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Accelerated optimization in deep learning
with a proportional-integral-derivative
controller

Song Chen1, Jiaxu Liu1, Pengkai Wang2, Chao Xu 2,3,4 , Shengze Cai 2,3 &
Jian Chu2,3

High-performance optimization algorithms are essential in deep learning.
However, understanding the behavior of optimization (i.e., learning process)
remains challenging due to the instability and weak interpretability of the
algorithms. Since gradient-based optimizations can be interpreted as
continuous-time dynamical systems, applying feedback control to the dyna-
mical systems that model the optimizers may provide another perspective for
exploring more robust, accurate and explainable optimization algorithms.
In this study, wepresent a framework for optimization called controlled heavy-
ball optimizer. By employing the proportional-integral-derivative (PID) con-
troller in the optimizer, we develop a deterministic continuous-time optimizer
called Proportional-Integral-Derivative Accelerated Optimizer (PIDAO), and
provide theoretical convergence analysis of PIDAO in unconstrained (non-)
convex optimizations. As a byproduct, we derive PIDAO-family schemes for
training deep neural networks by using specific discretization methods.
Compared to classical optimizers, PIDAO can be empirically proven a more
aggressive capacity to explore the loss landscape with lower computational
costs due to the property of PID controller. Experimental evaluations
demonstrate that PIDAO can accelerate the convergence and enhance the
accuracy of deep learning, achieving state-of-the-art performance compared
with advanced algorithms.

Deep learning has gained popularity due to the ability of deep function
approximation in achieving state-of-the-art performance in a large
variety of engineering and scientific tasks. A representative example is
learning-based control, where machine learning or deep learning is
leveraged to serve complex controlled intelligent systems with
remarkable results surpassing those of traditional methods (see
Fig. 1a), e.g., motion planning in robotics1–3, racing4,5, prediction and
control of complex physical systems6–9, such as fusion plasmas10,11. All
these deep learning-based tasks primarily rely on solving large-scale

optimization problems12,13, i.e., training deep neural networks (NNs),
some ofwhich have overmillions or billions of decision variables14,15. In
general, the train loss landscapes of deep learning models are highly
degraded16, featuring multiple local and global minima that lead to
varying generalization capability and model performance17,18. In order
to obtain suitable minima in the high-dimensional variable space,
gradient-based optimization algorithms19 are generally and success-
fully employed (Fig. 1a). For example, the gradient descent (GD) and
adaptive moment estimation (Adam20) algorithms are the most
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commonly used optimizers in the deep learning community. To
accelerate the training process, physics-inspired mechanisms such as
momentum21 can also be incorporated into the optimization algo-
rithms. There is no doubt that these optimizers contribute mostly to
the success of deep learning. However, understanding the impact of
optimization on generalization and approximation of deep learning
models remains challenging.

A possible solution to understanding the optimization (i.e.,
learning process) is to model the gradient-based algorithms or NNs as
continuous-time dynamical systems22,23, or discrete-time feedback
systems24–27. Here, we use themomentumoptimizer as an example. Let
us consider a differential objective function f : Ω ! R, x 7!f ðxÞ from a
feasible setΩ to the real numbers, where x∈Ω is the decision variable.
The momentum optimizer satisfies the iterative scheme
xk+1 = xk + β(xk − xk−1) − bs ∇ f(xk) with iteration index k, momentum
coefficients β > 0, a step size of s, and a step-scaling factor of b >0.
Upon that, for minx2Ωf ðxÞ, we can obtain the sequence fxkgk ≥0 gen-
erated by the momentum method and compute f(xk) to approximate
the minimum as k → +∞. By rewriting the momentum method as
xk + 1�2xk + xk�1

ð ffiffisp Þ2
= � 1�βffiffi

s
p xk�xk�1ffiffi

s
p � b∇f ðxkÞ, with xk + 1�2xk + xk�1

ð ffiffisp Þ2
� €X ðk ffiffiffi

s
p Þ and

xk�xk�1ffiffi
s

p � _X ðk ffiffiffi
s

p Þ, this iterative scheme can be explicitly regarded as an

explicit Euler-discretization scheme for the underlying dynamical
system:

€X +a _X + b∇f ðX Þ=0, ð1Þ

where a≜ 1�βffiffi
s

p , X ≜ X(t) is the state at time t in the continuous-time
domain, _X is the derivative of X with respect to t, and ∇ f(X) is the
gradient of f with respect to X. X ðk ffiffiffi

s
p Þ approximates xk as s → 0. Here,

the state X(t) and a are tight coupling. Specifically, since Eq. (1) is a
second-order system, by using Newton’s second law and serving €X as
an acceleration21, Eq. (1) can be modeled as a ball with a unit mass
rolling across the loss landscape f(X), seeking minima passively driven
by a “friction force” �a _X and a “gravity” − b ∇ f(X) (see Fig. 1b).

Interpreting the gradient-based optimizations as continuous-time
dynamical systems allows us to gain insights into the optimization
process. By doing this, the phenomena that are not easily explained
canbe revealed fromaphysical perspective bybuilding the connection
between the properties of learning frameworks (e.g., universal
approximation and controllability) and the concepts of control (con-
vergence and Lyapunov stability)23,27–32. For example, in addition to the
aforementioned momentum optimizer, the commonly-used GD and
Adam algorithms have been regarded as continuous-time differential

Fig. 1 | Overview of the closed-loop active control optimizer in solving opti-
mizationproblems. a Setup of the connection betweenmachine learning, control,
and optimization. In this work, a perspective of active control is introduced into
optimization to further provide a route for control-oriented learning. b A physical
interpretation for optimization in a physical perspective. This algorithm can be
modeled as a passively forced ball using Newton’s second law. c An illustration of

the controlled heavy-ball optimizer. d A diagram of the classical PID controller.
e Architecture of the proposed optimizer, PIDAO, which consists of three key
components from the PID mechanism: (1) a proportional part of the “present”
output y(t) =∇ f(X); (2) a derivative of output extracting the “tendency” step; and (3)
an integral of output representing an accumulation of the “past''.
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equations33–35, allowing to reveal the properties of the training
dynamics (e.g., generalization and convergence) via Lyapunov
stability29,36–38 and understand the NNs trained using gradient-based
algorithms39,40. Such a combination of dynamical systems and control
theory to understand the optimization and learning process (i.e., control
for learning) has attracted increasing attention and has been developing
rapidly over the past few years41–43. One can introduce open-loop or
closed-loop feedback controllers44,45 into the dynamical systems to
mitigate various kinds of deep learning pathologies. For example, an
optimal control-based optimizer is proposed that may avoid some pit-
falls (e.g., slow convergence on flat loss landscape) of gradient-based
methods24,46,47. Recently, closed-loop control via feedback has been uti-
lized to enhance the robustness of the training dynamics of generative
adversarial networks48 and to automatically detect and rectify errors
caused by perturbations in NNs49. The state-feedback law has been also
used to mitigate the training unbalance caused by gradient flow50 and
convergence rate problems51,52. Following these pioneeringworks, which
provide promising directions on control for learning, we are interested
in answering the question in this paper: can the optimization algorithms
in deep learning benefit from control theory?

To this end, we integrate active control via feedback into the
continuous-time optimization framework (Fig. 1a). First, we recall the
momentum optimizer in (Eq. (1)). The ODE (Eq. (1)) can be rewritten as
a second-order system €X +a _X +u=0 with a control input u = b ∇ f(X).
Building upon this concept, we propose a framework called controlled
heavy-ball optimizer,which is depicted in Fig. 1c and formulated by the
following ODE:

€X +a _X + uðX , _X ,∇f ðX Þ,∇2f ðX ÞÞ=0, ð2Þ

where∇2f(X) is theHessianmatrix. Fromaphysicalpoint of view, Eq. (2)
is regarded as a mechanical system with active control
u≜uðX , _X ,∇f ðX Þ,∇2f ðX ÞÞ (Fig. 1c). The optimizer with the dynamics (2)
seeks optima across the loss landscape f(X) driven by the feedback law
u. Unlike the momentum optimizer (Eq. (1)) that is forced to seek
optima passively, the optimizer (2) actively employs a feedback con-
trol u and subsequently uses feedback to improve its optimization
performance, as depicted in Fig. 1c. For the momentum optimizer (Eq.
(1)), different values of the coefficient a can impact the convergence
rate and the generalization capabilities of the trainedmodels53, while it
is challenging to determine a suitable a due to the tight coupling
between a and state X(t). However, by introducing an additional active
control u, we can apply various control theories44 to decouple or
minimize this dependency, thus improving the interpretability and
stability of the optimizers. Therefore, the Eq. (2) is the basic formation
of the optimizer proposed in this paper. The next question is how to
design the feedback control u.

Designing the feedback control law is the main issue of control
theory44. One of themost renowned and efficient feedback controllers
in the control society is the proportional-integral-derivative (PID)
controller54. The PID input describes a sum of the proportional, deri-
vative, and integral actions of the error, where the error is a distance
between the output of one physical model and the desired reference,
as depicted in Fig. 1d. In fact, the PID controller can reduce the error
andenhance the robustnessof the systems through the feedback input
including the “present” (proportional action), the “past” (integral
action), and the “tendency” (derivative action)55,56. The idea of PID
controller has been used in the design of model architectures57,58 and
optimizer59. In particular, for the optimizer, through ∇ f(X), theGD and
momentum (Eq. (1)) can be seen as the P-controller which only con-
siders the “present”. Wang et al.59 first introduced the idea of PID into
the optimizer design, and proposed a discrete-time optimizer (called
PIDopt) by adding a derivative term in the momentum optimizer.
However, PIDopt was proposed through qualitative analysis and
therefore lacks a rigorous theoretical framework and interpretability.

In this paper, after formulating the optimization problem as a
continuous-time control system (Eq. (2)), we quantitatively introduce
the PID controller into the design of optimization algorithms to
accelerate the learning process and improve the accuracy. By doing
this, a more straightforward interpretation of optimization is avail-
able due to the interpretability of the PID parametric space. We first
employ the PID controller to generate a feedback control input u for
the control heavy-ball optimizer (Fig. 1e). As a result, we propose an
accelerated optimizer called PID accelerated optimizer (PIDAO)
within the continuous-time framework, formulated by Eq. (3) below.
PIDAO is more interpretable due to the greater interpretability of the
parametric space of the PID control. We present global and local
convergence results of PIDAO in unconstrained (strongly) convex
and non-convex settings via Lyapunov analysis, respectively, which
demonstrate its ability to explore the loss landscape aggressively via
a result

R t
t0
∇f ðX ðsÞÞds ! 0. This exploration capability contributes to

escape saddle points faster and may converge to better minima
during the deep learning training process, such as flat minima
that promote improved generalization16,17. We use specific dis-
cretization methods to derive PIDAO-family schemes for deep
learning problems and further validate the effectiveness of the
algorithm. Numerical results show that PIDAO inherits the effec-
tiveness of the PID controller in terms of reducing generalization
errors and accelerating training convergence with lower computa-
tional costs, and outperforms the state-of-the-art methods in various
benchmark cases.

We note that our proposal shares a similar idea with PIDopt59, but
differs fromPIDopt in terms of the problem formulation, availability of
convergence proofs, discrete iterative formulation, and performance
for a number of test cases. A detailed comparison between PIDopt and
our work is shown in the experiments and in Supplementary Infor-
mation (SI) Section I.

Results
We first describe the setup of the unconstrained optimization pro-
blem. Consider the optimization problem minX2Rn f ðX Þ, where f is a
differentiable and bounded function. We denote that f ?≜minX2Rn f
and X?≜argminX2Rn f ðX Þ. We use ∥ ⋅ ∥ to represent the standard
Euclidean norm hereafter. Three sets of functions are introduced for
f(X): S2

μ, LðRnÞ, F 2
LðRnÞ, and P2

μðRnÞ. In particular, (1) f 2 F 2
L repre-

sents that f(x) is convex and twice-differentiable for any x 2 Rn with
a L-Lipschitz continuous gradient. (2) f 2 S2

μ, LðRnÞ (called
strongly convex function) means that f 2 F 2

L and f ðX Þ � μ
2 k X � X?k2

is also convex (X⋆ is the minimizer of f). (3) Lastly, f 2 P2
μ satisfies

the twice-differentiability and the Polyak-Łojasiewicz (PL) condition
1
2 k ∇f ðX Þk2 ≥μðf ðX Þ � f ?Þ for any x 2 Rn. Moreover, CkðMÞ
denotes a space of k-th continuously differentiable functions from
space M to space M. Here, we define three parametric sets:
(1) SPID�SC and SPID�NC are two sets of hyperparameters (kp, ki, kd, a)
in the PIDAO, and (2) SEPID�C is a set of hyperparameters
(kp, ki, kd, a, c) in the Enhanced PIDAO. These three sets are defined
in Methods.

Problem Setup: formulations of PIDAO
Before presenting the basic results of the PIDAO for minX2Rn f ðX Þ, we
first formulate two types of PIDAOs for unconstrained optimization.
Firstly, based on Fig. 1d, one basic control input u can be defined as the
sum of the proportional, integral, and derivative terms of the output
y(t) =∇ f(X):

u= kpyðtÞ+ ki

Z t

t0

yðsÞds + kd
dyðtÞ
dt

,

where kp, ki, and kd are constants. Then, by combining Eq. (2) and the
above input u, for unconstrained optimization, the standard PIDAO is
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described by the dynamical system:

€X +a _X + kp∇f ðX Þ+ ki

Z t

t0

∇f ðX Þds + kd
d∇f ðX Þ

dt
=0, ð3Þ

where a, kp, ki, and kd are hyperparamters of this optimizer. Without
loss of generality, let us assume that the optimizer starts at t = t0. As
discussed in Sec. “Introduction”, a control system has various output
options, such as ∇ f(X) and _X . Hence, both ∇ f(X) and _X can be
integrated into the output y(t), resulting in yðtÞ= c _X +∇f ðX Þ. Then, by
replacing y(t) =∇ f(X) in (3) with yðtÞ= c _X +∇f ðX Þ, we can obtain
another PID-form optimizer called the Enhanced PIDAO. This
formulation is mathematically equivalent to

€X +a _X + kp∇f ðX Þ+ ki

Z t

t0

ð∇f ðX Þ+ c _X Þds + kd
d∇f ðX Þ

dt
=0: ð4Þ

In addition, as the integral coefficient ki in the PIDAO or the Enhanced
PIDAO equals 0, this degenerated optimizer is called PDAO, which is
formulated by

€X +a _X + kp∇f ðX Þ+ kd
d∇f ðX Þ

dt
=0: ð5Þ

Furthermore, we also consider the possibility of dynamically adjusting
the parameters kp, ki, kd in order to better balance or capture the
information contained in the output feedback y(t) =∇ f(X). More dis-
cussions about a time-varying PIDAO are presented in SI Section E. For
unconstrained optimization minX2Rn f ðX Þ, one fundamental question
arises regarding Eq. (3)–(5): how to choose hyperparameters kp, ki, kd
and a such that the solutions X(t) of Eq. (3)-(5) can satisfy f ðX ðtÞÞ !
minX2Rn f or ∇ f(X(t)) → 0 as t → +∞. We have provided theoretical
results for this question in Theorem 1–4 in “Methods”. In the following,
we demonstrate the main findings of PIDAO for various optimization
problems.

Global convergence for convex optimization
Firstly, the strongly convex objective f 2 S2

μ, LðRnÞ is considered here.

The strongly convex objective function is the simplest type of objec-
tive function, which contains a global minimum and is often used in
regression problems. We present a global convergence result in The-
orem 1 in Methods, namely for any ðkp, ki, kd ,aÞ 2 SPID�SC

defined in (6) and X ðt0Þ 2 Rn, there exists a positive constant η
such that the solution X(t) of the PIDAO satisfies

k X ðtÞ � X? k + k R tt0 ∇f ðX ðsÞÞds k ≤Oðe�ηtÞ. Since f 2 S2
μ, LðRnÞ, it

follows that ∥ ∇ f(X(t))∥≤O(e−ηt) and f(X(t)) − f⋆≤O(e−ηt), which even-
tually means that as the hyperparameters of PIDAO are selected in
SPID�SC, f(X(t)) converges to the global minimum at an
exponential rate.

We consider a vanilla quadratic loss as the strongly convex
objective f ðX Þ=0:05X2

1 + 5X
2
2 to verify the performance of the PIDAO,

which is demonstrated in Fig. 2a. There exists a line y = kt + b with a
finite slope k <0 and a finite b such that log f ðX ðtÞÞ � f ?

� �
≤ kt + b,

which further means that f(X(t)) − f⋆≤O(e−kt). However, in Fig. 2a, we
observe that compared to momentum and PDAO optimizers, PIDAO
has a significant overshoot near X⋆ = [0, 0], which slows down the
convergence for strongly convex optimization. Such a phenomenon is
denoted as the offset effect of PIDAO, which will be discussed in Sec.
“PIDAO has more potentials to escape local minimum” when explain-
ing the dynamics of PIDAO.

Apart from thebasic exponential convergenceof PIDAO including
∥X(t) − X⋆∥ ≤O(e−ηt), we remark that the PIDAO achieves an interesting
result, namely k R tt0 ∇f ðX ðsÞÞds k obtains an exponential rate of

convergence, which will be discussed in more details in Sec. “PIDAO
has more potentials to escape local minimum” as well. To the best of
our knowledge, none of the existing gradient-based dynamics, such as
the low-resolution dynamics38,60 and the high-resolution dynamics29,61,
can produce this result, which also cannot be deduced from the
inequality ∥ ∇ f(X(t))∥ ≤O(e−ηt). To further argue that other optimizers
do not have this result, we show a more detailed description in SI
Section B.1.

Next, we consider convex objective functions that are more
general than strongly convex functions, which appear in machine
learning problems such as support vector machines and principal
component analysis. We present convergence results of the PIDAO

(3) and the Enhanced PIDAO (4) for the convex objective f 2 F 2
LðRnÞ.

Let us first focus on the convex optimization problem for the
Enhanced PIDAO (4). We provide a global convergence result in
Theorem 2, which says that for any ðkp, ki, kd ,a, cÞ 2 SEPID�C defined
in (7) and X(t0), the solution X(t) of the Enhanced PIDAO has

limt!+1
R t
t0

∇f ðX ðsÞÞ+ c _X
� �

ds = limt!+1 f ðX ðtÞÞ � f ? =0. Regarding

the second result in Theorem 2, since a strongly convex function

f 2 S2
μ, LðRnÞ � F 2

LðRnÞTP2
μðRnÞ, one can also obtain the exponen-

tial convergence of the Enhanced PIDAO. Specifically, if f 2 S2
μ, LðRnÞ

and ðkp, ki, kd ,a, cÞ 2 SEPID�C defined in (7), there exists η > 0

that only depends on hyperparameters such that kR t
t0

∇f ðX ðsÞÞ+ c _X
� �

ds k + f ðX ðtÞÞ � f ? ≤Oðe�ηtÞ:

To verify Theorem 2, we test the performance of Enhanced PIDAO
using the same quadratic loss function as in Fig. 2a. We choose three
values of c for the optimizer and the exponential convergence results
are shown in Fig. 2b. It is also shown that the difference in c has an
impact on the convergence rate.

We note that the Theorem 2 is only valid for Enhanced PIDAO. In
convex optimization setting, f 2 F 2

LðRnÞ, the convergence analysis of
the PIDAO (3) cannot be provided in this framework, i.e., ∇ f(X(t)) → 0
and

R t
t0

∇f ðX ðsÞÞð Þds ! 0 as t → +∞ cannot be proved together. For-
tunately, PIDAO can be approximated by Enhanced PIDAO when c
approaches zero (see Proposition 1, 2 in SI Section C). According to
such an approximation and Theorem 2, one can use the solution of the
Enhanced PIDAO to depict the solution of the PIDAO for convex
optimization as precise as possible (see details in SI Section D.2). In
Fig. 2b, we show that the difference between PIDAO and Enhanced
PIDAO with the same ðkp, ki, kd ,aÞ 2 SEPID�C can be governed by a
small parameter c. As cdecreases, the evolutionofPIDAOclosely aligns
with that of Enhanced PIDAO.

In SI Section E, we further investigate a time-varying optimizer for
convex optimization with the objective function f 2 F 2

LðRnÞ, which
provides a unified framework for acceleration and yields an expo-
nential convergence rate similar to that of 32 or a faster convergence
rate O 1

tp
� �

,p>2 compared to ref. 38 by regulating the prescribed
function g(t) defined in SI Section E.

Local convergence for nonconvex optimization
Now we consider the objective f to be twice-differentiable and boun-

ded in Rn (f 2 C2ðRnÞ). Typically, such an objective function is com-
mon in neural network training. Additionally, we also consider a class
of twice-differentiable functions that satisfy the PL condition

(f 2 P2
μðRnÞ) in this section, which says that for μ > 0, the following

holds for the function f 2 P2
μðRnÞ: 1

2 k ∇f ðX Þk2 ≥μðf ðX Þ � f ?Þ: We note

that each stationary point X̂ of f 2 P2
μðRnÞ is the global minima62 since

0= 1
2 k ∇f ðX̂ Þk2 ≥μðf ðX̂ Þ � f ?Þ≥0 that implies f ðX̂ Þ= f ? and

X̂ 2 argminRn f . An example of non-convex functions satisfying the PL

condition is considered: f ðX Þ= Pn
k = 1 X2

k +2sin
2ðXkÞ

� �
. PL condition
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has also received wide attention in the machine learning
community63–65.

We present a local convergence result in Theorem 3 in Methods.
For any ðkp, ki, kd ,aÞ 2 SPID�NC defined in (8) and X ðt0Þ 2 Rn, we have
limt!+1 k ∇f ðX ðtÞÞ k =0. We verified the local convergence results
under three non-convex losses, as shown in Fig. 2c–e. In all three
examples, PIDAO converges to the critical point, but compared to the
other optimizers in Fig. 2c, d, PIDAO even converges to the global
minimum.

One surprising result in Theorem 3 is that whether the function
f 2 C2ðRnÞ is convex or non-convex, the convergence of the critical
points ( ∇ f(X(t))→0 as t→ +∞) can be provided. In addition, since we
have limt!+1 _X ðtÞ+ ki

a

R t
t0
∇f ðX ðsÞÞds =0 in Theorem 3, if ∇ f(X(t)) → 0

as t → +∞ can infer that X(t) converges to a finite point X⋆ (namely
limt!+1 X ðtÞ=X ? and ∥X⋆∥ < +∞), which implies limt!+1 _X ðtÞ=0,
then one can further get limt!+1

R t
t0
∇f ðX ðsÞÞds =0 for nonconvex

optimization.

PIDAO has more potentials to escape local minimum
As analyzed above, PIDAO exhibits remarkable behavior in both con-
vex and general settings, either directly or indirectly. It demonstrates
the convergence of the integral

R t
t0
∇f ðX Þds ! 0 as t approaches infi-

nity. Based on this deduction, we can suspect that PIDAO possesses an
effective capacity to explore the loss landscape f(X) along with the
solution trajectory of this optimizer. Qualitatively, for a sufficiently
large t meeting with t � t0 2 N+ and a tagged partition of a closed
interval [t0, t] on the real line given by t0≤ t1≤ t2≤ ⋯ ≤tn−1≤tn = t with a
unified interval δ = tk − tk−1, the integral can be approximated by a
Riemann sumof a function f(X(t)) with respect to this tagged partition.

This approximation is defined as:

Z t

t0

∇f ðX ðsÞÞds �
Xn�1

k =0

∇f ðX ðtkÞÞδ � 0 )
Xm�1

k =0

∇f ðX ðtkÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
accumulation

+
Xn�1

k =m

∇f ðX ðtkÞÞ � 0:

Therefore, in the physical sense, the trajectory X(t) of PIDAO needs to
cover as much of the loss landscape f(X) as possible in order to use the
subsequent accumulation

Pn�1
k =m∇f ðX ðtkÞÞ to compensate the previous

accumulation
Pm�1

k =0 ∇f ðX ðtkÞÞ, eventually making the total accumula-
tion

Pn�1
k =0 ∇f ðX ðtkÞÞ zero. This phenomenon is referred to as the offset

effect, whichmeans that PIDAOwould not immediately stop searching
even in the neighborhood of one local minimum. Instead, it continues
to move forward, exploring the loss landscape further. Figure 2f
illustrates such offset effect with different values of ki, where PIDAO
equips a more aggressive capacity to explore the loss landscape as ki
increases. Hence, if ki is appropriately selected, PIDAO may escape
localminima or saddle points and converge to a betterminimum (even
the global minimum).

This property can be further verified by another two examples
(Fig. 2c, d), where the objective functions are Six-hump camel back
function and Rastrigin function, respectively. Compared with other
optimizers, the PIDAOdemonstrates the superiority, which can escape
from local optimality and converge to global optimality. As shown in
the subfigures of Fig. 2c, d, the loss error decreases continuously with
respect to time. Regarding the Rosenbrock function (see Fig. 2e),
PIDAO goes ahead instead of stopping due to this offset effect, even if
it approaches the unique minimum value (see the subfigure at the
bottom), which reduces the PIDAO’s convergence rate for a short time.

(f)(c) (d) (e)

(a) (b)

Fig. 2 | The performance of PIDAO for low-dimensional (non)convex optimi-
zation. a Evolution trajectories and loss errors of different optimizers with
X(0) = [ − 2, 2] for the same ill-condition quadratic loss f ðX Þ=0:05X2

1 + 5X
2
2.b PIDAO

can be approximated by the Enhanced PIDAO with a small parameter ci(i = 1, 2, 3),
where they all start from X(0) = [ − 2, 2]. Here c1 = 1/2, c2 = 1/50, c3 = 1/1000,
respectively. Evolution trajectories of PIDAOs for three test objectives: Six-hump
camel back function (c), Rastrigin function (d), and Rosenbrock function (e).

f Evolution trajectories of four PIDAOs with different ki for the same quadratic
objective function f ðXÞ= 2X2

1 + 5X
2
2 with initial point X(0) = [ − 2, − 2], formulated by

(3), where ki,1 > ⋯ > ki,4. The red star in the above figures denotes the initial point
X(0). The dynamical systems of optimizers: Nesterov’s accelerated gradient opti-
mizer (NAG)38,Momentum, PIDAO, EnhancedPIDAO, andPDAO, are summarized in
Table 3. Furthermore, the hyperparameters of the above cases are given in
Methods.
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This example indicates that if the objective f(X) has a global minimum,
the offset effect caused by ki or the integral may lead to unnecessary
oscillation and decrease the convergence rate. Therefore, PDAO,
namely the PIDAOwithout the integral term (ki = 0 in Eq. (3)), would be
more suitable for f(X) that has only one minimum (e.g, Rosenbrock
function).

The aforementioned results can be concluded by Theorem 4 in
Methods. For the strongly convex function f ðX Þ 2 S2

μ, LðRnÞ, PDAOmay
converge to the minimum faster because there is no additional offset
effect arose by ki. We show for any ðkp, kd ,aÞ 2 SPD�SC and X(t0), we
have a global convergence result of the solution X(t) of PDAO:
f(X(t))− f⋆≤O(e−2mt), where m= minfa,μkdg. The high-resolution NAG
dynamics proposed by Shi et al.29 is one special case of the PDAO
optimizer if kp = 1 +

ffiffiffiffiffi
μs

p
, kd =

ffiffiffi
s

p
,a=2

ffiffiffi
μ

p
with s > 0. However, our

result provides a faster convergence rate f ðX Þ �minX2Rn f ≤Oðe�
ffiffiffiffi
2μ

p
tÞ

rather than Oðe�
ffiffi
μ

p
t=4Þ via s = 1=2

ffiffiffi
μ

p
. In Fig. 2a, we show that the

solution of PDAO converges to theminimummore rapidly than that of
the PIDAO, which can be attributed to the absence of the offset effect.
Therefore, if the objective function is convex, PDAO is superior to
PIDAO which may exhibit critical damping during convergence.

Furthermore, it is shown that PIDAO can escape saddle
points at a faster rate than the classical optimizers. In particular, weuse
a saddle point problemhere to discuss PIDAO’s ability to escape saddle
points. Consider a quadratic objective f ðX 1,X2Þ= 1

2 ðX2
1 � ϵX2

2Þ with a
positive constant ϵ ≪ 1. We define the escaping time
τ = inf τ >0 ∣f ðX 1ðτÞ,X2ðτÞÞ<� δ

� 	
for optimizers, where δ >0 and X(τ)

is the solution of the optimizer. For different optimizers that have the

same X(t0), a smaller escaping time away from the saddle point (0, 0)
means a faster-escaping rate. We show that the escaping times τ for
PIDAO, momentum, and gradient flow are Oð 1

ϵ
1
3
ln δ

ϵÞ, Oð 1
ϵ
1
2
ln δ

ϵÞ and

O 1
ϵ ln

δ
ϵ

� �
, respectively, which means that PIDAO can help to escape

rather flat saddles and accelerate the optimization process. As shown
in Fig. 3a, as ϵ gets smaller (flatter around the saddle point), the
escaping times of three optimizers increase, but the escaping time of
PIDAO is the smallest. In other words, PIDAO can escape the saddle
point with more possibility and less time. More details are provided in
SI Section B.2.

Connection between PIDAO and PID controller
We note that there is a clear connection between the PID controller
and the PIDAO, which is expected to provide interpretability for
PIDAO. In a closed-loop system controlled by a PID controller, the
proportional item provides a fast response that allows the state to
approach the target quickly. However, there may be a steady-state
error, which refers to the difference between the desired setpoint and
the actual state of the system. The integral term is utilized to reduce
the steady-state error. The derivative item reduces overshoot and
oscillation of the state54,59.

In the context of optimization, we can draw a parallel by con-
sidering the steady-state error as the distance between the state X(t)
and the global minimum X⋆. (1) kp provides a fast convergence rate for
e(t) = ∇ f(X) to converge to zero, whichmay lead to a steady-state error
since the point X⋆ with ∇ f(X⋆) = 0 may be a local minimum. (2) ki

(a) (b)

(c) (d)

Fig. 3 | PIDAO’s ability to escape saddle points and the interpretability of
PIDAO’s hyperparameters. a Escaping time of different optimizers with the same
X(0) = [0.5, 1] for a quadratic function f ðX 1,X2Þ= 1

2 ðX2
1 � ϵX2

2Þ. b–d Evolution tra-
jectories and loss errorsof the PIDAOwith different hyperparameters (kp, ki, kd) and

X(0) = [ − 6, 5.5] for the Rastrigin loss. b Select ki = kd =0 but increasing kp. c Select
kp = 10here and kd =0but increasing ki.d Selectkp = 10 and ki = 14 but increasing kd.
The red star in the above figures denotes the initial point X(0).

Article https://doi.org/10.1038/s41467-024-54451-3

Nature Communications |        (2024) 15:10263 6

www.nature.com/naturecommunications


reduces the steady-state error. By employing a suitable integral gain ki
in the PIDAO, the exploration capacity of the optimizer can effectively
reduce this steady-state error by escaping local minima or saddle
points, as discussed earlier. (3) kd reduces overshoot and oscillation of
the optimization process.

Figure 3b–d shows numerical verification of the above interpret-
ability for (kp, ki, kd) in the PIDAO. The Rastrigin loss has local minima
Ω= fX jX 1 = � 5 sinðX 1Þ,X2 = � 5 sinðX2Þg and
minX2R2 f ðX 1,X2Þ= f ð0, 0Þ=0. In Fig. 3b, as kp increases, the con-
vergence speed of PIDAO to Ω = {X∣ ∇ f(X) = 0} becomes faster. How-
ever, PIDAO finally converges to a local minimum. To overcome this
issue, by increasing ki, PIDAO converges to a global minimum, redu-
cing the steady-state error (Fig. 3c). Moreover, as shown in Fig. 3d, the
overshoot and oscillation of the optimization process are eliminated
by introducing an appropriate parameter kd.

PIDAO improves accuracy and efficiency in deep learning
In the aforementioned low-dimensional cases, PIDAO is implemented
by directly solving the ODE Eq. (3) with respect to the optimization
problems. However, for high-dimensional optimization minX2Rn f ðX Þ,
it is unrealistic to implement the proposed PIDAO method by solving
the ODE within a given error tolerance due to the high computa-
tional cost.

To this end, we apply the semi-implicit Euler and symplectic
integral methods66 to develop two iterative forms, that can be easily
integrated with the existing deep learning codes, namely PIDAO (SI)
and PIDAO (ST); the PDAO scheme is contained in PIDAO (SI) with
ki =0.Moreover, an adaptive algorithm, PIDAO (AdSI), is also proposed
by using the adaptive learning rate (lr) in PIDAO (SI), inspired by the
implementation of RMSprop. These three main algorithms and the
corresponding discretization methods are reported in Table 1 and
Methods. The hyperparameter h in these algorithms is the learning
rate (lr). We remark that the gradient term in algorithms can be
replaced by the stochastic gradient when using the mini-batch setting.
We refer to these algorithms as the PIDAO-family algorithms, which
provide alternative approaches to implement the PIDAO in a compu-
tationally efficient manner for high-dimensional optimization. In this
work, we pay more attention to the implementation of PIDAO-family
algorithms. Although the optimization performance such as con-
vergence property cannot be proven theoretically, it is illustrated by
empirical experiments in the following. Moreover, suggestions for
selecting hyperparameters (kp, ki, kd, a) are provided in Methods.

Example 1: low-dimensional optimization setting. We first compare
our method for low-dimensional optimization objectives f(x) with
algorithms, namely Momentum, PIDopt, Adam, and Adaptive heavy-
ball (called AdaHB)67 algorithms, in a discrete-time domain. In order to
maintain the fairness of the algorithm in comparison, we set the same

lr and momentum coefficient (if any) in each algorithm. We perform
this comparison on two benchmark objectives, quadratic and Rosen-
brock, and provide a detailed description of the experimental settings
in Methods. The results are summarized in Fig. 4a–b. We find that our
method provides comparable or even better results than classical
algorithms in each case. In the quadratic objective (Fig. 4a), the PDAO,
PIDopt, and Momentum algorithms converge to the minimum faster
than the PIDAO (SI) and PIDAO (ST) due to the offset effect of the
latters. Notably, the PDAO, PIDopt, andMomentum algorithms exhibit
almost identical convergence rates. Regarding the comparison of
adaptive algorithms, although PIDAO (AdSI) has a similar trajectory to
Adam and AdaHB, the PIDAO (AdSI) holds a faster convergence rate. A
similar result can be observed in the Rosenbrock case (Fig. 4b), where
we find that all PIDAO-family algorithms converge to smaller loss
values, indicating that PIDAO can explore the loss landscape more
efficiently.

Example 2: deep learning-based classification. Here, we investigate
the performance of PIDAO algorithms on high-dimensional optimiza-
tion problems using deep learning classifiers as examples. We provide
quantitative results for three testing datasets, where each dataset
employs adifferent neural network (NNθ) to approximate the classifier.
Specifically, we utilize fully connected NN (FNN), convolutional NN
(CNN), and residual NN (ResNet) architectures for classifying the
MNIST (Fig. 4c), FashionMNIST (Fig. 4d), and CIFAR-10 (Fig. 4e) data-
sets, respectively. For each case, we compare the performance of our
algorithms with other algorithms. The evaluationmetrics include train
loss, test loss, train accuracy, and test accuracy. Further details about
the experimental setup can be found in the “Methods” section.

Given the enhanced exploration capability of PIDAO-family algo-
rithms in the loss landscape, we expect that our algorithms can con-
verge to a better minimumwith a faster convergence rate. As depicted
in Fig. 4c–e, we observe that PIDAO (SI) and PIDAO (ST), with fixed lr,
consistently outperform the other algorithms in terms of accuracy,
loss, and convergence speed in each case. Furthermore, we can con-
clude that theminimum towhichPIDAO (SI) and PIDAO (ST)ultimately
converge is flatter than that of other algorithms, leading to better
model generalization17. On the other hand, regarding the comparison
of adaptive algorithms, the results indicate that PIDAO (AdSI) achieves
faster convergence thanAdamandAdaHBwithout overfitting, which is
confirmed by the higher accuracy in testing. In addition to the afore-
mentioned three cases, we also provide an example where PIDAO is
applied to train the PointNet for 3D point cloud classification, which is
shown in SI Section H.3, indicating the superior performance of PIDAO
as well.

As mentioned above, a key differentiating feature of our algo-
rithms compared with other algorithms is that PIDAO-family algo-
rithms (both fixed-lr algorithms and adaptive-lr algorithms) converge
to flatter minima θ⋆ that lead to better model generalization. To
clearly demonstrate this finding, we plot the loss landscapes of those
trained models, taking the result of MNIST-FNN as an example. We
project the training and test loss landscapes of FNN around the
parameter θ⋆ into one- and two-dimensional parameter subspaces16;
see Fig. 5a, b, respectively. More descriptions of the projection are
contained inMethods. As shown in Fig. 5a, we find that in the training
results of PIDAO (SI) and PIDAO (ST), the difference between the
corresponding train loss function and test loss function is smaller
than the difference caused by Momentum and PIDopt algorithms.
PIDAO algorithms make the training and testing closer, leading to
higher test accuracies (bothmore than 98.5% on average). Compared
to other adaptive algorithms, similar conclusions can be found for
PIDAO (AdSI). Furthermore, we see that in the result of train loss
shown in Fig. 4c, PIDAO (SI) and PIDAO (ST) present a “loss descent-
ascent” phenomenon but end up at a minimum θ⋆ with a train loss
similar to that of the Momentum algorithm. We assert this

Table 1 | Algorithms of PIDAO via different discretization
methods

Algorithm’s name Algorithm’s Scheme (input x0, y0 = kd ∇ f(x0), and z0 = 0)

PIDAO (SI) xk + 1 � xk =hyk + 1 � hkd∇f xk
� �

yk + 1 � yk = � hayk + 1 � h kp � akd
� �

∇f xk
� �� hkizk + 1

zk + 1 � zk =h∇f xk
� �

8<
:

PIDAO (ST) xk + 1 � xk = hyk � hkd∇fðxkÞ,
yk + 1 � yk = � hayk + 1 � hðkp � akdÞ∇fðxk + 1Þ � hkizk + 1,

zk + 1 � zk =
h
2 ð∇fðxkÞ+∇fðxk + 1ÞÞ,

8<
:

PIDAO (AdSI) xk + 1 � xk =hyk + 1 � hkdffiffiffiffi
v̂k

p
+ ϵ

� ∇fðxkÞ,
yk + 1 � yk = � hayk + 1 �

hðkp�akdÞffiffiffiffi
v̂k

p
+ ϵ

� ∇fðxkÞ � hkiffiffiffiffi
v̂k

p
+ ϵ

� zk + 1,

zk + 1 � zk =h∇f xk
� �

,
vk + 1 � vk = ð1� ρ1Þð∇fðxk + 1Þ � ∇fðxk + 1Þ � vkÞ, v̂k = vk

1�ρ21
:

8>>>>><
>>>>>:

Here, ⊙ represents the Hadmard inner product and h is learning rate.
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phenomenon is caused by the effective exploration capacity of
PIDAO. Specifically, in Fig. 5b, we project the learning trajectory and
train loss landscape of each algorithm into the two-dimensional
parameter subspace. During training, both PIDAO (SI) and PIDAO
(ST) pass through basins with lower losses (as shown by the red stars
in the 30th epoch). Instead of terminating the training, they both go
ahead and eventually stop at flatter minima (as shown by the blue
squares), although the losses are a bit higher than before. This phe-
nomenon is not observed in PIDAO (AdSI) as shown in Fig. 5b, which
may be due to the change of continuous-time dynamics of adaptive
PIDAO algorithm caused by adaptive parameterization. However,
compared with Adam and AdaHB, PIDAO (AdSI) still has better
capacity to learn which may be partly inherited from the dynamics
of PIDAO.

Example 3: deep learning-based PDE solver. To investigate the
capacity of PIDAO-family algorithms on more complex cases such as
scientificmachine learning, we apply the PIDAO (AdSI) to train NNs for
learning partial differential equations (PDEs). The physics-informed
NNs (PINNs)68 and Fourier neural operator (FNO)69 are investigated.
Further details about the experiment are presented in “Methods”.

We first consider solving a benchmark fluid dynamics problem via
PINNs, namely the steady-state flow in a 2D lid-driven cavity, which is
governed by the incompressible Navier-Stokes (NS) equations. The
results are summarized in Fig. 6a, where we can observe that the
velocity field obtained by the PIDAO (AdSI) is in good agreement with
the reference. Moreover, compared to Adam and other optimizers
(Fig. 6a), PIDAO (AdSI) presents a higher accuracy and a faster con-
vergence rate. Another example of PINNs is solving the 1D Burgers’

(a) (b)

(c)

(d)

(e)

Fig. 4 | Comparison between the classical algorithms and PIDAO-family algo-
rithms on various optimization problems. Convergence trajectories and loss
errors of different algorithms on two objective functions, namely the ill-
conditioned quadratic loss f ðX Þ=0:05X2

1 + 5X
2
2 (a) and the Rosenbrock function

(b). The red star in (a) and (b) denotes the initial point X(0). Performance of

different algorithms on classification tasks for MNIST (c), Fashion MNIST (d),
and CIFAR-10 (e), respectively. Four evaluation indexes are demonstrated, includ-
ing train loss, test loss, train accuracy, and test accuracy. The shadows near each
curve represent the 90% confidence interval for each data point from 8
experiments.
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equation. As shown in Fig. 6b, we find that the exact and the predicted
solutions at different time instants t = 0.3, 0.6 are consistent. In addi-
tion, the result obtained by PIDAO (AdSI) is more accurate than those
of other algorithms, as depicted by the plot of test errors against
training epoch in Fig. 6b.

We also investigate the capacity of the proposed algorithm,
PIDAO (AdSI), to solve PDEs based on FNO. Here, the 1D Burgers’
equation and the 2DDarcy flow equation are considered, the results of
which are illustrated in Fig. 6c, d, respectively. From the results, we
observe that the models for the two cases trained by PIDAO (AdSI)
both converge to lower L2 losses in testing, which means that PIDAO
(AdSI) is more applicable and produces a better performance. The
discussion here also provides evidence for the assertion that the
PIDAO-family algorithms have more capacity to explore the loss
landscape than other algorithms.

All results of the above deep learning examples are summarized in
Table 2.

Computational cost of PIDAO
We test the computational cost of PIDAO-family algorithms and the
comparison algorithms in two ways: running time per epoch and the
running time used to reach a certain train loss (e.g., 1e − 3), which are

shown in Fig. 7a, b, respectively. As shown in Fig. 7a, in each task, the
PIDAO-family algorithms use a little more runtime per epoch com-
pared to other algorithms, but not by much more. The reason is that
PIDAO-family algorithms have to store an integral variable zk during
the iteration, which consumes a certain amount of running time.
However, the PIDAO-family of algorithms requires much less runtime
thanother algorithms to achieve a certain error due to the acceleration
of PIDAO. Specifically, in the comparison of adaptive algorithms for
the three tasks, PIDAO (AdSI) requires less runtime; in the comparison
of non-adaptive algorithms, PIDAO (SI) and PIDAO (ST) also require
less runtime, because the PIDAO-family algorithms have a faster con-
vergence rate so that only fewer epochs are needed to reach the spe-
cified loss.

Discussion
In this paper, we explore the possibility of applying control theory for
deep learning. We establish a connection between closed-loop feed-
back control and optimization algorithms by the controlled heavy-ball
optimizer. This connection not only motivates us to explain the algo-
rithmic behavior and training dynamics through the lens of
continuous-time dynamical systems29,33,38,39,50, but also enables us to
develop high-performance closed-loop control optimizers for learning

(a) (b)

Fig. 5 | One- and two-dimensional subspace projections of loss landscapes in
MNIST-FNN case. a Results of one-dimensional projection around theminimum θ⋆

with respect to the train loss function, the test loss function, the train accuracy, and
the test accuracy. The projection function is formulated as f(α; θ⋆) = f(θ⋆ + αθpd),
where f and θpd are the metric function and the projection direction in the para-
meter space, respectively. b Two-dimensional projection around θ⋆ with respect to

the train loss function, and the training trajectory. Here, the formula of each pro-
jection function is given by f ðα1,α2; θ

?Þ= f ðθ? +α1θpd1
+α2θpd2

Þwith two projection
directions θpd1

and θpd2
. The dotted line, red star, and blue square represent the

projected training trajectory, the projected point at the 30th epoch, and the ended
point, respectively. The shadows near each curve represent the 90% confidence
interval for each data point from 8 experiments.
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(a)

(b)
(c)

(d)

Fig. 6 | Solving partial differential equations via neural networks with different
optimizers, including PIDAO (AdSI), Adam, RMSprop, AdamW75, and AdaHB.
a Results of 2D lid-driven cavity flow based on physics-informed neural networks
(PINNs). The reference flow, predicted flow obtained by PIDAO (AdSI), and the
residual flow are plotted. The testing losses against the training epoch based on
four optimizers are compared. b Results of 1D Burgers' equation solved by PINNs,
including the prediction u(t, x) obtained by PIDAO (AdSI) along with the initial and

boundary training data, the comparison between the predicted solution and the
exact solution at t =0.3, 0.6, and the comparison of test loss between different
optimizers. Comparison of the training and testing losses among different opti-
mizers for solving 1D Burgers' equation (c) and 2D Darcy equation (d) based on
Fourier neural operator network. The shadows near each curve represent the 90%
confidence interval for each data point from 8 experiments.

Table 2 | Comparison between benchmark algorithms and PIDAO-family algorithms on various deep learning cases

Method MNIST Fashion MNIST CIFAR-10

Train Loss Test Loss Train Acc Test Acc Train Loss Test Loss Train Acc Test Acc Train Loss Test Loss Train Acc Test Acc

PIDAO (SI) 0.00186 0.04841 100.00% 98.54% 0.15095 0.20203 94.37% 92.89% 0.00205 0.33433 99.97% 93.1825%

PIDAO (ST) 0.00186 0.04831 100.00% 98.59% 0.15286 0.20362 94.25% 92.91% 0.00174 0.33653 99.97% 93.06%

PIDAO (AdSI) 0.00439 0.05794 99.92% 98.42% 0.14573 0.20131 94.58% 92.96% 0.04734 0.37667 98.50% 91.51%

Momentum 0.00201 0.04931 100.00% 98.47% 0.15704 0.20676 94.19% 92.61% 0.01220 0.39213 99.58% 92.25%

Adam 0.00781 0.06894 99.78% 98.20% 0.15615 0.20618 94.20% 92.61% 0.08802 0.34870 96.94% 91.00%

PIDopt 0.00508 0.05739 99.90% 98.29% 0.16225 0.20776 93.99% 92.51% 0.01299 0.40980 99.57% 91.79%

AdaHB 0.00813 0.07174 99.77% 98.09% 0.16418 0.20324 93.93% 92.70% 0.10775 0.37442 96.23% 90.10%

Method PINNs for 1D Burgers’
equation

PINNs for 2D cavity flow FNO for 1D Burgers’ equation FNO for 2D Darcy equation

Train Loss Test Error
of u(x, t)

Train Loss Test Error
of u(x, y)

Test Error
of v(x, y)

Train Loss Test L2 Error
of u(x, t)

Train Loss Test L2 Error
of u(x1, x2)

PIDAO (AdSI) 5.8440 × 10−4 2.87% 6.3204 × 10−5 1.30% 1.76% 3.4827 × 10−4 5.3612 × 10−4 1.1918 × 10−2 5.4192 × 10−3

RMSprop 9.2526 × 10−3 12.20% 8.9772 × 10−3 34.17% 68.80% 1.4479 × 10−3 2.0741 × 10−3 1.7722 × 10−2 1.2003 × 10−2

Adam 5.5540 × 10−4 6.58% 1.8461 × 10−4 3.07% 4.22% 4.6665 × 10−4 7.1373 × 10−4 1.0586 × 10−2 7.7934 × 10−3

AdamW 3.4320 × 10−4 6.23% 1.4487 × 10−4 2.51% 3.89% 7.0761 × 10−4 1.2057 × 10−3 5.8096 × 10−3 8.2432 × 10−3

AdaHB 3.8605 × 10−3 9.43% 3.1194 × 10−3 21.07% 43.73% 9.5934 × 10−4 1.7213 × 10−3 1.9964 × 10−2 1.6065 × 10−2

The best results are marked in bold. The hyperparameter settings of these optimizers can be found in SI Section H.
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via feedback. In thiswork, by leveraging the PID control, weproposean
accelerated optimizer, PIDAO. We investigate the convergence prop-
erty and the performance of PIDAO for three basic types of uncon-
strained optimization problems: strongly convex, convex, and
bounded non-convex optimization. Most of the characteristics are
described with theoretical analysis. We prove that PIDAO can achieve
an exponential convergence in the strongly convex setup and achieve
global and local convergence results in the convex and non-convex
setups, respectively. Our numerical experiments demonstrate that
PIDAO exhibits a more aggressive exploration capacity across the loss
landscape. Such a property provides PIDAO the potential to faster
escape from suboptimal minima and converge towards superior
minima, such as global minima or flat minima. Eventually, to further
improve the applicability of PIDAO, we generate the PIDAO-family
algorithms via discretization methods, including two learning rate-
fixed algorithms and one adaptive algorithm, which can be easily
employed in deep learning tasks. As demonstrated in numerous
examples (see Figs. 4–7), our algorithms possess a more effective
exploration competence along the loss landscape with lower compu-
tational costs, resulting in improved accuracy and efficiency in deep
learning applications (e.g., classification and PDE-solver).

Our proposed framework is inspired by a second-order ODE (1)
characterizing the heavy-ball algorithm. However, there are notable
distinctions between PIDAO and other existing optimizers, which are
summarized in Table 3. The primary differentiation lies in the gen-
eration of each optimizer. Most optimizers are typically derived by
establishing an iteration scheme and then deducing the corresponding
continuous-time optimizer through limit analysis. However, PIDAO is
first introduced by incorporating a controller into the momentum
optimizer from a physical perspective, followed by the

implementation of several PIDAO-family algorithms through dis-
cretization. In addition, there are also differences in the way how the
optimizers handle the current, past, and tendency information. The
momentum optimizer employs the difference between the current
state and the previous state for acceleration, and the adaptive opti-
mizers (e.g., Adam) construct the first and secondmoments to process
the past and current gradient information, and further adaptively
update the search direction in the solution space and the learning rate.
On the contrary, PIDAO captures current, past, and tendency from the
gradient information, corresponding to the proportional, integral, and
derivative computations in the PID controller. This distinctive
approach makes PIDAO more comprehensive and interpretable in
those learning and optimization problems. Moreover, compared with
another PID-inspired optimizer, PIDopt59, the motivation of PIDAO is
different. We also propose PIDAO with theoretical results in the
continuous-time framework. In addition, PIDAO is a more general
framework, and PIDopt can be considered as a typical PD “controller”
in PIDAO.We providemore details on the comparison between PIDAO
and PIDopt in SI Section I.

It is worth noting again that PIDAO achieves an interesting resultR t
t0
∇f ðX ðsÞÞds ! 0 as t→ +∞, which is called offset effect and is a piece

of evidence that the PIDAO has a stronger exploration capability along
the loss landscape. We set up numerous experiments, including low-
dimensional optimization problems and high-dimensional learning
tasks, to verify the effectiveness of the proposed optimizer. In parti-
cular, the results of complex deep-learning tasks indicate that our
algorithms can outperform state-of-the-art algorithms (e.g., Adam) in
terms of accuracy.

The framework of PIDAO is constructed based on the PID
mechanism in this study. We believe there is substantial room for

(a)

(b)

Fig. 7 | Comparisonof computational costbetween the classical algorithmsand
PIDAO-family algorithms on data classification problems. a The running time
used per epoch of optimizers. b The running time of optimizers used to reach a

certain threshold of train loss. The shadows near each curve represent the 90%
confidence interval for each data point from 8 experiments.
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future work in applying other existing but suitable control methods to
construct controlled physical optimizers (e.g., heavy ball in Sec.
“Introduction”), that can efficiently solve learning problems. Although
this article focuses on unconstrained optimization issues, in the future,
we could study constrained optimization problems. For example, it is
possible to consider physical systems for optimization on manifolds
and their control problems, such as the control of Euler-Lagrange
systems on Riemannian manifolds. Regarding PIDAO, there are still
several aspects that require further investigation. The first one is the
optimal convergence rate of PIDAO for strongly convex optimization.
Although both the PIDAO family of learning rate-fixed algorithms and
adaptive algorithms outperform other algorithms in the examples
here, we do not yet knowwhy they improve the accuracy of learning. A
possibility would be to explore the relationship between a key feature
of the proposed algorithms, namely the offset effect, and the gen-
eralization ability of deep learning models, drawing upon well-
established aspects39,70. Moreover, although the algorithm PIDAO
(AdSI) achieves great performance in the deep learning examples, the
continuous-time dynamical system of PIDAO (AdSI) is no longer
exactly equivalent to PIDAO due to the incorporation of an adaptive
learning rate. Therefore, deducing a continuous-time system for
PIDAO (AdSI) would be a promising research direction to gain further
insights into this adaptive algorithm. Last but not least, the concept of
PIDAO can be extended to continuous-time stochastic differential
equations, as mini-batch algorithms are commonly employed in deep
learning practice.

Methods
Here, we describe more details about the proposed optimizer PIDAO,
and summarize the discretization methods of PIDAO, the hyperpara-
meters, testing objective functions, and NN architectures that we used
in our numerical experiments. We note that in this paper, the
continuous-time optimizers for low-dimensional optimization in Fig. 2
and the discrete-time algorithms for deep learning in Figs. 4–6, are
implemented in the solve_ivp method and the Pytorch package,
respectively. Our implementations are all publicly available.

Global convergence for strongly convex optimization
We denote one nonempty set of hyperparameters (kp, ki, kd, a):

SPID�SC = ðkp, ki, kd ,aÞ 2 R4
+ ∣kp >akd ,μk

2
d +akd > kp +

ki

a


 �
, ð6Þ

Theorem 1. We suppose that f 2 S2
μ, LðRnÞ. For any ðkp, ki, kd ,aÞ 2

SPID�SC defined in (6), there exists a positive constant η such that the

solutions of the proposed PIDAO (3), X : t0, +1
� �! Rn, satisfy k

X ðtÞ � X? k + k R tt0 ∇f ðX ðsÞÞds k ≤Oðe�ηtÞ, where η only depends on

parameters kp, ki, kd, a, μ.

Theproofof Theorem1 is given in SI SectionA.1.We alsoprovide a
stochastic analysis result of PIDAO in this setting in SI Section A.2. We
highlight the following points. (i) One key aspect in the proof of The-
orem 1 is the construction of a general Lyapunov function V(X)44, as
shown in SI SectionA.1. The set SPID�SC ensures that V(X) exponentially
decreases along with the solution X(t) of (3), which means that differ-
ent Lyapunov functions V(X) may require different SPID�SC for con-
vergence. Hence, the set SPID�SC is conservative. (ii) η is a nonlinear
function of kp, ki, kd, a, μ. In other words, the convergence rate is
determined in a nonlinearmanner by the parameters kp, ki, kd, a, μ. The
parameters leading to an optimal convergence rate for strongly con-
vex optimization71 would not be discussed in this work. However, in
Methods, we summarize how to select kp, ki, kd, a in practical
applications.

Global convergence for convex optimization
We propose another set for hyperparameters (kp, ki, kd, a, c):

SEPID�C = ðkp, ki, kd ,aÞ 2 R4
+ ∣kp>max

ki +
k2
dL

2

4

a
,
kdki

r
+ r,a

8<
:

9=
;,

ki

r
+ rc=a, 0<c<1

8<
:

9=
;,

ð7Þ
where r > 0 is related with ki, c, a by the second equality in (7).

Theorem 2. For the solution of the proposed Enhanced PIDAO
X : t0, +1
� �! Rn, if f 2 F 2

LðRnÞ and ðkp, ki, kd ,a, cÞ 2 SEPID�C

defined in (7), then the following assertions hold:

(1) For all X ðt0Þ 2 Rn, the global convergence can be held, i.e.,

lim
t!+1

Z t

t0

∇f ðX ðsÞÞ+ c _X
� �

ds = lim
t!+1

f ðX ðtÞÞ � min
X2Rn

f =0:

(2) Moreover, if the convex objective f obeys the Polyak-Łojasiewicz
condition with μ > 0, i.e., f 2 F 2

LðRnÞTP2
μðRnÞ, there exists

M, η >0 such that the exponential convergence rate can be held
as follows:
k R tt0 ð∇f ðX ðsÞÞ+ c _X Þds k + ðf ðX ðtÞÞ �minX2Rn f Þ≤Me�ηt , where M
and η only depend on parameters kp, ki, kd, a, L, μ.

We provide the proof in SI Section D.1.

Local convergence for non-convex optimization
Now we define a set of ðkp, ki, kd ,aÞ 2 R4

+ for this class of objective,

SPID�NC = ðkp, ki, kd ,aÞ 2 R4
+ ∣kp �

ki

a
� akd >0


 �
: ð8Þ

Theorem 3. We consider the parameters ðkp, ki, kd ,aÞ 2 SPID�NC

defined in (8) and the bounded objective function f 2 C2ðRnÞ. Then,
the solution trajectory of PIDAO (3) with the respective parameters
(kp, ki, kd, a) starting from any initial condition X(t0) holds

lim
t!+1

∇f ðX ðtÞÞ= lim
t!+1

_X ðtÞ+ ki

a

Z t

t0

∇f ðX ðsÞÞds =0:

Moreover, if f 2 P2
μðRnÞ, the global convergence of the global minima

can be obtained, i.e., lim
t!+1

f ðX ðtÞÞ � f ? =0 for any X ðt0Þ 2 Rn.

More details of the proof can be found in SI Section F.

Table 3 | Comparison between existing optimizers and PIDAO
in the continuous-time perspective

Optimizers Continuous-time dynamical systems of the optimizers

GD _X + kp∇fðXÞ=0
Momentum21 €X + a _X + kp∇fðXÞ=0
NAG38 €X + 3

t
_X + kp∇fðXÞ=0

High-resolution
NAG-C29

€X + 3
t
_X + 1 + 3

ffiffi
s

p
2t

� �
∇fðXðtÞÞ+ ffiffiffi

s
p d

dt∇fðXÞ=0

High-resolution
NAG-SC29

€X + 2
ffiffiffi
μ

p _X + ð1+ ffiffiffiffiffiffi
μs

p Þ∇fðXÞ+ ffiffiffi
s

p d
dt∇fðXÞ=0

Adaptive
optimizer35

_X = �mðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðtÞ+ ε

p
_m=hðtÞ∇fðXÞ � rðtÞm
_v =pðtÞ½∇fðXÞ�2 � qðtÞv

8<
:

PDAO Eq. (3) with ki = 0

PIDAO Eq. (3)

Enhanced PIDAO Eq. (4)
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Fast convergence of the PDAO optimizer for strongly convex
optimization
Let us define a set for (kp, kd, a) in the PDAO:

SPD�SC = ðkp, kd ,aÞ 2 R3
+ ∣kp>akd

n o
: ð9Þ

Theorem 4. We assume that f 2 S2
μ, LðRnÞ. For any ðkp, kd ,aÞ 2 SPD�SC

defined in (9), the solution X : t0, +1
� �! Rn of the PDAO for-

mulated by Eq. (3) with ki = 0 satisfies f(X) − f⋆≤O(e−2mt),
wherem= min a,μkd

� 	
.

We provide the proof in SI Section G.

Discrete-time algorithms of PIDAO
As shown in Proposition 1 in SI Section C, the following first-order ODE
group is equivalent to the original ODE (Eq. (3)):

Equivalent first�order ODE:

_X = Y � kd∇f ðX Þ,
_Y = � aY � kp � akd

� �
∇f ðX Þ � kiZ ,

_Z =∇f ðX Þ:

8>><
>>:

Then, we can discrete these ODEs to solve the optimization problems.
In this paper, three discrete-time PIDAO algorithms are proposed and
implemented in Pytorch, which are summarized in Table 1.

PIDAO (SI)
The semi-implicit Euler method is used to obtain PIDAO (SI), which
means that on the right side of the above ODE, we use explicit xk, and
implicit yk+1, zk+1 to drive the scheme. As ki = 0, we also produce the
scheme of PDAO.

PIDAO (ST)
The algorithm PIDAO (ST) is based on the symplectic method and the
trapezoid formula: in detail, the first and second equations in the
above ODE are discretized by the symplectic method, while the third
equation uses the trapezoid formula.

PIDAO (AdSI)
Based on the PIDAO (SI) scheme, we exploit an adaptive algorithm

PIDAO (AdSI) by introducing the adaptive lr factor
ffiffiffiffiffi
v̂k

p
and the mov-

ing average into the gradient direction ∇ f(x) and zk. Here, instead of
using all the past gradients in the updated zk, we use amoving average
of past gradients which is inspired by RMSprop. In particular, we cal-
culate the exponential weighted moving average of gradient squared
vk+1 = vk + (1 − ρ1)( ∇ f(xk+1) ⊙ ∇ f(xk+1) − vk) and use a correction of vk,
i.e., v̂k =

vk
1�ρ2

1
, to update kp, ki, kd.

The pseudo-codes for these three algorithms are provided in
Algorithm 1–3 in SI Section H.

Hyperparameters in discretized PIDAO
To further improve the practicality of the algorithm, we explore the
choice of hyperparameters in the above PIDAO-family algorithms
(shown in Table 1). Recall the PIDAO (SI), we can rewrite the corre-
sponding scheme by substituting yk + 1 =

xk + 1�xk
h + kd∇f ðxkÞ into the

second equation in this scheme and generate the following scheme:

xk + 1 � xk =
1

1 +ah
ðxk � xk�1Þ �

h2kp

1 +ah
∇f ðxkÞ �

hkd

1 +ah
ð∇f ðxkÞ

� ∇f ðxk�1ÞÞ �
h2ki

1 +ah
zk + 1:

By setting kd = ki =0, the PIDAO (SI) degrades into the momentum

scheme xk + 1 � xk =
1

1 + ah ðxk � xk�1Þ �
h2kp

1 +ah∇f ðxkÞ. Here, we serve two

terms 1
1 +ah and

h2kp

1 +ah as the equivalent momentum and the equivalent
learning rate, denoted by aeq and lreq respectively, which can produce
suitable kp, a, h in this view. For example, if we take the equivalent
momentumand the equivalent learning rate as aeq = 0.9 and lreq =0.01,
respectively, then we have that h = lreq = 0.01, a= 1

h ð 1
aeq

� 1Þ= 100
9 , and

kph
2aeq = lreq ) kp =

1
aeqlreq

= 1000
9 . For the remaining two hyperpara-

meters in the PIDAO (SI), kd and ki, their selection needs to satisfy

kp>
ki
a +akd such that kp, ki, kd ,a 2 SPID�NC that is defined in (8).

Therefore, we summarize the method of selecting hyperpara-
meters: once we determine aeq and lreq, (kp, ki, kd, a) and h could follow
that

h= lreq, a=
1

lreq

1
aeq

� 1

 !
, kp =

1
aeqlreq

, kp >
ki

a
+akd :

The above parameter selectionmethod is also applicable to the PIDAO
(ST) and the PIDAO (AdSI). In practice, we suggest that ki∈ (0, 10) and
kd 2 0, 1ð �. Further optimization for hyperparameters ki and kd can be
based on Bayesian optimization or rich PID tuningmethods in classical
control theory, such as Ziegler-Nichols tuning54. The defaultaeq and lreq
for PIDAO (SI) and PIDAO (ST) are suggested by lreq = 10−2, aeq =0.9,
while for PIDAO (AdSI) lreq = 10−3, aeq =0.9 are available in practice.

Experiments on low-dimensional optimization via continuous-
time setting
The continuous-time optimizers investigated in Fig. 2 are summarized
in Table 3. The corresponding ODE for each optimizer is solved using
the backward differentiation formula (BDF) method. Firstly, we intro-
duce the hyperparameters of PIDAO used in strongly convex cases
(Fig. 2a, f). In Fig. 2a and b, we use kp =

1000
9 , ki =60, kd =2:5,a= 100

9 for
PIDAO and Enhanced PIDAO. In Fig. 2f, for one function f 2 S2

μ, LðRnÞ,
f − μ∥X − X⋆∥2/2 is a convex function. By choosing suitable k, s, ϵ, one
can construct the following subset of SPID�SC:

Ssub
PID� SCðk, s, ϵÞ= kd = k

ffiffiffi
s

p
,a =2

ffiffiffi
μ

p
, kp =2k

ffiffiffiffiffi
μs

p
+ ϵ, 0<ki<ðμk2

d +akd � kpÞa� ϵ
n o

:

For example, in Fig. 2f, we derive μ = 4 and select k = 9, s = 0.01, ϵ = 10−4

that produces kd =0:9,a=4, kp = 3:6001, ki,n =
12:9595

n . Moreover, we
use the same kp, kd, a (if any) in the PDAO, NAG, and Momentum
optimizers due to the fairness.

Secondly, for non-convex cases (Fig. 2c–e), the hyperparameters
of PIDAO should obey SPID�NC(8). Here, we consider three objectives
for non-convex optimization, namely (1) Six-hump camel back (SHCB)

f ðX Þ= ð4� 2:1X2
1 +

X4
1
3 ÞX2

1 +X 1X2 + ð�4+4X2
2ÞX2

2, (2) Rosenbrock (ROS)

f ðX Þ= 20ðX2 � X2
1 Þ

2
+ ðX 1 � 1Þ2, and (3) Rastrigin (RAS)

f ðX Þ= 20+X2
1 +X

2
2 � 10ðcosðX 1Þ+ cosðX2ÞÞ. kp, kd, and a are the same in

these cases: 10, 0.3, and 3, respectively, while kis are different, which
are 28 (for SHCB), 9 (for ROS), and 9 (for RAS), respectively.

Experiments on low-dimensional optimization via discrete-time
setting
We compare the proposed PIDAO-family algorithms with other algo-
rithms in two cases, namely the ill-conditioned quadratic loss

f ðX Þ=0:05X2
1 + 5X

2
2 and the Rosenbrock objective f ðX Þ=20ðX2�

X2
1 Þ2 + ðX 1 � 1Þ2. After selecting the equivalent momentum aeq and the

equivalent learning rate lreq, the h and kp, ki, kd, a in PIDAO-family
algorithms follow the design method of hyperparameters illustrated
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above h = lreq, a= 1
lreq

ð 1
aeq

� 1Þ, kp =
1

aeqlreq
, kp>

ki
a +akd : And the learn-

ing rate and momentum coefficients α (if any) are also used for Adam
and Momentum algorithms via h= lreq, α =aeq.

Experiments on deep learning-based classification
We compare the PIDAO-family algorithm with other comparison
algorithms (Adam and Momentum) in different datasets, namely
MNIST, Fashion MNIST, and CIFAR-10. Specifically, we train a deep
FNN, a convolution network, and the ResNet1872 on MNIST, Fashion
MNIST, and CIFAR-10, respectively. Each network training is per-
formed with a supervised loss defined by a cross-entropy formula

Hðx, yÞ=
X
k2S

�yk logNNθðxkÞ,

where xk and yk denote the input and the label of a sample (xk, yk).
NNθ(xk) is the output of NN for xk. This cross-entropy loss is also used
for assessing the performance of networkmodels. More experimental
details about networks and hyperparameters of optimization algo-
rithms are presented in SI Section H.

Experiments on deep learning-based PDE solver
We mainly consider solving three benchmark PDEs by deep learning
methods, i.e., the 1D Burgers’ equation along with Dirichlet boundary
conditions, the 2D incompressible NS equation on the square
cavity (lid-driven cavity), and the 2D Darcy Flow equation on the
unit box.

In the context of PINNs68, the solutions of the Burgers’ equation
and the NS equation are approximated by FNNs, where the loss func-
tions used for training can be referred to73. In particular, each network
training is performed with a supervised loss taking the general form

LtrainðθÞ=
1
Nu

XNu

i = 1

ui � NNθ xi

� �

 

2 + 1
λ
R NNθðxÞ
� �

,

where ui is the measurement data of the initial and boundary condi-
tions, NNθ xi

� �
is the corresponding DNN-approximated solution, Nu is

the total number of training data points, andR NNθðxÞ
� �

is designed to
constrain the outputs of neural network to satisfy a PDE condition
controlled by a parameter λ. To quantitatively assess the performance
of networkmodels, we adopt a relative L2 normas a testmetric defined
by

LtestðθÞ=
1
Nc

XNc

i= 1

ui � NNθ xi

� �

 

2
ui



 

2 ,

where Nc is the total number of testing data points.
In addition, we utilize the FNO method69 to solve the Burgers’

equation and the Darcy Flow equation, where the network archi-
tectures used to approximate the PDE solution can be found in ref. 69.
In theseFNOexperiments,we usea L2 loss to train and test thenetwork
formulated by

LðθÞ= 1
N

XN
i = 1

ui � NNθ xi

� �

 

2:
In SI Section H, we provide more details about the networks and the
hyperparameters of optimization algorithms. Here, we train the deep
learning model with mini-batch algorithms, the mini-batch size
of which is identical for all algorithms used in each example. We
also note that with the given lreq and aeq, the hyperparameters of
PIDAO-family algorithmsused in the above experiments (the classifica-
tion and physical learning problems) follow one common criterion

h= lreq, a= 1
lreq

ð 1
aeq

� 1Þ, kp =
1

aeqlreq
, kp>

ki
a +akd such that the equiva-

lent momentum and lr in the PIDAO-family algorithm are equal to lreq
and aeq, respectively. To keep the fairness of comparison in
experiments, the learning rate and the momentum coefficient of
other algorithms (if any) are also equal to lreq and aeq, respectively.

Subspace projection of loss landscape
In the MNIST-FNN case, we project the training and test loss land-
scapes (or surfaces) around the trained final parameter θ⋆ (or θn) into
low dimensional parameter subspaces using the visualization
method16. More precisely, after obtaining the one-dimensional pro-
jections of the training and test loss landscape
f ðα; θ?Þ= f ðθ? +αθpdÞ,α 2 �1, 1½ � with a specific projection direction
θpd, we calculate the training and test accuracy along the projected
training and test loss landscapes. Additionally, we denote θk as the
model parameter vector at epoch k during the training. The
training trajectory of each algorithm θ1, θ2, � � � ,θ?� �

is also projected

into a two-dimensional subspace f ðα1,α2; θ
?Þ= f ðθ? +α1θpd1

+α2θpd2
Þ

that is the projection of the train loss landscape. Here, after
applying the principal component analysis to the matrix
M = θ1 � θ?, θ2 � θ?, � � � ,θn�1 � θ?� �

and obtaining the first second
principal components, these two principal components become two
projection directions θpd1

and θpd2
. It is worthmentioning that the first

principal component can be also represented as the projection direc-
tion θpd used in the above one-dimensional projection.

Data availability
All benchmark datasets used in this paper are publicly available,
including MNIST, FashionMNIST, CIFAR-10 that can be accessed in
https://git-disl.github.io/GTDLBench/datasets/, and the PDE dataset
for FNO that is available in https://drive.google.com/drive/folders/
1UnbQh2WWc6knEHbLn-ZaXrKUZhp7pjt-.

Code availability
The source code74 is available at https://github.com/NoulliCHEN/PIDAO.
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