
Article https://doi.org/10.1038/s41467-024-54438-0

Multimodal single cell-resolved spatial
proteomics reveal pancreatic tumor
heterogeneity

Yanfen Xu1,5, Xi Wang1,2,5, Yuan Li1,5, Yiheng Mao 1,5, Yiran Su1, Yize Mao3,
Yun Yang 1, Weina Gao1, Changying Fu1, Wendong Chen1, Xueting Ye1,
Fuchao Liang1, Panzhu Bai4, Ying Sun4, Shengping Li3, Ruilian Xu2 &
Ruijun Tian 1

Despite the advances in antibody-guided cell typing and mass spectrometry-
based proteomics, their integration is hindered by challenges for processing
rare cells in the heterogeneous tissue context. Here, we introduce Spatial and
Cell-type Proteomics (SCPro), which combines multiplexed imaging and flow
cytometry with ion exchange-based protein aggregation capture technology
to characterize spatial proteome heterogeneity with single-cell resolution. The
SCPro is employed to explore the pancreatic tumor microenvironment and
reveals the spatial alternations of over 5000 proteins by automatically dis-
secting up to 100 single cells guided by multi-color imaging of centimeter-
scale formalin-fixed, paraffin-embedded tissue slide. To enhance cell-type
resolution, we characterize the proteome of 14 different cell types by sorting
up to 1000 cells from the same tumor, which allows us to deconvolute the
spatial distribution of immune cell subtypes and leads to the discovery of
subtypes of regulatory T cells. Together, the SCPro provides a multimodal
spatial proteomics approach for profiling tissue proteome heterogeneity.

Spatial and cell-type heterogeneity is ubiquitous in the tissue context
and plays a vital role in constituting the functional diversity of human
diseases1. While single-cell and spatial transcriptomics have made
remarkable achievements in revealing the intra-tumor cell diversity, in-
depth profiling of its protein basis at single-cell resolution remains
challenging1,2. Antibody recognition-based cell typing technologies by
dissociating the tissue specimens into single-cell suspension3 or mul-
tiplexed imaging analysis of the tissue microenvironment have been
widely used to analyze dozens of proteins at the cellular or even sub-
cellular resolution4,5. However, these targeted methods are limited by

the number of available antibodies, thus falling short of comprehen-
sively capturing the intricate cellular proteome. Recently, tremendous
progress inmass spectrometry (MS)-based proteomics has rendered it
a powerful tool for exploring the proteome in unbiased and global
manners6.

Spatially resolved proteomics based on various microdissection
techniques has made tremendous progress in the profiling of thou-
sands of proteins while preserving spatial information7–10. Guided by
hematoxylin-eosin (H&E)- or immunohistochemical (IHC)-stained
images, laser microdissection (LMD)-based spatial proteomics has
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been successfully demonstrated in providing unprecedented insights
into the heterogeneous tissue context of lethal disease with cell-type
resolution. Starting with either fresh frozen or formalin-fixed, paraffin-
embedded (FFPE) tissue slice samples, LMD-based spatial proteomics
has been widely applied to ovarian cancer11, colon cancer12,13,
tuberculosis14, pancreatic cancer15, COVID-1916,17, etc. However, the
spatial resolution of these studies largely depends on experienced
pathological examination, subjective cell typing, and time-consuming
manual annotation of numerous cell contours for LMD. Furthermore,
the large-scale cell contours obtained from these studies commonly
contain the mixture of multiple cells (hundreds to thousands of cells)
and have relatively low cell-type resolution, which inevitably results in
an averaging effect and ultimately blurs the spatial and cell-type
information.

Efforts have been made to improve the precision and throughput
of LMD-based spatial proteomics with spatial and single-cell resolu-
tion. Mund et al. recently reported the development of Deep Visual
Proteomics (DVP) which combines in-house trained artificial-
intelligence (AI)-driven algorithms for cell segmentation and a custo-
mized automated LMD to enhance cell contour collection efficiency.
The platform has been applied to spatial proteomic profiling of IHC-
stainedmelanomatissuewith single-cell resolution18. Very recently, the
DVP platform was also used to study the proteome of
immunofluorescence-stained melanoma cells within the epidermal
and dermal compartments of primary cutaneous melanoma19. Despite
these pioneered advancements made in image-guided spatial pro-
teomics, the sophisticated process of cell typing, cell contour collec-
tion, and sample preparation is not easy to be widely adopted.
Therefore, an easily accessible and user-friendly pipeline for

centimeter-scale multi-color IHC (mIHC) image navigation-based spa-
tial proteomic analysis is required to precisely target diverse single-cell
types in different tissue microenvironments with high heterogeneity.
Technical challenges, such as precise cell typing for generic multi-
plexed imaging, navigation transfer betweenhigh-quality imagingwith
coverslip and low-quality imaging without coverslip for precisely dis-
secting multiple cell types in a single tissue section, the no-failure cell
collection, as well as highly efficient sample preparation with clean-up
steps for processing rare stained tissue cells (e.g., <100 cells to single
cells) for spatial proteomic analysis, remain to be addressed.

Here, we introduce the Spatial andCell-type Proteomics platform,
termed SCPro (Fig. 1), which enables the integration of image-guided
spatial proteomics and flow cytometry-based cell-type proteomics to
uncover cell-type heterogeneity in tissue context. The spatial pro-
teomics aspect of SCPro coordinates accurately defines single-cell
contours of centimeter-scale mIHC images based on nuclei and cell
membrane identification algorithms of commercially available soft-
ware without manual cell contour annotation by experts for image
training, automated LMD at single-cell resolution with no-failure cap-
ture, ion exchange-based protein aggregation capture (iPAC) tech-
nology for integrated proteomics sample preparation and highly
sensitive proteomics profiling of rare stained FFPE tissue cells
(Fig. 1a, c). Furthermore, inspired by deconvolution algorithms that
align cell-type information in spatial transcriptomics using single-cell
RNA sequencing (scRNA-seq) data as a reference20,21, we seek to extend
the cell-type resolution of the SCPro by incorporating flow cytometry-
based proteomics data of 14 distinct cell types as a reference map to
deconvolute the cell-type composition and proportion in spatial pro-
teomeprofiles (Fig. 1b–d). Collectively, we apply the SCProplatform to
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Fig. 1 | Concept and workflow of the SCPro platform. The SCPro platform inte-
grates multiple modules. a Antibody-guided cell typing based on high-quality
multiplexed imaging and automated LMD with single-cell resolution. b Flow
cytometry-based cell typing. c Ultra-high-sensitivity proteomics platform combin-
ing with ion exchange-based protein aggregation capture sample preparation, low-
flow chromatography, and high-sensitivity mass spectrometry data acquisition.

d Decoding the pancreatic tumor microenvironment through spatial deconvolu-
tion. CAF cancer-associated fibroblast, iCAF inflammatory CAF, myCAF myofibro-
blastic CAF, apCAF antigen-presenting CAF, Treg regulatory T cell, FFPE formalin-
fixed paraffin-embedded, mIHC multiplexed immunohistochemical, LMD laser
microdissection, TME tumor microenvironment.
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explore the spatial proteome heterogeneity of mouse pancreatic
tumor microenvironment (TME) and identify subtypes of regulatory
T cells.

Results
iPAC enables in-depth spatial proteomic profiling of <100 cells
in FFPE tissue slice
One of the key technical hindrances to integrating antibody
recognition-based cell typing technologies and MS-based proteomics
to uncover tissue proteome heterogeneity is the manipulation of rare
cells. The development of an integrated proteomics sample prepara-
tion platform for processing a limited number of cells is therefore
crucial for avoiding sample loss and achieving highly sensitive pro-
teome profiling22. Notably, in the case of image navigation-based
spatial proteomics, the tissue slides are often FFPE-processed and
stained for visualization and cell typing. It is inevitable for hydrophobic
chemical dyes and surfactants to be introduced into the tissue lysates
as contaminants, which cannot be effectively removed even with the
peptide clean-up steps. The accumulation of these contaminants
compromises chromatographic performance and significantly influ-
ences the high-sensitive MS analysis over time13. Here, we introduce
the solid-phase extraction (SPE)-based iPAC technology for handling
low quantities of cells (e.g., <100 cells to single cells), especially for
stained tissue slice samples.

The iPAC device is a spintip packed with strong anion exchange
(SAX) and C18 disks in tandem which stems from our previously
developed fully integrated SPE-based proteomics sample preparation
technology, SISPROT22,23. Notably, we incorporated several key tech-
nical advancements to enhance the robustness of the iPAC (Fig. 2a).
Firstly,we introduced the “carrier” surfactantN-dodecyl-β-D-maltoside
(DDM) to prevent nonspecific adsorption of low nanogram-level pro-
teins during sample processing in the iPAC spintip24. Secondly, we
employed ion-exchange disks instead of loosely packed beads that
significantly improve protein-capturing efficiency. Thirdly, we imple-
mented in situ protein aggregation capture25 by simply introducing an
incubation step with pure acetonitrile (ACN) after protein capture and
concentration onto the SAX disks at basic pH, which well induces
precipitation of proteins and facilitates extended wash to remove
contaminants and pH exchange for enzymatic digestion. The resulting
peptides were then salt-eluted ontoC18 disks at acidic pH for desalting
and ultimately transferred to a glass insert for direct injection with
negligible sample loss (Supplementary Fig. 1a, b). Last but not least, we
significantly improved the sensitivity of the LC–MS system by inte-
grating a homemade 50μm I.D. zero-dead-volume (ZDV) column
which has a short frit made at the end of the emitter tip with
neglectable dead volume and significantly improved ionization effi-
ciency (Fig. 2a)26. The homemade ZDV column running at 100nL/min,
in turn, enables the identification of over 3000 protein groups from
1 ng pre-digested HeLa cell samples in ddaPASEF acquisition mode,
without using the match between run (MBR) algorithm (Supplemen-
tary Fig. 1c).

We first evaluated the performance of the iPAC by side-by-side
comparing the protein recovery rate by either processing 5 ng, 10 ng,
and 20 ng of HEK 293T cell lysate or directly injecting the same
amounts of pre-digested HEK 293T samples (Fig. 2b). More than 3000,
4000, and 5000 protein groups were identified, respectively, using
ddaPASEF mode without the MBR algorithm. Comparing with the
direct injection of 5 ng peptides, we observed a recovery rate of over
60% in termsof protein group identification (Fig. 2b). Notably, a higher
recovery rate was obtained by increasing the cell input. Next, we
assessed the performance of iPAC using 10–1000 flow cytometry-
sorted HEK 293T cells (Fig. 2c). Over 2000 and 5000 protein groups
were identified from 10 and 100 sorted cells, respectively, while
deactivating the MBR algorithm to avoid overestimation of protein
identification for 10-cell samples24. Themedian coefficient of variation

(CV) of maxLFQ intensities within groups was less than 10%, except for
the 10-cell group with a median CV of approximately 15% (Supple-
mentary Fig. 1d).

We then went on to validate the performance of the iPAC for
analyzing H&E-stainedmouse brain tissue slices, which containmuch
more contaminants as compared with sorted cells. Excitingly, the
iPAC identified over 800, 2000, and 3200 protein groups from 20,
50, and 100 μm-side length square samples, respectively, corre-
sponding to 2.4, 15, and 60 cells in volume (Fig. 2d). Notably, the
iPAC demonstrated high quantitative reproducibility with CV values
below 15% (Supplementary Fig. 1e). The excellent performance of
iPAC is largely attributed to the extended 80% ACN wash of aggre-
gated proteins captured by the SAX disks, which is only available in
this double-layer SPE-based sample preparation technology. As
shown in Fig. 2e, we identified on average 4445 protein groups and
42,595 unique peptides for processing 200μm-side length square
samples after adding the extended wash, representing a three-fold
increase in the number of protein groups and an eight-fold increase
in the number of unique peptides. Moreover, the median CV
decreased from 26% to 8.2%, demonstrating greatly improved
quantitative reproducibility (Fig. 2e, insert). This result is consistent
with a significantly higher number of peptide-spectrum matches
(PSMs) across the whole LC gradient for the iPAC-processed samples
with the extended wash, although the total ion chromatography
(TIC) intensity was similar between samples with (W/) and without
(W/O) the extended wash (Fig. 2f, bottom panel).

We hypothesized that this drop in protein identification without
the extended wash was primarily due to the inherent nature of stained
tissues, rather than sample loss. To investigate this, we evaluated the
contamination ratio (CR) which is defined by analyzing the ratio of
singly charged and multiple charged precursors in the ion mobility-
mass spectrometry (IM-MS) heatmap across the whole LC gradient
(Fig. 2f, g and “Methods” section)27. By incorporating the extended
wash, the CR significantly decreased, especially in themiddle of the LC
gradient from 20 to 60min (Fig. 2f, upper panel). For example, the
tissue samples showed 3 and 7 times cleaner at 40 and 48minof the LC
gradient, respectively, which is close to the pre-digested Hela cell
results, but theCR for the sampleswithout extendedwash ismore than
60% (Fig. 2g). Notably, the iPAC showed excellent performance in
processing trace stained tissue samples compared to state-of-the-art
sample preparation techniques for spatial proteomics (Supplementary
Fig. 1f and Supplementary Table 1).

To further demonstrate the robustness of the iPAC technology in
processing complex biological samples, we applied it to analyze the
proteome of distinct regions in pancreatic tumor tissue sections.
Pancreatic cancer, with its desmoplastic and immunosuppressive
tumor microenvironment (TME) characterized by cancer-associated
fibroblasts (CAFs) and immune cells surrounding the tumor cells,
exhibits high heterogeneity and serves as a prototypical example of
solid tumorswith a poor prognosis28.We collected acinar, lymphnode,
and tumor regions by dissecting 100μm-side length square tissue
(approximately 100 tissue cells) from a fresh frozen tissue slice of a
transgenic mouse model KPf/fC (KrasLSL−G12D/+; Trp53flox; Pdx1-Cre)
(Fig. 2h and Supplementary Fig. 2a)29. Around 2000 proteins were
reliably identified with good quantitative reproducibility (Fig. 2i and
Supplementary Fig. 2b). PCA analysis effectively differentiated cell
types within the same tissue slice (Fig. 2j). Furthermore, we observed
the enrichmentof relevant biological processes (GOBP) for distinct cell
types (Supplementary Fig. 2c). Importantly, we also applied the iPAC to
spatial proteomic analysis of approximately 100 cancer cells and their
adjacent stromal cells dissected out based on their cell contour and
spatial proximity (Supplementary Fig. 3). The results showed the
excellent performance of the iPAC in achieving in-depth spatial pro-
teomic profiling and recapitulating the biological features of <100 cells
in stained tissue samples.
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SCPro captures the pancreatic TME with single-cell resolution
After evaluating the sensitivity of the iPAC for processing rare stained
tissue cells, we then focused on accurately defining single-cell
boundaries on mIHC-stained tissue slices without laborious and
time-consuming manual cell contour annotation by experts and
transferring cell typing results into an LMD microscope to guide
automated microdissection. Here, we benchmarked the technological
development and application of the SCPro utilizing an FFPE tissue
block from the KPf/fC mouse, which well recapitulates the malignant
transformation process from normal acinar cells to pancreatic intrae-
pithelial neoplasia (PanIN) and ultimately pancreatic ductal adeno-
carcinoma (PDAC)30,31. After a rigorous pathological screening process
to best represent the progression of PDAC on a single tissue section, a
4-μm-thick FFPE tissue section from a 7-week-old KPf/fC mouse was
subjected to 4-colormIHC staining. As the commonly used open-faced
frame slide in the LMD system without the coverslip generated poor-

quality images (Supplementary Fig. 4a), navigation transfer across
microscopes with and without the coverslip is a must for precise cell
segmentation. Importantly, square reference shapes for image align-
ment were marked onto the membrane slide by LMD (Fig. 3a). Then,
the high-quality multiplexed whole-slide image was obtained with the
coverslip on the TissueFAXS system for accurate cell segmentation.
After removing the coverslip from the frame slide, the cellular mask
was imported and aligned with the low-resolution real-time image of
the LMD microscope system. Subsequently, the annotated single-cell
contours were isolated along the borderline of cell contours by auto-
matic LMD and captured by a sticky-cap with no failure for down-
stream proteomic analysis (Fig. 3a). The centimeter-scale multi-color
whole-slide image comprehensively recapitulates the spatial distribu-
tion of distinct pathological features and cell types within the pan-
creatic TME, including the adjacent normal acinar cells, PanIN, and
PDAC (EpCAM+ cells), as well as the immune cells (CD45+ cells) and
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CAFs (αSMA+ cells) (Fig. 3b and Supplementary Fig. 4b). Furthermore,
region-specific distribution of fibroblast-enriched (PanIN-1 and PDAC-
1) and fibroblast-deficient areas (PanIN-2 and PDAC-2) were also
observed in both PanIN and PDAC stages. Notably, the CD45+ immune
cells also exhibited a distinct spatial distribution within the TME (IT)
and peritumoral lymph nodes (LN). Subsequently, 6 typical regions
demonstrating spatial distribution heterogeneity in the pancreatic
TME were obtained based on the expression level of surface markers
and cellular morphology (Fig. 3b and Supplementary Fig. 4b).

Next, we conducted a quantitative tissue cytometry analysis of the
6 cell types. The gating strategy helps effectively removeweak staining
and irregular cell contours in situ with single-cell resolution. (Fig. 3c
and Supplementary Fig. 5). The results showed an increasing propor-
tion of CD45+ immune cells and αSMA+

fibroblasts surrounding
EpCAM+ tumor cells during tumor progression from acinar cells to
PanIN and finally to PDAC (Supplementary Fig. 6a). Additionally, the
PanIN-1 and PDAC-1 regions exhibited a higher proportion of infil-
trating immune cells and fibroblasts wrapping compared to the PanIN-
2 and PDAC-2 regions, illustrating the distinct spatial distribution of
different cell types. The spatial distribution of αSMA+ CAFs and CD45+

immune cells surrounding the tumor cells is a crucial factor in the
prognosis of PDAC28. Distance map analysis illustrated a decreasing
proportion of CD45+ immune cells and αSMA+ CAFs as the distance
from the tumor increased (Supplementary Figs. 6b, c and 7), indicating
the formation of stromal barriers by the aggregation of CAFs and
suppressive immune cells, particularly in the advanced stages for
contributing to the poor prognosis of pancreatic cancer28.

After quantitative analysis of the multi-color image in situ, we
proceeded to address the next challenge of accurately defining single-
cell boundaries and transferring cell typing results for precise auto-
mated LMD. Specifically, the boundaries of each cell type were deli-
neated by the StrataQuest (SQ) software32 in two straightforward steps
based on the multiplexed image. Firstly, the nucleus identification
algorithm was employed to determine the location of nuclei based on
the morphology of the nucleus and DAPI staining. Then the cell mor-
phology and staining intensity of surface markers were used to
determine the cell boundaries using the membrane identification
algorithm (“Methods” section). To avoid damage to the cellmembrane
by the laser of LMD, the offset of the cell contours for about 1μmwas
configured. Finally, a filled mask was built over the corresponding cell
types (Fig. 3d and Supplementary Fig. 8). Subsequently, high-purity
cell contours with single-cell resolution were generated over the ori-
ginal image (Fig. 3d). The obtained cell contours were imported into
the LMD and aligned with the real-time image of the LMDmicroscope
using the reference shape generated at the high-resolution imaging
stage, by simply “drag and drop” of the shape to the reference square
shape in the fluorescence model (Fig. 3d). Importantly, the well-
annotated single cells were automatically dissected and then collected
in real-time onto the sticky-cap from the membrane slide with no-
failure under brightfield visualization (Fig. 3e and Supplementary
Fig. 9). Specifically, the collection efficiency of the sticky-cap was
benchmarked and compared with the gravity-based LMD system,
which demonstrates the no-failure collection by the sticky-cap (Sup-
plementary Fig. 10 and Supplementary Movie 1 and 2).

SCPro explores spatial proteome heterogeneity of the
pancreatic TME
To achieve a balance between sufficient protein identification depth
andminimal tissue usage, we isolated 60–100phenotype-matched cell
contours for quantitative proteomic analysis. Benefit from the high
sensitivity of the iPAC technology,more than3000proteins andnearly
5000 proteins were quantified from only 60 cells and 100 cells,
respectively (Fig. 4a). We first conducted spatial proteomic analysis of
three cell types (Acinar cell, PanIN, and PDAC) to study the progression
of pancreatic cancer. PCA analysis successfully separated these three

neighboring cell types, indicating distinct protein expression profiles
(Fig. 4b). Differential expression analysis showed more upregulated
proteins in acinar cell than PanIN and PDAC regions (Fig. 4c), high-
lighting the heterogeneity between acinar cells and the neoplasia cells,
which was in line with the fact that acinar cells are normal exocrine
cells and the other two cell types are neoplasia cells that exhibit
varying degrees of progression30,33. GO analysis revealed the enrich-
ment of tumor-related pathways of wound healing and mitochondrial
translation in PDAC, and the digestion and pancreatic juice secretion
pathways were enriched in acinar cells, which well reflected their
biological functions (Fig. 4d)33,34. Our dataset also revealed many cell-
type-specific markers from the proteome of acinar cells, which is
consistent with previous studies on the human pancreas (Fig. 4c)33,35.
For instance, Cpa1, a known acinar cell marker playing an important
role in digestive function, exhibited high expression in acinar cells
compared to the other two cell types. Additionally, Reg3g, which
promotes pancreatic inflammation and tumorprogression fromacinar
cells to PanIN, showed high expression in acinar cells, implying a poor
prognosis for acinar cells adjacent to tumor cells (Fig. 4c and Supple-
mentary Fig. 11a)33,35.

PDAC is a highly malignant solid tumor that is typically diagnosed
at advanced stages, underscoring the significance of identifying early
detection markers for developing treatment strategies. Excitingly, our
spatial proteomics data revealed a progressive increase in the
expression level of many proteins during PDAC progression on the
same tissue slice (Fig. 4e). Slc4a4 and Anxa2 which are involved in
transport and metal-binding, respectively, have been found to con-
tribute to progression and metastasis of PDAC and have been identi-
fied as poor prognosis markers in previous studies (Fig. 4e and
Supplementary Fig. 11a)36,37. In addition to these two proteins, we
identified several others that have previously been recognized as
prognostic markers for PDAC or other solid tumors38–40. Many of these
proteins are located on the plasma membrane and play important
biological functions, such as transporters, cell-adhesion molecules,
and receptor tyrosine kinases (RTKs), making them potential ther-
apeutic targets (Fig. 4e). Except for thesewell-knownproteins in PDAC,
we also found that Cwh43, a cell membrane protein involved in gly-
cosylphosphatidylinositol (GPI)-anchor biosynthesis41, exhibits differ-
ential expression in acinar cells, PanIN, and PDAC and has not been
previously reported in relation to PDAC (Supplementary Fig. 11b).
Consistently, IHC staining in KPf/fC tissues showed that Cwh43 has an
increasing expression level as the tumor progressed (Supplementary
Fig. 11c, d).

Expectedly, spatial proteomic analysis on CD45+ immune cells
within the tumor microenvironment (IT) and peritumoral lymph node
(LN) also revealed significant differences between these two regions
(Fig. 4f). Differential expression analysis revealed an enrichment of
myeloid cell-specific markers in the IT (e.g., Adgre1, C1qb, C1qc, and
Siglec1), whereas the LN region exhibited an enrichment of lymphoid
cell markers (e.g., Cd3d, Cd4, Cd8b, and Cd79b) (Fig. 4g). Further GO
analysis of the differentially expressed proteins in the IT and LN
showed that the upregulated proteins in the IT were associated with
myeloid leukocyte differentiation and antigen processing and pre-
sentation pathways, while the LN exhibited enrichment in T cell- and B
cell-associated signaling pathways (Fig. 4h). These findings demon-
strate the distinct spatial distribution of myeloid and lymphoid cell
lineages within the IT and LN regions, respectively. However, the cell
composition information of immune cell subsets in these two regions
is limited and needs to be enhanced to further investigate the immune
landscape of the pancreatic TME in distinct spatial locations.

SCPro decodes the pancreatic immune TME through spatial
deconvolution
There are numerous cell types in the pancreatic TME, and many of
them are present in low abundancewhile performing crucial functions
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(e.g., iCAF, apCAF, and Treg)42,43. However, the spatial proteomic
aspect of SCPro has a relatively low cell-type resolution due to the
limited abundanceof rarecell types and their functionalmarker signals
on a single mIHC-stained slide. To further enhance the resolution of
the SCPro for exploring cell subsets in the spatial proteomics data, we
seek to generate cell-type-specific proteome expression information
from the same tumor. Importantly, we adopted a spatial deconvolu-
tion algorithm which has been widely used in the spatial tran-
scriptomics field to systematically explore and correlate the diverse

cell-type composition in different tissue locations within the pan-
creatic TME.

To build a comprehensive reference map for spatial deconvolu-
tion, we first conducted flow cytometry-based proteomic analysis to
acquire cell-type-specific proteome data of the main cell types in the
pancreatic TME42. Herein, 14 distinct cell types, which consisted of
CAFs and 3 subtypes of CAFs (myCAF, iCAF, and apCAF), 9 immune cell
subpopulations [B cells, CD4+ T cells (T4), Tregs, CD8+ T cells (T8),
myeloid cells (MYE), dendritic cells (DC), macrophages (MAC),
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neutrophils (NEU), and monocytes (MO)] and the pancreatic cancer
cells (PCCs), were included in our flow cytometry-based proteomic
analysis (5 biological replicates, total of 69 samples). To ensure that all
the 14 cell types in a viable state could be successfully sorted from the
same tumor sample, only up to 1000 cells for each individual cell type
were sorted for further proteomic profiling. We successfully collected
1000 cells for all the cell types, except for the typically rare cell types
myCAF, iCAF, and apCAF for which we only collected a few hundred
cells as expected (Fig. 5a and Supplementary Fig. 12a, b).

Leveraging the sensitivity of the iPAC technology, we identified
4000–6000 protein groups for each cell type and over 7000 protein
groups across all 14 cell types with high reproducibility in ddaPASEF
mode (Fig. 5b and Supplementary Fig. 12c). PCA analysis revealed
distinct distribution patterns of the proteome among the four lineages
(Fig. 5c). Lymphoid and myeloid cells showed proximity due to their
immune-related characteristics, while non-immune lineages (PCCs and
CAFs) exhibited a closer distribution among each other. Notably,
apCAF was closely associated with myeloid cells due to their expres-
sion of antigen-presenting proteins42. The heatmap of the top differ-
entially expressedproteins for each cell type displayed lineage-specific
markers with expected abundance, such as PCCs markers (Epcam,
Msln, and Krt19), CAFs markers (Fap, Dcn, and Vim), lymphoid cells
markers (Cd4, Cd8, and Cd19), and myeloid cells markers (Itgam,
S100a8, and Cd74) (Fig. 5d and Supplementary Fig. 12d). Further GO
analysis of the differentially expressed proteins revealed distinct
functions of the four lineages (Fig. 5e). For instance, themitochondrial
translation pathway was found to be enriched in cancer cells, indicat-
ing its important role in cancer development34. Fibroblasts exhibited
enrichment in extracellular matrix organization and extracellular
structure organization, which well aligns with their critical role in
tumor progression through the production of ECM, growth factors,
and chemokines44. As scRNA-seq is widely used for cell-type explora-
tion, a cross-omics comparison was conducted between the cell-type
proteomic dataset and the well-cited scRNA-seq dataset of KPC
tumor42. We reanalyzed the scRNA-seq dataset by subdividing the 12
main clusters into 19 clusters, including the 14 cell types analyzed in
our cell-type proteomics research (Supplementary Fig. 13a). Among
the 14 cell types, better correlation can be observed in the proteomics
dataset compared to the transcriptomics dataset for the closely rela-
ted cell types (Supplementary Fig. 13b). The correlation coefficient
between RNA and protein with cell-type resolution is close to 0.5
(Supplementary Fig. 13b, numbers marked on the diagonal), which is
better than previous proteogenomic study onhumanPDACusing bulk
tissues, where the correlation coefficient was only 0.3645. Importantly,
the normalized abundance of the well-known cell-type-specific mar-
kers between the transcriptome and proteome shows good con-
sistency at both the RNA and protein levels (Supplementary Fig. 13c).
These results well demonstrated the reliability of the cell-type pro-
teomics data and the value of multiomics analysis.

To gain deeper insights into the cellular composition and pro-
portion of CD45+ immune cells in the spatial proteome data, we went
on to utilize the deconvolution algorithmTangram20 to further decode
the proportion of all the 14-flow cytometry-sorted cell subsets in the IT
and LN region, respectively (Fig. 5f). To validate the accuracy of the
cell-type proportion obtained from Tangram, we compared the rela-
tive abundance of myeloid cells and lymphoid cells in the IT and LN
regions of the pancreatic TME with the cell composition acquired
through mIHC imaging by co-staining Krt19 (cancer cells), CD11b
(myeloid cells), CD3 (lymphoid cells), and DAPI (Fig. 5g, h and Sup-
plementary Fig. 13d). Notably, the predicted myeloid cells and lym-
phoid cells proportion is 77.53% and 22.47% in the IT region and 26.61%
and 73.39% in the LN region, respectively, which is generally in
accordance with the image results, indicating the reliability of the
deconvolution algorithm in processing proteome data. It should be
noted that our previous bioinformatic analysis of spatial proteomics

data also indicates the enrichment of myeloid cell and lymphoid cell
lineages in the IT and LN, respectively (Fig. 4g, h). In addition, the
spatial deconvolution analysis also showed that myeloid cells, includ-
ing MYE, NEU, and MAC, were the most abundant subtypes of CD45+

immune cells in the TME, along with a low fraction of CD8+ T cells and
DC cells (Fig. 5f). This observation further underscored the immuno-
suppressive nature of the pancreatic TME, which is mainly surrounded
by the suppressive myeloid cells46,47.

SCPro enables the discovery of cell subtypes in the
pancreatic TME
Although the spatial and cell-type resolution of the SCPro is greatly
improved by integrating the cell-type information based on the pro-
teome information of previously identified cell subsets, such type of
cell composition and proportion predication may limit the discovery
of biological cell types. To this end, we went on to discover sub-cell
types in the pancreatic TME by analyzing the plasma membrane (PM)
proteins in the cell-type proteomic data. PM proteins play vital roles in
tumor ecosystems, which commonly serve as surface markers for
distinguishing distinct cell types. Notably, most of them also play
important biological functions and represent valuable therapeutic
targets48.

We developed a bioinformatic strategy to explore reliable surface
markers for the identification of sub-cell types within the tissue con-
text. The workflow involved two key procedures (Fig. 6a): (1) scoring
and ranking cell-type specific PM proteins by fold change and copy
number within the measured cell types; (2) categorizing those ranked
proteins according to major biological functions. In addition, we
curated a mouse PM proteins database by incorporating Uniprot,
Phobius49, and DeepTMHMM50 (“Methods” section). The results
showed that close 10% of the identified proteins were annotated as PM
proteins, and up to 300 PM proteins were identified for most cell
populations (Fig. 6b). To enhance the differentiation of cell types with
functional proximity within the same lineage, we employed two stra-
tegies: (1) comparing the measured cell lineages (PCC, CAF, lymphoid
cell, and myeloid cell) versus the rest; (2) evaluating individual cell
types versus the other cell types within the same lineage. This led to
the identification of a significant differential surface marker panel,
consisting of 206 unique PM proteins across 14 cell types (Fig. 6c and
Supplementary Fig. 14a).

Based on normalized scores and major biological functions, we
highlighted the top 2 differentially expressed PM proteins represent-
ing cell types in the four lineages, including known lineagemakers and
potentially new surfacemarkers for identifying sub-cell types (Fig. 6d).
Interestingly, we found that Tnfrsf18 and Klrg1 were significantly over-
expressed on Treg, which is a subset of CD4+ T cells with tumor-
promoting features and has been linked to a poor prognosis for cancer
therapy51. The presence of essential functions in Treg was rationalized,
as Tnfrsf18 and Klrg1 both function as immune checkpoint
molecules52,53. To validate our proteomic data, we conducted flow
cytometry analysis and verified the elevated expression levels of
Tnfrsf18 and Klrg1 on CD25+ Treg (Fig. 6e). Nearly all of the Treg cells
exhibited the expression of Tnfrsf18, suggesting that Tnfrsf18 may
serve as an additionalmarker for CD25+ Treg inmurine PDAC. Notably,
the t-distributed stochastic neighbor embedding (t-SNE) plot from the
flow cytometry analysis showed that CD25+ Treg can be subdivided
into two subtypes based on the expression of Klrg1 (Fig. 6e).

To systematically investigate the role of Klrg1 on T cells, we fur-
ther sorted 8 of the Klrg1-associated T cell subtypes (i.e.,
CD4+CD25+Klrg1±, CD4+CD25±, CD4+Klrg1±, and CD8+Klrg1± T cells) for
further cell-type proteomic analysis (Supplementary Fig. 14b, c). We
then investigated the proteome differences between CD4+CD25+Klrg1+

Treg (also named Klrg1+ Treg) and CD4+CD25+Klrg1− Treg (also named
Klrg1− Treg). These two cell types showed a clear distinction in the PCA
plot (Supplementary Fig. 14d). The significantly upregulated proteins
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in the Klrg1+ Treg reveal its immunosuppressive and tumor-promoting
features (Fig. 6f). For instance, Casp1 plays a crucial role in the process
of pyroptosis, which is an inflammatory form of cell death54. Kdelr2,
localized to the ER-Golgi pathway, is associated with the poor prog-
nosis and tumorigenesis of many cancers55. Map4k1 (also known as
Hpk1) acts as an immunosuppressive regulatory kinase to inhibit the

function of T cells and DC, resulting in poorer survival outcomes in
pancreatic cancer56. Additionally, GO biological analysis also indicated
that the Klrg1+ Treg plays a more significant role in the activation of
myeloid leukocytes (Fig. 6g). To further validate the immunosup-
pressive function of Klrg1+ Treg, we conducted biological validation by
determining the expression levels of two Treg suppressive markers,
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Fig. 6 | Sub-cell types discovery by SCPro. aWorkflow for discovering functional
sub-cell types. b Bar plot showing the number of PM proteins. The line chart
showing their proportion in all identified protein groups for individual cell types.
c Heatmap showing the significantly differentially expressed PM proteins (P-
value < 0.05, fold change >2). P-values were calculated using the moderated t-sta-
tistic (with a two-tailed test) from the LIMMApackage. The numbers on the left and
right of brackets represent the number of significantly differentially expressed PM
proteins and the total number of PM proteins for each cell type, respectively.
Protein expression levels were Z-scored. d Line plot showing the scaled expression
levels of significant proteins within four representative cell types (PCC, CAF, Treg,
and DC), the top 2 of which are colored, respectively. e t-SNE plot showing the
expression patterns of Tnfrsf18 and Klrg1 on CD25+ Treg cells. f Proteome com-
parison of Klrg1− Treg and Klrg1+ Treg. The significant proteins were shown in blue
and red color, respectively (P-value < 0.05, fold change >2). P-values were

calculated using the moderated t-statistic (with a two-tailed test) from the LIMMA
package. gDot plot showing the enriched GOBP terms of the Klrg1− Treg and Klrg1+

Treg (n = 3 biological replicates from 3 KPf/fC mice). Significance was calculated by
one-tailed Fisher’s Exact Test (P-value < 0.05), and subsequently q-values were
estimated to control the false discovery rate across multiple comparisons. h Bar
plot showing the proportion of CTLA-4+ and CD69+ cells in Klrg1− and Klrg1+ Treg
cells, respectively (n = 5 biological replicates from 5 KPf/fC mice). Significance was
calculated by two-tailed Student’s t-test and data are presented as mean± SD.
i Predicted proportion of Klrg1+ Treg among the 8 Klrg1-associated cell types in the
IT and LN regions, respectively (n = 3 biological replicates from one KPf/fC mouse).
Boxplots display the mean (horizontal line), and the 25th and 75th percentiles
(bounds of box). j Summaryof discovering a Treg subtype and predicting its spatial
location. Source data are provided as a Source Data file.
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CTLA-4 and CD69, using flow cytometry analysis. CTLA-4 is a well-
known Treg suppressive marker by affecting the potency of antigen-
presenting cells to activate other T cells57. CD69 ismainly known for its
early activation role involved in lymphocyte proliferation. Recent
studies have shown the role of CD69 in enhancing the immunosup-
pressive function of Treg by promoting the production of IL-1058. The
flow cytometry results from 5 KPf/fC mice show higher expression
levels of bothCTLA-4 andCD69 inKlrg1+ Treg subtype thanKlrg1− Treg
subtype, which validates our conclusion regarding the immunosup-
pressive role of Klrg1+ Treg in murine PDAC (Fig. 6h and Supplemen-
tary Fig. 14e). Last but not the least, to predict the spatial location of
Klrg1+ Treg, spatial deconvolution was performed utilizing the pro-
teome data of the 8 Klrg1-associated T cell subtypes. The results
showed that the Klrg1+ Treg cells weremainly enriched in the IT region
rather than the LN region (Fig. 6i, j), indicating the recruitment of
Klrg1+ Treg cells in the TME of PDAC.

Following the validation of the existence of Klrg1+ Treg and
Tnfrsf18+ Treg in murine PDAC, we looked for the existence and bio-
logical significance of these cells in human PDAC. Successfully, we
identified both KLRG1+ Treg and TNFRSF18+ Treg in human PDAC
(Fig. 7a). Importantly, we also observed that the proportion of KLRG1+

Treg and TNFRSF18+ Treg increases as the tumor progression,

indicating the recruitment of these two cell types in the TME (Fig. 7a).
Flow cytometry analysis also revealed higher expression levels of the
Treg suppressive marker CTLA-4 in these two cell types (Fig. 7b).
Importantly, the TNFRSF18+ Treg subtype was further validated by
mIHC analysis using an independent tissue microarray (TMA) cohort
(n = 83 pairs adjacent normal and tumor samples; Fig. 7c and Supple-
mentaryData 5). A higher proportion of TNFRSF18+ Treg was observed
in tumor samples than in the pair adjacent normal tissue samples in the
cohort, which is consistent with the flow cytometry analysis results
(Fig. 7d). We then further explored the association between the pro-
portion of TNFRSF18+ Treg subset and patient survival using the TMA
cohort data. Interestingly, unfavorable survival outcomes were
explored for PDAC patients with a higher proportion of TNFRSF18+

Treg (Fig. 7e). The KLRG1+ Treg subtype was not further analyzed by
mIHC due to the poor specificity of the commercially available anti-
bodies. Collectively, these findings demonstrate the potential immu-
nosuppressive features of these two Treg subtypes and well illustrate
the powerfulness of the multimodal spatial proteomic investigation.

Discussion
Spatial proteomics is a rapidly developing field and becoming popular
in the toolbox of “spatial multiomics” technologies. Compared with
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antibody-based multiplexed protein visualization technologies3,4, MS-
based spatial proteomics addresses the increasing demand for sys-
tematic identification and quantitative analysis of proteins in the tissue
microenvironment while preserving the spatial context
information11,15. However, it still suffers from relatively low cell-type
resolution when investigating the various cell types in the TME with
high heterogeneity. This limitation is primarily due to the lack of a
widely available, highly efficient pipeline for accurately delineating and
no-failure capturing single-cell contours frommultiplex stained tissue
slices. Additionally, there is a lack of highly efficient sample prepara-
tion for processing rare stained tissue cells with the clean-up steps, as
well as a specialized data analysis pipeline to further enhance the cell-
type resolution.

In this study, the SCPro platform seamlessly integrates antibody-
guided cell typing technologies and high-sensitive proteome profiling
for comprehensively uncovering the tissue proteome heterogeneity
with single-cell resolution. The essential advances of the spatial pro-
teomics aspect of the SCPro platform mainly include (1) the develop-
ment of a widely accessible workflow for multi-color imaging-based
cell segmentation, which enables accurate spatial proteome profiling
of multiple cell types on a single FFPE tissue section without time-
consuming manual annotation of cell contours as in previous studies;
(2) the formation of reference shapes for aligning cell contours which
enables navigation transfer between high-quality multiplexed imaging
with coverslip and low-quality real-time imaging of LMD after remov-
ing the coverslip to enhance the cell-type resolutionof LMDsystem; (3)
the dissected cell contours were collected by the sticky-cap directly
depressed on the membrane slide under visualization with no-failure,
rather than collected by laser pulse or gravity in other LMD systems
that may cause sample loss, especially when collecting cell contours
with single-cell resolution. With these advantages, the SCPro sig-
nificantly enhances the precision and throughput of LMD-based spatial
proteomics.

Single-cell-resolved spatial proteomic analysis relies on nanoscale
processing of limited stained FFPE tissue slice samples. The develop-
ment of the iPAC technology in this study ensured the sensitivity and
versatility of the SCPro platform. Recently, many integrated pro-
teomics sample preparation methods have been proposed to match
the increasing sensitivity of advanced MS instruments1,22. Based on the
minimized in-solution digestion concept, most of these methods
showed excellent performance in processing flow cytometry-sorted
single cells by integrating all sample preparation steps into one pot to
minimize sample loss. MS-compatible reagents were used in these
methods to avoid interfering MS signal, as they lack subsequent clean-
up steps. However, these designs seldom fully considered the removal
of chemical dyes and other non-protein containments from stained
tissue samples, which are the natural components of this type of
sample and the major difference with flow cytometry-sorted single
cells. The SPE-based iPAC technology addressed these challenges by
incorporating the extended wash after protein capture, resulting in
enhanced protein coverage for limited stained tissue samples. Our
results indicated the cleanness of peptides is equally important to its
recovery rate. Notably, the iPAC technology also showed excellent
performance in processing a low number of mIHC-stained cells which
are LMD-dissected from the FFPE tissue section. Therefore, the iPAC
technology is promised to meet the growing demands of spatial pro-
teomic research.

Last but not least, we also develop a data analysis pipeline by
integrating flow cytometry-based cell-type resolved proteome data to
infer a more refined cell composition in distinct spatial locations. The
deconvolution of spatial transcriptomics data is a routine strategy
performed in spatial and single-cell transcriptomics data analysis to
enhance cell-type resolution. However, it is still rarely reported for
proteomics. The combination analysis of spatial and cell-type pro-
teomic data shows the enhancement of the cell-type resolution of

SCPro and extends the data analysis pipeline for spatial proteomic
study. The robustness of the SCPro was well demonstrated by reveal-
ing the spatial proteome changes of different types of neoplastic cells
and immune cells in the TME of murine PDAC. Importantly, by seam-
lessly combining with flow cytometry-based cell-type proteomics
dataset, subtypes of Treg were discovered and functionally validated
in clinical samples.

Collectively, our study presents a streamlined proteomic work-
flow for advancing our understanding of tissue heterogeneity in the
spatial context. The SCPro extends the comprehensiveness of tradi-
tional digital histopathology by incorporating the proteomic dimen-
sion. Along with future advancements in LC–MS instrumentation and
data mining algorithms, the SCPro is expected to become a generic
tool for the systematic characterization of spatiotemporal proteomic
landscape and cell-cell interaction within TME at nanometer
resolution.

Methods
Ethical statement
This study complies with all relevant ethical regulations. Animal
work was approved by the Institutional Animal Care and Use
Committee at the Southern University of Science and Technology
of China. According to the requirements of the ethics committee,
the maximal tumor volume allowed was 2000mm3 and the max-
imal tumor size in this study was not exceeded. The human PDAC
tissue samples for flow cytometry analysis were obtained from
the Sun Yat-sen University Cancer Center, Sun Yat-sen University,
Guangzhou, China. The Institutional Review Board of Sun Yat-sen
University Cancer Center approved this study (No. SL-B2024-534-
01). The human PDAC microarray was obtained from the Shanghai
Outdo Biotech Company. The use of tissue microarray for
research purposes was approved by the Ethics Committee of
Shanghai Outdo Biotech Company (No. YBM-05-02). Written
informed patient consent was obtained prior to the commence-
ment of the study.

Cell lines
HEK 293T cell line (CRL-11268) was purchased from American Type
Culture Collection (ATCC) and cultured in DMEM medium supple-
mented with 10% Fetal Bovine Serum (FBS) and incubated at 37 °C in
5% CO2. The HEK 293T cell line was authenticated by the vendor and
tested for mycoplasma contamination using the mycoplasma
detection kit (Vazyme, D101-01) in accordance with the manu-
facturer’s instructions. Cells were harvested following treatment with
trypsin and washed three times with phosphate-buffered saline
(PBS). The cells were resuspended by PBS, then sorted using the BD
FACSAria SORP flow cytometer (BD Biosciences) and collected into
0.2mL tubes (Axygen, PCR-02-C) using the one-way sorting and
single-cell mode, at 4 °C. In order to reduce potential cell loss, the
cells were centrifuged at 400× g for 5min at 4 °C after sorting, flash
frozen down in liquid nitrogen, and stored at −80 °C freezer for
further analysis.

Animal experiment and tissue preparation
Mouse brain was obtained from one male C57BL/6J mouse (8-week-
old). The C57BL/6J mouse was purchased from the Jackson Labora-
tory. The mouse was euthanized by cervical dislocation, mouse brain
was obtained and embedded in an Optimal Cutting Temperature
(OCT) medium (Sakura Finetek USA) and sliced at −20 °C by using
the CM 1900 cryostat (Leica). The sections were mounted onto a
frame slide (MMI, 50103) and fixed by ice-cold methanol for 10min.
Then the fixed sections were stained with hematoxylin (Servicebio,
G1004) and eosin (Servicebio, G1001), and dehydrated by a series of
70%, 80%, and 90% ethanol, each for 3min, and then 100%
ethanol twice.
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KrasLSL−G12D/+; Trp53flox; Pdx1-Cre mice (denoted as KPf/fC mice)
were purchased from the Jackson Laboratory, then bred and raised in
the Animal Experiments Center at Southern University of Science and
Technology. The genotyping of KPf/fCmice was determined by routine
PCR protocol using tail biopsies. PCR primers used for analyzing were
listed: (1) Kras: 5′-GCAGGTCGAGGGACCTAATA-3′; 5′-CTGCATAG
TACGCTATACCTGT-3′. (2) Cre: 5′-CCTGGACTACATCTTGAGTTGC-3′;
5′-AGGCAAATTTTGGTGTACGG-3′. (3) p53: 5′-GGTTAAACCCAGCTT-
GACCA-3′; 5′-GGAGGCAGAGACAGTTGGAG-3′.

To harvest the KPf/fC tumors, the KPf/fC mice were euthanized by
cervical dislocation, the tumors were then removed, washed with ice-
cold phosphate-buffered saline (PBS) three times, transferred to a 4%
paraformaldehyde solution for fixing for 24–48 h. After fixation, the
tissues were paraffin-embedded for further analysis. Two female KPf/fC
mice (7-week-old) were used for the benchmark of iPAC, and onemale
KPf/fC mice (7-week-old) were used for the benchmark of SCPro.

Sex was not considered in this study, as it focuses on technology
development. No statistical methods were used to estimate sample
size for animal studies throughout. All mice were housed at strict
barrier facilities with macroenvironmental temperature and humidity
ranges of 21–26 °C and 40–60%, respectively. Mouse rooms had a 12 h
light and 12 h dark cycle. The housing conditions were closely mon-
itored and controlled.

Multiplexed immunohistochemical staining of KPC tissues
Four-μm-thick tissue sections were cut using a microtome (Leica) and
mounted onto the frame slides. To ensure optimal staining, the frame
slides underwent a deparaffinization process by incubating for 10min
in 100% xylene three times, and rehydrated by a series of 100%, 100%,
90%, 80%, and 70% ethanol, each for 5min, then the tissue sections
were washed with ddH2O for 5min. The mIHC staining was conducted
using the TSA kit (TissueGnostics, TGFP7100) following the manu-
facturer’s instructions. Primary antibodies, Anti-EpCAM (Cell Signaling
Technology, clone E6V8Y, dilution 1:500), anti-CD45 (Cell Signaling
Technology, clone D3F8Q, dilution 1:1000), anti-αSMA (Cell Signaling
Technology, clone D4K9N, dilution 1:500), anti-Krt19 (Cell Signaling
Technology, clone D4G2, dilution 1:1000), anti-CD3e (Cell Signaling
Technology, clone D4V8L, dilution 1:100), and anti-CD11b (Cell Sig-
naling Technology, clone E6E1M, dilution 1:1000) were used for
staining KPf/fC mouse tumor sections. Finally, the samples were
mounted with DAPI Fluoromount-G® antifade mountant (South-
ernBiotech, 0100-20) and coverslips to obtain high-quality images for
further analysis.

Multiplexed immunohistochemical image acquisition and ana-
lysis of KPC tissues
Before image acquisition, the square reference shapes for image
alignment were marked onto the membrane slide by LMD. The
whole-slide image was first acquired by the TissueFAXS Spectra
Systems (TissueGnostics) using a 5× objective to identify the location
of the tissue section. Then the multiplexed whole-slide images were
acquired at 40× high magnification, and grayscale images of high
magnification were extracted for each dye channel for further ana-
lysis. The StrataQuest software version 7.1 (TissueGnostics) was used
for the quantitative analysis and cell typing of the high-magnification
images. For the cell typing of the KPf/fC tumor tissue section, the
nuclei identification algorithm was used to identify the nucleus. The
parameter for nuclei size was set at 10 pixels. Then, the cell mem-
brane identification algorithm was utilized to identify the cell
boundaries of corresponding cell types. The parameters for cell
membrane identification were set at −0.32 μm interior radius,
0.63 μm exterior radius, and 4 μm maximum growing step. After
identifying the nuclei and cell membrane, a filledmask was generated
over the original image of the corresponding cell type. Then, the
cutting path was offset for about 1 μm. The square reference shapes

were then exported with the cell contours after cell typing to guide
automated LMD.

Laser microdissection
The CellCut system (MMI) was used to collect cell contours. The mask
files exported from the StrataQuest software were imported into the
CellCut system to guided automated LMD. The clearly recognizable
square reference shape was used to ensure the alignment of the cell
contours generated from the StrataQuest software with the real-time
image of the LMD under fluorescence mode. The cell contours were
cut at 40× objective in brightfield mode. The cell contours were col-
lected using the IsolationCap (MMI) and stored at −20 °C for further
analysis. The LMD7 system (Leica) was used for the benchmark of cell
contour collection efficiency by gravity-based collection.

Immunohistochemical staining and image analysis of KPC
tissues
Four-μm-thick KPf/fC tissue sections were cut and deparaffinized as
described in multiplex immunohistochemical staining. For validating
the expression level of Cwh43, anti-Cwh43 (Novus,NBP2-30438, 1:100)
was used to stain KPf/fC mouse tissue sections. The images were
acquired by NanoZoomer S60 (Hamamatsu) and viewed using the
NDP.Viewer platform (version 2.9.25). The average optical density
(AOD) ofCwh43 inKPf/fC tissueswas calculated by the ImageJ software.
The threshold for each image was set to (0.1033, 2.7076). Three
regions were randomly selected from each KPf/fC tissue slice to cal-
culate the AOD for three different cell types.

Tumor dissociation and cell sorting of KPC tissues
To harvest the KPf/fC tumors, the KPf/fC mice were euthanized by
cervical dislocation. The tumor resected from the KPf/fC mouse was
washed with ice-cold PBS to remove redundant fat and vessels. Then
the tumor was minced into 2–4mm pieces, and transferred into the
gentleMACS C tube (Miltenyi, 130-096-335) with the enzyme mix
solution from the tumor dissociation kit (Miltenyi, 130-096-730)
prepared following the manufacturer’s instructions. The tumor was
dissociated using the gentleMACSTM dissociator (Miltenyi). The cell
suspension was then filtered through a 70μm cell strainer (Corning,
431751) and washed twice with ice-cold RPMI-1640 (Corning, 10-040-
CMR) to obtain a single-cell suspension. The single-cell suspension
was centrifuged at 300 × g for 5min at 4 °C and the supernatant was
completely aspirated. One milliliter of stain buffer (BD Pharmingen,
554657) was used to resuspend the cell precipitation. The cell num-
ber was counted and divided into three panels for cell staining to
reduce sample loss. The detailed information about the antibodies
used in flow cytometry and the panel design is shown in Supple-
mentary Data 1 and 2. The cells were stained according to the man-
ufacturer’s instructions and sorted using the BD FACSAria SORP flow
cytometer (BD Biosciences). The cells were collected into 1.5mL
Protein LoBind tubes (Eppendorf, 022431081) using the 4-way sort-
ing and single-cell mode, at 4 °C. In order to reduce potential cell
loss, the cells were centrifuged at 400× g for 5min at 4 °C after
sorting, flash frozen down in liquid nitrogen, and stored at −80 °C
freezer for further analysis. Two female KPf/fC mice (9-week-old) and
three male KPf/fC mice (9-week-old) were used for the establishment
of cell-type proteomics dataset of 14 cell types, three female KPf/fC
mice (9-week-old) were used for the cell-type proteomics analysis of
8 Klrg1-associated T cell subtypes, three female KPf/fC mice (9-week-
old) and two male KPf/fC mice (9-week-old) were used for the flow
cytometry analysis of the expression levels of CTLA-4 and CD69 in
Klrg1+ and Klrg1− subtypes.

Patient sample dissociation and flow cytometry analysis
The normal, adjacent normal, and tumor tissue specimens were
acquired from one treatment-naive PDAC patient. The tissues were
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minced into pieces and dissociated by tumor dissociation kit (Miltenyi,
130-095-929), then processed as we described in KPC tissues above to
obtain the single-cell suspension for staining and flow cytometry
analysis. The detailed information about the antibodies used in flow
cytometry analysis and the patient information is shown in Supple-
mentary Data 3 and 4, respectively.

Multiplexed immunohistochemical staining and analysis of
PDAC TMA
The PDAC TMA (n = 83 pairs adjacent normal and tumor samples, 52
males and 31 females; diameter: 1.5mm; sample information, see
Supplementary Data 5) was purchased from Outdo Biotech (HPan-
Ade180Sur-01). We performed the multiplexed immunohistochem-
ical staining for Treg cells (CD4+FOXP3+ cells), TNFRSF18+ Treg cells
(CD4+FOXP3+TNFRSF18+ cells), and epithelial cells (KRT19+ cells)
using anti-CD4 (Cell Signaling Technology, clone EP204, dilution
1:100), anti-FOXP3 (STARTER, clone SDT-R064, dilution 1:1000), anti-
TNFRSF18 (Cell Signaling Technology, clone D5V7P, dilution 1:100),
and anti-KRT19 (Cell Signaling Technology, clone D4G2, dilution
1:1000) antibodies. The multiplexed images were acquired at 20×
magnification. The procedures for image acquisition and analysis
were consistent with those used for the KPC tissues, which have been
described in detail above. No sex and gender analysis were per-
formed in this study.

Sample preparation by iPAC
For tissue and sorted cell samples, 20μL of lysis buffer composed of
1% (w/v) DDM, 10mM HEPES (pH 7.4), 150mM NaCl, 600mM gua-
nidine HCl, and a protease inhibitor mixture (Roche) was used. The
collected tissue slices were sonicated in the lysis buffer with the non-
contact sonication using Bioruptor (Diagenode) for 20 cycles (30 s-
on, 30 s-off) at 4 °C. Two plugs of C18 disks (3M Empore) and two
plugs of SAX disks (3M Empore) were inserted into 200μL pipette
tips to fabricate the iPAC spintips. Before sample loading, the tips
were equilibrated with DDM coating buffer (0.1% DDM in NH4OH)
with a brief centrifuge, then the equal volume of tissue or cell lysates
was mixed and loaded with the DDM coating buffer. Afterward,
protein aggregation on the SAX disks was induced by loading and
incubating in pure ACN for 10min. The samples were then subjected
to extended wash with 80% (v/v) ACN twice and the initial version of
iPAC without the 80% (v/v) ACN wash step. The proteins were
reduced using 50mM dithiothreitol (DTT) in 20mM ammonium
bicarbonate (ABC) and incubated for 30min at 37 °C. Specifically,
4 μL of digestion buffer containing 20 ng/μL sequencing-grade
trypsin (Promega), 20 ng/μL sequencing-grade Lys-C (Wako), and
10mM iodoacetamide (IAA) in 20mM ABC were added to the tips
and incubated in darkness for 3 h at 37 °C for digestion. The digested
peptides were then transferred to the C18 layer of the iPAC tip
through 60μL 1M NaCl in 1% (v/v) formic acid (FA). After desalting
with 60μL 1% (v/v) FA twice, the resulting clean peptides were eluted
by 60μL 80% (v/v) ACN into a glass insert. Peptides were lyophilized
to dryness for MS analysis. The number of samples was n = 3 tech-
nical replicates for 5, 10, 20 ng HEK 293 T cell lysate, n = 3 biological
replicates for 10–1000 HEK 293T cells, n = 3 biological replicates for
20, 50, 100μm-side length square tissue samples of 12μm-thick H&E-
stained mouse brain, n = 3 biological replicates for 12 μm-thick,
200μm-side length square H&E-stained mouse brain samples W/o or
with W/ extended wash, n = 4 biological replicates for acinar, tumor,
and lymph regions dissected from KPf/fC mouse tissue section, n = 4
biological replicates for cancer and stroma cells dissected fromKPf/fC
mouse tissue section, n = 3 biological replicates for acinar, PanIN,
PDAC, CAF, IT, LN in spatial proteomics analysis, n = 4 biological
replicates for the cell-type proteomics analysis of apCAF and n = 5
biological replicates for the other 13 cell types, n = 3 biological
replicates for the 8 Klrg1-assocaited T cell subtypes.

High-pH reversed-phase chromatography fractionation
We conducted high-pH reversed-phase chromatography fractionation
to generate a deep proteome library of KPf/fC mouse tissues for data-
independent analysis (DIA). Around 100μg of peptides from 5 KPf/fC
mice tumor sections were fractionated on anXBridge peptide BEHC18
column (130 Å, 5μm, 2.1mm× 150mm) using a 60min-gradient and
concatenated into 24 fractions on a microflow HPLC (Agilent 1260).
The peptide samples were vacuum dried in a SpeedVac (Thermo
Fischer), then reconstituted in 0.1% FA spiked with iRT peptides
(Biognosys) for LC–MS/MS analysis.

Liquid chromatography
The lyophilized peptides were reconstituted in 2.5μL of 0.1% (v/v) FA.
Only 2μL of the redissolved peptides were injected for the single-shot
LC–MS/MS analysis. A homemade 50 μm I.D. ×20 cm separation col-
umnwith an integrated fritted tip was used by packingwith 1.9μmC18
beads (Dr.Maisch) and coupling to a nanoElute liquid chromatography
system (Bruker Daltonics). The temperature of the separation column
was maintained at 50 °C using an integrated column oven. Mobile
phases A and B consisted of 0.1% FA and ACN, respectively. A seg-
mented 80-min gradient was used for LC–MS analysis. The gradient
was set as follows: from 2 to 22% (v/v) buffer B in 50min, from 22 to
35% (v/v) buffer B in 10min, from 35 to 80% (v/v) buffer B in 10min,
holding at 80% (v/v) buffer B for the last 10min.

Data acquisition in DDA mode and DIA mode
The timsTOF Pro (Bruker Daltonics) was used to analyze the eluted
peptides. ForDDAacquisition, the scan rangewas set tom/z300–1500
in the positive mode. The ramp time was 200 milliseconds, and the
total cycle time was 1.03 s with one MS scan and 4 parallel
accumulation-serial fragmentation (PASEF) scans. The ion mobility
(1/K0) was scanned from 0.75 to 1.30 Vs/cm2. For DIA acquisition, the
dia-PASEF method was optimized using the py_diAID software59 with
the m/z range of 300–1500, the ion mobility range was set to
0.75–1.30 Vs/cm2, and the ramp time was 200 milliseconds. Each dia-
PASEF scan with variable isolation window widths that were adjusted
according to the precursor densities. The optimized method includes
two ion mobility windows and 12 dia-PASEF scans60.

Raw data analysis
All theMS raw files for the iPAC benchmark were acquired in DDAmode
and defaulted LFQ-MBR workflow of MSFragger software (version 3.7)
integrated into the Fragpipe platform (version 19.0). The MS raw files
were searched against the reviewed mouse UniProt FASTA database
(21,984 entries). The spatial proteomic data of KPf/fCmicewere acquired
in DIA mode and searched by Spectronaut (version 17.4). The MS raw
files were searched against the reviewedmouseUniProt FASTAdatabase
(21,984 entries). All the raw files of flow cytometry-based proteomic data
of KPf/fC mice were acquired in DDA mode and searched by the
MSFragger software (version 3.5) integrated into the Fragpipe platform
(version 17.0). The MS raw files were searched against the reviewed
mouse UniProt FASTA database (17,101 entries). Cysteine carbamido-
methylation was set as a fixedmodification, while N-terminal acetylation
and deamidation at NQ were set as dynamic modifications. Trypsin and
Lys-C were set as digestion enzymes and a maximum of two missed
cleavages were allowed for all the raw files. Protein and peptide false
discovery rate (FDR) levels were set to 1%.

All flow cytometry raw data were saved as .fcs files and processed
by the FlowJo software (version 10, BD Biosciences) for further analy-
sis. For the t-SNE plot analysis, the .fcs files were uploaded to the
Cytobank (https://www.cytobank.cn/). The t-SNE-CUDA algorithmwas
used in the dimensionality reduction analysis. An equal number of
50,000 cells were randomly selected for the analysis of each sample.
The perplexity parameter was set according to the default factory
setting.
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Bioinformatics and statistical analysis
The contamination ratios of the heatmaps related to Fig. 2f, g were
defined as the ratio between the summed intensity of the up-left and
bottom-right precursors in the heatmap. The white lines in the figures
pass through points of (350m/z, 0.8IM) and (950m/z, 1.3IM). Up-left
precursors were often regarded as +1 contaminants27. Precursors were
extracted by AlphaTims software (version 1.0.7)61. This calculation was
performed using a custom R programming script. Furthermore, the
total MS intensity at specific retention times and the distribution of
PSMwere calculated based on the CSV files exported fromAlphaTims.

Proteomics data analysis and visualization were performed using
Perseus software (version 2.0.9.0)62 and R (version 4.1.0). In this study,
three spatial proteomics datasets and two cell-type proteomics data-
sets have been generated. For spatial proteomics dataset 1 and 2,
especially for dataset 1 related to Fig. 2h–j and Supplementary Fig. 2
(n = 4 biological replicates for acinar, lymph, and tumor regions) and
dataset 2 related toSupplementary Fig. 3 (n = 4biological replicates for
PCCand stroma cells), weapplied a rigorousfiltering criterion to retain
only the quantified protein groups with at least three valid values in at
least one group, resulting in 2168 proteins for dataset 1 and 2045
proteins for dataset 2.Missing valueswere imputedby sampling froma
normal distribution tailored to the proteome abundance of each
sample (width =0.3; downshift = 1.8) using Perseus (version 2.0.9.0)62.
Significance was calculated by one-way ANOVA for dataset 1 followed
by permutation-based FDR for multiple hypothesis testing (FDR <
0.05). Significance was calculated by a two-tailed Student’s t-test for
dataset 2, average protein’s abundance of each group was used to
calculate the difference.

For spatial proteomics dataset 3 related to Fig. 4 and Supple-
mentary Fig. 11a, b (n = 3 biological replicates for Acinar, PanIN, PDAC,
CAF, IT, and LN regions), we filtered the quantified protein groups for
at least two valid values in at least one group, resulting in 5822 pro-
teins. Missing values were imputed the same as spatial proteomics
dataset 1 and dataset 2. The significance of EpCAM+ cells (n = 3 biolo-
gical replicates for Acinar, PanIN, and PDAC cells) was calculated by
one-way ANOVA, and the median protein’s abundance of one versus
the rest groupwas used to calculate the difference. The significance of
IT and LN (n = 3 biological replicates) was calculated by a two-tailed
Student’s t-test, median protein’s abundance of each group was used
to calculate the difference.

For cell-type proteomics dataset 1 related to Figs. 5b–g, 6b–e,
Supplementary Fig. 12c, d, Supplementary Fig. 13b, c and Supplemen-
tary Fig. 14a (n=4 biological replicates for apCAF, n= 5 biological
replicates for the remaining 13 cell types) and dataset 2 related to
Fig. 6f, g and Supplementary Fig. 14c, d (n= 3 biological replicates for 8
sub-cell types), we filtered the quantified proteins for at least two valid
values in at least one cell type, resulting in 5900 proteins and 3777
proteins, respectively. Missing values were imputed by 0.1 of the mini-
mum value of each protein. Significance and difference were calculated
by LIMMA package (version 3.48.0) in R. To find enriched proteins of
dataset 1, we used the following comparison strategies. PCC was com-
pared with the other major cell lineage (CAF, T4, T8, B, and MYE); CAF
was compared with the other major cell lineage (PCC, T4, T8, B, and
MYE); sub-CAFs (iCAF, apCAF, and myCAF) were compared with each
other; Lymphoid cells (T4, T8, Treg, and B) were compared with each
other; Treg cells were ignoredwhen compare T4 versus other cells; MYE
cells were compared with the other major cell lineages (PCC, CAF, T4,
T8, andB cells);MYE cells (MO,NEU,MAC, andDC)were comparedwith
each other. We filtered the significantly enriched proteins with P-
value <0.05 and fold change >2, resulting in 1259 proteins. Copy num-
ber of proteins for each cell type was estimated by “proteomic ruler”
based on protein’s intensity63. GO Enrichment analysis for all datasets in
this study was performed with clusterProfiler64 (version 4.0.5) in R, and
significance was calculated by hypergeometric distribution (P-
value <0.05).

To construct the membrane protein databases, we initiated by
retrieving the reviewedmouse proteins sequence fromUniprot (17,119
entities), and retained 4487 proteins annotated with “transmem-
brane”. Then, Phobius49 and DeepTMHMM50 were individually used to
predict transmembrane proteins with previously downloaded protein
sequences. Proteins predicted as “transmembrane” by less than two
approaches were discarded. Combined with reported surfaceome65,
the membrane protein databases encompass 4518 high-quality pro-
teins. For cell-type proteomics dataset 1, a total of 1718 membrane
proteins were identified. Specially, among these, 712 were classified as
plasma membrane (PM) proteins, and 206 of these PM proteins
exhibited significant alterations in their expression levels across 14 cell
types. (related to Fig. 6b–d and Supplementary Fig. 14a).

To decipher the cell-type composition within the spatial pro-
teomics data of pancreatic cancer as depicted in Figs. 5f, g and 6i, j, we
applied the Tangram20 (version 1.0.4) for deconvolution. This process
involved using spatial proteomics dataset 3 as the input and cell-type
proteomics datasets 1 and 2 as reference datasets. Before proceeding
with the deconvolution, we retained the top 1000 highly variable
proteins from log2-normalized cell-type proteomics datasets, without
imputing missing values. The remaining parameters were left at their
default settings during the deconvolution process to deduce the cell-
type composition within the spatial proteomics data.

scRNA-seq dataset of KPf/fC mice related to Supplementary
Fig. 13a–c (n = 4 biological replicates) was downloaded from the Gene
Expression Omnibus (GSE129455)42. Ensemble IDs were converted to
official gene symbols using theAnnotationDbi package (version 1.54.1),
resulting in 13,813 genes for 11,261 cells. FindVariableFeatures function
in R package Seurat (version 4.1.0)66 was used to define 2000 highly
variable genes. After calculating a cell cycle difference using the Cell-
CycleScoring function, each feature was regressed against cell cycle
difference and counts individually, and the resulting residuals were
then scaled and centered with default parameters. Dimensionality
reduction was processed using the RunPCA function with previously
identified variable features. Harmony (version 0.1.0)67, an algorithm
iteratively corrects PCA embeddings, was used to correct each scRNA-
seq sample. FindNeighbors and FindClusters functions were used with
resolution = 0.5, resulting in 19 clusters. FindAllMarkers function was
used to construct a marker genes panel with adjusting P-value < 0.05
and fold change >2, whichwere used for annotation of knownmarkers
of cell-type labels42. The AverageExpression function was employed to
derive the average RNA expression levels for each cell type. Subse-
quently, these average expression values were utilized to calculate the
Pearson Correlation Coefficient with the corresponding copy number
data from the cell-type proteomics dataset 1, focusing specifically on
the 14 shared cell types between the two datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have
beendeposited in ProteomeXchange via the iProX68 partner repository
with the dataset identifier IPX0005555000 and the dataset identifier
PXD038882. The flow cytometry data generated in this study have
been deposited in theMendeleyData platform [https://data.mendeley.
com/datasets/7n6t858tf4/1]. The raw mIHC imaging data of human
PDAC tissue microarray generated in this study can be accessed at the
BioStudies69 database with the accession code S-BIAD1424. The pub-
licly available scRNA-seq data was obtained from the Gene Expression
Omnibus (GEO) database under the accession code GSE129455. The
processed scRNA-seq data was integrated and uploaded to the public
repository70. The remaining data are available within the Article,
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Supplementary Information, or Source Data file. Source data are pro-
vided with this paper.

Code availability
Customcodeused forfiguregeneration is available onGitHub [https://
github.com/liyuan-bioinfo/SCPro] and Zenodo [https://doi.org/10.
5281/zenodo.13978420]71.
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