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Mechanistic basis for the emergence of EPS1
as a catalyst in salicylic acid biosynthesis of
Brassicaceae

Michael P. Torrens-Spence1,8, Jason O. Matos1,2,3,8, Tianjie Li4,8,
David W. Kastner 5,6, Colin Y. Kim 1,6,7, Ziqi Wang4,
Christopher M. Glinkerman 1, Jennifer Sherk1,2,3, Heather J. Kulik 5,
Yi Wang 4 & Jing-Ke Weng 1,2,3

Salicylic acid (SA) production in Brassicaceae plants is uniquely accelerated
from isochorismate by EPS1, a newly identified enzyme in the BAHD acyl-
transferase family. We present crystal structures of EPS1 from Arabidopsis
thaliana in both its apo and substrate-analog-bound forms. Integrating
microsecond-scalemolecular dynamics simulations with quantummechanical
clustermodeling, we propose a pericyclic rearrangement lyasemechanism for
EPS1. We further reconstitute the isochorismate-derived SA biosynthesis
pathway in Saccharomyces cerevisiae, establishing an in vivo platform to
examine the impact of active-site residues on EPS1 functionality. Moreover,
stable transgenic expression of EPS1 in soybean increases basal SA levels,
highlighting the enzyme’s potential to enhance defense mechanisms in non-
Brassicaceae plants lacking an EPS1 ortholog. Our findings illustrate the evo-
lutionary adaptation of an ancestral enzyme’s active site to enable a novel
catalytic mechanism that boosts SA production in Brassicaceae plants.

Salicylic acid (SA), also known as 2-hydroxybenzoic acid, is a simple
phenolic acidessential in higherplants for both local and long-distance
defense responses after pathogen exposure1. Beyond its defense
functions, SA serves auxiliary roles in photosynthesis, ion uptake and
transport, and growth regulation2. Despite its chemical simplicity and
significance in defense signaling, the full scope of various SA biosyn-
thetic pathways across the plant kingdom remains incompletely
explored. Two major plant SA biosynthetic pathways have been iden-
tified downstream of chorismate to date: the phenylpropanoid-
derived pathway3 and the isochorismate-derived pathway4. In the
model plant Arabidopsis thaliana, a minor amount of SA is generated
throughphenylalanine ammonia-lyase (PAL), converting cinnamic acid

to benzoic acid via side-chain shortening and 2‐hydroxylation5–8.
However, during pathogen attacks, the primary SA biosynthesis route
relies on isochorismate synthase, an enzyme in plastids that converts
chorismate to isochorismate, encoded by the SALICYLIC ACID
INDUCTION DEFICIENT 2 (SID2) gene9 (Fig. 1a). The A. thaliana gene
SALICYLIC ACID INDUCTION DEFICIENT 1 (SID1) encodes a multidrug
and toxin extrusion (MATE) transporter, which is localized in the
chloroplast envelope and transports isochorismate, synthesized by
SID2, from the plastid to the cytosol10–12. Unlike the bacterial pathway
in which SA is produced directly from isochorismate via an iso-
chorismate pyruvate lyase (IPL)13, plants employ a cytosolic GH3 acyl
adenylase family enzyme PBS3 that catalyzes regiospecific conjugation
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of isochorismate with L-glutamate to form isochorismoyl-glutamate
A (IGA) (Fig. 1a)12,14. IGA is unstable and decays spontaneously into
the byproduct N-pyruvoyl-L-glutamate (NPG) and the phytohormone
SA12,14.

Unique to the Brassicaceae plants, the spontaneous decay of IGA
is accelerated by a lineage-specific isochorismoyl-glutamate pyruvoyl-
glutamate lyase (IPGL) encoded by the ENHANCED PSEUDOMONAS
SUSCEPTIBILTY 1 (EPS1) gene14 (Fig. 1a). The A. thaliana eps1 mutant is
hypersusceptible to the bacterial pathogen Pseudomonas syringae and
is defective in de novo SA production upon P. syringae infection15. EPS1
is a member of the plant BAHD acyltransferase family, which is named
after the first four enzymes characterized within the family16. The
BAHD family has undergone extensive radiation during land plant
evolution, giving rise to functionally diverse acyltransferases widely
distributed in many plant natural product biosynthetic pathways17.
Canonical BAHD enzymes catalyze the transfer of the acyl group from
an acyl-CoA thioester substrate to an alcohol or amine-containing
acceptor molecule to form the corresponding ester or amide product.

These proteins are also annotated as HXXXD family enzymes due to a
highly conserved HXXXD motif. While most BAHD enzymes contain
the conserved catalytic histidine as part of the HXXXD motif, which
serves to coordinate the -OH or -NH2 group of the acyl acceptor sub-
strate to initiate the catalytic cycle18, A. thaliana EPS1 (AtEPS1) and
other Brassicaceae orthologs contain a serine substitution at this
conserved histidine residue. In addition, AtEPS1 does not contain an
acyl-CoA thioester-binding motif. Both of these observations suggest
the emergence of a new catalytic function in AtEPS114. Indeed, our
recentworkon the coumarin synthase (COSY) enzyme is anexampleof
neofunctionalization within the BAHD enzyme family, showcasing an
unconventional active site that catalyzes the intramolecular iso-
merization and lactonization of substrates to produce coumarins19.

In this study, we present in-depth characterization of crystal
structures of AtEPS1 in both the apo form and holo form bound to an
inert substrate analog. Our approach combines computational meth-
ods, site-directed mutagenesis, and reconstitution of the SA bio-
synthesis pathway in Saccharomyces cerevisiae to pinpoint crucial
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Fig. 1 | The metabolic function and evolutionary origin of EPS1. a The SA bio-
synthetic pathway in Brassicaceae plants. b Simplified maximum likelihood tree of
the EPS1 clade (purple), the EPS1 sister clade (blue) and its most closely related
HXXXD-type acyl-transferase family protein ancestral clade (green). Note that the
blue EPS1 sister clade is seemingly lost in the majority of Brassicaceae plants. The
purple EPS1 clade enzymes and not the neighboring clades display strict con-
servation for the serine substitution for the characteristic histidine in the (HXXXD)
motif. c Simplified taxonomy of Brassicaceae plants displaying the presence or
absence of the green ancestor clade, the blue EPS1 sister clade or the purple true
EPS1 clade enzymes. d In A. thaliana, the EPS1 gene (purple arrow and shading) is

adjacent to its closest homolog AT5G67150.1 (green arrow and shading). In the
related species A. lyrata, EPS1 is sandwiched between the AT5G67150.1 ortholog
AL8G44210.t1 (green arrow and shading) and the evenmore closely relatedA. lyrata
AL8G44190.t1 (blue arrow and shading). Our analyses suggest that in the common
ancestor of Brassicaceae plants, the HXXXD-clade progenitor duplicated in situ to
yield two derived copies that founded the EPS1 clade and the EPS1 sister clade,
respectively. Whereas the EPS1 clade acquired IPGL activity, the EPS1 sister clade
genes were then lost in A. thaliana and the majority of other profiled extant Bras-
sicaceae species.
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active-site residues affecting AtEPS1’s lyase activity and stability. To
examine this Brassicaceae plant trait in an orthologous plant species,
we proceeded to introduce AtEPS1 transgenically into soybeans, which
donot naturally possess anEPS1ortholog. This step allowedus todelve
deeper into whether gaining IPGL activity in a non-Brassicaceae plant
could boost SA production efficiency. These findings not only illumi-
nate the adaptable nature of BAHD-family enzymes through evolution
but also propose a novel approach to enhancing defense responses in
agricultural crops.

Results and discussion
The evolutionary history of EPS1
To trace the evolutionary history of EPS1 and uncover its role, we
conducted a targeted phylogenetic analysis of 62 annotated BAHDs
encoded by the A. thaliana genome, placing EPS1 within the Ib clade.
While some enzymes in clade I were linked to flavonoid biosynthesis,
the exact functions of these clade Ib enzymes remain largely unknown
(Supplementary Fig. 1)16,20. Expanded phylogenetic analysis of addi-
tional EPS1-like homologs from multiple reference plant genomes
revealed that EPS1 falls into a subgroup of BAHDs within the Ib clade
that are restricted to Brassicaceae species (Fig. 1b, c). Within this
subgroup, a canonical HXXXD-type clade (green, represented by
AT5g67150 from A. thaliana, which has an unknown function) is pre-
sent in all Brassicaceae species examined and is likely the immediate
ancestor of the closely related EPS1 clade (purple) and EPS1 sister clade
(blue). (Fig. 1b). Synteny analysis of the EPS1 genomic loci across sev-
eral Brassicaceaeplant genomesprovided further details regarding the
evolutionarybirth of EPS1 (Fig. 1d). In theA. thaliana genome,AtEPS1 is
adjacent to its most closely related HXXXD-type clade homolog
AT5G67150, which is also the case in the syntenic regions for 7 of the 8
Brassicaceae species examined (Fig. 1d). The syntenic region in the A.
lyrata genome harbors a third homologous gene AL8G44190, belong-
ing to the EPS1 sister clade, on the other side of AlEPS1 (Fig. 1d). This
tandem gene duplication event likely gave rise to EPS1, as well as the
EPS1 sister clade gene which was subsequently lost in A. thaliana and
the majority of other profiled Brassicaceae species (Fig. 1c).

The overall structure of AtEPS1
To understand how IPGL activity could arise from a progenitor BAHD
acyltransferase, we solved the crystal structures of apo AtEPS1 and the
substrate analog (2-(3-carboxyphenoxy)acetyl)-L-glutamic acid (CAG)
(Supplementary Figs. 2-8) bound AtEPS1, at 1.9Å and 1.7 Å resolution,
respectively (Fig. 2a, b and Supplementary Table 1). Similar to several
previously reported BAHD structures, AtEPS1 displays pseudo-
symmetric N-terminal (residues 1-181) and C-terminal (residues 227-
434) domains, connected by a large crossover loop (residues 182-226)
which runs around ¾ of the circumference of the protein18,21–27

(Fig. 2a). In the AtEPS1 active site, located at the interface between the
two domains, the aryl carboxylate of the substrate analog CAG is
coordinated through the backbone carbonyl of Pro390, in addition to
the positively charged guanidino groups of Arg44 and Arg395. The
aromatic ring of CAG is stabilized by the side chains of Leu42, Val357,
Val363, and Leu392, while Phe39 likely functions as part of this
hydrophobic pocket to hold the acetyl portion of CAG or the corre-
sponding acrylate group of the true IGA substrate. The ɑ-carboxyl
group of the glutamate portion of CAG is highly coordinated by the
guanidino groups of Arg36 andArg282 aswell as the hydroxyl groupof
Thr306, while the γ-carboxyl group of the glutamate portion forms a
H-bond with the hydroxyl group of Thr365.

Interestingly, when super-positioning CAG-bound AtEPS1 with the
product-bound structure of A. thaliana hydroxycinnamoyl-CoA:-
shikimate hydroxycinnamoyltransferase (AtHCT) (PDB ID: 5KJU)18, it is
apparent that the CAG-binding site in AtEPS1 corresponds to only the
acyl acceptorportionof theAtHCTactive site. Severalbulky residues in
AtEPS1, notably Leu42, Phe156, Tyr158, Ile168, andTrp169,fill the space

that otherwise would host the acyl donor in a canonical BAHD acyl-
transferase (Fig. 2c). In addition to the substitution of the conserved
catalytic histidine to serine in AtEPS1, Trp371 (AtHCT numbering), a
residue that serves as an oxyanion hole to stabilize the tetrahedral
intermediate of the acylation reaction, conserved in a large fraction of
BAHD acyltransferases18, is substituted to serine (Ser367) in
AtEPS1 (Fig. 2c).

Two dynamic loops gate the active site entrance
Amongst previously reported plant BAHD structures, the size and
arrangement of the crossover loop on the acyl-donor side of the
enzyme vary little between structures, while portions of the crossover
loop on the acyl-acceptor side of the enzyme vary substantially cor-
responding to individual enzymes’ acyl-acceptor substrates. Despite
its overall high sequence and structural similarity with AtHCT, AtEPS1
adopts a crossover-loop conformationmore similar to that observed in
the vinorine synthase and anthocyanin malonyltransferase
structures27,28, indicating a possible preferred configuration for larger
substrates, such as IGA, vinorine, or anthocyanin, compared to the
smaller HCT acyl acceptor substrate shikimate (Supplementary Fig. 9,
Supplementary Table 2, and Supplementary Table 3).

Comparison of the apo- and CAG-bound AtEPS1 structures reveals
conformational changes of a dynamic portion of the crossover loop
(Pro212-Asn226), a phenomenon which was not observed in other
BAHD structures (Fig. 2d). In the CAG-bound AtEPS1 structure,
crossover-loop residues Pro212-Asn226 are rotated away from the
central ligand-binding cavity, and an adjacent dynamic loop (Ile351-
Lys360), recently described as the lid loop29, is positioned directly
above the substrate analog. Conversely, in the apo AtEPS1 structure,
the lid loop (Ile351-Lys360) and the crossover-loop residues Pro212-
Asn226 aredisplaced toopenupa larger entrance to the enzymeactive
site (Fig. 2d). Moreover, 28.04% volume constriction is observed at the
active-site upon binding of CAG ligand in AtEPS1 (Supplementary
Fig. 10), possibly indicating an induced fit mechanism in EPS1. Mole-
cular dynamics (MD) simulations were next employed (Supplementary
Table 4, and Supplementary Table 5) to investigate the apparent
coordinated movement of these active-site loops with ligand binding.
Clustering analysis of altogether 16-μs trajectories revealed markedly
reduced flexibility of both loops upon EPS1’s transition from its apo to
the holo state (Supplementary Fig. 11a). Between the two dynamic
loops, the crossover loop appears to bemore tightly locked upon such
transitions, while the lid loop retains greater flexibility in the holo state
(Supplementary Fig. 11b). These changes in loop dynamics may con-
tribute to selective substrate binding of EPS1.

Structural basis for substrate selectivity and catalytic mechan-
ism of AtEPS1
Guided by the CAGpositioning in the AtEPS1 active site, we docked the
native substrate IGA into the active site, refined the five highest-affinity
poses with simulated annealing, and corroborated the refined binding
pose of IGA using microsecond-long MD simulations (Supplementary
Fig. 12 and Supplementary Fig. 13). Simulated CAG and IGA binding to
AtEPS1 both conform to a nearly identical binding position compared
to the substrate analog in the CAG-bound AtEPS1 crystal structure,
where their differences derive from the non-planar isochorismate ring
and the presence of an additional alkene double bond in the native
substrate IGA (Fig. 3a, Supplementary Fig. 14, and Supplementary
Fig. 15). The refined binding pose of the simulated IGA is well retained
between plain MD as well as simulated annealing calculations (Sup-
plementary Fig. 14). In contrast, simulations of chorismoyl-glutamate A
(CGA), an isomer of IGA, illustrate a different orientation of the ring
from the native substrate, corroborating previous findings that CGA
serves as a poor substrate for EPS1 (Supplementary Fig. 15)14.

Interestingly, comparison of simulated IGA in the AtEPS1 holo
complex and in water reveals that the molecules adopt similar
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conformations in both with only the d2 distance between the ether
oxygen and the amide hydrogen showing a recognizable decrease in
interatomic distance in the enzyme context (Fig. 3b). The decrease
in the d2 distance could support a previously proposed IGA none-
nzymatic E1 elimination mechanism12, however, the long d3 distance
( > 4 Å) would preclude the required deprotonation of the ring
hydrogen by the amide to complete the proposed C-O bond clea-
vage. To explore the catalytic mechanism of IPGL, we next simulated
AtEPS1 bound to its products SA and NPG. These simulations indi-
cate that EPS1-mediated IGA decomposition to form SA and NPG
results in a 1.4 Å translation and 57° rotation of the SA ring in addi-
tion to a 2.8 Å shift of the oxygen atom in the pyruvoylmoiety of NPG
compared to the modeled IGA substrate (Fig. 3c). These apparent
changes in the products’ positions and orientations relative to the
substrate suggest that the enzyme likely imposes an unfavorable
constraint on the native substrate IGA. Here, aromatization alters
the pseudodiaxial conformation, elongating the C3-O distance, pla-
cing strain on the IGA substrate to break the C-O bond, and steering
the separation of the products through a pericyclic mechanism
(Fig. 3c, d)30.

To investigate the energetics for the proposed mechanism of
AtEPS1, we constructed large (415 atoms) and medium (207 atoms)
sized quantum mechanical (QM) cluster models, starting from the
minimized centroid of theMD simulations (Supplementary Fig. 16 and
Supplementary Data 1)31. We first performed density functional theory
(DFT) relaxed potential energy scans at the B3LYP/6-31G* level of
theory for the large QM cluster model and identified a putative tran-
sition state (TS) with a ΔE‡ of 13.9 kcal/mol (Fig. 3e and Supplementary
Fig. 17a)32,33. To further investigate the TS, we ran a nudged elastic band
(NEB) calculation for the medium-size QM cluster model and con-
firmed a TS with a ΔE‡ of 13.8 kcal/mol and a single imaginary fre-
quency (i326.6 cm−1) using partitioned rational-function optimization
(P-RFO) (Supplementary Fig. 17b, c). The bond lengths of the con-
firmed TS were then applied to the large QM cluster model and geo-
metry optimized, holding the TS bond lengths fixed at the same level
of theory (Supplementary Fig. 18). Additional free energy calculations
were performed on the reactant, product, and confirmed transition
state with B3LYP/6-31G* with single points performed with a larger
def2-TZVP basis set (Supplementary Table 6, and Supplementary
Table 7)34,35. The resulting free energies reveal that the proposed
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mechanism is thermodynamically favored, with a ΔG of −56.5 kcal/mol
for the products relative to the reactants (Fig. 3f, Supplementary
Fig. 16, and Supplementary Fig. 17). The identified putative TS for the
large QM cluster model had a moderate free energy barrier, ΔG‡, of
9.5 kcal/mol relative to the reactant. However, other steps in the
reaction such as conformational changes or bindingmay influence the
observed reaction rate.

To better understand the catalytic role of the enzyme active site,
we next investigated the non-enzymatic reaction. We first identified

the lowest energy conformation of IGA using CREST as a conformer
search tool. We then performed NEB calculations of the proposed
reaction, without AtEPS1, in implicit solvent with a dielectric constant
of 80 chosen to mimic an aqueous environment (Supplementary
Fig. 19 and Supplementary Table 8). The maximum energy structure
from the NEB calculation was then optimized with a P-RFO calculation
and a single imaginary frequency (i301.7 cm−1) was identified (Supple-
mentary Fig. 20). Free energy calculations were then performed on all
intermediates and transition states at the same level of theory and
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white. f Relative ΔG energy profiles in kcal/mol of the enzymatic reaction (black)
and non-enzymatic reaction (red) calculated at the B3LYP/def2-TZVP level of
theory.
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single points were performed with a larger def2-TZVP basis set
revealing a free energy barrier,ΔG‡, of 18.0 kcal/mol. We observed that
without the stabilizing effect of the binding pocket, the free energy
barrier was 8.5 kcal/mol higher (Fig. 3f and Supplementary Table 8).
This observation supports AtEPS1’s role catalyzing the proposed
mechanism by potentially stabilizing a more favorable conformation.

Structure-function roles of AtEPS1 active-site residues
Previously, we characterized the biochemical function of EPS1 in vitro
using a pre-assay that enzymatically synthesizes the EPS1 substrate IGA
from chorismate using recombinant SID2 and PBS314. However, the
unstable nature of several intermediates, including chorismate, iso-
chorismate, and IGA, complicate the utility of this setup to quantita-
tively assess the relative activities of site-directed EPS1 mutants. Thus,
we sought to reconstitute the isochorismate-derived SA biosynthetic
pathway in transgenic Saccharomyces cerevisiae, which would allow us
to measure the relative activities of EPS1 mutants in vivo. When
experimenting with various combinations of A. thaliana genes that
enable SAproduction in S. cerevisiae, wediscovered that transgenic co-
expression of SID2 and PBS3 alone is sufficient to elicit SA production
in yeast, while the addition of AtEPS1 further led to seven- and six-fold
increase in SA and NPG production, respectively, with a concomitant
depletion of IGA levels by more than ten fold (Fig. 4a–c). Although the
isochorismate-derived SA biosynthetic pathway is naturally compart-
mentalized inplastidandcytoplasm inplants, it canbe reconstituted in
the yeast cytosol without the need for the MATE transporter, SID1.

We utilized our newly developed heterologous yeast screening
system to investigate the effects of various active-site residues of
AtEPS1 using site-directedmutagenesis. Subsequently, wemeasured in
vivo IPGL activity by assessing the relative depletion of IGA, acknowl-
edging the limitation that mutational outcomes in yeast may not per-
fectly mirror their effects in plants. Creating a panel of AtEPS1mutants
with single alanine substitutions in 19 active-site residues, we intro-
duced them into an S. cerevisiae background strain co-expressing SID2
and PBS3 where the reduction in IGA levels relative to wild-type
AtEPS1 served as a measure of the mutants’ IPGL activities (Fig. 4a–c).
Notably, mutants Arg44Ala, Asp164Ala, Thr306Ala, and Arg395Ala
exhibited significant increases in IGA levels, indicating inactive or
improperly folded EPS1 variants, whereas mimetic mutations restored
IPGL activities comparable to wild type. Substituting alanine, but not
lysine, for Arg44 or Arg395 significantly reduces IPGL activity, sup-
porting their roles in coordinating the aryl carboxylate groupof IGAvia
salt bridges and facilitating the leaving of SA product during pericyclic
reactions. TheThr306Alamutation rendersAtEPS1 inactive in the yeast
system (Fig. 4d), while the Thr306Cys mutant maintains wild-type
activity. The Asp164Ala mutant exhibits minimal activity, but is
restorable by an asparagine substitution. Since substituting polar
residues with alanine can induce protein instability andmisfolding, we
conducted a western blot analysis to assess the expression and solu-
bility of our alanine mutants in the yeast system. All four key-residue
mutants were extracted from yeast, with the Arg44Ala and Arg395Ala
mutants being soluble. In contrast, the Asp164Ala and Thr306Ala
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mutants were insoluble, suggesting a destabilizing effect on EPS1
folding when expressed in yeast (Supplementary Fig. 21). It should be
noted that while we confirm soluble expression of the Arg395Ala
mutant by western blot, the band intensity is lower than WT and
Arg44Ala.Consequently, due to the natureof our experimental design,
we cannot determine whether the lower IPGL activity of Arg395Ala is
due to a reduced protein amount, decreased activity, or effects on
protein stability when expressed in the yeast system. Sequence con-
servation analysis of the active-site residues among EPS1-clade
enzymes and EPS1-sister-clade enzymes demonstrates that while
Arg44 andAsp164 are required for IPGL activity, these residues are also
conserved in the EPS1 sister clade and therefore may not indicate
adaption specific for EPS1 neofunctionalization (Supplementary
Fig. 22). Thr306 and Arg395, however, are conserved among the EPS1-
clade sequences, but are substituted to other amino acids in the
EPS1 sister clade, suggesting these two essential residues are selected
to support IPGL activity among EPS1 orthologs.

To further investigate the role of the aforementioned residues, we
conducted additional MD simulations on the site-directed mutants in
the holo state with IGA or IPGL products (i.e., SA and NPG). Given that
our in silico mutants are created using the WT protein as a template,
thesemicrosecond simulations primarily sample the local, rather than
global, structural impact of themutation. By comparing themwith the
WT simulations, we can probe how the in situ replacement of a given
residue by alanine may impact ligand coordination rather than the
folding and stability of the entire protein. Although Asp164Ala and
Thr306Ala are not soluble, we propose that simulating them could still
provide valuable insights into how other enzymes drive pericyclic
reactions and could offer further mechanistic insights into EPS1.

As shown in Supplementary Fig. 23, the ligand RMSD reveals that
IGA and/or IPGL products either precariously bind to or do not bind at
all to alanine-substitutedmutants. Due to themissing coordination of its
aryl carboxylate, Arg44Ala and Arg395Ala mutants fail to retain the
active position of IGA in the binding pocket (Supplementary Fig. 24).
Such missing coordination impacts the binding of IPGL products even
more severely, with SA detached from the active pocket almost from the
beginning of Arg44Ala and Arg395Ala simulations (Supplementary
Fig. 23). For the Asp164Ala mutant, simulations capture the local dis-
ruption of protein structure, which primarily arises from an unsettled
small loop (Asn286-Val303) due to the mutation (Supplementary
Fig. 25a). The alanine substitution of Asp164 cuts off its original binding
to Arg288 and frees this small loop, resulting in its significantly elevated
B factor as well as altered ligand coordination (Supplementary Fig. 25).

Interestingly, although Thr306Ala significantly reduces the solu-
bility and IPGL activity of the EPS1 enzyme, the binding between
Thr306 and IGA as revealed by the WT simulations (Supplementary
Fig. 26) is dynamic, hinting at a more complex and subtle function of
Thr306 than tight coordination of the substrate as offered by Arg44
and Arg395. We notice that a nearby Arg282 transiently flips towards
the substrate during simulations, where its guanidino group interacts
with the α-carboxylate of IGA, thereby distorting the original, active
pose of the substrate (Fig. 5a). Upon such transient distortion, the
occasional hydrogen bond offered by Thr306 stops IGA from further
displacement and severs its interaction with Arg282, restoring the
substrate to its active pose (Fig. 5a and Supplementary Movie 1). A
similar guarding effect is provided by the hydrophilic Cys306, with its
increased direct contact to Arg282 further hindering the latter’s
binding to IGA (Supplementary Fig. 27 and Supplementary Movie 2).
The distorted, inactive pose of IGA is retained when the guarding
residue at position 306 is substituted with an alanine (Supplementary
Movie 3). This distinction is also captured by the simulations with IPGL
products, where the original binding pose of NPG is distorted by
Arg282 in the Thr306Ala but not the WT and Thr306Cys simulations
(Supplementary Fig. 27).

Transgenic expression of AtEPS1 in soybean leads to SA
overproduction
In Arabidopsis, the primary flux of pathogen-induced SA is derived
from isochorismate, with a minor contribution coming from the phe-
nylalanine pathway4. Conversely, both of these pathways have been
shown to be equally important to SA accumulation in soybean, as
suppression of either pathway results in reduced SA levels36. Previous
workhas shown thatoverexpression of isochorismate synthase and IPL
genes from bacteria in Nicotiana plants resulted in increased SA levels
and triggered systemic acquired resistance37. We generated stable
transgenic soybean plants overexpressing AtEPS1 to examine if SA
levels were affected. Eighteen independent transgenic lines were
generated and grown under greenhouse conditions for phenotypic
characterization. Among these, we observed varying levels of severity
in the stunted growth phenotype, accompanied by leaf yellowing,
which is known to be associated with SA overaccumulation14.
Compared to the wild type, these growth phenotypes were categor-
ized as wild-type-like (1), moderate (2), and severe (3) (Fig. 6a). Meta-
bolic profiling of leaf extracts from three representative lines
within these categories of transgenic plants revealed that SA levels
in the wild-type-like and moderate phenotypes fell within the error
range of the wild type. In contrast, the severe phenotype exhibited
nearly a five-fold increase in SA levels (Fig. 6b). To determine if the
severity of the stunted growth phenotype and SA levels correlated
with the levels of AtEPS1 transgenic expression, we employed quanti-
tative reverse transcription-polymerase chain reaction (qRT-PCR).
As expected, no AtEPS1 transcript was detected in the wild-type soy-
bean plants. Plants exhibiting wild-type-like andmoderate phenotypes
showed moderate expression levels, while the plant with the severe
phenotype exhibited significantly higher transgene expression.
Our data suggest that ectopic overexpression of AtEPS1 in soybean
plants, which lack an EPS1 ortholog, leads to SA overaccumulation
and a stunted growth phenotype. This indicates the functional
and evolutionary significance of EPS1 in enhancing SA production
efficiency in planta.

The ability to mount a vigorous defense against invading patho-
gens at local tissue while sending warning signals to the unaffected
distal tissue is critical for plants to survive the challenging biotic
environments they live in. Although the defense hormone SA could be
produced through spontaneous decay of IGA in plants that contain
PBS3, natural selection has propelled the common ancestors of the
Brassicaceae plants to recruit a gene-duplication-derived BAHD pro-
genitor enzyme, refurbish its active site, and ultimately gain specific
IPGL activity that accelerates this last step of SA biosynthesis. In this
case of neofunctionalized catalyticmachinery, EPS1 developed a highly
coordinated substrate-binding site that forces an energetically unfa-
vorable conformation for its substrate IGA, thereby facilitating the
breakdown of IGA to yield SA and NPG through a pericyclic reaction
(Fig. 3d). While pericyclic reactions are regularly used in organic
chemistry, enzymes known to catalyze pericyclic reactions have only
been sparsely characterized in cellular metabolism, including IPL and
chorismate mutase38,39. Both enzymes employ a pericyclic dissociative
mechanism to cleave a C−O bond, which points to a broader
mechanism of pericyclic elimination from shikimate-derived metabo-
lites. Interestingly, despite IPL and EPS1 employing similar mechan-
isms, their overall folds are entirely different (Supplementary Fig. 28).
Our observation that SA production can be enhanced in soybean
plants through transgenic overexpression of AtEPS1 illuminates the
evolutionary advantage that could be gained from the neofunctiona-
lization of a BAHD-type enzyme to acquire new IPGL activity within the
Brassicaceae family. Furthermore, our findings not only underscore
the remarkable adaptability and specificity of plant metabolic path-
ways but also open avenues for using EPS1 as a novel plant trait to
improve pathogen resistance in non-Brassicaceae plants.
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Methods
Sequence alignment, phylogenetic analysis, and homology
modeling
Sequence alignments were built using ClustalW2 with default
settings40. Maximum likelihood tree shown in Supplementary Fig. 1b
and Supplementary Fig. 1 were determined using MEGAX41. The
bootstrap consensus trees were inferred from 500 replicates to
represent the local BAHD phylogeny of AtEPS1 which encompassed
homologous sequences from the phytozome SMB clade with an
e-value threshold of 1e-40. The local EPS1 tree was then generated as
described above from only the EPS1 clade sequences and a probable
sister and ancestor clade sequences. Conservation of the active-site
residues betweenAtEPS1 and probable sister cladewasdisplayed using
WebLogo42.

Molecular cloning, heterologous expression, and recombinant
protein production
Total RNA from A. thaliana was extracted from six-week-old plants
grown in long-day greenhouse conditions using the RNeasy Mini Kit

(Qiagen). First-strand cDNAs were synthesized using the Invitrogen
SuperScript III kit (Invitrogen)with the oligo(dT)20primer. The coding
sequences (CDS) of candidate genes were amplified from cDNAs by
PCR using gene-specific primers. Point mutations were produced with
Gibson assemblymutagenesis using the initial cloning primers and the
mutation primers. The open reading frame (ORF) of target SA bio-
synthetic genes were cloned into p423TEF, p425TEF, and p426TEF 2μ
plasmids for constitutive expression in S. cerevisiae or into pHis8-4, a
bacterial expression vector containing an N-terminal 8xHis tag fol-
lowed by a tobacco etch virus (TEV) cleavage site for recombinant
protein production in E. coli. Note, recombinant AtEPS1 was produced
and purified in a previous study14. 15mL cultures of transgenic S. cer-
evisiae BY4743 strains were grown in 50mL mini bioreactor tubes for
24 h with shaking at 30 °C. The cultured cells were subsequently pel-
leted at 2500 x g, washed, disrupted, and clarified for LC-HRAM-MS
metabolic profiling43. The raw data were processed using MZmine 244

and further analyzed using metaboanalyst45. Statistical analysis was
conducted using Prism 8 (GraphPad Prism version 8.0.0 for Mac,
GraphPad Software, San Diego, California USA, www.graphpad.com).
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Metabolomic profiling by LC-HRAM-MS
Metabolite profiling was performed using a Q Exactive Orbitrap mass
spectrometer (Thermo Fisher Scientific) coupled with a Dionex Ulti-
Mate 3000 UPLC system. Samples (2 µL) were injected onto a C18
column (Kinetex 2.6 μm, 100Å, 150 × 3mm) with a gradient of 0.1%
formic acid inwater (A) and0.1% formic acid in acetonitrile (B) at aflow
rate of 0.8mL/min. The gradient was 5% B for 2min, 5%–80% B over
40min, 95% B for 4min, and 5% B for 5min. The mass spectrometer
operated in polarity-switching mode (70–1000m/z), with key settings
including a spray voltage of 3.0 kV, capillary temperature of 275 °C,
and HESI probe temperature of 350 °C. Data were acquired at 70,000
resolution with a maximum injection time of 20ms.

Chemical synthesis general methods
All reactions were performed under nitrogen unless otherwise noted.
All reagents and solvents were used as supplied without further pur-
ification unless otherwise noted. Column chromatography was con-
ducted using Silicycle SiliaFlash P60 SiO2 (40–63 μm). Analytical TLC
was conducted using Millipore SiO2 60 F254 TLC (0.250mm) plates.
HPLC was conducted using a pair of Shimadzu LC-20AP pumps, a
Shimadzu CBM-20A communications module, a Shimadzu SPD-20A
UV-Vis detector, and a Phenomenex Kinetex 5 uC18 100ÅAxia column
(150 ×21.2mm). Melting points were obtained using a Mel-Temp II
apparatus and are uncorrected. 1H and 13C NMR spectra were obtained
using a Bruker Avance Neo 400MHz spectrometer equipped with a
5mm Bruker SmartProbe. IR spectra were obtained using a Bruker
Alpha 2 with a Platinum ATR accessory. Mass spectrometric analysis
was performed on a JEOL AccuTOF-DART. Syntheses were inspired by
previously described approaches towards polymer‐supported IBX46.

Protein crystallization and structural determination
Crystals for AtEPS1 and (2-(3-carboxyphenoxy)acetyl)-L-glutamic acid
bound AtEPS1 were grown at 4 °C by hanging-drop vapor diffusion
method with the drop containing 0.9 µL of protein sample and 0.9 µL
of reservoir solution at a reservoir solution volume of 500 µL. The
crystallization buffer for the both AtEPS1 structures were composed of
0.2M Potassium Sodium Tartrate 20 % (w/v) PEG 3350. The ligand-
bound AtEPS1 drop also contained 500 µM (2-(3-carboxyphenoxy)
acetyl)-L-glutamic acid. Crystals were cryogenized with an additional

15% weight/volume ethylene glycol. The structures were determined
first by molecular replacement using the native HCT structure from
Coffea canephora (PDB:4G0B)25 as the search model in Molrep47. The
resulting model was iteratively refined using Refmac 5.248 and then
manually refined in Coot 0.7.149.

Transgenic soybean
AtEPS1 under the control of the CaMV 35S promoter was introduced
into soybean plants as a transgene using Agrobacterium-mediated
transformation. The transformation was performed by the Wisconsin
Crop Innovation Center following the protocol described in U.S.
patent US 11,266,086 B2. 18 Independent T1 transformants were
obtained. Transgenic plants were grown at 22 °C in a greenhouse
under long-day conditions (16-h light/8-h dark) before metabolic
profiling and qRT-PCR analysis.

RNA extraction and qRT-PCR analysis
Total RNA was extracted from soybean leaves using RNeasy Plant Mini
Kit (Qiagen), per the manufacturer’s instructions. Reverse transcrip-
tion (RT) and first-strand cDNA synthesis were carried out using the
SuperScript III First-Strand Synthesis System (Invitrogen). Quantitative
real-time PCR was performed using PowerUp SYBR Green Master Mix
(Applied Biosystems) on a QuantStudio 6 Flex Real-Time PCR System
(Applied Biosystems) with the default cycling program50. Primers were
designed to amplify gene-specific PCR products of <200bp in size.
GmACT11 was used as an internal control to normalize the cDNA. The
primersused to amplifyAtEPS1were5′-CTCAAGGACATCACTGAGCTC-
3′ and 5′-CCTTTAGCTGGTCGTCTTGTG-3′. The primers used to
amplifyGmACT11were 5′-ATCTTGACTGAGCGTGGTTATTCC-3′ and 5′-
GCTGGTCCTGGCTGTCTCC-3′. Gene expression was quantified using
the relative quantification (ΔΔCt) method based on three technical
replicates.

Immunoblot
100mg of wet cell pellets from yeast harvested at mid-log phase were
resuspended in 500 µL lysis buffer (50mM sodium phosphate pH 6.2,
500mM NaCl, 0.01% Triton X-100) supplemented with protease inhi-
bitors (Roche, Catalog # 11836170001), and lysed with 0.5mm Zirco-
nia/Silica beads (BioSpec) for 30min using a TissueLyser II (Qiagen) at
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a frequency of 30 per second. Following lysis, samples were cen-
trifuged at 21,000 x g to separate the soluble lysate from the insoluble
pellet fraction. Soluble and insoluble fraction samplesweremixedwith
Laemmli buffer andproteins fromeach samplewere separated by SDS-
PAGE and immunoblotted with Anti-AtEPS1 polyclonal antibody (cus-
tom-produced by Genscript). The anti-AtEPS1 polyclonal antibody was
1:1000 diluted in Tris-buffered saline with 0.1% Tween® 20 detergent
(TBST) buffer containing 5% milk. The secondary antibody used was
Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody,
horseradish peroxidase (HRP) (Thermo Fisher Scientific, Catalog # G-
21040, RRID AB_2536527) used at 1:10000 dilution in TBST contain-
ing 5% milk.

MD simulations
Molecular dynamics simulations of apo- and CAG-bound AtEPS1 were
constructed using the corresponding crystal structures. For holo-
AtEPS1 in complex with the native substrate IGA, molecular docking
using Autodock vina 1.1.251 was employed to generate initial, candidate
binding poses of IGA, which were then refined by simulated annealing
using GROMACS 2020.252. Specifically, five docking poses with the
highest affinity produced by Autodock vina were solvated and ionized
with 0.05M NaCl and then adopted as the starting structures for
simulated annealing (Supplementary Fig. 12). Following a 1000-step
energy minimization and a 1-ns NVT equilibration at 300K, the tem-
perature was increased to 500K at a speed of 0.1 K/ps; after a 50-ns
NPT equilibration, the temperaturewas reduced to 400K at a speed of
0.05 K/ps, followed by a 5-ns NPT equilibration. The temperature was
then brought to 300K at the same speed, followed by another 5-ns
NPT equilibration, and, finally, a 1000-step energy minimization.
During the above simulations, protein backbones of α-helices and β-
sheets were restrainedwith the exceptionof residueswithin 3 Åof IGA,
the latter of which, along with the substrate, were allowed to move
freely. The simulated annealing simulations were conducted in six
replicas per docking pose, producing altogether 30 refined structures.
The centroid structure of the top cluster obtained from clustering
analysis over these 30 refined structures (Supplementary Fig. 12) was
taken as the input structure for the subsequent, altogether 8-μs MD
simulations of holo-AtEPS1 in complex with IGA. Clustering analysis of
these simulation trajectories yields the binding pose of IGA shown in
Fig. 3a, which is similar to the aforementioned centroid structure
revealed by simulated annealing calculations (Supplementary Fig. 13).
Simulations of AtEPS1 in complex with the yielded products (SA and
NPG) and CGA were initialized by superimposing these ligands to the
aforementioned refined structure of AtEPS1 in complex with IGA. Sin-
gle mutations of AtEPS1, including R44A, R395A, D164A, T306A and
T306C,were simulated in complexwith IGAor IPGLproducts based on
our in-silicomodels. All the structures of AtEPS1 mutants were initially
prepared using Modeller 10.053, where the wild-type models of IGA-
bound or IPGL-product-superimposed AtEPS1 were employed as
templates.

After initialization, 2-μs MD simulations in four replicas were
performed using GROMACS 2020.252 for each system (Supplementary
Table 4). These systems were placed in a dodecahedron box with a
margin of at least 12 Å from any protein atoms, solvated by explicit
water molecules described by the TIP3Pmodel54, and then neutralized
by 0.05M NaCl. The initial atomic velocity was assigned according to
the Maxwell-Boltzmann distribution at 300K. All systems were sub-
jected to energy minimization, followed by a 1-ns NVT equilibration
and a 1-nsNPTequilibration,with heavy atomsof theprotein backbone
positionally restrained. The resulting structures then were used to
launch the microsecond production runs listed in Supplementary
Table 4.

All simulationswereperformedusing theCHARMM36 forcefield55

with the ligands parameterized using CHARMM General Force Field
(CGenFF)56. Initial parameters of the ligands were obtained from the

CGenFF interface57,58 and then optimized using force field toolkit
(FFTK)59 in VMD 1.9.460 as well as Gaussian0961. In all simulations, van
der Waals interactions were smoothly switched off from 8Å to 9Å,
while electrostatic interactionswere calculated using the particlemesh
Ewald (PME) method62 with a cutoff of 9 Å. All systems were regulated
with velocity-rescaling temperature coupling (300K)63 and Berend-
sen’s pressure coupling (1 bar)64. All bonds with H atoms were con-
strained using the LINCS algorithm65. Clustering and other analyses
were performed on all four replica trajectories of a given system. The
representative binding pose in a given set ofMDsimulations is taken to
be the centroid structure of the top cluster derived from clustering
analysis of the trajectories using the GROMOS method66. The hydro-
gen bonds are defined and measured with a cutoff heavy-atom dis-
tance of 3.6 Å and a cutoff angle of 63°. PyMOL 2.4.067 was used for
visualization while atomic distances were measured by VMD 1.9.460.
Final parameters of ligands along with their corresponding structures
as well as the input and output files from the MD simulations of each
system are available at GitHub repository: https://github.com/
TianjieLi-Jason/EPS1.git.

QM cluster model preparation
A large QM cluster model was constructed from the minimized cen-
troid of the IGA-bound MD simulations31. The QM cluster model
included all amino acids in contact with the substrate and adjacent
residues to preserve the active site’s structure. Backbone atoms were
fixed to maintain the conformation of the active site. The QM cluster
model included the following residues: R36, L37, R38, F39, G40, Y41,
L42, N43, R44, Y158, N159, S160, N302, V303, S304, Q305, T306, V363,
V364, T365, P390, Y391, L392, N393, G394, and R395. We aimed to
include continuous chains of amino acids, where residues with side
chains oriented away from the substrate were substituted with alanine
tominimize the size of the clustermodel without introducing covalent
cuts. The residues that were substituted for alanine include: L37, R38,
Y41, N43, N159, V303, V364, Y391, and N393. The final QM cluster
model contained 415 atoms and maintained charge neutrality. The
medium sized QM cluster model included the following residues,
which were selected to maintain the same overall charge and the
residues most likely to impact substrate positioning: R36, R44, Q302,
Q305, V363, T365, L392, and R395. The coordinates of the QM cluster
model are included in the Source Data zip file.

QM calculations
Nudged elastic band (NEB) calculations and geometry optimizations
were calculated with ORCA version 5.0.3. The constrained geometry
scan for the large QM cluster model was calculated with developer
version 1.9 of the GPU-accelerated quantum chemistry package
TeraChem68–70. The geometry optimizations were initially performed
at the B3LYP/6-31 G* level of theory to balance cost accuracy trade-
offs32. Reactants, products, and transition state (TS) energies were also
computedwith B3LYP using the larger def2-TZVP basis71 in ORCA, with
no qualitative effect on the results (Supplementary Tables 6–8). Semi-
empirical DFT-D3 with default Becke-Johnson damping was also
applied to account for long-range interactions within the QM cluster
model69. The large QM cluster model calculations were carried out
with an implicit conductor-like polarizable continuummodel (C-PCM)
to approximate the protein’s internal dielectric72,73, whereas the QM
calculations of the substrate in solution used to approximate the
dielectric of water34. To conserve the active site structure, backbone
atoms were frozen, and all other atoms were allowed to move freely.
For the QM calculations of the substrate in solution, all atoms were
allowed to move freely. For the large QM cluster model, an initial
putative transition state was identified using the TeraChem TRIC
implementation of the constrained geometry scan74. The distance
between C9 and the C2 hydrogen was used as a reaction coordinate
and was fixed incrementally while optimizing all other degrees of
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freedom. ΔG energies were computed using frequency calculations to
obtain zero-point vibrational energy corrections at the B3LYP/6-31 G*
level of theory. The computed zero-point vibrational energy correc-
tions were also applied to the B3LYP/def2-TZVP calculations (Supple-
mentary Tables 6–8). The coordinates of the scans are included in the
Source Data zip file.

Transition state calculations
While the large QM cluster model of the AtEPS1 active site is prohibi-
tively large to confirm the TS (415 atoms), we confirmed the TS with a
single imaginary frequency for themedium-size QM clustermodel and
for the non-enzymatic reaction in solution (Supplementary Fig. 17, and
Supplementary Fig. 20). For TS searching, we employed ORCA 5.0.3 as
TeraChem version 1.9 does not support analytical Hessians. Optimi-
zation of the TS was performed by first running an NEB calculation at
the B3LYP/6-31 G* level of theory. The maximum from the NEB calcu-
lation was then used as an initial guess for a partitioned rational-
function optimization (P-RFO), and a frequency calculation was per-
formed for the reactants, products, and TS to ensure that an imaginary
frequency corresponding to the TS was observed (Supplementary
Fig. 17) To approximate the TS of the large AtEPS1 cluster model more
accurately, the geometry of the optimized TS from medium-size QM
cluster model was used to model the putative TS of the large AtEPS1
cluster model by restraining the following distances and performing a
constrained geometry optimization: C2···H = 1.17 Å, C9···H = 1.85 Å,
C9···C8 = 1.37Å, C8···O = 1.30Å, C3···O = 2.00Å, and C2···C3 = 1.48 Å
(Supplementary Fig. 17, and Supplementary Fig. 18). Single points were
run for all intermediates and transition states using the larger def2-
TZVP basis in ORVA with a free energy correction calculated at the
B3LYP/6-31 G* level of theory.

Volume calculations
Volume calculation was carried out using KVFinder75 by detecting
cavities around active-site (residues 36, 39, 42, 44, 160, 282, 284, 306,
257, 363, 365, 390, and 395 in Chain A) with a “probe in” size of 1.4 Å, a
“probe out” size of 5.0Å, padding size of 3.5 Å, removal distance of
2.4 Å, and volume cutoff of 150 Å3. 6WAO (CAG-bound) results in
volumeof 1537.49Å3, whereas 6WCS (apo) results in volumeof 2136.67
Å3, which indicates 28.04% of active-site volume constriction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All atomic coordinates and structure factors generated in this study
have been deposited in the Protein Data Bank database under acces-
sion codes 6WCS (AtEPS1 Apo), and 6WAO (AtEPS1+CAG). The final
parameters of ligands along with their corresponding structures as
well as the input and output files from the MD simulations of each
system presented in this work are available at GitHub repository:
https://github.com/TianjieLi-Jason/EPS1.git. Atomic coordinate files
used in computational analyses are included in Supplementary
Data 1. Source data are provided with this paper.
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