation. After 7 days preincubation, we placed duplicate aliquots of
500mg of each preincubated soil into 2mL brown chromatographic
vials. One vial served as the natural 18O abundance control, and the
other as the labeled sample. For one replicate, we adjusted the 18O
content of soil water to 20.0 at% 18O by adding H2

18O, while the other
replicate received the same volume of non-labeled water. Additional
Millipore ultrapure water was added to maintain 60% water holding
capacity. We then placed the vials in 20ml headspace bottles, setting
three blank bottles without soil for each batch of test samples as
controls.

After 24 h of incubation at 25 °C in the dark with 60% water-
holding capacity, we extracted DNA from both labeled and unlabeled
soils using a DNA extraction kit (FastDNA™ SPIN Kit for Soil; MP Bio-
medicals). We determined the DNA concentration via the picogreen
fluorescence assay. The remaining DNA extracts were pipetted into
silver cups, dried at 45 °C for 5 h to remove all water, and folded into
silver capsules for analysis. We measured the abundance of 18O and
total O content using an IRMS-TC/EA (Thermo Scientific) at the
Laboratory of Ecological Indicators Analysis (Institute of Geographic

Sciences and Natural Resources Research, Chinese Academy of Sci-
ences, Beijing, China).

MicrobialDNAproductionwas estimatedbymultiplying sampleO
content by the 18O excess of DNA relative to the natural abundance of
18O in DNA measured in unlabeled samples. A DNA‐oxygen content of
31.21% was applied to estimate the dsDNA produced (DNAproduced)
by microbial growth during the incubation period:

DNAproduced =OTotal ×
at%excess

100
×

100
at%final

×
100
31:21 ð1Þ

where OTotal is the total O content of the dried DNA extract,
at%excess is the at% excess 18O of the labeled sample compared to the
mean at% 18O of unlabeled samples, and at%final is the

18O at% of soil
water at the beginning of incubation (20.0% in our study). A conver-
sion factor (fDNA)was calculated as the ratio of soilmicrobial biomass
C to DNAproduced. Microbial growth was calculated based on the
DNAproduced and fDNA:

G=
fDNA ×DNAproduced

DW× t
ð2Þ

where DW is the dry weight of soil and t is the incubation time.

Illumina sequencing and bioinformatic analysis
For the bacterial community, we amplified the 16S rRNA genes using
primers 338 F (ACTCCTACGGGAGG CAGCAG) and 806R (GGAC-
TACHVGGGTWTCTAAT). For the fungal community, we amplified the
ITS1 regions using primers ITS1F (CTTGGTCATTTAGAGGAAGTAA)
and ITS2R (GCTGCGTTCTTCATCGATGC). We conducted PCR using
TransStart FastpfuDNAPolymerase (TransGenBiotech, Beijing, China)
in a GeneAmp 9700 thermal cycler (Applied Biosystems, Foster City,
CA, United States). The thermal cycling protocol included an initial
denaturation step at 95 °C for 3min, followed by 35 cycles for fungi
and 27 cycles for bacteria of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for
45 s, with a final extension at 72 °C for 10min. We extracted the PCR
products from 2% agarose gels and concentrated them using the
AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA,
USA). We sequenced the purified amplicons on an Illumina Novaseq
PE250 platform (Illumina, San Diego, CA, USA) at Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China). We demultiplexed, quality-
filtered, and processed reads using QIIME2. We determined the taxo-
nomic assignment of the 16S rRNA and ITS sequences based on the
bacterial SILVA reference database and fungal UNITE reference data-
base using RDP Classifier.

Data analysis
We downloaded the datasets associated with genome size at the spe-
cies level from NCBI and Madin et al.75. We integrated these two
datasets to calculate the community aggregated bacterial genome size
(weighted average by the abundance of individual species), while the
dataset from NCBI was used to calculate fungal genome size. We also
calculated the bacterial traits of rrn copy number and optimum tem-
perature fromMadin et al.75. We focused on the relative abundances of
the dominant microbial populations at the phylum level. Spearman’s
correlation was used to explore the relationships among variables (R
package ofHmisc). Partial correlation was used to explore the effect of
community aggregated traits on potential Gmass after controlling for
climate, edaphic properties, microbial resources, and microbial com-
munity structure (R package of ppcor). Finally, partial least squares
path modeling was used to explore the direct and indirect effects of
climate, edaphic properties, microbial resources, microbial commu-
nity structure, and community aggregated traits on potential Gmass (R
package of plspm). Insignificant pathways were removed from the
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partial least squares path model. All the statistical analyses were con-
ducted using R 4.3.276.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that supports the findings of this study is available in Sup-
plementary Data 1. Source data are provided with this paper.

Code availability
The code that supports the findings of this study is available in Sup-
plementary Code 1.
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