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Observation of quantum strong
Mpemba effect

Jie Zhang 1,2,3,9, Gang Xia1,9, Chun-WangWu 1,2,3, Ting Chen1,2,3, Qian Zhang4,
Yi Xie1,2,3,Wen-Bo Su 1,WeiWu 1,2,3, Cheng-Wei Qiu 5, Ping-XingChen 1,2,3,
Weibin Li 6,7 , Hui Jing 4,8 & Yan-Li Zhou 1,2,3

An ancient and counterintuitive phenomenon known as the Mpemba effect
(water can cool faster when initially heated up) showcases the critical role of
initial conditions in relaxation processes. How to realize and utilize this effect
for speeding up relaxation is an important but challenging task in purely
quantum system till now. Here, we experimentally study the strong Mpemba
effect in a single trapped ion system in which an exponentially accelerated
relaxation in time is observed by preparing an optimal quantum initial state
with no excitation of the slowest decaying mode. Also, we demonstrate that
the condition of realizing such effect coincideswith the Liouvillian exceptional
point, featuring the coalescence of both the eigenvalues and the eigenmodes
of the systems. Our work provides an efficient strategy to engineer the
dynamics of open quantum system, and suggests a link unexplored yet
between the Mpemba effect and the non-Hermitian physics.

Relaxations or dissipative evolutions from initial states to a stationary
state, widely existing in nature, are vital for fundamental studies of
nonequilibrium phenomena and practical control of dynamical
devices1,2. In quantum realm, rapid relaxations are highly desirable for
efficient quantum state preparation and qubit engineering3–8. As a
possible strategy to achieve this goal, the Mpemba effect (ME)9, well-
known in the counterintuitive example thatwater can cool faster when
initially heated up, has attracted growing interests both in classical10–17

and quantum systems in recent years18–30. Often, this and related
phenomena admits a general explanation10–12,31: the state of the hotter
system overlaps less with the slowest decaying mode (SDM) of the
dissipative or cooling dynamics, implying the critical role of initial
conditions in relaxations (see Fig. 1(a, b)).

For purely quantum systems at zero temperature, the main chal-
lenge is to identify ME-induced rapid relaxations that are not smeared
out by quantum superposition18. Very recently, Carollo et al.18

proposed that strong ME (sME) or exponential speed-up of relaxation
can emerge in Markovian open quantum systems by devising an
optimal initial state (i.e., sME state) to prohibit excitation of the slowest
decaying mode (SDM, see Fig. 1(c)). This prediction of quantum sME,
however, has not been experimentally realized till now, hindering its
possible applications in e.g., ‘engineered’ relaxation dynamics of the
open quantum system14.

Here, we report the observation of the sME in a truly quantum
system, which is a genuine quantum effect and cannot be captured
by semi-classical methods. As an essential step towards this target,
we construct the sME state via efficient gate operations on a single
trapped ion and show that with such special pure state, featuring
zero overlap with the SDM, exponential speeding-up of relaxations
can be observed (see Fig. 1(d–g)). Also we find that a critical point can
appear in our system, separating the regimes with or without expo-
nential acceleration of relaxations, which coincides well with the

Received: 14 February 2024

Accepted: 7 November 2024

Check for updates

1Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha, China. 2Hunan Key Laboratory of
Mechanism and technology of Quantum Information, Changsha, China. 3Hefei National Laboratory, Hefei, Anhui, China. 4Key Laboratory of Low-Dimensional
Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, China. 5Department of Electrical and Computer
Engineering, National University of Singapore, Singapore, Singapore. 6School of Physics and Astronomy, University of Nottingham, Nottingham, United
Kingdom. 7Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham, United King-
dom. 8College of Science, National University of Defense Technology, Changsha, China. 9These authors contributed equally: Jie Zhang, Gang Xia.

e-mail: weibin.li@nottingham.ac.uk; jinghui73@foxmail.com; ylzhou@nudt.edu.cn

Nature Communications |          (2025) 16:301 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7873-8740
http://orcid.org/0000-0001-7873-8740
http://orcid.org/0000-0001-7873-8740
http://orcid.org/0000-0001-7873-8740
http://orcid.org/0000-0001-7873-8740
http://orcid.org/0000-0003-3047-3960
http://orcid.org/0000-0003-3047-3960
http://orcid.org/0000-0003-3047-3960
http://orcid.org/0000-0003-3047-3960
http://orcid.org/0000-0003-3047-3960
http://orcid.org/0000-0002-7008-3118
http://orcid.org/0000-0002-7008-3118
http://orcid.org/0000-0002-7008-3118
http://orcid.org/0000-0002-7008-3118
http://orcid.org/0000-0002-7008-3118
http://orcid.org/0009-0001-8647-1852
http://orcid.org/0009-0001-8647-1852
http://orcid.org/0009-0001-8647-1852
http://orcid.org/0009-0001-8647-1852
http://orcid.org/0009-0001-8647-1852
http://orcid.org/0000-0002-6605-500X
http://orcid.org/0000-0002-6605-500X
http://orcid.org/0000-0002-6605-500X
http://orcid.org/0000-0002-6605-500X
http://orcid.org/0000-0002-6605-500X
http://orcid.org/0000-0002-0714-1231
http://orcid.org/0000-0002-0714-1231
http://orcid.org/0000-0002-0714-1231
http://orcid.org/0000-0002-0714-1231
http://orcid.org/0000-0002-0714-1231
http://orcid.org/0000-0001-6731-1311
http://orcid.org/0000-0001-6731-1311
http://orcid.org/0000-0001-6731-1311
http://orcid.org/0000-0001-6731-1311
http://orcid.org/0000-0001-6731-1311
http://orcid.org/0000-0001-5091-2057
http://orcid.org/0000-0001-5091-2057
http://orcid.org/0000-0001-5091-2057
http://orcid.org/0000-0001-5091-2057
http://orcid.org/0000-0001-5091-2057
http://orcid.org/0000-0002-4334-8440
http://orcid.org/0000-0002-4334-8440
http://orcid.org/0000-0002-4334-8440
http://orcid.org/0000-0002-4334-8440
http://orcid.org/0000-0002-4334-8440
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54303-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54303-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54303-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54303-0&domain=pdf
mailto:weibin.li@nottingham.ac.uk
mailto:jinghui73@foxmail.com
mailto:ylzhou@nudt.edu.cn
www.nature.com/naturecommunications


Liouvillian exceptional point (LEP)32–39. Furthermore, we observe
both eigenvalues and eigenmodes coalesce at the LEP in the
experiment bymeasuring the overlaps with the decayingmodes. Our
findings indicate a possible link unexplored yet between quantum
ME and non-Hermitian physics7,38–44, which may stimulate more
exciting efforts on e.g., engineering quantum sME with higher-order
or topological LEPs38,39,44.

Results
Theory of quantum strong Mpemba effect
To understand the quantum sME, we consider a Lindblad master
equation _ρ=LρðtÞ, where L is the Liouvillian superoperator18,36,45

Lρ= � i½H,ρ�+
X
α

JαρJ
y
α � 1

2
JyαJα ,ρ

� �� �
: ð1Þ

Here H is the Hamiltonian of the system and Jα are the quantum jump
operators. The density operator ρ(t) can be expanded as the sum of all
eigenmodes (Ri) of L

ρðtÞ= eLt =ρss +
Xd2�1

i= 1

cie
λi tRi: ð2Þ

Here Ri(Li) are the right (left) eigenmatrices of the Liouvillian super-
operator L, with the corresponding eigenvalues λ0>Re½λ1�≥
Re½λ2�≥Re½λ3�≥ . . ., and λ0 = 0. λ0 or its eigenmatrix R0 denotes the
stationary state ρss, which is independent of any initial state ρin, while
the real parts of other eigenvalues λi≥1 indicate the relaxation rates of
the eigenmodes Ri. Coefficients ci =Tr½Liρin� give the overlap of Liwith
ρin, and d2 denotes the number of the decay modes.

Generally, an initial state can overlap with all decaying modes of
Lindblad dynamics, but at long times the relaxation is dominated by
the slowest one R113,15,45,46. The decay rate of the eigenmode R1 sets an
exponential timescale of the relaxation τ1 = 1=jRe½λ1�j45–47, which is
normally independent of the initial state. But for the ME case, anom-
alous fast relaxations can be achieved by designing a special form of

the overlap c1 featuring smaller or even zero overlap with the
SDM11,13,18,20.

The quantum sME can be realized by designing such an initial
state ∣sMEi satisfying18,

Tr L1∣sMEi sMEh ∣
� �

= c1 = 0: ð3Þ

This optimal state ∣sMEi is prepared by applying a well devised unitary
transformation to an initially pure quantum state of the system18.
Therefore the sME state is normally a quantum superposition state,
which represents a fundamental difference from classic sME, and thus
the resulting dynamical behaviour cannot be captured by semi-
classical approaches (see Supplementary note 1). Since this sME initial
state has zero overlapwith the SDM, the relaxation rate of the system is
thus jRe½λ2�j, with the timescale τ2 = 1=jRe½λ2�j, instead of τ1 = 1=jRe½λ1�j.
This implies an exponentially faster convergence to the stationary
state by a factor Re½δλ12�=Re½λ1 � λ2�.

Experimental approach
The experimental setup and relevant energy levels for the quantum
sME are shown in Fig. 2(a, b). The ground state ∣0i= ∣42S1=2,mj = � 1=2

E

is resonantly coupled to state ∣1i= ∣32D5=2,mj = � 5=2
E

and
∣2i= ∣32D5=2,mj =3=2

E
by one 729 nm laser beam with two frequency

components and the corresponding Rabi frequencies are Ω1 and Ω2,
respectively. Another laser at 854 nm with right circular polarization
induces a tunable decay channel between state ∣1i and ∣0i with decay
rate κ1, by coupling ∣1i to a short-life level ∣42P3=2,mj = � 3=2

E
, which

will decay quickly back to the state ∣0i= ∣42S1=2,mj = � 1=2
E

(see
Supplementary note 2). The imperfect polarization of 854 nm will
cause slow decay from state ∣2i to ∣0i with decay rate κ2 ≪ κ1 and also
the leakage of population to the other Zeeman ground state. For-
tunately, the leakage problem can be fixed by introducing a
weak optical pumping beam at 397 nm during the data acquisition
process. Then for the effective three-level system, we have the
Hamiltonian H =

P
j = 1, 2Ωj=2ð∣0i j

�
∣+ ∣j

	
0h ∣Þ and two jump operators

Jj =
ffiffiffiffiffi
κj

p
∣0i j

�
∣ (j = 1, 2).

Fig. 1 | Comparison for classic and quantum Mpemba effect. a The ME can be
understood in an intuitive way: the amplitude of the overlap of the initial state with
the slowest decaying mode (SDM) depends on the initial temperature in a non-
monotonic way. The sME appears when the overlap with the SDM vanishes. bWeak
ME: If an initial high temperature state has a smaller SDM amplitude than that of the
lower temperature state, it can reach the thermal equilibrium faster. Strong ME: the
system reaches equilibrium at an exponentially faster rate. No ME: the initial high
temperature state has a larger overlap with the SDM and thus reaches the equili-
brium slower. c By applying a unitary operation, one can realize an initial sME state
and approaches the stationary state with a faster rate. d The energy levels for

observing the sME (with κ2≪ κ1). e The overlap ∣c1∣ of a rotated initial random state
with the SDM as a function of the rotation angle s. f The distance between the time-
relaxed state ρ(t) and the stationary state ρss for different initial states: ∣0i (blue), ∣2i
(green) and ∣sMEi (red), respectively. The initial sME state starts with a longer dis-
tance from ρss than the initial state ∣0ð2Þ	 but reaches ρss faster. g The logarithmic
scale of the distance evolves with time for different initial states. An exponential
speed-up of relaxation is clearly observed for the sME initial state. The experimental
parameters for (e–g) areΩ1 = 2π × 20 kHz,Ω2 = 0.06Ω1, κ1 = 2Ω1, κ2 = 0.0015Ω1, and
the solid lines here are the theoretical predictions based on the experimental
parameters.
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To observe quantum sME, we initialize the ion in the ground state
∣0i and subsequently rotate it by applying a unitary operation U18 (see
Fig. 2(c)). Although this transformation can be exactly constructed
through the decompositionmethod48, it is still challenging to realize it
with high fidelity in the experiment since at least six gate operations
are required for our case. To overcome this obstacle, herewe optimize
the operations to two qubit-rotations (see “Methods” for technical
details). The rotated state then relaxes with the desired Liouvillian
superoperator L. The final step is quantum state tomography, i.e.,
performing theprojectivemeasurements on the time-relaxed stateρ(t)
as it relaxes from the initial state ρin to the final stationary ρss. We
remark that both the dynamical process and the state readout need to

be carefully regulated, accompanyingwith theoptimizationprocedure
(see “Methods”).

Quantum strong ME
With the aid of tomography of ρ(t), we can characterize the relaxation
process by using the Hilbert-Schmidt distance18

DðρðtÞ,ρssÞ= jjρðtÞ � ρssjj, ð4Þ

with the notation jjAjj=Tr½
ffiffiffiffiffiffiffiffi
AyA

p
�. As presented in Fig. 1(f), the sME

initial state generated by our method is farther from the stationary
state than normal initial states ∣0ð2Þ	. This is due to the fact thatwhileU

Fig. 2 | Experimental setup and relaxation dynamics for different initial states.
a Experimental setup of quantum sME. The coherent driving between the S state
and D state is realized by using a 729 nm laser beam with linewidth about 100 Hz.
Two transitions required (as shown in b) are simultaneously driven by injecting two
RF frequencies to an acoustic-optic modulator (AOM1) via an arbitrary waveform
generator (AWG). Thedecay rate of theD state is controlledby thepowerof 854 nm
laser. b The relevant energy levels of a single 40Ca+ ion involved in the experiment,
with state ∣0i, ∣1i, ∣2i are encoded in the energy levels ∣42S1=2,mj = � 1=2

E
,

∣32D5=2,mj = � 5=2
E
and ∣32D5=2,mj = 3=2

E
, respectively. The energy gapof state ∣1i

and ∣2i can minimize detrimental effect from the polarization impurity of the 854

nm laser beam. c Protocol to generate the sME initial state and tomography of the
densitymatrix ρ(t). After generating the initially sME state by applying two rotation
gates on the state ∣0i, the system evolves with the Liouvillian superoperator L of
interest. After a time t, projectivemeasurements are performed for the tomography
of the state ρ(t). d–f Left: The dynamics of the state population
ρii =Tr½∣ii ih ∣ρðtÞ�ði =0, 1, 2Þ for initial states ∣0i (d), ∣2i (e) and ∣sMEi (f) on a loga-
rithmic timescale. Right: The evolving overlap jciðtÞj = jTr½LiρðtÞ�j for three time
stamps at 0, τ2, τ1. The solid lines indicate the theoretical results based on the
experimental parameters samewith Fig. 1(e–g) and the error bars are generated by
using Monte Carlo simulation.
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removes the SDM excitation, it also modifies the excitation of the
remaining ones18. Nonetheless, the approach to stationarity for sME
initial state is still faster since the SDM (R1) is cut off byU18. Figure 1(g)
gives the Logarithmic scale of distance DðρðtÞ,ρssÞ. Compared with
the normal initial states, an exponential speeding-up of the
relaxation is reached for the sME initial state, a clear evidence of
quantum sME. It can also be observed by other distance measures,
for instance, the trace distance48 or Bures distance49,50 (see
Supplementary note 1).

Figure 2(d–f) illustrates the relaxationdynamics of initial states ∣0i,
∣2i, and ∣sMEi, respectively, under same experimental parameters. We
find that they all reach the same steady state after a sufficiently long
time, but the relaxation time of the sME initial state is significantly
shorter. For the normal initial states ∣0ð2Þ	 (see Fig. 2(d, e)), when t ≫ τ2
the system relaxes into a state in the metastable manifold till
τ1 = 1=jRe½λ1�j45. Differently, as seen in Fig. 2(f), the application of U,
cutting of the excitation of the SDM, leads to striking faster approach to
the steady state with the time scale τ2 ≪ τ1. In order to visualise their
overlaps on each decaying mode, we give all coefficients ci(t) of ρ(t)
decomposition into all the decaying modes at time t = 0, t = τ2, and
t = τ1, respectively. As depicted in Fig. 2(d, e), when time t = 0, a generic
initial state will normally overlap with the slowest one, i.e., c1(0) ≠ 0.
When time t > τ2, the overlap of initial state with the short-life exci-
tation modes (Ri>1) becomes very small, while the SDM (R1) is still
relevant and keeps the system away from stationarity for a long time till
t ≫ τ1. However, for the sME initial state, c1 = 0, therefore, the
relaxation time scale is reduced to τ2 with a faster decay rate jRe½λ2�j
(see Fig. 2(f)). Note that the coefficient on R0 (i.e., the stationary state)
has the form c0 tð Þ=Tr½L0ρðtÞ�=Tr½ρðtÞ�= 1 and consistently remains at 1
for all the time, while the coefficients on other decay modes
ci tð Þ= cieλi t =Tr½Liρin�eλi t i= 1, 2 . . .ð Þ decrease with time for the rea-
son Re½λi�<0.

From strong ME to weak ME
Can this exponential acceleration always happen for the sME initial
state? To check this, we measure the distance DðρðtÞ,ρssÞ and the
overlaps c1,2(t) for different parameters of the system. As shown in
Fig. 3(a-b), for the normal initial state ∣0ið∣2iÞ, the distance has similar
dynamical behavior with the overlap c1(t) at the final stage of the
relaxation, i.e., ρðtÞ � ρss ’ c1e

λ1tR1. While for sME intial state, it

becomes to ρðtÞ � ρss ’ c2e
λ2tR2. When Ω2/Ω1≪ 1, the accelerated

relaxation achieved for sME initial state is very significant, since in this
regime jRe½λ1�j≪jRe½λ2�j, as shown in Fig. 3(c). While as Ω2 increases,
this exponential gain jRe½δλ12�j decreases andevendisappearswhenΩ2

passes across the LEP,where λ1 = λ2 andR1 = R2. The reason is thatwhen
Ω2/Ω1 > LEP, the eigenvalue of the SDM of the L forms a complex
conjugate pair, i.e., λ1 = λ

*
2 (see Fig. 3(c)), which means that the

decaying modes R1 and R2 have the same decay rate. Meanwhile, the
imaginary parts of eigenvalues λ1,2 result in the oscillating during the
relaxation process7,43 (Supplementary note 1). Even though, comparing
with normal initial states which have two SDMs, the sME initial state
here just has one so that it may still be faster to the stationary state.
Different with sME featuring a faster decay rate, this acceleration here
corresponds to the weakMEwhich is associatedwith a smaller overlap
with the SDM11. As a consequence, LEP is the boundary between the
quantum strong ME and weak ME, showing that an existence of the
quantum strong ME is limited to the regime in which λ1 is real. It is
helpful for deepening the understanding of the relaxation speed limit
from both LEPs and quantum ME perspectives.

Based on the measurements of the overlaps, we further demon-
strate both eigenvalues (Fig. 3(c)) and eigenmodes (Fig. 3(d)) coalesce at
LEP in the experiment. Whereas the impact of the decaying modes is
often limited to transient dynamics, it presents a practical challenge for
experimental observation of more than one eigenvalue of L. Normally,
LEP happens at the point that an eigenvalue changes from real to
complex38,39. However, this change just can show where LEP happens,
but does not demonstrate the coalesce of the LEP, because the coalesce
of LEPs typically occur in two or more eigenvalues. This challenge could
be solved by fitting the measurement of ciðtÞ= cieλi t using a single
exponential function of time. Based on this, theoretically, one can get
the full spectrumofL. For our system here, considering the overlap c2 is
very small for initial state ∣0ð2Þ	), we choose to get λ2 by measuring c2(t)
of initial sME state and λ1 by measuring c1(t) of initial state ∣0i. The
results, as depicted in Fig. 3(c), match well with the theoretical results
and show that LEP is signaled by the degenerated of λ1,2.

As shown in Fig. 3(d), the coalesce of the eigenmodes R1(L1) and
R2(L2) at LEP is indicatedby c1 = c2 for afixed initial state, because at LEP
Tr½L1ρin�=Tr½L2ρin�. This means the coalesce the coefficients is a
detectable way to show the eigenmodes coalesce of LEP. Note that, as
we observed in Fig. 3(c-d), the bifurcation singularity of the spectrum

Fig. 3 | From strong ME to weak ME. a Logarithmic scale of distance Dðρ,ρssÞ
evolves with time for different initial state: ∣0i (blue), ∣2i (green) and ∣sMEi (red),
respectively. b The corresponding coefficients c1(t) (of initial state ∣0ð2Þ

	
) and c2(t) (of

initial state ∣sMEi). The sME that exits exponential acceleration is observed for Ω2/
Ω1 = 0.04, 0.16( < LEP). When Ω2/Ω1 = 0.25( > LEP), ∣sMEi has the same decay rate

with the normal initial states ∣0ð2Þ	, meaning the strongMEdisappears butweakME is
allowed. c Real parts of the eigenvalues of the Liouvillian operator as a function ofΩ2/
Ω1. d Overlaps ∣c1∣ (solid) and ∣c2∣ (dashed) for different initial states ∣0i (red) and ∣2i
(green), respectively. The parameters areΩ1 = 2π × 20 kHz, κ1 = 2Ω1, κ2 = 0.0015Ω1.
All error bars in this figure are calculated by using Monte Carlo simulation.
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and the overlaps c1,2 is not detectable in the steady state but rather in
the relaxation process36. In fact, for the dynamics at long times,
ρðtÞ � ρss ’ c1e

λ1tR1, thus LEP corresponds the final direction change
of the dynamics from R1 to R1 +R

y
1 . This direction change occurring at

LEP is the further evidence of a direct link with anomalous phenomena
arising in the relaxation process such as sME and the dynamical phase
transition15,51.

Discussion
In summary, we have observed the quantum sME in a single trapped-
ion system by preparing an optimal pure state that has zero overlap
with the SDM. For the quantum sME initial state, we propose an effi-
cient quantum control technique for state preparation, dynamical
engineering and state tomography. In addition, we reveal that quan-
tum sME only happens within a certain parameter range, which is
determined by LEP. Together with well-developed techniques of
engineering quantum states, our work not only provides a powerful
tool for exploring and utilizing the quantum sME as examples of
engineered relaxation dynamics14 but also bridges the LEP and quan-
tum ME, two previously independent effects. Besides, the experi-
mentally accessible methods discussed in the present manuscript,
such as the the efficient unitary transformation and the overlaps
measurement, will be valuable tools to assess the quality of the state
preparation and the control of the system relaxation.

Note added: While submitting our manuscript, we became aware
of another two experimental studies of the Mpemba effect performed
with trapped ion systems appeared on arXiv, and currently they have
been published on Phys. Rev. Lett29,30.

Methods
We explain here how to devise the unitary transformation U to gen-
erate the quantum sME initial (pure) state ρsME

in = ∣sMEi sMEh ∣. We firstly
use the method performed in ref. 18 to get ∣sMEi, then we explicitly
construct feasible operation U based on our experimental setting
(see Fig. 4).

As discussed in ref. 18, the formula of this unitary can be expres-
sed as

U = exp½�isð∣ϕ1

	
ϕ2

�
∣+ ∣ϕ2

	
ϕ1

�
∣Þ�∣ϕ1

	
0h ∣, ð5Þ

where ∣ϕ1ð2Þ
E
are the eigenstates of the left-hand eigenmatrix L1 with

the corresponding negative (positive) eigenvalues α1(2),
s = arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jα1=α2j

p
Þ. This qutrit (three-level) U operations can be

decomposed into several qubit (two-level) rotations48. Compared with
qubit operations, a notable challenge in qutrit operations is that the
elementary qubit operations lose their ‘global-phase’ gauge freedom
because any phase shift is measured relative to the spectator level52.

Now we discuss how to overcome this technical challenge by
applying a more efficient and practical way of decomposition, which
requires only 2 two-level rotation operations in the experiment (see
Fig. 4). Suppose an arbitrary qutrit pure state ∣ψ

	
=U∣0i= ða,b, cÞT and

∣a∣2 + ∣b∣2 + ∣c∣2 = 1, thenU canbe decomposed into a productof 2 two-
level unitary matrices U = AB48, where

A =

affiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 + jbj2

p b*ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 + jbj2

p 0

bffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 + jbj2

p � a*ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 + jbj2

p 0

0 0 1

0
BBB@

1
CCCA,

B =
a0 0 c*

0 1 0

c 0 �a0*

0
B@

1
CA,

ð6Þ

with a0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaj2 + jbj2

p
. The unitary A and B can be written in the form

A=P01ðαÞZ01ðβÞR01ðγ,π=2ÞZ01ðδÞ
=P01ðαÞRz

01ðβ+ δÞR01ðγ,π=2� 2δÞ,
B=P02ðα0ÞZ02ðβ0ÞR02ðγ0,π=2ÞZ02ðδ0Þ
=P02ðα0ÞZ02ðβ0 + δ0ÞR02ðγ0,π=2� 2δ0Þ,

ð7Þ

where

P01ðxÞ =
eix 0 0

0 eix 0

0 0 1

0
B@

1
CA, P02ðxÞ=

eix 0 0

0 1 0

0 0 eix

0
B@

1
CA,

Z01ðxÞ =
e�ix 0 0

0 eix 0

0 0 1

0
B@

1
CA, Z02ðxÞ=

e�ix 0 0

0 1 0

0 0 eix

0
B@

1
CA,

R01ðx, yÞ =

cos x
2

� � �ie�iy sin x
2

� �
0
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and

γ =2arccosjA11j,

α =
1
2

argðA11Þ+ argðA22Þ
�

,

β=
1
2
ðargðA21Þ � argðA11ÞÞ,

δ = � α + argðA22Þ � β,

γ0 =2arccosjB11j,

α0 =
1
2
ðargðB11Þ+ argðB33ÞÞ,

β0 =
1
2
ðargðB31Þ � argðB11ÞÞ,

δ0 = � α0 + argðB33Þ � β0
:

Fig. 4 | Protocol to prepare arbitrary pure qutrit (three-level) states and to get
the density matrix ρ(t) in the experiment. First, we construct the quantum state
by engineering an 'virtual' but efficient unitary transformation U = R02R01. Then in

the dynamical process, the parameters of the lasersΩ1,2 are adjusted accordingly to
Ω1eiϕ andΩ2e

iϕ0
. Finally, the state tomography operations are changed accordingly

to Wðϑ01,ϑ02Þ.
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Here we have translated the phase gates P and Z backwards which
implement appropriate phase-shifts between the qutrit states52,53. Then
the final decomposed unitary operation for U can be written as

U =AB

=P01ðαÞZ01ðβ+ δÞR01ðγ,π=2� 2δÞP02ðα0Þ
Z02ðβ0 + δ0ÞR02ðγ0,π=2� 2δ0Þ

=P01ðαÞP02ðα0ÞZ01ðβ+ δÞZ02ðβ0 + δ0Þ
R01ðγ,ϕÞR02ðγ0,ϕ0Þ,

ð8Þ

with ϕ=α0 � ðβ0 + δ0Þ+ π
2 � 2δ,ϕ0 = π

2 � 2δ0.
We can further simplify the unitary operationU in amore efficient

way by translating phase gates P and Z to the operation backwards till
the detection due to the fact that the detection does not need phase
information53. By calculating the translated phase in software, we just
need two rotation operations R01R02 to generate arbitrary qutrit pure
state experimentally, which can not only greatly simplify operations,
but also improve the fidelity of sME state.

As shown in Fig. 4, our careful analysis shows that the corre-
sponding dynamical operator and state tomography operations need
to be modulated accordingly,

LðΩ1,Ω2Þ ! L Ω1e
iϕ,Ω2e

iϕ0
 �
: ð9Þ

The state tomography for the qutrit system here requires 9 measure-
ment basis, which are ∣0i, ∣1i, ∣2i, ð∣0i+ ∣1iÞ=

ffiffiffi
2

p
,ð∣0i+ i∣1iÞ=

ffiffiffi
2

p
,

ð∣0i+ ∣2iÞ=
ffiffiffi
2

p
, ð∣0i+ i∣2iÞ=

ffiffiffi
2

p
, ð∣1i+ ∣2iÞ=

ffiffiffi
2

p
, ð∣1i+ i∣2iÞ=

ffiffiffi
2

p
. However,

only S orD state canbedetected in the trapped ion system, thereforewe
need to rotate the basis to state ∣0i before applying the detection beam
since we have encoded state ∣1i and ∣2i in D statemanifold. The rotation
operationWðϑ1eiϕL1 ,ϑ2eiϕL2 Þ in the state tomography can be realized by
simply combining the π or π/2 pulses with translating phase ϕL1 =α

0 �
2ðβ+ δÞ � ðβ0 + δ0Þ on the transition ∣0i $ ∣1i and ϕL2 =α � 2ðβ0 + δ0Þ �
ðβ + δÞ on the transition ∣0i $ ∣2i respectively. After we get the pro-
jective measurement results of these basis, we can reconstruct density
matrix by usingmaximum-likelihoodmethod, and the error bars for the
density matrix are obtained by using numerical simulations54,55.

Data availability
The data that supports the findings are presented in the article and
Supplementary Information. Source data are provided with this paper.

Code availability
The code used for data analysis and simulation is available from the
corresponding author upon request. Source data are provided with
this paper.
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