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A multi-regional human brain atlas of
chromatin accessibility and gene expression
facilitates promoter-isoform resolution
genetic fine-mapping

Pengfei Dong 1,2,3,4 , Liting Song1,2,3,4, Jaroslav Bendl 1,2,3,4, Ruth Misir2,3,4,
Zhiping Shao1,2,3,4, Jonathan Edelstien2,3,4, David A. Davis5,
Vahram Haroutunian 2,3,6,7, William K. Scott 5,8, Susanne Acker9,
Nathan Lawless 9, Gabriel E. Hoffman 1,3,4,7,10, John F. Fullard 1,2,3,4 &
Panos Roussos 1,2,3,4,7,10

Brain region- and cell-specific transcriptomic and epigenomic features are
associatedwith heritability for neuropsychiatric traits, but a systematic view,
considering cortical and subcortical regions, is lacking. Here, we provide an
atlas of chromatin accessibility and gene expression profiles in neuronal and
non-neuronal nuclei across 25 distinct human cortical and subcortical brain
regions from 6 neurotypical controls. We identified extensive gene expres-
sion and chromatin accessibility differences across brain regions, including
variation in alternative promoter-isoform usage and enhancer-promoter
interactions. Genes with distinct promoter-isoform usage across brain
regions were strongly enriched for neuropsychiatric disease risk variants.
Moreover, we built enhancer-promoter interactions at promoter-isoform
resolution across different brain regions and highlighted the contribution of
brain region-specific and promoter-isoform-specific regulation to neu-
ropsychiatric disorders. Including promoter-isoform resolution uncovers
additional distal elements implicated in the heritability of diseases, thereby
increasing the power to fine-map risk genes. Our results provide a valuable
resource for studying molecular regulation across multiple regions of the
human brain and underscore the importance of considering isoform infor-
mation in gene regulation.

Interpreting the functional consequences of non-coding genetic
risk variants associated with neuropsychiatric disorders such as
schizophrenia (SCZ)1, and bipolar disorder (BD)2 presents a sig-
nificant challenge3,4. These variants are enriched in cis-regulatory
elements (CREs) of the central nervous system (CNS)5–12, linking
them to their target genes and understanding their impact on
gene regulation remains elusive. Promoter-isoforms, which are

alternative transcription start sites controlling the expression of
different gene isoforms13,14, serve as the fundamental units of
transcriptional regulation15 and enhancer-promoter (E-P) interac-
tions. But a systematic understanding of enhancer-promoter
interactions at promoter-isoform resolution is lacking, hindering
our ability to fine-map genetic associations in neuropsychiatric
disorders.
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The human brain is a highly complex organ consisting of myriad
cell types that reside in specific brain regions that are associated with
different cognitive functions. Consequently, the gene expression and
epigenome landscapes can vary dramatically between brain regions
and cell types8,16,17. While previous efforts focused on the cortical areas
of the brain, the molecular mechanisms regulating subcortical areas,
including midbrain (MidBr), diencephalon (Dien), and basal ganglia
(BasGan) are largely unknown. Emerging evidence from genetic
association8,16,18 and neuroimaging19,20 studies suggest a critical role for
subcortical areas in neuropsychiatric disorders. One prominent
example is BasGan-specific medium spiny neurons (MSN), in which
both expressed genes1,18 and accessible chromatin8,16 are strongly
enriched for common SCZ risk variants, and are independent of other
neuronal cell populations18. We previously profiled chromatin acces-
sibility across cortical and subcortical areas and highlighted the
function of striatumCREs inneuropsychiatric disorders8. However, the
previous data set included only a limited number of subcortical areas
and lacked coupled gene expression information. Thus, the cell-type-
specific promoter- and enhancer- regulatory landscape across brain
regions, as well as the associationwith risk variants in neuropsychiatric
disorders, remain uncharacterized.

To address these gaps, we comprehensively profiled gene
expression and chromatin accessibility in neuronal and non-neuronal
nuclei across 25 brain regions from 6 individuals with no history of
neuropsychiatric or neurodegenerative disease. Our analysis revealed
extensive regional differences, particularly within subcortical areas,
underscoring the importance of incorporating multiple brain regions
in studies of neuropsychiatric disorders. We discovered alternative
promoter-isoform usage across different brain regions and examined
E-P links at promoter-isoform resolution. We found that enhancers
linked specifically to non-5′promoter-isoforms contribute significantly
to neuropsychiatric disorders and enhance the fine-mapping of risk
genes. Our data provide a valuable resource for understanding the
regulatory mechanisms underlying neuropsychiatric traits and
emphasize the critical role of promoter-isoforms and regional speci-
ficity in genetic fine-mapping.

Results
An atlas of chromatin accessibility and gene expression in neu-
ronal and non-neuronal nuclei across 25 brain regions
To comprehensively characterize gene expression and chromatin
accessibility across cortical and subcortical structures, we generated
matched ATAC-seq and RNA-seq profiles in neuronal and non-
neuronal nuclei isolated from 25 brain regions covering the fore-
brain (ForeBr), BasGan, midbrain/diencephalon (MidDien) and hind-
brain (HinBr) of six control subjects (Fig. 1a, b, Supplementary Fig. 1,
Supplementary Table 1, and Supplementary Data 1–3). After rigorous
quality control, including assessing cell type, sex, genotype con-
cordance, and quality metrics (Supplementary Figs. 2–7), we obtained
a total of 14.2 billion uniquely mapped paired-end read pairs for RNA-
seq (N = 265), and 15.1 billion uniquely mapped paired-end read pairs
for ATAC-seq (N = 202).We examined the abundance of neuronal brain
region marker genes, including KCNS1 (ForeBr), DRD2 (BasGan), IRX3
(MidDien), and GABRA6 (HinBr), and found concordant brain region
specificity for both gene expression (Supplementary Fig. 8a) and
chromatin accessibility (Fig. 1c). We generated an atlas of open chro-
matin regions (OCRs) by calling peaks across 25 brain regions for each
cell type (Supplementary Fig. 8b), yielding 320,308 and 196,467 neu-
ronal and non-neuronal peaks, respectively. To further confirm the
brain-region and cell-type specificity of OCRs, we compared our
results with a recent multi-brain-region single-cell ATAC-seq dataset16.
In line with the previous analyses8,16, both neuronal and non-neuronal
OCRs were enriched in their corresponding cell types, and neuronal
OCRs exhibited brain region specificity (Supplementary Fig. 8c), as
previously reported.

Consistent transcriptomic and chromatin accessibility differ-
ences across brain regions
To visualize the genome-wide molecular feature similarities between
cell type and brain regions, we applied Principal component analysis
(PCA) to both gene expression and chromatin accessibility (Supple-
mentary Fig. 8d). Consistent with our previous analysis, samples
clustered first by cell type and next by brain region in both assays8. We
performed differential analysis for genes and OCRs for each pair of
brain regions and used Storey’s π1 statistic

21 as a metric of dissimilarity
across brain regions (Fig. 1d). In neurons, both assays exhibit robust
differences across broad brain regions that include ForeBr, BasGan,
MidDien, and HinBr. In non-neurons, MidDien exhibits robust differ-
ences compared to the other broad brain regions (Fig. 1d and Sup-
plementary Fig. 8e). TheHinBr exhibits themost significant differences
in comparison to the other brain regions. However, given the challenge
of separating neuronal from non-neuronal nuclei in HinBr22, we pro-
vided HinBr RNA-seq and ATAC-seq as a resource but did not include
these data in downstream analyses. Moreover, within the broad brain
regions, there is a substantial distinction observed within MidBr (ros-
tromedial tegmental nucleus, RMTG; ventral tegmental area, VTA;
dorsal raphe nucleus, DRN) and Dien (arcuate nucleus, ARC; habenula,
HAB;mediodorsal thalamus, MDT) in both neuronal and non-neuronal
cells, while the limbic areas (amygdaloid complex, AMY; hippocampus,
HIPP) displayed dissimilarities compared to the neocortex (NEC) spe-
cifically in neuronal cells (Supplementary Fig. 8e), indicating the cel-
lular diversity within such areas.

To determine the relationship between the two molecular fea-
tures, we assessed the genome-wide consistency between gene
expression and the corresponding chromatin accessibility. Consistent
with previous transcriptional regulation models23–25, we observe a
highly significant correlation between gene expression and promoter
chromatin accessibility (Supplementary Fig. 8f). To further assess the
shared correlation structure between RNA-seq and ATAC-seq, we
performed canonical correlation analysis (CCA)26 and found the sam-
ples separated by cell type and brain region, instead of assay (Fig. 1e),
demonstrating the consistency of both approaches.

We found that, in neurons, 87.6% (19,157/21,878) of genes and
79.5% (235,722/296,337) of OCRs are significantly differentially
expressed/accessible in at least one of the pairwise comparisons
between ForeBr, BasGan, and MidDien (global FDR <0.05) (Supple-
mentary Data 4–6). We took a conservative approach and considered
genes/OCRs as broad-brain-region specific only if they were sig-
nificantly more expressed/accessible in all pairwise comparisons
against the remaining broad-brain-regions. Consistent with our pre-
vious analysis8, BasGan has the highest number of differentially
expressed genes (DEGs) and differentially accessible chromatin
regions (DACs) (Supplementary Fig. 9a). Interestingly, neuronal
BasGan-specific genes contain a significantly higher fraction of non-
coding RNAs (Supplementary Fig. 9b). One such example is the
MALAT1 gene, which has been implicated in multiple neuropsychiatric
traits27 (Supplementary Fig. 9c).

To further examine the brain-region and cell-type specificity of
our findings, we compared our differential analysis with two inde-
pendent multi-brain-region single-cell reference sets16,18. Consistent
with known brain region anatomy, the neuronal DEGs from ForeBr,
BasGan, and MidDien were enriched for pyramidal cells, MSN, and
MidBr/hypothalamus neurons, respectively (Fig. 1f). The DACs exhibit
similar cell-type associations (Fig. 1f). Within the ForeBr in neurons,
DEGs and DACs of NEC and limbic areas were strongly enriched for
their corresponding excitatory neurons (Fig. 1f and Supplementary
Fig. 10a), whereas limbic DEGs were also enriched for HIPP specific
inhibitory neuron signatures. This latter observation is consistent with
recent findings indicating that inhibitory neurons are similar between
NEC and limbic areas, while excitatory neurons are highly distinct28. As
expected, MidBr-specific DEGs were enriched for MidBr neurons and
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dopamine neurons, while Diens were enriched for hypothalamus
neurons.However, wedid not observe significant enrichment ofMidBr
DACs, which is consistent with the absence of concordant brain
regions in the reference. In non-neurons, MidDien, MidBr, and limbic
DEGs were enriched for oligodendrocytes (ODC), while ForeBr, Dien,
and NEC DEGs were enriched for astrocytes, suggesting variations in

cell composition across different brain regions (Fig. 1f). Furthermore,
the MidDien DACs were also enriched for Nigra astrocytes (Fig. 1f),
consistent with a recent report of astrocyte heterogeneity between
the MidDien and other brain regions29. It’s worth noting that, in con-
trast to patterns of chromatin accessibility, DEGs in non-neuronal cells
showedenrichment formarkers (Fig. 1f) andpathways (Supplementary
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Fig. 10b) characteristic of neuronal cells from the corresponding brain
regions. This observation could be attributed to the presence of
ambient RNAs30 coupledwith the highdegreeof regional homogeneity
in non-neuronal cells. Consequently, subsequent analyses specifically
focused on neuronal cells.

We further assessed the association between DEGs/DACs and
common neuropsychiatric disorder-associated variants (Methods).
Consistent with the previous analysis, neuronal brain region-specific
molecular features were robustly associated with multiple neu-
ropsychiatric traits (Supplementary Fig. 10c).

Transcriptome and chromatin accessibility are highly hetero-
geneous across subcortical areas
Having shown broad brain region differences, we next delved into the
molecular heterogeneity across more specific regions. Despite its lar-
ger volume, theNECdisplayed limitedmolecular changes compared to
other brain regions (Fig. 1d, Supplementary Figs. 8e, and 11a). Primary
visual cortex (PVC) exhibits the most significant molecular differences
and is enriched for excitatory neurons (Fig. 2 and Supplementary
Fig. 11b), in linewithprevious studies highlighting thedistinct natureof
excitatory neurons in PVC compared to other regions31. Additionally,
we identified gene expression changes in the entorhinal cortex (EC),
with DEGs showing similarities to those found in limbic areas (Fig. 2a
and Supplementary Fig. 11c), in accordance with their anatomical
position. As expected, HIPP-specific DEGs were enriched for specific
excitatory neurons characteristic of the hippocampus (Fig. 2b and
Supplementary Fig. 11b).

In subcortical areas, we observed a higher degree of molecular
changes across the fine brain regions. Notably, striatum (NAC) and the
pallidum (GP) within BasGan exhibited substantial differences, with
negatively correlated DEGs indicating molecular distinctions between
the NAC and GP within BasGan (Supplementary Fig. 11c). Furthermore,
the GP DEGs were enriched for synaptic function and GABA B receptor
activation pathway, in keeping with the inhibitory effects of this
region32 (Fig. 2b). Within MidBr, consistent with its function, the VTA
DEGs showed enrichment for dopamine neuron markers. Notably, the
DACs specific to theVTA showedanenrichmentof genetic risk variants
associatedwithmajor depression (Supplementary Fig. 11d). This aligns
with prior analyses highlighting the role of dopamine neurons in the
pathology of depression33. In diencephalon, our analysis included
structures such as the hypothalamus (ARC), subthalamus (MDT), and
epithalamus (HAB). As expected, the ARC DEGs were enriched for
previously defined hypothalamus neuron cell makers (Fig. 2b). The
HAB region showed enrichment for cholesterol biosynthesis pathway,
which aligns with the role of pineal gland neurons in producing
neurosteroids34 (Fig. 2b). MDT was enriched for excitatory neuron
markers (Fig. 2), and was strongly associated with neuropsychiatric
genetic risk variants (Supplementary Fig. 11d). Furthermore, we
observed consistency between the DEGs and DACs (Supplementary
Fig. 11e). Many of the brain regions examined in this study have not
been extensively studied previously, and our findings indicate thatfine
brain areas within subcortical regions exhibit more pronounced

differences in gene expression and chromatin states than those within
cortical regions.

Alternative promoter-isoform usage across brain regions iden-
tified neuropsychiatric disorder susceptible gene sets
Usage of alternative promoters regulates isoform usage pre-
transcriptionally13,14. Promoter-isoform expression can be quantified
by examining the set of unique junction reads transcribed from the
promoter using RNA-seq data35. As full-length isoforms significantly
outnumber promoter-isoforms, the quantification of promoter-
isoform expression is substantially more robust35. By modeling the
junction reads that are uniquely identifiable for the first exon (Fig. 3a,
Supplementary Data 7, and Methods), we detected 13,108 uniquely
identifiable promoter-isoforms (9108 5′ promoters and 4000 non-5′
promoters) from 11,224 genes. Although without regulatory genomics
annotation, the 5′ promoter is often assumed as the default promoter,
we found, at least for a fraction of genes (1344/11,224), that the 5′
promoter-isoform is not the most highly active (i.e., major promoter,
Supplementary Fig. 12a). To validate our annotation of the non-5′
major promoters, we utilized independent promoter-associated epi-
genomic data (including ATAC-Seq, and H3K4me3 and H3K27ac ChIP-
Seq), and, as expected, the major promoters (non-5′) exhibit more
potent active epigenomic modifications than the 5′ promoters (Sup-
plementary Fig. 12b).

To examine promoter-isoform-specific brain region alterations,
we compared neuronal DEGs between promoter-isoform and the
parent gene across brain regions. As expected, the majority of
promoter-isoforms are concordant with the parent genes (Supple-
mentary Fig. 12c, and Supplementary Data 8, 9). A fraction of
promoter-isoforms is significantly differentially expressed between
brain regions (FDR <0.05), while the parent gene is either not sig-
nificant (nominal P > 0.1), or shows the opposite direction (promoter-
isoform specific DEG, Supplementary Fig. 12c and Methods), suggest-
ing an alternative promoter-isoformusage in both broad brain regions
and fine brain regions. In contrast to the majority of genes (Supple-
mentary Figs. 8f and 11e), the parent gene expression of these
promoter-isoforms exhibits a very limited associationwithOCRs at the
5′ promoter (Fig. 3b; top panel); while promoter-isoform expression
exhibits a substantially higher correlation with promoter OCRs across
brain regions (Fig. 3b; bottom panel), providing additional support for
using promoter-isoform, rather than gene expression, to explore
transcriptome differences across brain regions. One prominent
example is the doublecortin like kinase 1 (DCLK1) gene, an essential
regulator of synaptic development and axon regeneration that con-
sists of two promoter-isoforms (a long and short form, respectively,
Fig. 3c)36. The two promoter-isoforms have distinct functions in
synapsedevelopment37. The long isoform is highly expressed in ForeBr
and has the lowest expression in BasGan. In contrast, the short isoform
is highly expressed in BasGan. Consistent with this, the promoter OCR
of the short isoform also has higher chromatin accessibility in BasGan
(Fig. 3c). Moreover, the promoter-isoform also exhibits alternative
usage between limbic and NEC, and between MDT and Dien.

Fig. 1 | Extensive and consistent gene expression and chromatin accessibility
across 25 human brain regions. a Schematic representation of the study design.
Postmortem samples were dissected from25 brain regions across ForeBr, MidDien,
BasGan, andHinBr. Nuclei were subjected to fluorescence-activated nuclear sorting
(FANS) to yield neuronal (NeuN+) and non-neuronal (NeuN-) nuclei, followed by
ATAC-seq andRNA-seqprofiling.We alsoperformedwhole-genome sequencing for
each individual. Sd represents standard deviation. Schematic was created using
BioRender (https://biorender.com). Fullard, J. (2021) BioRender.com/h19m968,
Fullard, J. (2021) BioRender.com/p82x857, and Fullard, J. (2021) BioRender.com/
w09a902. b The 25 brain regions and abbreviations (anatomy dissection in Sup-
plementary Fig. 1). c Chromatin accessibility profiles merged from the neuronal
broad brain regions around brain region-specific marker genes. d Pairwise

statistical dissimilarity (quantified based on the proportion of true non-null tests,
π1) across different brain regions of neuronal and non-neuronal cells in the two
assays. e the shared correlation structures (canonical correlation vectors, CC)
between ATAC-seq and RNA-seq are separated by cell type (top, CC1-2) and brain
regions (bottom, CC3-4). f Cell type enrichment determined by one-tailed Fisher’s
exact test in brain region-specific gene (forDEG)18 andOCR (forDAC)16 sets. Groups
with a low number of significant differential results weremasked and colored gray.
Neu neuron. pyramidal SS somatosensory pyramidal cells. OPC oligodendrocyte
progenitor cells. Odds ratio (OR).“·”: Nominally significant (P <0.05); “+”: significant
after FDR (Benjamini & Hochberg) correction (FDR <0.05). Source data is provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-024-54448-y

Nature Communications |        (2024) 15:10113 4

https://biorender.com
www.nature.com/naturecommunications


More importantly, compared to brain region-specific DEGs, the
genes harboring promoter-isoform-specific DEGs have a markedly
higher enrichment for common risk variants for multiple neu-
ropsychiatric traits, including SCZ (Fig. 3d). Moreover, the genes har-
boring promoter-isoform-specific DEGs are strongly enriched for rare
coding variants for SCZ and ASD (Fig. 3e). Consistent with this, such
genes are strongly overrepresented for synaptic functions (Fig. 3e).
Our analysis highlights the alternative promoter usage across different
brain regions and their role in neuropsychiatric disorders.

Brain region-specific enhancer-promoter links at promoter-
isoform resolution
Considering the majority of OCRs are distal, we aimed to identify
their target genes using the activity-by-contact (ABC) model38,
which combines enhancer activity with the spatial proximity
between enhancers and promoters. Recognizing the critical role of
promoters in E-P interactions and cis-regulation, and that the 5′
promoter is not necessarily the most active promoter, we refined
our analysis to capture enhancer-promoter connections at the
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promoter-isoform level (Methods). Incorporating our brain-
region-specific chromatin accessibility profiling and cell-type-
specific Hi-C contacts10,39, we established E-P links at promoter-
isoform resolution including both broad brain regions such as
BasGan, NEC, and limbic, and fine regions within the MidDien,
reflecting their significant molecular diversity.

Across the brain regions, we identified between 24,384 and 30,721
E-P links (ABC>0.02) at promoter-isoform resolution (Supplementary
Fig. 13a, Supplementary Data 10), covering 19,486 to 24,042 enhancer-
gene pairs (Supplementary Fig. 13b), with the majorities of the links
being within 50 kb (Supplementary Fig. 13c). Notably, 28.78% ±0.62%
(mean± se, Supplementary Fig. 13d) of genes possessed multiple
linked promoter-isoforms, and 38.35% ±0.45% of the ABC-linked

enhancers were predicted to regulate multiple isoforms (Supplemen-
tary Fig. 13e), and 61.20% ±0.97% of isoforms were regulated by mul-
tiple candidate enhancers (Supplementary Fig. 13f). To assess the brain
region specificity of E-P links, we compared the pairwise correlation of
link strength (ABC score) and the overlaps of links among different
brain regions (Fig. 4a, b). As expected, brain regions within the same
broad brain regions exhibit higher similarity. While distinct broad
brain regions, such as BasGan, displayed a notable 41.3% of unique
links (Fig. 4c), consistent with observed gene expression and chro-
matin accessibility variations across regions (Fig. 1d).

To validate the brain region-specific E-P isoform links, we lever-
aged independent brain region-specific datasets from the GTEx cis-
eQTL40 (Supplementary Fig. 14a), and gene-enhancer coordination

Fig. 4 | The brain-region specificity of ABC E-P links at isoform resolution.
a Heatmap represents the spearman correlation coefficients of isoform reso-
lution E-P link strength (ABC score) between brain regions. b Circos plot of
pairwise sharing of E-P links between brain regions. The inner color indicates
the number of links. c Percentage of unique E-P links for each brain region.
Enrichment of common variants for different neuropsychiatric disorders in

ABC. d Distal OCRs and (e), promoters across brain regions. A positive coef-
ficient signifies enrichment in heritability (normalized tau). Negative coeffi-
cients were displayed with gray blocks. “+” indicates significant enrichment
after FDR (Benjamini & Hochberg) correction (FDR < 0.05). The sidebars
indicate brain regions and types of regulatory elements. Source data is
provided as a Source Data file.
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from a multi-brain region single cell atlas41 (Supplementary Fig. 14b).
Our brain region-unique E-P isoform (both 5′ and non-5′) links were
corroborated by data from corresponding brain regions or abundant
cell types within those regions. For instance, our BasGan unique E-P
links were well corroborated by BasGan eQTLs and cis-coordinations
of BasGan-restricted MSN (Supplementary Figs. 14 and 15). These
results confirmed the reliability of brain region specificity of both 5′
and non-5′ promoter E-P links.

Considering that the majority of neuropsychiatric disorder risk
variants are non-coding, we reasoned that these variants would be
associated with enhancers and promoters in the brain and exert their
effects by disrupting gene regulatory circuits. As such, we assessed the
heritability of disease risk attributed to different types of regulatory
elements, including 5′ (accounting for 18.9% ±0.25% of all promoter
OCRs) and non-5′ (18.86% ±0.34%) promoter-isoforms, enhancers that
predicted to regulate 5′ (10.97% ±0.58%) and non-5′ specific
(5.02% ±0.24%) promoters, and non-ABC elements (Fig. 4d, e, Sup-
plementary Fig. 16). As expected, regulatory elements across brain
region groups were enriched for disease risk variants, particularly for
SCZ and BD (Fig. 4d, e). Notably, ABC model-predicted enhancers
demonstrated significantly higher per-single nucleotide polymorph-
ism (SNP) heritability compared to other distal OCRs (Fig. 4d). Fur-
thermore, non-5′ promoter-isoform-specific ABC enhancers showed a
similar enrichment to 5′ promoter-isoforms, underscoring the impor-
tance of analyzing E-P links with promoter-isoform specificity. Addi-
tionally, promoter regions involved in ABC links exhibited
substantially higher disease heritability (Fig. 4e), reinforcing the sig-
nificance of these regulatory connections.

Fine-mapping of SCZ risk variants
Building on our demonstration of the strong association between
genetic risk variants and ABC enhancers of both 5′ and non-5′ pro-
moter-isoforms, we further leveraged these E-P links to characterize
the regulatory mechanisms of SCZ risk loci. We focused on fine-
mapped risk variants from the latest GWAS study1 with a posterior
inclusion probability (PIP) > 1%, employing the ABC-Max strategy42 to
pinpoint the affectedpromoter-isoformandgenes (Fig. 5a). In total, we
prioritized 72 genes across brain regions for 122 out of 4319 fine-
mapped SNPoverlappedwithABCenhancers (SupplementaryData 11).
In line with previous analysis1, these targets are involved in synaptic
vesicle budding and regulation of synaptic plasticity (Supplementary
Fig. 17). For validation, we used an orthogonal method, polygenic
priority score (PoPS)43, enhanced by integrating recent brain-related
gene features (Methods), which substantially improved the prior-
itization heritability (Supplementary Fig. 18).

Notably, the majority of genes (60.82%±2.56%) were identifiable
only through non-5′ specific E-P links (Fig. 5b). And these genes scored
significantly higher on PoPS compared to genes linked via 5′ promoters
or to the closest genes (Pnon5′ vs 5′=2.08e-06;Pnon5′ vs closest genes =0.0012,
one-tailed Wilcoxon signed-rank test) (Fig. 5c), emphasizing the critical
role of promoter-isoform specificity in E-P interactions. For example, the
fine-mapped SNP rs7178152 (PIP = 14.53%), was linked to ABHD2 through
a non-5′ promoter-isoformE-P link (Fig. 5d), despite being located closer
to the 5′ promoter of FANCI. ABHD2, implicated in neurotransmitter
release44,45, exhibited a considerably higher PoPS score (0.87, rank per-
centage) compared to FANCI (0.62), and was previously nominated as a
causal gene by our enhancer QTL-based fine-mapping study10.

Furthermore, our analysis highlights the importance of brain
region specificity in the genetic regulation of fine-mapped genes, with
21 out of 72 SCZ-prioritized genes being uniquely associated with
specific brain regions (Supplementary Fig. 19). For instance, the fine-
mapped SNP rs2944829 (PIP = 3.21%) overlapped a BasGan-specific
OCR and was linked to CALN1 through a BasGan specific E-P link
(Fig. 5e), even though CALN1 is expressed across various brain
regions (Supplementary Fig. 20a). These brain region-specific

enhancers and their linked target genes provide candidate reg-
ulatory mechanisms that may contribute to increased disease sus-
ceptibility in certain areas.

Fine-mapping of BD risk variants
We further applied the promoter-isoform level fine-mapping approach
to BD genetic variants (Fig. 6a), focusing on GWAS fine-mapped SNPs
(PIP > 1%). Similar to our findings in SCZ, a considerable fraction of BD
risk variants was uniquely identified with non-5′ promoter-isoforms
(47.61% ± 10.65%) (Fig. 6b). In total, we identified 31 genes linked to 46
fine-mapped SNPs (Supplementary Data 11), which displayed notably
high PoPS scores (Pnon5′ vs 5′ =0.013; Pnon5′ vs closest genes = 0.037, one-
tailed Wilcoxon signed-rank test) (Fig. 6c). For example, the SNP
rs1894401 (PIP = 1.11%), linked to the FURIN (PoPS =0.99) known for its
role in neuropsychiatric disorders46,47, is situated near the FES pro-
moter (Fig. 6d). Notably, the 5′ promoter-isoform of FURIN is not
expressed, whereas the 2nd and 4th non-5′ isoforms were highly
expressed and linked to the fine-mapped SNP in VTA and NEC,
respectively (Supplementary Fig. 20b). In another case, SNP rs7622851
(PIP = 8.38%, Fig. 6e), is connected to the highly expressed non-5′ iso-
form of the WDR82 (PoPS =0.98) gene across multiple MidDien
regions, where the 5′ isoform is minimally expressed (Supplementary
Fig. 20c). These observations highlight the importance of incorporat-
ing promoter-isoform resolution in E-P link analysis.

Extending this analysis to other neuropsychiatric traits (Supple-
mentary Data 11) revealed that 61.51% ± 1.41% of targets were not clo-
sest to the lead SNP (Supplementary Fig. 21), 43.91% ± 1.67% were
exclusively linked to non-5′ promoter-isoforms (Supplementary
Fig. 22), and 27.67% ± 1.04% were involved only in one brain region
(Supplementary Fig. 19b). Interestingly, the prioritized non-5′ target
genes showed higher PoPS scores compared to their 5′ counterparts
(Supplementary Fig. 23), with no significant differences observed in
ABC scores (Supplementary Fig. 24) or distances (Supplementary
Fig. 25). This comprehensive mapping further underscores the
necessity of considering brain region-specific and promoter-isoform-
specific regulatory landscapes for a deeper understanding of genetic
susceptibility in neuropsychiatric disorders, highlighting the nuanced
genetic regulation within these conditions.

Discussion
Understanding the brain region and cell-type-specific regulome is
critical for deciphering themolecularmechanisms of neuropsychiatric
disorders. In this study, we present a comprehensive resource of gene
expression and chromatin accessibility profiling in neurons and non-
neurons across 25 functionally distinct regions of the human brain. In
neurons, we identified extensive gene expression and chromatin
accessibility alterations across the 4 broad brain regions (ForeBr,
MidDien, BasGan, and HinBr), which are largely driven by the distinct
distribution of brain-region-specific neuronal cell subpopulations
(Figs. 1f and 2b). Furthermore, our analysis unveiled substantial
molecular differences among the fine brain regions, especially within
theMidBr and Dien regions (Supplementary Fig. 11a), emphasizing the
importance of dissecting molecular diversity and gene regulatory
mechanisms in these areas.

In line with recent studies28,41,48, the NEC brain regions (Supple-
mentary Figs. 8e and 11a), despite their unique cognitive functions,
display limited molecular diversity. Among these, the PVC and EC
show the most pronounced differences. Intriguingly, a recent study
also indicates that, within NEC, the PVC undergoes the most sig-
nificant alterations in ASD49. In addition to the brain-region differ-
ences in neuronal cells, we also observed consistent gene expression
and chromatin accessibility alterations across brain regions in non-
neuronal cells (Fig. 1). However, as non-neuronal brain-region-
specific DEGs and DACs were enriched for reference markers of
relatively lowly abundant region-specific astrocyte cells (Fig. 1f), our
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ability to determine the heterogeneity of non-neurons was evidently
limited.

Having demonstrated the gene expression and chromatin acces-
sibility differences in neurons across brain regions, we next assessed

the regional specificity of cis-regulation. We first examined promoter-
isoform usage across brain regions and found that, although the
majority are consistent with gene expression, a considerable fraction
exhibit unique differential expression patterns (i.e., only significant in

Fig. 5 | Prioritized genes for schizophrenia fine-mapped SNPs using ABC E-P
links at promoter-isoform resolution across brain regions. a Heatmap showing
summary of the E-P link fine-mapped genes for SCZ. The heatmap includes infor-
mation on the linked promoter type (5′, non-5′, or both), ABC score, proximity to
fine-mappedSNPs (closest gene), SNP annotation, andPoPS score. Geneswithin the
top 5% of PoPS scores are labeled. b Proportion of genes identified via 5′ and non-5′
promoter-isoforms across different brain regions. c The distribution of PoPS score
(mean ± se) of target genes identified by 5′, non-5′ isoforms, and genes closest to

fine-mapped SNPs. Pnon5′ vs 5′ = 2.08e-06; Pnon5′ vs closest genes = 0.0012, one-tailed
Wilcoxon signed-rank test. The number of genes can be found in source data.
Examplesof promoter-isoformE-P linkfine-mapped risk variants (d), rs7178152, and
(e), rs2944829. The colors in the E-P link track correspond with the colors of brain
regions in the chromatin accessibility track. The numbers in the promoter-isoform
track indicate the rank of the promoter-isoforms of target genes (from5′ to 3′), with
thefine-mappedpromoter-isoformshighlighted in red. Sourcedata is providedas a
Source Data file.
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Fig. 6 | Prioritized genes for bipolar disorder fine-mapped SNPs using ABC E-P
links at promoter-isoform resolution across brain regions. a Heatmap showing
summary of the E-P link fine-mapped genes for BD. The heatmap includes infor-
mation on the linked promoter type (5′, non-5′, or both), ABC score, proximity to
fine-mappedSNPs (closest gene), SNP annotation, andPoPS score. Geneswithin the
top 5% of PoPS scores are labeled. b Proportion of genes identified via 5′ and non-5′
promoter-isoforms across different brain regions. c The distribution of PoPS
(mean ± se) scoreof target genes identifiedby 5′, non-5′ isoforms, and genes closest

to fine-mapped SNPs. Pnon5′ vs 5′ =0.013; Pnon5′ vs closest genes = 0.037, one-tailed
Wilcoxon signed-rank test. The number of genes can be found in source data.
Examples of promoter-isoform E-P link fine-mapped risk variants (d), rs1894401,
and (e), rs7622851. The colors in the E-P link track correspond with the colors of
brain regions in the chromatin accessibility track. The numbers in the promoter-
isoform track indicate the rankof the promoter-isoforms of target genes (from5′ to
3′), with the fine-mapped promoter-isoforms highlighted in red. Source data is
provided as a Source Data file.
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promoter-isoform, or having a different sign of effect size). The
promoter-isoform-specific changes were validated by examining
chromatin accessibility of the associated promoter (Fig. 3b), and sug-
gest that the parent genes exhibit alternative promoter usage across
brain regions. Interestingly, compared to DEGs, promoter-isoform
specific DEGs have a higher enrichment for common disease risk var-
iants, such as for SCZ (Fig. 3d), highlighting the functional role of
alternative promoter usage in neuropsychiatric traits. Notably, such
genes were strongly associated with synaptic functions.

We then explored enhancer regulation at the level of promoter-
isoforms and found that a significant portion of OCRs were linked
exclusively to genes through non-5′ promoters. Incorporating
promoter-isoform-specific E-P links enhanced the identification of risk
genes by connecting SNPs to distal genes rather than the nearest gene.
In addition, our results suggest that brain region-specific enhancers
can offer insights into the regulatory impact of non-coding SNPs.
Importantly, non-5′ promoters often emerge as the major isoforms,
with associated risk variants bearing significant biological relevance. A
prominent example is the FURIN gene, where the 5′ promoter-isoform
is not expressed and shows limited chromatin accessibility, while the
non-5′ promoter-isoform is highly expressed (Supplementary Fig. 20)
and can be linked to fine-mapped risk variants with promoter-isoform
specific E-P links. While these promoters do not yield different protein
structures50, they are regulated by distinct genetic programs46,51,52,
underscoring the nuanced regulatory landscapes mediated by differ-
ent promoter-isoforms.

Overall, our findings highlight the importance of studying gene
regulation programs at isoform resolution across different brain
regions. While our promoter-isoform resolution genetic fine-mapping
successfully identified genes that are missed by gene-level analyses
and single brain region approaches, we did not investigate the specific
mechanisms by which individual fine-mapped SNPs may influence
gene regulation. Future studies are warranted to assess whether these
SNPs disrupt the regulatory machinery, such as transcription factor
binding motifs, and how they exert their functional effects. As neu-
ropsychiatric traits are closely related to neurodevelopment53 and,
given that the sorted cells examined in this study consist of multiple
cell subpopulations, future integration of single-cell ATAC-seq and
single cell long read RNA-seq profiling with different developmental-
stage, brain regions, and disease status will complement our findings
to provide additional insights into the molecular mechanisms of neu-
ropsychiatric disorders.

Methods
Description of the post-mortem brain samples
Brain tissue specimens from 25 brain regions (Supplementary Fig. 1)
were obtained from 4 donors of European ancestry, 1 Hispanic, and 1
African-American subjects (determined by self-report and ancestry
informative marker analysis) with no history of psychiatric disorder,
including alcohol or illicit substance abuse (negative toxicology) or
were taking neuropsychiatric medications, including benzodiaze-
pines, anticonvulsants, antipsychotics (typical or atypical), anti-
depressants or lithium. Four subjects (2× males, 2× females) were
collected at autopsy at the Brain Endowment Bank at Miller School of
Medicine at the University of Miami, and 2 subjects (1× male, 1×
female) were collected fromMount Sinai Brain Bank (Supplementary
Table 1). Sex was determined by self report, and confirmed with-
genotype check (Methods and Supplementary Fig. 2). The cause of
death, i.e., sudden cardiac death for all 6 subjects, as determined by
the forensic pathologist performing the autopsy. All brain
specimens were obtained through informed consent and/or brain
donation programs at the Miller School of Medicine at the University
of Miami and the Icahn School of Medicine at Mount Sinai. All pro-
cedures and research protocols were approved by Institutional
Review Boards.

FANS sorting of neuronal and non-neuronal nuclei
Frozen brain samples were homogenized in cold lysis buffer (0.32M
Sucrose, 5mMCaCl2, 3mMmagnesium acetate, 0.1mM, EDTA, 10mM
Tris-HCl, pH8, 1mM DTT, 0.1% Triton X-100) and filtered through a
40 µm cell strainer. Filtrates were underlaid with sucrose solution
(1.8M Sucrose, 3mMmagnesium acetate, 1mM DTT, 10mM Tris-HCl,
pH8) and subjected to ultracentrifugation at 107,000 x g for 1 h at 4 °C.
Pellets were resuspended in 500 µl DPBS and incubated in BSA (final
concentration 0.1%) and anti-NeuN antibody (1:1000, Alexa488 con-
jugated, Millipore, MAB377X) under rotation for 1 h, at 4 °C. Just prior
to FACS sorting, DAPI (Thermo Scientific) was added to a final con-
centration of 1 µg/ml. Neuronal (NeuN+) and non-neuronal (NeuN-)
nuclei were sorted using FACSAria (BD Biosciences).

Generation of RNA-seq libraries
RNAwas isolated from149 tissuedissections from25brain regions. RNA-
seq librarieswere generated using the SMARTer StrandedTotal RNA-seq
kit v2 (Takara Cat no. 634419) according to the manufacturer’s instruc-
tions. Libraries were sequenced with the Illumina Hiseq using 100bp
paired-end reads. After quality controls (see below), we retained 265
RNA-seq libraries, which, on average, corresponds to available RNA-seq
data for 22 out of the 25 regions per individual.

Processing of RNA-seq libraries
Each set of pair-end reads was processed by Trimmomatic54 to remove
low-quality base pairs and sequence adapters. Reads were subse-
quently aligned to the human referencegenomeGRCh38using STAR55.
To correct for allelic bias resulting from individual-specific genome
variation, we ran STARwith the enabledWASPmodule56 as we provide
both RNA-seq FASTQ file and the Whole Genome sequencing (WGS)
file of the corresponding individual. The BAM files thatwere generated
contain themapped paired-end reads, including those spanning splice
junctions. Following read alignment, expression quantification was
performed at the transcript isoform level using RSEM57 and then
summarized at the gene level. Gene quantifications correspond to
GENCODE58. Quality control metrics (Supplementary Data 2) were
reported with RNA-SeqQC59, Qualimap60, and Picard.

Generation of ATAC-seq libraries
ATAC-seq reactions were performed on Neuronal (NeuN+) and non-
neuronal (NeuN-) nuclei isolated by FANS from 149 tissue dissections
from 25 brain regions, resulting in 291 ATAC-seq libraries. Where
available, 100,000 sorted nuclei were centrifuged at 500 × g for
10min, 4 °C. Pellets were resuspended in the transposase reactionmix
and libraries were generated using an established protocol61. Libraries
were sequenced with the Illumina Hiseq 4000 using 50 bp paired-end
reads. After quality controls, we retained 210 ATAC-seq libraries,
which, on average, corresponds to available ATAC-seq data for about
18 out of the 25 regions per individual.

Generation of whole-genome sequencing libraries
Whole-genome sequencing libraries were prepared at BGI Genomics.
DNAwas extracted from frozen tissue sections using the QIAampDNA
mini kit (Qiagen, Cat no. 51306) according to the manufacturer’s
instructions. Whole-genome data were generated for all 6 subjects on
Illumina Hiseq 4000 using 100bp paired-end reads.

Data processing and quality control of whole-genome sequen-
cing libraries
To facilitate the alignment of raw sequencing files and perform variant
calling, we utilizedCCGDpipeline (https://github.com/CCDG/Pipeline-
Standardization/)62. In brief, reads were aligned to hg38 human refer-
ence genome using BWA-MEM. Then, the pipeline follows GATK Best
Practises guidelines to perform duplicate marking, base recalibration,
indel-realignment, quality score binning, and variant calling. All
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samples were noted to have broadly even profiles across quality con-
trol metrics, i.e genome coverage >98% (10x coverage > 96% loci),
dbSNP coverage >98%, and transition/transversion (Ti/Tv) ratios
between 2.07 and 2.08, consistently with our genome-wide expecta-
tions (general range for known and novel loci on the human genome is
∼2.0–2.163, while the empirical value for Illumina Hiseq platform is
2.0764) (Supplementary Data 1).

To verify ancestry information, we merged the whole genome
samples with 1KG cohort (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/supporting/GRCh38_positions/) and performed
PCA on the thinned set of 30,000 randomly selected SNPs with
MAF ≥ 5% (SNPRelate package v1.1665). Based on the proximity of our
samples to 1KG population clusters in the two-dimensional space of
the first two principal components, we checked the ethnicity infor-
mation of all six individuals (Supplementary Fig. 2a).

Quality control of RNA-seq libraries
On average, over 51million sequenced paired-end readswereobtained
for each sample. In our initial dataset of 308 samples, 17 samples had a
technical or biological replicate. We decided to keep those replicates
with a better correlation to the gene expression profiles of the other
samples originating from the samecell type andbrain region. In caseof
similar results, we retained a sample with a higher number of uniquely
mapped reads. Then, we calculated the correlation of each sample to
all other samples of the same cell type and highlighted 26 sampleswith
markedly different correlations, i.e., the difference inmean correlation
of the given sample with the rest of the dataset and the mean corre-
lation of all pairs of samples within the dataset was more than twice
higher than the standard deviation calculated upon all pair’s correla-
tion. All those 26 samples originating from 15 distinct brain regions of 5
individuals were removed after a visual inspection in IGV combined
with an inspectionofmetadata which identified probable reasons such
as the lowamount of startingmaterial, lowRIN, or low ratioof uniquely
mapped reads. When we applied this filtering procedure, we ended up
with a final set of 265 samples, i.e., 132 neuronal and 133 non-neuronal
(SupplementaryData 2) that arewell separated in PCA (Supplementary
Fig. 8d). To check the sex of individuals within our cohort, we also
measured the number of reads mapped on genes located on chro-
mosome Y (genes located on pseudoautosomal regions are not
counted; Supplementary Fig. 2b). To check the identity of RNA-seq
samples, we ran genotype comparisons of all samples against each
other and against imputed genotypes from WGS (Supplemen-
tary Fig. 2d).

Quality control of ATAC-seq libraries
Onaverage, over 57million sequencedpaired-end readswereobtained
for each sample. Because of using FANS sorted nuclei as opposed to
whole cells, only a low fraction of the reads were mapped to the
mitochondrial genome (mean of 0.97% of the uniquelymapped reads).
In our initial dataset of 293 libraries, seven libraries had a technical or
biological replicate. We decided to keep those replicates with a better
correlation to the chromatin accessibility profiles of the other samples
originating from the same cell type and brain region.We also excluded
libraries that had low mappability (less than 50%), low per-sample
called OCRs (less than 3000), low GC content (less than 90% of cell
type median, i.e., 52.15% and 54.35% for neuronal and non-neuronal
libraries, respectively) or low final read count (less than 5,000,000).
The threshold of cell GC content was set empirically by testing all
values between 75 and 95% of cell-type median (with a step of 5%) and
observing changes in the clustering analysis as those samples with low
GC were frequently outliers in the MDS plots. Additionally, we
inspected all ATAC-seq libraries in IGV browser and removed an
additional 8 samples with the lowest TSS enrichment and/or less than
1000 nuclei. When we applied this filtering procedure, we ended up
with a final set of 202 samples, i.e., 97 neuronal and 105 non-neuronal

(Supplementary Data 3). Those neuronal and non-neuronal samples
are relatively well separated in PCA (Supplementary Fig. 8d). Similarly
to RNA-seq, we performed a sex check (Supplementary Fig. 2c) and a
genotype check (Supplementary Fig. 2e). ATAC-seq QC metrics are
summarized in Supplementary Data 3.

For further steps, we split samples into neuronal and non-
neuronal datasets. The rationale for this decision comes from the
differential analysis that was unable to properly correct for the effect
of markedly different chromatin compositions of these cell types.

Genetic concordance analysis
To verify the identity of samples across all assays, we compared called
genotypes of RNA-seq and ATAC-seq samples against whole-genome
sequencing samples using KING v1.966. To overcome the issue of a
relatively high error rate for variant calling in functional genomics
assays, we utilized GATK Best Practises guideline (https://software.
broadinstitute.org/gatk/best-practices/workflow?id=11164), followed
by the removal of variants with minor allele frequencies (MAF) < 25%.
For the RNA-seq cohort, this analysis resulted in the correction of
genotypes of 2 unambiguously swapped samples and the removal of
2 samples due to genotype contamination, i.e., high genetic con-
cordance of a single sample with multiple distinct genotypes. In the
case of ATAC-seq, we corrected the genotypes of 4 unambiguously
swapped samples and removed 5 likely contaminated samples.

Processing of ATAC-seq libraries
The raw reads were trimmed with Trimmomatic54 and thenmapped to
the human reference genome GRCh38 analysis set reference genome
with the pseudoautosomal region masked on chromosome Y with the
STAR aligner55. To correct for allelic bias resulting from individual-
specific genome variation, we ran STAR with enabled WASP module56

as we provide both ATAC-seq FASTQ file and WGS file of the corre-
sponding individual. This yielded for each sample a BAM file of map-
ped paired-end reads sorted by genomic coordinates. From these files,
reads that mapped to multiple loci or to the mitochondrial genome
were removed using samtools67 and duplicated reads were removed
with Picard. Quality control metrics (Supplementary Data 3) were
reported with phantompeakqualtools68 and Picard.

Reads from the samebrain regionand cell typewere subsequently
subsampled andmerged, creating 50BAMfileswith a uniformdepthof
170 million paired-end reads. For neuronal samples from the GP, HAB,
VTA, andDRN,wehad less than 170million pair-end reads (39, 123, 136,
and 162 million, respectively), so retained all reads from the corre-
sponding samples. With the exception of those samples, all sub-
sampling ratios were calculated per each sample individually within
the 50 respective groups (brain region by cell type) to ensure that each
contributes the same number of reads regardless of their overall read
counts. bigWigfiles were created using these BAM files and peakswere
called with MACS269. After removing peaks overlapping ENCODE
blacklisted regions of anomalous, unstructured, or high signal in
functional genomics assays70, 320,308 and 196,467peaks remained for
neuronal and non-neuronal datasets, respectively. For each peak, we
assigned the closest gene and the genomic context of an ATAC-seq
OCR using ChIPSeeker71; the transcript database was built by
GenomicFeatures72 upon ENSEMBL genes. Finally, read counts of all
samples were quantified within these peaks using the featureCounts
function in RSubread73.

Analysis of differentially expressed/accessible genes, promoter-
isoforms, and OCRs
To assess which genes, isoforms, and OCRs showed differential
expression and accessibility, we employed statistical modeling based
on linear mixed models. The starting point here was three count
matrices with raw read counts per each sample and feature (i.e., gene,
promoter-isoform, or OCR). For gene expression and chromatin
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accessibility, we excluded features that were lowly expressed/acces-
sible by only keeping those with at least 1 count per million (CPM)
reads in at least 20% of the samples. For promoter-isoforms, we used a
more stringent threshold, and only kept those with at least 2 CPM
reads in >40% of the samples. Then, the read counts were normalized
using the trimmedmeanofM-values (TMM)method74. Covariateswere
selected as implemented in our previous study8 (Supplementary
Data 4). Statistical Analysis of differences in gene/isoform expression
and chromatin accessibility: The normalized read countmatrices from
voomWithDreamWeights (variancePartition package75) was then
modeled by fitting weighted least-squares linear regression models
estimating the effect of the right-hand side variables on the expres-
sion/accessibility of each feature.

As our dataset contains up to 25 samples per individual within
bothneuronal andnon-neuronal subsets, we randifferential analysis by
dream76 method from variancePartition package75. Dream properly
models correlation structure and, thus, keeps the false discovery rate
lower than the other commonly usedmethods for this purpose. Finally,
adjusted matrices of gene/promoter-isoform expression and chroma-
tin accessibility were created for neuronal and non-neuronal samples
where the effects of Sex and technical covariates were removed.

Principal component analysis
After regressing the selected covariates, we applied Singular Value
Decomposition (SVD) to the residual matrices using R’s svd function.
The first two columns of the v matrix were used as PC1 and PC2. The
percentage of variations was determined with d2

i

Σd2.

Canonical correlation analysis (CCA)
CCA between gene expression and chromatin accessibility was per-
formedbasedonR toolkit Seurat77 and Signac78. Briefly,wedetermined
gene activity score for all the expressed genes from chromatin acces-
sibility across each sample. We focused on the protein-coding genes
that are highly variable for gene expression (top 2000 dispersion, aka
variance to mean ratio) or gene activity (top 2000 dispersion). Then
we utilized a variant of CCA, diagonal CCA26 to construct our canonical
correlation vectors.

Covariates selection and differential analysis
The starting point for statistical modeling of gene/isoform expres-
sion and chromatin accessibility was chosen with the variables
Brain_region (25 levels) and Sex (2 levels) for a base model. Sex was
included as it is known to have a strong effect on a few genes/pro-
moter-isoforms/OCRs (features) primarily located on the sex chro-
mosomes. To assess which covariates should be included in order to
have a good average model for gene/isoform/OCR accessibility, we
employed the Bayesian information criterion (BIC) as implemented
in our previous study8. This procedure pinpoints the best-performing
covariates upon the initial sets of 79 and 51 covariates for RNA-seq
and ATAC-seq datasets, respectively. We required to net improve
at least 5% of the features showed a change of 4 in the BIC score,
which is above the lower boundary of “positive” evidence against the
null hypothesis. Summaries of selected covariates for all combina-
tions of analysis type and cell type are provided in Supplemen-
tary Data 4.

Promoter-isoform analysis
We employed the proActiv package to determine the promoter-isoform
expression35. Briefly,wefirst identified theuniquely identifiedpromoter-
isoform (Supplementary Data 7), which excludes the isoform that is a
single exon. We assign the isoform-transcript id as the promoter-iso-
form; when a promoter-isoform corresponds to multiple isoforms, we
randomly choose one. Then we quantified the promoter-isform
expression by estimating the junction reads aligned to the first intron.
We used the same differential analysis for promoter-isoform analysis

(SupplementaryData 8) and excluded the internal promoter (first intron
edge of current isoform overlapped with non-first intron edge of other
isoforms, Fig. 3a) as it’s challenging to accurately quantify the expres-
sion level35. To determine the promoter-isoform-specific DEGs, we
focused on the significant (FDR<0.05) promoter-isoforms between
broad region pairwise comparisons. We selected such promoter-
isoforms that the genes are not significant (nominal P>0.1) or have an
opposite fold change direction (Supplementary Data 9).

Activity-by-contact (ABC) gene-enhancer links at promoter-
isoform resolution
To identify active promoters, we also included internal promoters,
requiring both detectable promoter-isoform expression (CPM> 1 in at
least 20% of samples) and adjacent chromatin accessibility (OCR peaks
within 1 kb of the transcription start site (TSS)). Due to pronounced
molecular diversity withinMidDien brain regions, our analysis focused
on neuronal cells across brain region groups: NEC, limbic, BasGan, and
all fine regions within MidDien. By combining brain region-specific
promoter-isoform annotations and chromatin accessibility with cell-
type-specific Hi-C data10,39, we established promoter-isoform level E-P
links using the ABC model38. In accordance with the authors’ direc-
tions, we filtered out predictions for genes on chromosome Y and
lowly expressedgenes (genes thatdid notmeet inclusion criteria in our
RNA-seq dataset). We used the default threshold of ABC score (a
minimum score of 0.02) and the default screening window (5MB
around the TSS of each gene).

The pair-wise correlation of E-P link strength among brain regions
was evaluated with Spearman correlation using complete values (i.e.,
overlapped links). The correlation heatmap was visualized with R
package ComplexHeatmap (v2.6.2). The hierarchical clustering was
performed with Euclidean distance and default parameters.

Validation of brain region-unique gene-enhancer links
We validated the brain region unique-E-P links using two independent
datasets, GTEx cis-eQTLs from matched brain regions and gene-
enhancer correlation from a multi-brain region single cell atlas
(BICCN)41. For GTEx cis-eQTLs,we intersected ABC enhancers (flanking
500 bp for both up- and down-stream) with the genomic coordinates
of cis-eQTLs and SNPs within the same LD block of the lead SNP
(r2 >0.8). ForBICCNgene-enhancer correlateddata,we intersected the
ABC enhancer regions with BICCN enhancers. Then, we evaluated the
validated proportion by dividing the number of validated enhancer-
targets by the number of ABC links with intersected enhancers. A one-
tailed Fisher’s exact test was applied to examine whether the validated
proportion for one region is higher thanother regions.We evaluated 5′
and non-5′-links separately, which were grouped by the types of
promoter-isoforms.

Fine-mapped and lead SNPs for neuropsychiatric disorders
For SCZ, we utilized the findings from the GWAS conducted by ref. 1,
where FINEMAP79 was applied for statistical fine-mapping to nominate
potential causal variants. For BD, we performed statistical fine-
mapping using LD matrices derived from individuals of European
ancestry from the UK Biobank, alongside GWAS summary statistics2, in
accordance with the methodologies outlined by Koromina et al.80. In
this process, we focused on prioritizing target genes for variants
exhibiting a PIP > 1%. Additionally, we identified lead SNPs from the
GWAS analysis of neuropsychiatric disorders. Here, we flanked sig-
nificant variants on both sides by 10 kb, collapsed these windows with
overlaps, and obtained the lead SNP with the lowest P value for each
window (Supplementary Data 11).

The gene-based annotation of variants was evaluated with
ANNOVAR81 (v2020-06-08) using dbNFSP version 3.0a (hg38). The
closest genes to variants were identified with the closest-features
program in BEDOPS82 (V2.4.41).

Article https://doi.org/10.1038/s41467-024-54448-y

Nature Communications |        (2024) 15:10113 13

www.nature.com/naturecommunications


Partitioned heritability with stratified LD score regression
We partitioned heritability for DE peaks/TEns as well as top eSNPs to
examine the enrichment of common variants in neuropsychiatric traits
with stratified LD score regression (v.1.0.1)83 from a selection of GWAS
studies, including:

Attention-deficit/hyperactivity disorder (ADHD)84, Autism spec-
trumdisorder85, Bipolar Disorder and Schizophrenia shared (BD & SCZ
shared)86, Bipolar Disorder (BD)2, Major depression87, Drinks per
week88, Ever smoker88, Insomnia89, neuroticism90, Schizophrenia
(SCZ)1, Alzheimer’s Disease91, Amyotrophic lateral sclerosis92, Multiple
Sclerosis93, Parkinson Disease94, body mass index (BMI)95, Coronary
Artery Disease96, Crohn’s Disease97, Height98, Inflammatory Bowel
Disease97, Ischemic stroke99, Rheumatoid Arthritis100, Type 2
Diabetes101, Ulcerative Colitis97.

Briefly, with the input peaks, a binary annotation was created by
marking all HapMap3 SNPs102 that fell within the peak or eSNPs and
outside the MHC regions. LD scores were calculated for the overlapped
SNPs using a LD window of 1 cM using 1000 Genomes European Phase
LD reference panel103. The enrichment was determined against the
baselinemodel83.We also determined the gene sets enrichmentwith the
samepipeline (Fig. 4d, e). Thegeneswerepaddedby35 kbupstreamand
10 kb downstream, and HapMap3 SNPs that fell within such regions and
outside of theMHC regionswere utilized. To enable comparisons across
traits, we utilized the regression coefficient (normalized tau), and its
P value (hypothesis, tau >0). The normalized tau measures the average
per-SNP contribution of the annotation to heritability.

Overlap of OCR with existing annotation
We collected cell-type-specific cross-brain region OCRs from a recent
single-cell ATAC-seq reference16. First, we compared the Jaccard index
between our OCRs with the reference and confirmed the cell type and
brain region specificity. In addition,weutilized theunionof all peaks as
background and performed a single-side Fisher’s exact test between
the DAC and the single-cell makers.

Gene set enrichment analysis
To explore the function of a gene set, we collected functional gene sets
fromMSigDB7.0104, andhumanbrain single-cellmarkers18,28 (For Skene
et al., top 1 specificity percentile were used) One-tailed Fisher’s exact
tests were used to test the enrichment and significance. In addition, we
have performed the gene set enrichment with SynGO105 with default
parameters. In such analysis, we used all expressed genes relevant to
the specific group as background.

To examine the genetic enrichment of gene sets, we usedMAGMA
(v 1.07b)106 with GWAS data (described above). Briefly, protein-coding
genes were padded by 35 kb upstream and 10 kb downstream, and the
MHC region was removed due to its extensive linkage disequilibrium
and complex haplotypes. The European panels from 1000 Genome
Project phase 3 were used to estimate the Linkage disequilibrium
(LD)103. TheBETA value fromtheMAGMAoutputwas used to represent
the enrichment. To determine the pathways that are enriched for SCZ
common variants, we determined the MAGMA enrichment for all the
above-mentioned MSigDB pathways and collected all the significant
pathways after FDR (Benjamini &Hochberg) correction (FDR <0.05)107.

Polygenic priority score gene prioritization
We used PoPS43 to validate our findings and enhanced PoPS gene
prioritization by incorporating evolutionary108 and mutational
constraint109 data, recent single-cell/nucleus profiling of the human
brain48,110–112, as well as co-expression networks in control113 and psy-
chiatric disorder114 contexts. Our analysis was restricted to 18,383
protein-coding genes. Single-cell/nucleus data were processed using
Scanpy115, generating several key features: (1) Dimensionality Reduc-
tion: Post-normalization and identification of highly variable genes,
PCA was performed using truncated SVD and Independent

components analysis (ICA) with FastICA116. The derived PCs and ICs
were then projected to the entire gene set. (2) Expression Metrics: We
calculated the average gene expression at pseudobulk levels for var-
ious cell annotations. Tomitigate variance in low-expression genes, we
normalized the count matrix using voom117, followed by normalization
for cell-type specificity of gene expression18. (3) Differential Expression
Analysis: Utilizing Pegasus118, we conducted differential expression
analysis across cell annotation hierarchies, focusing on intra-cell type
comparisons to identify subtype-specific expression patterns. (4) Gene
Expression Programs:Non-negativeMatrix Factorization119 was applied
to decipher gene expression programs. For co-expression networks,
we incorporated module assignments andmodule membership (kME)
values. All features were standardized. We incorporated the additional
features with the features reported from the original method43 to
determine PoPS scores for different neuropsychiatric traits. To assess
the added features, we performed S-LDSC to assess the per-SNP her-
itability of the prioritized genes (top 10%) and found the inclusion of
new features substantially increased per-SNP heritability across var-
ious neuropsychiatric traits (Supplementary Fig. 18).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated in the current study are available through the
Gene Expression Omnibus (GEO) under accession number GSE211826
(ATAC-seq and RNA-seq), and Sequence Read Archive (SRA) under
accession number PRJNA870417 (WGS). The UCSC genome browser
tracks of our processed ATAC-seq data, download links, and the
updated PoPS score feature and PoPS score for different traits are
available at our webpage at synapse (synID:syn35856920). The fol-
lowing publicly available datasets were used: The Corces et al. human
multi-brain-region single-cell ATAC-seq reference16 is available onNCBI
GEO (GSE147672), the Skene et al. mousemulti-brain-region single-cell
RNA-seq reference18 is available from http://www.hjerling-leffler-lab.
org/data/scz_singlecell/, the Lake et al. human brain single-cell RNA-
seq reference120 is available on NCBI GEO (GSE97942), GTEx human
multi-brain region RNA-seq40 data is available on from https://
gtexportal.org/home/, the Fullard et al. human multi-brain region
ATAC-seq data8 is available on NCBI GEO (GSE96949). Source data are
provided with this paper.

Code availability
The code is available at Zenodo https://zenodo.org/records/13922059
(Ref. 121).
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