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Charge stripe manipulation of
superconducting pairing symmetry
transition

Chao Chen1,2,3,8, Peigeng Zhong2,4,8, Xuelei Sui2,5, Runyu Ma 1, Ying Liang1,6,
Shijie Hu 1,2 , Tianxing Ma 1,6 , Hai-Qing Lin1,2,7 & Bing Huang 1,2

Charge stripes have been widely observed in many different types of uncon-
ventional superconductors, holding varying periods (P) and intensities.
However, a general understanding on the interplay between charge stripes and
superconducting properties is still incomplete. Here, using large-scale
unbiased numerical simulations on a general inhomogeneousHubbardmodel,
we discover that the charge-stripe period P, which is variable in different real
material systems, could dictate the pairing symmetries—dwave forP ≥4, s and
dwaves forP ≤ 3. In the latter, tuning hole doping and charge-stripe amplitude
can trigger a d-s wave transition and magnetic-correlation shift, where the d-
wave state converts to a pairing-densitywave state, competingwith the swave.
These interesting phenomena arise from an unusual stripe-induced selection
rule of pairing symmetries around on-stripe region and within inter-stripe
region, giving rise to a critical point ofP = 3 for the phase transition. In general,
our findings offer important insights into the differences in the super-
conducting pairing mechanisms across many P-dependent superconducting
systems, highlighting the decisive role of charge stripe.

Developing the universal understanding of the intertwisting mechan-
ism between different symmetry-breaking orders is one of the most
challenging goals in unconventional superconductors. Initially, the
emergence of charge orders in a stripe phase waswidely discovered in
cuprates, e.g., La2CuO4

1,2, RBa2Cu3O6
3, Bi2Sr2CaCu2O8

4, and other
family materials, sparking significant interest in their origins5. Soon
after that, similar charge stripes were later observed in iron-based
superconductors, e.g., FeSe6, and Ni-based superconductors, e.g.,
infinite-layer nickelates7–12 and Ruddlesden-Popper-phase nickelates13.
Very recently, the charge stripes were also found in the kagome-lattice
superconductors CsV3Sb5

14 and CsCr3Sb5
15. Clearly, the widespread

existence of charge stripes in variable unconventional super-
conductors highlights their significant role in relation to

superconductivity. Interestingly, the period P and intensity V0 of
charge stripe are variable in differentmaterials,whichcouldbe tunable
by external factors like pressures and defects16–19, opening potential
possibilities to manipulate superconducting pairing symmetry.

Since its inception, the Hubbard model has served as an arche-
typal model for elucidating strongly correlated phenomena20,21.
Despite its simplicity, it can uncover rich quantum phases in con-
densed matter physics22–28. For example, the Hubbard model under
different conditions can effectively capture d-wave pairing
symmetry22,23, stripe order24–26,29, and antiferromagnetic (AFM)
order28,30 in cuprate-like square lattices, and it can also demonstrate
the interplay between these symmetry-breaking orders31. Interestingly,
previous studies have suggested that the spontaneous formation of
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charge stripe in a square lattice could be sensitive to variations in
model parameters and lattice boundary conditions32. Alternatively, the
charge stripes canbe artificially induced as externalfields to explore its
relationship with superconductivity. For example, in square-lattice
models with P =4 for simulating cuprates, an enhancement of d-wave
pairing symmetry is observed33–35 over a broad range of V0, which can
be attributed to the intensified AFM correlations between the stripes,
accompanied by a π-phase shift in the system33. Until now, however, a
comprehensive understanding of the interplay between charge stripe,
varying P and V0 values, and superconducting pairing symmetry
remains lacking, which may prevent a deeper insight into the distinct
pairing symmetries observed across different systems.

The unbiased determinant quantum Monte Carlo (DQMC) and
density-matrix renormalization group (DMRG) methods are widely
recognized as two highly accurate and complementary approaches to
solving the Hubbard model22,23,25. While DQMC can effectively capture
the trend of physical quantities at finite temperatures, DMRG is pow-
erful in determining them in the ground state. Here, by combining
unbiased DQMC and DMRG simulations on an inhomogeneous square
lattice, we discover that the existence of charge stripes with different
periods P [defined in Fig. 1(a)] plays a very unexpected role in deter-
mining the pairing-symmetry transition. While the d-wave is always
dominant for P ≥4, both s (note that this is an extended s-wave state
afterwards) and d-waves can appear when P ≤ 3. Taking P =3 as an
example, we discover that the interplay between the hole-doping
concentration δ and charge-stripe amplitude V0 can realize a remark-
able d-swave transition in a large region of the phasediagram, inwhich
the critical V0 (V0, c) for the phase transition exhibits a nearly linear
dependence of the on-site electron-electron repulsion strength U. The
DMRG simulations further reveal that the charge-stripe-induced
domain wall can generate an interesting selection rule to produce s
and d-waves around the on-stripe region and inside the inter-stripe
region, respectively. Therefore, the smaller the P, the stronger the s-
wave in the system. Accompanying the d-s wave transition, there is an
interesting magnetic-correlation transition, weakening the AFM cor-
relation. These results strongly indicate an inherent interplay between
charge stripes, superconducting pairing, and magnetic correlation in
the P-dependent systems, in which charge stripes play a vital role in
forming the d-s wave transition.

Results
P-dependent d-s wave transition
In the following, we will mainly discuss the model system with charge
stripes at P =3 in a minimal single-dx2�y2 -band Hubbard model,
because this simplified model could capture the most intrinsic feature
betweenP andpairing symmetryand also becausea similardominated
role of single-dx2�y2 -band was observed in cuprates and nickelates36,37.
As shown in Fig. 1(b), we have systematically calculated the pairing-
symmetry diagram as a function of δ and V0. Here, δ is set to the range
of 0.1 ~ 0.338,39, and V0 is set to the range of 0 ~ 8 based on the realistic
situations. For example, the V0 induced by variable valence Ni charge-
state in the stripe of infinite-layer nickelates is estimated to be ~6,
which is further tunable under external conditions17–19. When V0 is
larger than a critical value of V0,c ~3.25, there is a clear pairing-
symmetry transition fromd to swaves in a large δ rangeof 0.1 ~ 0.23. As
will be shown later, this d-s wave transition is robust against different
U/t andT/t values. For comparison,wehave also calculated the cases of
P = 2 and P =4. Interestingly, when P = 2, a similar d-s wave transition
can be observed at an even smaller V0,cwith amuch sharper transition
slope (Supplementary Fig. 1). On the other hand, when P =4, only d-
wave is observed and d-s wave transition cannot exist in the same δ
range (Supplementary Fig. 2). As summarized in Fig. 1(c), these cal-
culations lead us to an interesting conclusion that P =3 is a critical
point for the pairing-symmetry transition, that is, the δ/V0-dependent
d-s wave transition can only exist when P ≤ 3. Importantly, this finding
is regardless of whether it is a single-band or multi-band model (Sup-
plementary Fig. 3), being a general feature in P-dependent super-
conducting systems.

To clearly understand the role of V0 in the d-s wave transition, we
have plotted the δ-dependence of effective pairing interaction �Pα with
the typical parameters of T = t/5 and U/t = 4 under different V0. As
shown in Fig. 2(a), without charge stripes (V0= 0), �Pd , which is stron-
gest at δ = 0, is robust and more stable than that of �Ps at different δ.
Meanwhile, the s-wave pairing is suppressed (�Ps<0) at large δ. As
shown in Fig. 2(b), when V0= 3, �Pd is rapidly decreased in amuch faster
way than that of �Ps. This indicates that s-wave pairing is more robust
against the charge-stripe potential compared to d-wave pairing.
Importantly, as shown in Fig. 2(c), when V0= 4, �Ps eventually becomes
more stable than �Pd over an extensive δ range (0 < δ ≤0.22), leading to
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Fig. 1 | Lattice structure and superconductingphase diagram. aGeometryof the
square lattice with periodic charge stripes. P denotes charge-stripe period, L
denotes lattice size, and V0 denotes charge-stripe amplitude. Total number of sites
isN = L × L, and L = 12. Blue (red) circles label the site with (without) the inclusion of
V0, representing the on-stripe (inter-stripe) region.bDeterminant QuantumMonte
Carlo (DQMC)-calculated phase diagram of the inhomogeneous Hubbard model
with P = 3, on-site repulsion strength U/t = 4, and temperature T = t/5, where t = 1 is

the unit of energy. δ represents hole-doping concentration. Note that the d-s wave
transition is observed even at zero temperature based on density matrix renor-
malization group (DMRG) simulations. Phase boundary of solid-line is determined
by effective pairing strength �Pα at each (V0, δ). Dashed-line denotes the region
where d-wave state is transformed into pairing density wave (PDW) state, com-
peting with s-wave state. Note that s-wave state is always more stable than PDW
state. c Dominant pairing symmetry depends on P, where P = 3 is a critical point.
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a remarkable d-s wave transition. In particular, d-wave pairing is fully
suppressed at0 < δ ≤0.2 underV0= 4, eventually transformed into ad-
wave PDW state to compete with s-wave state, as discussed later. As
shown in Fig. 2(d), whenV0 = 8, �Ps maintainsmore stable than �Pd in the
moderate δ (0.05 < δ ≤0.15). However, for sufficiently large δ, �Pd is
always more stable than �Ps, regardless of the V0, as also shown in the
phase diagram of Fig. 1(b).

The above finite-temperature DQMC conclusion holds at a much
lower temperature of T = t/12 (Supplementary Fig. 4). To further con-
firm the ground-state properties at zero temperature, we have sys-
tematically calculated effective zero-momentum pair-pair structure
factor �Sα using DMRG method with different cylinders and U (Sup-
plementary Fig. 5). For example, Fig. 2(e) shows �Sα as a functionofV0 at
δ = 0.111 and U/t = 8 on a 6 × 6 cylinder. �Sd is dominant when V0 is
smaller than ~ 6.2. Interestingly, when V0 is bigger than � 6:2, �Ss
becomes more robust. Therefore, at ground state, charge inhomo-
geneity can also support a remarkable d-s wave transition, demon-
strating that the finite-temperature trend obtained from DQMC
simulations is reliable at zero temperature. In Fig. 2(f), we have plotted
V0,c as a function of U for the observed pairing-symmetry transition
with two cylinders. Remarkably, V0,c displays a nearly linear relation-
ship with U for both 6 × 3 and 6 × 6 cylinders. As U increases, so does
V0,c, providing a guideline for understanding or manipulating the
pairing-symmetry transition. For a typicalU/t = 4, theDMRG-calculated
V0,c in 6 × 3 and 6 × 6 cylinders exhibit slightly different values indi-
cating the lattice-size dependence. However, these values are overall
consistent with DQMC results. Therefore, our results undisputedly
demonstrate that this d-s wave transition exists in a P = 3 system and
that the V0,c depends on U.

We have further investigated the critical role of different para-
meters on �Pα . Here, we choose the cases of δ =0.3 (d-wave-dominated

region) and δ =0.18 (s-wave-dominated region). Figure 3(a)–(b) show
the case of d-wave pairing at δ =0.3. In Fig. 3(a), we calculate the
temperature-dependent �Pd for different V0. As temperature is
lowered, �Pd increases rapidly. Importantly, it is observed that d-wave
pairing is enhanced with the increase of V0, indicating the
important role of charge fluctuation31,33. This enhancement may be
caused by the appearance ofmore nearly half-filled inter-stripe regions
for larger V0 at δ = 0.3 (Supplementary Fig. 6). On the other hand,
Fig. 3(b) shows that the �Pd is enhanced by larger U, suggesting the
importance of electron-electron correlation. Importantly, the lattice
size effect of �Pd is weak, i.e., L = 9, 12, and 15 exhibit almost identical
results.

Figure 3 (c)–(d) show the case of s-wave pairing at δ =0.18. In
Fig. 3(c), we present the temperature dependence of �Ps , in which �Pd is
also plotted here for comparison. For V0 = 5 � 7, �Ps is positive and
increases slowly with decreasing temperature. The larger V0, the
stronger �Ps. However, �Pd is negative at V0 = 5 ~ 6 and becomes positive
at V0= 7. So, below V0 = 7, �Pd is less stable than �Ps at all the considered
temperature ranges. It is curious to understand the origin of the sup-
pression of d-wave state, which suggests that there may be an unusual
phase transition. To confirm our speculation, we have systematically
calculated the possible PDW state in P = 3 system. Taking V0 = 5 as an
example [Fig. 3(c)], interestingly, thepeakofPPDW

d ðqÞmoves away from
zero momentum and the system shows a tendency to form a PDW
state. Although PPDW

d ðqÞ is positive, it is still less stable than �Ps. In
addition, we further calculate the competition between PPDW

d ðqÞ and �Ps

under different V0 and δ (Supplementary Fig. 7), and find that s-wave
state is always more stable than PDW state. This may account for the
challenge to observe PDW in nickelates, whch is hidden behind the s-
wave. In the phase diagram of Fig. 1(b), we have also plotted the
boundary where PDW states emerge, which is close to the boundary of

Fig. 2 | Occurrence of d-swave transition. DQMC-calculated �Pα as a function of δ
atT = t/5 andU/t = 4withP = 3 on a L = 12 lattice for (a)V0=0, (b)V0=3, (c)V0=4, and
(d) V0=8. Here, we divided the data into 10 bins and calculated the error of the data
using the jackknife method. The horizontal dashed line represents the zero point
on the y-axis. e DMRG-calculated effective zero-momentum pair-pair structure

factor �Sα as a functionofV0 atδ=0.111 andU/t= 8on the6 × 6 cylinder.While a small
discrepancy is observed, it will not affect our conclusionwithin small error bars. (f)
DMRG-calculatedV0,c ford-swave transitionwith differentUonboth 6 × 3 and 6 × 6
cylinders, exhibiting a nearly linear function ofU. For comparison, DQMC result on
a 12 × 12 lattice at U/t = 4 and T = t/5 is also marked here.
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s-wave state. To further confirm our DQMC conclusion, we have plot-
ted DMRG-calculated �Sα of the s- and d-waves, and the peak value of
PDW �SdðqÞ at δ =0.111, U/t = 8, V0 = 7 on a 6 × 6 cylinder, supporting
the dominance of s-wave at zero temperature (see more cases in
Supplementary Fig. 8). Figure 3(d) shows �Ps as a function of tem-
perature at different U and L. Similar to that in Fig. 3(b), it is obvious
that �Ps is also enhanced with increasing U and shows a very weak
lattice-size effect. Furthermore, our constrained path quantumMonte
Carlo (CPQMC) and DMRG simulations also suggest the possible
emergence of long-range s-wave superconducting order within the
investigated parameter region (Supplementary Fig. 9 and Supple-
mentary Fig. 10).

Origin of d-s wave transition
It is interesting to understand the physics insight behind this d-s
pairing-symmetry transition. In Fig. 4, based on the ground-state
DMRG analysis on the condensate wave function, we realize that this
phase transition is strongly related to charge-stripe-induced potential
fluctuation, where the domain-walls can form around the on-stripe
region (blue-circle in Fig. 4). Specifically, the DMRG-calculated domi-
nant Cooper pair mode ζ0(iδl) supports that a clear local pattern of s-
wave pairing can emerge around on-stripe regions atmoderate V0 and
δ, regardless of P, where horizontal and vertical bonds have the same
signs (Supplementary Fig. 11). On the contrary, inter-stripe region (red-
circle in Fig. 4) is always beneficial to asymmetricd-wave, as long asP is
sufficiently large, where horizontal and vertical bonds exhibit opposite
signs (Supplementary Fig. 11). In brief, without the domain-wall, the
system favors asymmetric d-wave patterns. In the presence of domain-
walls, the influence of domain-walls on pairing symmetry is local, and

s-wave patterns can only be prominent near on-stripe region at mod-
erate V0 and δ. The smallerP, themore the s-wave components can be
generated in the system. When P ≥4, the inter-stripe d-wave region
plays a dominant role in forming global d-wave pairing in the system.
However, when P ≤ 3, the intensity of s-wave pattern near on-stripe
region is sufficiently strong to convert the global pairing symmetry
from d to s. This understanding not only can explain why the d-s wave
transition is more accessible in a smaller P system [Supplementary
Fig. 1 and Fig. 1(c)], but also suggests that the local s-wave pairing may
also exist in P ≥4 (d-wave-dominant) systems, as long as the V0 and δ
are in a suitable region.

Besides the pairing-symmetry transition, it is also curious to
understand the role of charge stripe on the modulation of spin sus-
ceptibility [χs(q)]. In Figs. 5(a) and (b), we have calculated the χs(q) for
two different V0 at δ = 0.3 in the q-space (see more V0 cases in Sup-
plementary Fig. 12). In the d-wave region, the system behaves as the
AFM correlation. One can see that the (π, π) magnetic correlation is
enhanced as the V0 increases, i.e., the system exhibits a stronger AFM
fluctuation along the direction of stripes (x direction) with larger V0.
This AFM-correlation enhancement is possibly caused by more nearly
half-filled inter-stripe regions (Supplementary Fig. 6), similar to the
behavior of enhanced d pairing symmetry at δ =0.3. Moreover, sub-
peaks emerge at qy =π ±π=P =2π=3 and 4π/3, reflecting the incom-
mensurate spin correlations observed in the d-wave superconductor29,
and are gradually suppressed as increasing V0 from 4 to 6.

The case is dramatically changed in the s-wave region. In Fig. 5(c)
and (d), we have calculated χs(q) at δ =0.18 with two different V0, in
which the s-wave pairing symmetry is dominated. Surprisingly, along
with the d-swave transition, the AFM correlation at (π, π) is weakened.

Fig. 3 | Effective pairing interactions and structure factors.DQMC-calculated �Pα

as a function of temperature (a) for differentV0 atδ =0.3,U/t = 4, and L = 12, (b) for
different U/t or L at δ = 0.3 and V0= 6. c–d are similar to (a–b) but for the cases of
δ =0.18. Gray-dotted line in (c) represents the d-wave PDW at V0 = 5. Left of (c):

DMRG-calculated �Sα of s-wave (blue-solid) and d-wave (blue-dash), and the peak
value of d-wave PDW �Sd ðqÞ (gray-dash) at δ = 0.111, U/t = 8, V0 = 7 on a 6 × 6
cylinder. The error of the DQMCdata are calculated by using the jackknifemethod.
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In detail, χs(q) shows a dumbbell shape, different from the rod shape
for the d-wave at δ =0.3. The dumbbell distribution becomes more
obvious as V0 increases (see more V0 cases in Supplementary Fig. 13).
Besides, the (π, π) magnetic correlation and dominant pairing corre-
lation exhibit a very similar temperature dependence (Supplementary
Fig. 14). Given that magnetism and superconductivity simultaneously
exhibit dramatical differences in these two doping cases of δ =0.3 and
0.18, it indicates that the pairing-symmetry transition and magnetic-
correlation transition are strongly interwoven.

Discussion
Both charge and spin stripes are widely observed in many super-
conductors. Although the spin stripe itself is interesting in a model
study, it is beyond the focus for our current study. Meanwhile,
although the major conclusion is described by a minimal Hubbard
model, it is robust against the multi-band model (Supplementary
Fig. 3) or different stripe styles (Supplementary Fig. 15). Since the
charge stripe in a real material system might be tunable under some
external conditions, combined with the linear relationship between
V0,c and U, our study provides an interesting idea of charge-stripe
engineering of pairing symmetry. During the d-swave phase transition,
the competition between PDW and s-wave provides an important
opportunity to explore the exotic intertwining phenomenon between
PDW, d-wave, and s-wave.

Methods
The two-dimensional Hubbard Hamiltonian on a square lattice with
nearest-neighbor hopping t and Coulomb repulsion U is written as

Ĥ = � t
X
hi, jiσ

ðcyiσcjσ + c
y
jσciσÞ+U

X
i

ni"ni#

� μ
X
i

ðni" +ni#Þ+V0

X
modðiy ,PÞ=0

ðni" +ni#Þ:
ð1Þ

Here, ciσ (cyiσ) annihilates (creates) electrons at site i with spin σ
(σ = ↑, ↓), and niσ = c

y
iσciσ is the particle number operator for the

electron. We set the nearest-neighbor hopping t = 1 as the energy unit.
μ is a global chemical potential for all sites, and V0 is an additional
potential exerted on a set of on-stripe rows i = (ix, iy) where iy = 0

modulo P, that is, mod ðiy,PÞ=0. The larger V0, the stronger the
charge fluctuation. Accordingly, as shown in Fig. 1(a), the charge stripe
with tunable oscillation strength can be introduced externally via a
raised energy V0. To further confirm our results, we have also selected
a cosine-like varyingmodulation (SupplementaryFig. 15). Interestingly,
V0,c for the d-s wave transition becomes even smaller when we choose
the cosine-like varying charge modulation.

Wenote that the purposeof thismodel is not to address the origin
of the stripe formation, as this is still an open question. Instead, it
allows us to estimate the characteristics of spin and pairing correla-
tions in the presence of pre-existing charge orders. This is an appro-
priate approximate model when the energy scale of the stripe
formation is greater than that of superconductivity31,33,35,38–41.

DQMC method
Our calculations are mainly performed on the lattice shown in Fig. 1(a)
using the DQMC method with periodic boundary conditions. This
unbiased numerical method is powerful and reliable to investigate
strongly-correlated electrons42–46. The basic strategy of the finite-
temperature DQMC method is to express the partition function
Z =Tr expð�βHÞ as a high-dimensional integral over a set of random
auxiliary fields. The integration is then accomplished by Monte
Carlo sampling. In our DQMC simulations, 8000 warm-up sweeps
are conducted to equilibrate the system, and an additional
10,000 ~ 1,200,000 sweeps are performed for measurements, which
are divided into 10 ~ 20 bins. Besides, two local updates are performed
between measurements. In the process of eliminating the on-site
interaction, the inverse temperature β = 1/T is discretized. And the
discretization mesh Δτ = 0.1 of β is chosen small enough so that the
resulting Trotter errors are typically smaller than those associatedwith
the statistical sampling.

We have performed a systematical analysis of the infamous sign
problem46 in our DQMC simulations. The average sign decreases
quickly as the inverse temperature exceeds 3, and the sign problem
gets worse for higher U and larger L. In most of our calculations, the
average sign keeps as > 0.55 (see Supplementary Fig. 16). In order to
explore the lower temperature behavior of �Pα , the average sign keeps
as > 0.4 (Supplementary Fig. 17). In short, the conclusions obtained
from our DQMC calculations are reliable.

Fig. 4 | Physical Origin of the d-s wave transition. Sketch depicts the d-s wave
transition by analyzing the condensate wave function of the dominant Cooper pair
mode ζ0(iδl) based onDMRG simulations. Blue (red) circles label the sites in the on-
stripe (inter-stripe) regionwith (without) V0. Purple (green) bonds indicate positive
(negative) values of ζ0(iδl). The solid line at the top illustrates themagnitude of the
striped potential energy. Symmetric s-wave patterns only occur near on-stripe

regions (domain-walls) at moderate V0 and δ, i.e., horizontal and vertical bonds
have the same signs. On the contrary, the inter-stripe region always benefits
asymmetric d-wave, i.e., horizontal and vertical bonds have opposite signs. Due to
the competition between the d- and s-wave pairing symmetries, global s-wave
pattern can be stabilized with P ≤ 3.
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To explore the effects of the charge-density modulation on
superconductivity, we define the pairing interaction as

Pα =
1
Ns

X
i, j

Dαði, jÞ, ð2Þ

where

Dαði, jÞ=
Z β

0
dτ Δy

αði, τÞΔαðj, 0Þ
D E

T
ð3Þ

gives the zero-frequency pair-pair correlation function between sites i
and j, α represents the pairing symmetry, the corresponding order
parameter Δα(i, τ) = eHτΔα(i, 0)e−Hτ and Δy

αði, 0Þ is written as

Δy
αði, 0Þ=

X
l

f *αðδlÞCyiδl ð4Þ

with Ciδl
= ci"ci+δl# � ci#ci+δl" denoting the operator for the Cooper

pair on the sites i and i+δl, and fα(δl) stands for the formfactorofpairing
function. The vectors δl (l = 1, 2, 3, 4) denote the nearest-neighbor
connections, and δl is ± x̂ and ± ŷ. Considering the structure of the

square lattice, the possible singlet pairing forms are given by either the
extended s-waveor thed-wave,whichhave the following form factor33,47,

s � wave : fsðδlÞ= + 1,

d � wave : fdðδlÞ=
+ 1 for δl = ± x̂

�1 for δl = ± ŷ
,

� ð5Þ

In practice, the effective pairing interaction �Pα is a more direct probe
to identify the dominant superconducting pairing form48,49. In order to
obtain �Pα , the uncorrelated single-particle contribution ~Dαði, jÞ is also
calculated, which is reached by replacing hcyi#cj#c

y
i+δl"cj+δl0 "i in Eq. (2)

with hcyi#cj#ihc
y
i+δl"cj+δl0 "i. Eventually, we have the effective pairing

interaction �Pα = Pα � ~Pα as well as the effective zero-frequency pair-
pair correlation function �Dαði, jÞ=Dαði, jÞ � ~Dαði, jÞ. The appearance of
negative effective pairing interaction may indicate that the pairing
symmetry is suppressed by other competing states.

We also define the effective zero-frequency pair-pair structure
factor for DQMC,

�DαðqÞ=
1
Ns

X
i, j

eiq�ði�jÞ �Dαði, jÞ: ð6Þ

Fig. 5 | Correlation between spin susceptibility andmagnetism.DQMC-calculated spin susceptibility χs(q) in the first Brillouin zone at T = t/5, U/t = 4 with (a) δ =0.3
and V0= 4, (b) δ = 0.3 and V0= 6, (c) δ =0.18 and V0= 4, and (d) δ = 0.18 and V0= 6. Here, (a–b) are for the d-wave cases, and (c–d) are for the s-wave cases.
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In particular, we use PPDW
d ðqÞ � �DdðqÞ to understand the effects of the

charge-density modulation on the d-wave pair-density-wave (PDW)
order. In the simulations, when the peak of PPDW

d ðqÞ is located at zero
momentum, it indicates a lack of PDW state in the system. Otherwise,
there may be a PDW state50,51.

As magnetic excitation possibly plays an important role for the
superconductivity mechanism in strong electron correlation systems,
we also study the spin susceptibility in the zdirection at zero frequency
in the P =3 model,

χsðqÞ=
1
Ns

Z β

0
dτ

X
i, j

eiq�ði�jÞhmiðτÞmjð0ÞiT , ð7Þ

wheremi(τ) = eHτmi(0)e−Hτ with mið0Þ= cyi"ci" � cyi#ci#.

DMRG method
At zero temperature, we employ the DMRGmethod to investigate the
model Hamiltonian on a cylinder with 8, 192 SU(2) bases at most,
equivalent to about 25, 000 U(1) bases, and guarantee that the trun-
cation error is less than 10−5. We also examine the pairing-symmetry
transition directly by investigating the static pair-pair structure factor

SαðqÞ=
1
Ns

X
i, j

eiq�ði�jÞ Δy
αði, 0ÞΔαðj, 0Þ

D E
, ð8Þ

where the statistic average at a finite temperature and zero frequency
in Eq. (6) is replaced with the ground-state expectation value at zero
temperature here. Similarly, we also calculate the uncorrelated single-
particle contribution ~SαðqÞ and define the effective static pair-pair
structure factor as �SαðqÞ=SαðqÞ � ~SαðqÞ. In the calculation, we target
the lowest-energy zero-magnetic-momentum state with a specified
even number of electrons. Thus, the number of electrons for any
species is also preserved and the spin fluctuations remain negligible. In
this work, we use the effective zero-momentum pair-pair structure
factors �Ss � �Ssðq= ð0,0ÞÞ and �Sd � �Sdðq= ð0,0ÞÞ, and the emerging
peak of �SdðqÞ at a finite momentum q ≠ (0, 0) to identify the s and d-
wave pairing as well as the d-wave PDW, respectively.

To clearly illustrate how the pairing-symmetry transition happens
at zero temperature, we further decompose Cooper pair modes from
the two-particle density matrix, defined as52

ρðiδl , jδl0 Þ= Cyiδl
Cjδl0

D E
, ð9Þ

where Ciδl
is consistent with the definition in Eq. (4). We exclude the

overlapping parts for either i = j, or i= j+δl0 , or j = i + δl, giving rise to
the local contributions from density and spin correlations. Since ρ is
Hermitian, it can be diagonalized with real eigenvalues λn, that is,

ρðiδl , jδl0 Þ=
X
n

λnζ
*
nðiδlÞζ nðjδl0 Þ: ð10Þ

The eigenvector ζn(iδl) are referred to as macroscopic wave functions
of Cooper pairmodes. The dominantmodewith the largest eigenvalue
is labeled by n = 0.

CPQMC method
To further demonstrate that the system may exhibit long-range
superconducting correlations for the swave pairing, we also check the
long-range part of the ground-state pair-correlation function using the
CPQMC method49,53. The CPQMC method has been successfully used
to calculate the ground-state energy and other observables in various
systems49,53. We investigate the long-range superconducting correla-
tions of dominant s-wave pairing symmetry by defining the pair-pair

correlation function at zero temperature, which is written as

CαðrÞ=
1

NNr

X
i, j

X
jj�ij = r

Δy
αði, 0ÞΔαðj, 0Þ

D E
, ð11Þ

Here, r is the distance between site i and site j. The Nr is the total
number of distance r. Similarly, we also define the uncorrelated single-
particle contribution ~CαðrÞ and discuss the vertex contribu-
tions �CαðrÞ=CαðrÞ � ~CαðrÞ.

Data availability
Data are available from the authors upon request.

Code availability
DQMC and DMRG codes used for the data processing and other
findings of this study are available upon request.
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