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Generative learning assisted state-of-health
estimation for sustainable battery recycling
with random retirement conditions

Shengyu Tao 1,6, Ruifei Ma 1,6, Zixi Zhao1,6, Guangyuan Ma 1, Lin Su1,
Heng Chang 1, Yuou Chen1, Haizhou Liu1, Zheng Liang 1, Tingwei Cao1,
Haocheng Ji 1, Zhiyuan Han1, Minyan Lu2,3, Huixiong Yang3, Zongguo Wen 2,
Jianhua Yao 4, Rong Yu5, Guodan Wei 1, Yang Li 1, Xuan Zhang 1 ,
Tingyang Xu 4 & Guangmin Zhou 1

Rapid and accurate state of health (SOH) estimation of retired batteries is a
crucial pretreatment for reuse and recycling. However, data-driven methods
require exhaustive data curation under randomSOH and state of charge (SOC)
retirement conditions. Here, we show that the generative learning-assisted
SOH estimation is promising in alleviating data scarcity and heterogeneity
challenges, validated through a pulse injection dataset of 2700 retired lithium-
ion battery samples, covering 3 cathode material types, 3 physical formats, 4
capacity designs, and 4 historical usages with 10 SOC levels. Using generated
data, a regressor realizes accurate SOH estimations, with mean absolute per-
centage errors below6%under unseen SOC.Wepredict that assuminguniform
deployment of the proposed technique, this would save 4.9 billion USD in
electricity costs and 35.8 billion kg CO2 emissions by mitigating data curation
costs for a 2030 worldwide battery retirement scenario. This paper highlights
exploiting limited data for exploring extended data space using generative
methods, given data can be time-consuming, expensive, and polluting to
retrieve for many estimation and predictive tasks.

Transport electrification, a critical sector in a low-carbon energy
transition1, has unprecedentedly reshaped the fossil fuel-based trans-
port paradigm. Lithium-ion batteries are vital to this transition by
providing affordable, durable, and safe energy supplies to electric
vehicles (EVs)2,3. The total capacity of in-use andend-of-life EVbatteries
will surpass 32–62 terra-watts by 2050, considerably higher than the
estimation in International Renewable Energy Agency and Storage Lab
scenarios4. However, retired EV batteries are strongly regulated with a
huge remaining capacity value under-exploited, typically over 80% of
the rated capacity5,6. If not handled properly, it leads to economic

burdens7 for manufacturers and users, as well as subsequent envir-
onmental and societal issues8, including resource wastage, supply
chain risks, and carbon emissions9–11.

Promising strategies to address concerns regarding the inter-
mittent surging of battery retirement are reuse6,12,13 and recycling14. In
reuse, retired batteries are repurposed for applications such as grid-
connected energy storage systems15, residential power supplies16, and
low-speed vehicles. However, reuse requires preliminary pretreat-
ments, including consistency screening17, capacity sorting18, and
regrouping19,20 to meet application requirements21. Despite the
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initiation of pilot programs22–24, the absence of stringent standards for
use scenarios and retirement pathways hamper the rational use of the
residual capacity25. Recycling alternatively uses residual values of
retired batteries by materials extraction or structural repair26,27, sui-
table for irreversibly degraded retired batteries. Compared with pyr-
ometallurgy and hydrometallurgy28,29, direct recycling stands out for
superior profitability, lower energy consumption, and reduced carbon
emissions26,27,30. Leveraging lithium replenishment and post-
processing of cathode materials, direct recycling achieves efficient
material structure repair, and performance restoration31. However, the
state of health (SOH) determines the required chemical reagent and
anticipated lithium supplementation dosages in direct recycling
strategy formulations32–34. Insufficient dosage can result in an incom-
plete repair, while excessive dosage can lead to the generation of
residual alkali on the cathode surface, deteriorating the restoration
performance27,35. Unfortunately, SOH retrieval requires invasive mate-
rial characterization36,37 and lengthy capacity calibration tests, the non-
invasive, rapid, and sustainable SOH acquisition remains an out-
standing challenge.

To secure consistent SOH information, EV batteries are mon-
itored, and operational data are recorded by cloud platforms38 and
battery passports24. European Parliament adopted the Batteries
Directive on June 14, 2023, to ensure that retired batteries could be
reused, reconditioned, or recycled at the endof service life39. However,
the requiredmonitoring and recording procedure is merely accessible
in the EV service phase, retired batteries are no longer connected to
the in-vehicle monitoring unit. Thus, it is challenging to retrieve field-
available SOH data. The lifetime data integrity remains a major chal-
lenge, calling for the SOH estimation only using field data, opposite to
historical data or under controllable conditions30,40,41. One solution is
to perform a capacity calibration test at the retired battery collection
field, i.e., state of charge (SOC) conditioning, which is straightforward,
however, it requires unaffordable test time and extra electricity costs.
The hybrid pulse power characterization test is an alternative for SOH
estimation bydynamic pulse injection, but the complete test sequence
takes over 12 hours. Tao et al. utilized short pulses for SOH estimation
of retired batteries, assuming that a SOC conditioning to 5% SOC was
performed, whichwas barely compatiblewith random retirement SOC
conditions41. Recent advances in sensory-basedmeasurements include
X-ray imaging42, electrochemical impedance43,44, optical fiber
sensing45,46, acoustics sensing47,48, partial charging49,50, and pulse
injection17,41. Sensing-based techniques are in the laboratory stage due
to invasion, while pulse injection features untangling the battery
degradation without physical damage, simultaneously faster than
partial charging and electrochemical impedance-based methods17,51–55.
However, pulse injection is a data-centric method that is only feasible
under the ideal assumption that physically measured data encom-
passes retirement conditions of the model deployment phase, known
as the common challenge of domain shift in the machine learning
community. Despite advances in transfer learning and domain adap-
tion methods56–58, challenges persist since the target domain to align
still requiresprior informationupondeployment, and existing learning
methods can hardly be updated for random retirement conditions59.
An alternative is spanning data testing scale under unexplored retire-
ment conditions to mitigate data scarcity and heterogeneity while it
can lead to increased costs. Wang et al. proposed a temperature
excavation method to interpolate reaction kinetic preferences at dif-
ferent intermediate states during a thermochemical process, allowing
for the construction of extensive training databases at minimal ther-
mochemistry experimental scale and cost as a data augmentation for
machine learning model training60. Besides, generative learning also
demonstrates the possibilities of estimating SOHwith augmented data
from partially cycled profiles, saving required physically tested
data61,62. However, the data scarcity and heterogeneity in battery reuse
and recycling context are even more complex due to a mixture of

cathode material types, physical formats, capacity designs, and his-
torical usages, restricting the potential integration of condition-
specific knowledge of degradations into machine learning models.
Thus, it is reasonable to consider the dependency relationship
between retirement conditions and pulse voltage responses for data
generation, inflicting no lengthy time series capacity calibration and
extra physical experiments simultaneously, to boost SOH estimation
performance.

In this study, we perform retired battery pretreatment, i.e., SOH
estimation, using the pulse voltage response data generated by an
attentional variational autoencoder at a saved physical measurement
time and cost. The high-level process of general pretreatment steps,
generative model training, and practical model deployment steps are
illustrated in Fig. 1. The research idea is to use generative learning to
exploit already measured data for the pulse voltage responses
exploration in continuous retirement conditions, i.e., SOC distribution
in retired battery collection stage. Downstream SOH estimation is
implementedwithout physicallymeasured pulse response data, saving
pretreatment electricity costs and carbon emissions otherwise
required from conditioning SOC to the anticipated level. Compared
with the ampere-hour integral method and themachine-learning pulse
injection, generative learning underscores a faster generation speed
and accurate estimation. With generated data, a simple regressor
successfully estimates the SOH with low error under unseen or inac-
cessible SOC retirement conditions in the database, a challenging out-
of-distribution (OOD) issue. The OOD issue is resolved by learning the
inherited physical pattern between the SOC condition and voltage
response induced by the rapid pulse. We demonstrate the general-
izability of ourmethod by verifying through 2700physicallymeasured
samples, spanning 3 cathode material types, 3 physical formats, 4
capacity designs, and 4 historical usages (1 laboratory accelerated
aging, 1 pure battery EV driving, and 2 hybrid EV driving). Generative
learning suits interpolation and extrapolation by integrating prior
knowledge of retirement conditions into latent space scaling of the
model parameters, saving measurement time, electricity costs, and
consequent carbon emissions while not compromising SOH estima-
tion accuracy. A conservative global case studyof battery retirement in
2030 highlights the significance of rapid and sustainable SOH esti-
mation in pyrometallurgical, hydrometallurgical, and direct recycling
circumstances. Through technical-economic analysis, generative
learning-assisted SOH estimation could save $4.9 billion electricity
costs and 35.8 billion kgCO2 emissions by 2030worldwide.Wediscuss
the model interpretability, recycling pretreatment implications, and
broader aspects of future smart recycling pretreatment directions
integrated with machine learning.

Results
Dataset acquisition
Data scarcity and heterogeneity are major challenges in data-driven
battery diagnosis and prognosis, especially for retired batteries. We
collected 2700 samples from 270 physically retired batteries across
wide SOC levels, i.e., from 5% to 50% with a 5% grain. In Fig. 2a, the
dataset covers 3 prevailing cathode material types, including 119 phy-
sically collected NMC (nickel manganese cobalt oxide), 56 LFP (lithium
iron phosphate), and 95 LMO (lithium manganese oxide) retired bat-
teries, spanning 3 physical formats (cylindric, pouch, prismatic) and 4
historical usage patterns (1 laboratory accelerated test, 3 EV usages,
including 1 purely electrified power-train mode and 2 hybrid power-
train modes). We stress that the inclusion of highly heterogeneous
testing samples makes our dataset the largest rapid pulse-based data-
set for SOH estimation of retired batteries up to date, facilitating the
model generalizability beyond the physically measured datasets.

In contrast to regular constant current constant voltage (CCCV)
testing, the pulse test inflicts no lengthy test time and extra damage to
the retired batteries. Therefore, we use the CCCV results as the SOH
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benchmarking capacity values. Pulse test data are used as training data
for the generative learning model. Even though the battery cathode
material type varies, we perform a standardized and accessible feature
engineering, ensuring compatibility in practical use. Figure 2b
demonstrates the feature extraction after pulse current injection. The
CCCV and pulse injection experimental settings can be found in

Supplementary Note 1. For the first five injected pulses, the turning
points, i.e., the points with zero second-order derivative of the voltage
responses, are recorded as features, resulting in 21-dimensional fea-
tures. Despite pulse time at a 5 s level, we also perform sensitivity
measurement on pulse width with dual aims to verify pulse robustness
and further shorten test time, ranging from 30ms to 5 s.

Fig. 1 | Conceptualization of the state of health (SOH) estimation of retired
batteries under random conditions, i.e., state of charge (SOC) distributions,
using attentional variational autoencoder. a The retired battery pretreatment
steps include SOC conditioning, physicalmeasurements,machine learning for SOH
diagnosis, and the second-life decision-making process before reuse or recycling.
SOC conditioning refers to adjusting the SOC values of the retired batteries to
desired levels using the traditional constant current constant voltage (CCCV)

method. b The schematic of attentional variational autoencoder for pulse voltage
response data generation. c The practical usage of the data generation model for
SOH estimation requires no extra SOC conditioning. The trained machine learning
model is supervised by the generated data and receives immediate pulse voltage
responses when in the deployment phase. d The economic and environmental
benefits and rapid generation speed of our generative learning methodology by
saving SOC conditioning costs in the 2030 battery retirement scenario globally.

Article https://doi.org/10.1038/s41467-024-54454-0

Nature Communications |        (2024) 15:10154 3

www.nature.com/naturecommunications


Weconsider accelerated aging in laboratory tests (Supplementary
Note 2) and real EV driving aging, though agnostic to the explicit
driving profiles due to data privacy restrictions. In Fig. 2c, the SOH
distribution of accelerated aging batteries (NMC, 2.1 Ah) and pure

battery EV driving aging batteries (NMC, 21 Ah) are illustrated. Noting
that SOH values are complementary in a wide SOH region, from 0.6 to
1, the collected data is representative of battery retirement scenarios,
also with extreme early retirement cases. SOH distributions of other

Fig. 2 | The dataset acquisition. a The Sankey plot for retired batteries distribu-
tion, comprises cathode material types, physical formats, capacity designs, and
historical usages. b Pulse current and the subsequent voltage response of the
retired batteries, where the features are extracted from the turning points, i.e., the
points with zero second-order derivative of the voltage response curve. The 21
feature points, from U1 to U21, are extracted. The recording frequency for the raw
data is 100Hz. The rest time is 25 seconds between each pulse in C-rate. Note that
the term C stands for charge (discharge) rate when a 1 h of charge (discharge) is
performed. The ambient temperature is controlled at 25 °C. c The state of health

(SOH) distribution (Gaussian fit) of the 2.1 Ah and 21Ah retired batteries for illus-
tration, respectively. For SOH distribution of other battery types, one can refer to
Supplementary Fig. 1.dThe relationshipbetweenmeasured pulse voltage response
and calibrated SOH from capacity calibration test, with varying state of charge
(SOC) conditions. The first feature dimension, U1, is illustrated. e The interpolation
and extrapolation data generation case illustration under different battery retire-
ment SOC distributions. Detailed testing settings are in Supplementary Notes
1 and 2, noting that the C-rate setting is identical across cathode material types.
Source data are provided as a Source Data file.
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collected batteries (LMO, 10 Ah, and LFP 35 Ah) cover a wide SOH
distribution, see Supplementary Fig. 1. The pulse tests are repeated in
different SOC levels, ranging from 5% to 50%, to simulate the ran-
domness of retirement batteries collection. The tested SOC region is
under the assumption that retired batteries either exhibit low SOC or
are subject to compulsory discharging for safe stationary warehouse
storage requirements, thus the SOCupper limit is set at 50%. In Fig. 2d,
the first dimension of the extracted features from accelerated aging
batteries (NMC, 2.1 Ah) and EVdriving aging batteries (NMC, 21 Ah) are
illustrated. Despite differences in capacity designs and historical usa-
ges, the pulse voltage responses exhibit a consistent degradation
pattern, and sodoother retired batteries for other feature dimensions,
see Supplementary Figs. 2–5. However, the SOC distribution of retired
batteries is continuous, and thus it cannot be exhausted by physical
measurements. Rather than spanning the data test scale, we use
already-tested pulse voltage response data to generate more diversi-
fied data across SOC conditions. In Fig. 2e, two-generation scenarios,
i.e., the interpolation and extrapolation, are illustrated, with unit
conditioning savings, electricity savings, CO2 emissions reductions,
and their calculation methods presented in Supplementary
Tables. 1–3, respectively.

Pulse voltage response data generation
We first consider using the already-measured pulse voltage response
data to reconstruct themselves, rather than directly generating new
data samples. The reconstruction means that the measured data are
first compressed into a latent variable space while maintaining a
learned structure from original statistical distributions (Supplemen-
tary Fig. 6) and then decompressed to the original dimensions. In this
study, the reconstruction is equivalent to supervising the encoder
neural network model and decoder neural network model training
phase, as illustrated in Fig. 1b. The core idea is to balance the exploi-
tation of limited measured data and the exploration of extended data
space using latent dependencies between retirement conditions and
pulse voltage response data with cross-attention mechanisms, see
“Methods”. Then measured data fused with conditional information
are fed into the encoder neural network, obtaining latent variables
containing retirement conditions. Compressed latent variables are
decompressed by training a decoder neural network model and
reconstructing the input data samples, also guided by the feed-
forward retirement conditions. Another input of the decoder neural
network is only random noise, subject to Gaussian assumption (Sup-
plementary Fig. 7), inflicting no physical experimental measurement
otherwise involvedwith additional test time, energy consumption, and
even safety hazards.

Figure 3a shows the data reconstruction results of the first fea-
ture dimension U1 at selected SOC values (35% and 50%), with amean
absolute percentage error (MAPE) lower than 1%, indicating that the
model learned the dependencies between pulse voltage response
data and SOC conditions. Such dependencies are of generality in a
wide SOH range, from 0.6 to 0.95. Regarding other feature dimen-
sions, the data reconstruction results are still satisfactory, with a
MAPE lower than 1%, see Fig. 3b. The reconstruction results for other
types of retired batteries (NMC, 21 Ah, LMO, 10 Ah and LFP, 35 Ah) are
presented in Supplementary Figs. 8–10, demonstrating the model
generality and flexibility. It is noted that lower SOC regions exhibit
comparatively higher reconstruction MAPE, though still lower
than 1%, which can be rationalized by the sensitivity of the polar-
ization response at low SOC regions. It is, therefore, recommended
to perform pulse injections at a middle SOC region for
reliable representation of battery degradation. However, as we
highlight the random retirement conditions with different SOCs,
pulse injection at fixed SOC needs extensive conditioning time and
energy consumption, exacerbating a dilemma between pulse

injection regions and unaffordable conditioning time and cost, see
Supplementary Fig. 11.

With the proposed generative learning methodology, we stress
that the already-measured data for training purposes is at the cost of
extra physical tests, however, the generation is free of extra cost. In
Fig. 3c, we validate eight data generation cases, including interpolation
and extrapolation. In the interpolation cases (from Case0 to Case3),
the lower and upper bounds of the SOC for training data arefixed at 5%
and 50%, respectively. In comparison, the extrapolation cases (from
Case4 to Case7) mean that the already-measured data are exclusive
with unseen OOD data to generate, a challenging and open issue in
machine learning communities. Here we use prior knowledge of
retired batteries to scale the latent distribution in the encoder neural
network, generalizing already-measured data to OOD conditions, see
Methods. We note that Case4 and Case5 are toy examples since the
training costs of these cases are higher than the cost savings of gen-
erating the same volume of data under unseen SOC conditions. How-
ever, we still use the toy cases to demonstrate the robustness of latent
space scaling in more generalized battery retirement settings. In
practical use, therefore, the users could customize the data generation
strategy based on the trade-off between model training cost and data
generation accuracy.

In Fig. 3d, the distance-based data generation performance under
unseen retirement conditions is illustrated. It is noted that the as-
trained generative learning model is used to generate more data
samples, especially under, but not limited to, unseen retirement con-
ditions. For instance, Case3 uses the physically tested pulse voltage
response data at 5%, 25%, and 50% SOCs to generate data at 10, 15, 20,
30, 35, 40, and 45% SOCs. All interpolation cases exhibit a low MAPE
error below 2%, even if themodel is never trainedwith suchdata. From
intuition, the extrapolative Case6 and Case7 are more promising in
saving pretreatment costs since the used training data are time and
cost-efficient to retrieve. We demonstrate that even in OOD cases, the
generative learning strategy successfully guides the already-measured
data to generalize for OOD data. Without latent space scaling, the data
generation exhibits a clear increasing error when the physically mea-
sured training data is far away from the condition to generate, see
Supplementary Fig. 12. This phenomenon has an attractive implication
that one can exploit the measured data to explore the unseen data to
retrieve the data of higher cost using customized generation strate-
gies. Regarding the distribution-based data generation performance,
the model achieves low Kullback-Leibler divergences across verifica-
tion settings, suggesting that the model can automatically learn the
distribution of already measured data to create diversified data
instances, see Supplementary Figs. 13–16.

We evaluate the electricity and CO2 emission savings using dif-
ferent data generation cases. Figure 3e shows the electricity and CO2

emission savings in an ascending case order, and the color bar maps
the according values. Except for Case4 and Case5, two toy examples,
the extrapolation strategy can save up to 60,000 USD in electricity
costs and 460,000 kilograms of CO2 emissions, assuming a 1000-ton
battery retirement scale. This priority is achieved by generating
expensive data, which needs SOC conditioning costs, from cost-
efficient physically measured data. Inside the interpolation genera-
tion, we found that the model does not require stringent inter-
mediate points to interpolate on, leading to a usage priority in Case
3, using 5, 25, and 50% SOC data. Despite different case difficulties,
the data generation model is easy to train, converging in less than 50
iterations within a milliseconds level, see Supplementary Fig. 17.
Once the generative model is properly trained, the users can gen-
erate unlimited data across wide retirement conditions, without any
measurement costs, facilitating rapid, accurate and sustainable
retired battery SOH estimation for reuse and recycling decision-
making.
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Fig. 3 | The model performance in terms of mean absolute percentage error
(MAPE) and energy-environmental benefit. a The parity plot of the model
training results (reconstruction), with feature U1 at the selected state of charge
(SOC) condition (35% and 50%), is illustrated. b The heatmap of the model training
performance for features U1 to U21. c SOC simulation of the retired batteries under
random retirement scenarios, including interpolation and extrapolation cases.
d The data generation performance under the random retirement scenarios, where

error bars indicate the standard deviation (σ) computed across 21-dimensional
features (n = 21 at each SOC in each case) and the height of the bar indicates its
mean. e The electricity cost savings and CO2 emission reductions for different
battery retirement scales using the different data generation case settings. Note
that the battery retirement scale is logarithmic. All results are from NMC, 2.1 Ah
batteries for illustration. Source data are provided as a Source Data file.
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Retired battery SOH estimation with generated pulse voltage
response features
We use the generated pulse voltage response features to estimate the
SOH of retired batteries. In Fig. 4a, the SOH estimation performance
under different battery retirement cases is illustrated, where shaded
scatters and the void regions stand for the testing and training con-
ditions of the generation model, respectively. Taking Case 3 as an
example, physical pulse measurements are performed at 5, 25, and
50%, which are used to train the generation model. The as-trained
model generates unseen data at 10, 15, 20, 30, 35, 40, and 45% SOCs,
utilized as input data of a regressor to realize SOH estimation in these
unseen SOC levels. Regardless of data scarcity, we demonstrate that
the generated data successfully facilitates accurate SOH estimation
with an averageMAPE and standard deviation of 4.9% and 2.9% in both
interpretative and extrapolative cases, respectively. However, the
interpolative data generation leads to more accurate and stable esti-
mations, compared with extrapolative generation. The average MAPE
and standard deviation in interpolative cases are 4.4% and 2.5%,
respectively; the average MAPE and standard deviation in extra-
polative cases are 6.0% and 2.7%, respectively. This phenomenon can
be rationalized by the challenges in OOD issues, however, which is
calibrated thanks to the integration of prior knowledge into the latent
space scaling, see “Methods”. SOH estimation results under selected
SOC values are presented in Fig. 4b with parity plots, indicating a
successful data generation across wide SOC conditions.

Here, we compare the SOH estimation results with and without
data generation, highlighting its necessity under highly random
retirement conditions. In Fig. 4c, an interpretative case shows limited
data access in some discrete SOC values, indicated by gray-shaded
regions. Using these data, the regressor produces inaccurate estima-
tions biased to the centroid of the available data distribution, with an
average MAPE of 17.3% and a standard deviation of 7.3. In comparison,
the generative learning-assisted SOH estimations show a rigorous
increase. The average MAPE is 5.4% and a standard deviation of 2.7,
indicated by stars in the plot. We observe an interesting over-
estimation and underestimation of SOH under higher and lower SOC
regions, which can be interpreted by the zero mean and unit variance
Gaussian distribution in its latent space (see “Methods”). Specifically,
taking the underestimation as an example, generated pulse voltage
responses conditioned on low SOC regions exhibit higher values,
otherwise characterized by a more degraded battery with lower SOH,
and vice versa for the overestimation63. The observation has an
important implication that the data generationmodel can be tuned by
manipulating the latent space for unseen but conditional data
generation.

We consider an extreme, yet more preferred situation where the
accessible data can be at low SOC regions. This situation has a clear
physical meaning that data curation in these regions canminimize the
SOC conditioning time. However, the data curation strategy brings
moredifficulties in accurate estimations, despite that the curation time
and costs are saved. In Fig. 4d, we take accessible data at 5% and 10%
SOC for an illustration. It clearly shows an asymptotically increased
error when using the accessible data to make SOH estimations. The
asymptotic effect can be interpreted as the shift from the accessible
data distribution increases with SOC values, adhering to the observa-
tion in Fig. 2d. Such a challenge results in an average MAPE of 23.8%
and a standard deviation of 7.3 when using data in low SOC regions. In
comparison, the estimation performance is increased to a MAPE of
6.0% and a standard deviation of 2.9 using generated data. The esti-
mation results for other retired batteries, with different cathode
material types, physical formats, and historical usage patterns, are
consistently improved, see Supplementary Fig. 18. Therefore, gen-
erative learning empowers rapid SOH pretreatment of retired bat-
teries, by generating data in unseen SOC conditions at saved time
requirements otherwise required by SOC conditioning41, thus

advancing efficient and sustainable battery reuse and recycling in a
data-driven manner.

Technical-economic-environmental evaluation
A technical-economic-environmental evaluation of SOH estimation,
including the traditional CCCV capacity calibration test, pulse test-
enabled machine learning method, and the proposed generative
learning-assisted SOHestimationmethod, is performed. The boundary
of technical-economic-environmental evaluation includes the entire
process from the time when the retired batteries enter the pretreat-
ment stage, selecting from recycling methods, and ends with the
evaluation of economic and environmental impacts. Despite the dif-
ferences in pyrometallurgy, hydrometallurgy, and direct recycling
presented in Fig. 5a, retired battery pretreatment is a common step for
determining the potential capital return of recycling. The pretreat-
ment is linked to the electricity costs of charging and discharging
retired batteries,while the recycling process is linked tomaterial input,
electricity costs, equipment depreciation, labor, disassembly, and
sewage treatment.

The profit and carbon footprint per ton of retired batteries are
functional units. We examine two prevalent cathode material types,
i.e., NMC and LFP, to determinematerial investment and revenue, with
detailed methodology present in Supplementary Note 3. We show the
environmental benefits of pretreating retired NMC batteries in Fig.
5b–g, and the results for economic benefits are presented in Supple-
mentary Fig. 19. The results for pretreating retired LFP batteries are
shown in Supplementary Figs. 20, 21. Analysis of retired LMO batteries
is not covered due to data shortage and uncertainties in recycling
routines. In Fig. 5b, the pyrometallurgy exhibits the highest CO2

emissions, followed by the hydrometallurgy and direct recycling. CO2

emissions using CCCV in pyrometallurgy, hydrometallurgy, and direct
recycling are 1104-, 729-, and 579 kilograms eq. per ton of retired NMC
batteries, respectively, with 80% and 50% of the retirement SOH and
SOC conditions assumed. We found that with our generative learning-
assisted SOH estimation, CO2 emissions were reduced to 753-, 379-,
and 228 kilograms eq. per ton of retired NMC batteries, respectively.
Besides CO2 emissions, the electricity cost savings using the identical
pretreatment are in Supplementary Figs. 19 and 20 for NMC and LFP
retired batteries, respectively. Supplementary Figs. 22 and 23 show a
clear trend that saved CO2 emission and cost increase with SOH, par-
ticularly favorable in facilitating fewer electricity and recycling
investments. In the future, with the growth of renewable energy
penetration, there will be a boosted decrease in evaluated carbon
emission results. The increase in electricity prices will result in a rise in
economic benefits.

In Fig. 5c, we clarify the impact of an efficient pretreatment by
providing a comparative analysis of electricity costs against the battery
retirement scale at 80% SOH, excluding the pulse injection electricity
costs in the post-training phase. At the 1.07 tons retirement scale,
generative learning costs are lower than that of pulse tests for retired
batteries with 25% SOC, making it the second-best pretreatment
method in terms of cost. At the 5.33 tons retirement scale, the costs of
the generative learning are lower than that of pulse tests for retired
batteries with a 5% SOC, establishing it as optimal. Moreover, the
advantage of generative learning does not rely on a retirement scale of
retired batteries when it goes beyond 5.33 tons, suitable for massive
retirement battery processing. It is conservatively estimated that data
collected from 1 ton of retired batteries (25,500 samples of 18650
batteries) are adequate to supervise the data generation model.
However, our model only uses 10.6% of such a training data scale
(2700 samples), indicating that the model training costs for data
generation can still be further reduced to that is lower
than 5:7 × 10�3 USD.

Direct recycling is selected for evaluation due to its cost-sensitive
nature. We analyze the impact on overall cost proportions with
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Fig. 4 | Stateofhealth (SOH) estimationperformance in termsofmeanabsolute
percentage error (MAPE) for retired batteries using generated data. a SOH
estimation performance under different cases, which are illustrated in Fig. 3c.bThe
parity plot of true and estimated SOH in Case3, i.e., estimating retired battery SOH
at 10, 15, 20, 30, 35, 40, and 45% state of charge (SOC) using data generated from
physically measured at 5, 25, and 50% SOC. c SOH estimation comparison between
using the available data at tested conditions (gray-shaded region) and the

generated data in Case 3. d SOH estimation performance comparison between
using the available data at tested conditions (gray-shaded region) and the gener-
ated data in Case 7. e The time cost comparison of retrieving unseen data between
pulse test at the required SOC level41 and the generative learning assisted data
generation. All results are from NMC, 2.1 Ah batteries for illustration. Source data
are provided as a Source Data file.
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Fig. 5 | Economic-environmental analysis of constant current constant voltage
(CCCV), pulse, and generation. a Comparison of pretreatment methods in pyr-
ometallurgy (pyro-), hydrometallurgy (hydro-), and direct recycling. b CO2 emis-
sion assessment for both pretreatment and recycling using different pretreatment
methods in pyro-, hydro-, and direct recycling under different states of health
(SOH) and state of charge (SOC). c Comparative analysis of electricity cost against
battery retirement scale using direct recycling at 80% SOH, with pulse electricity in
the post-training phase excluded. d Overall cost analysis, excluding the material

flowusingdifferent pretreatmentmethods, assuming a 1-ton retiredbattery scale at
80% SOH and 50% SOC, indicated by the gray shaded region in panel (c).
e Pretreatment costs against the battery retirement scale, with pulse electricity in
the post-training phase included, towards the 2030 battery retirement scenario,
assuming 80% SOH and 50% SOC. f Detailed pretreatment cost in the 2030 battery
retirement scenario. The pulse electricity in the model deployment phase is
included. The noted values stand for the absolute cost of each method. Panel (a)
was created using flaticon.com. Source data are provided as a Source Data file.
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electricity cost reductions. In Fig. 5d, the ring plot and stacked bar plot
of pretreatment costs are illustrated to show the changes in electricity
consumption for 1 ton of retired batteries with the relative and abso-
lute value, excludingmaterial flows, respectively. When the retirement
condition is at 80% SOH and 50% SOC, the electricity consumption
proportion using deliberate data generation decreases from 13.3% to
6.6% compared to the traditional CCCV capacity calibration test. The
absolute electricity cost, inclusive of the pretreatment and recycling
process, decreases from 80 to 36 USD per ton of retired batteries. The
overall impact on direct recycling of retired LFP using generative-
learning-assisted SOH estimation can be found in Supplementary
Fig. 24. Considering a battery retirement scenario in 2030 globally, as
illustrated in Fig. 5e, pretreatment electricity saving exponentially
increases with retirement scales up to a 109 USD level. In Fig. 5f, gen-
erative learning saves up to 4.9 billion USD in electricity costs and
reduces 35.8 billion kilograms of CO2 emissions compared to tradi-
tional CCCV-based capacity calibration tests, see Supplementary
Fig. 25. Regarding LFP batteries, a similar scale effect can be observed
in electricity cost saving, and CO2 emission reduction under the
2030 scenario, see Supplementary Figs. 26−27. The cost saving and
CO2 emission reduction do not solely stem from priorities of direct
recycling but, more importantly, from saving exhaustive data curation
at random retirement conditions using the proposed generative
learning-assisted SOH estimation.

Discussion
We have elaborated on the success of using generative learning in
generating high-fidelity pulse voltage response data of retired bat-
teries while saving conditioning costs and time. The success is attrib-
uted to the generation model to learn the dependency between
retirement conditions and pulse voltage responses, inclusive of het-
erogeneities in cathode material types, physical formats, capacity
designs, and historical usages, see Supplementary Fig. 28. Diverging
from the traditional SOC conditioning using capacity calibration tests,
even the state-of-the-art pulse tests combinedwithmachine learning at
a specific SOC level41, the proposed data generation model under-
scores a balance between exploiting already measured data and
exploring potential data space with random SOH and SOC retirement
conditions. The proposed method inflicts no extra physical measure-
ments, reducing secondary energy use and environmental burden in
practical use. With a portion of the generated data, downstream SOH
estimation tasks still perform consistently compared to the sufficient
data situations, a useful implication for reducing computational cost
and improving estimation accuracy in real-world cases, see Supple-
mentary Figs. 29−32. Discussions on advancements of the proposed
method, including model interpretability, battery recycling implica-
tion, and inspiration formachine learning integrated battery reuse and
recycling pretreatment towards sustainability, can be found in Sup-
plementary Discussions.

In conclusion, the proposed generative learning demonstrates
consolidated promises in estimating the SOH of retired batteries
rapidly, accurately, and sustainably. We present a generative learning
model supervised by a fewphysicallymeasuredpulse voltage response
data that can effectively generate new data across wide SOC and
cathode material types, with a mean absolute percentage error of
interpretative and extrapolative cases below 2%. With generated data,
a regressor obtains a mean absolute percentage error below 6% for
SOH estimation, including unseen SOC conditions. The results are
verified through 3 prevailing cathode material types (NMC, LFP, and
LMO), 3 physical formats (cylindric, pouch, and prismatic), 4 capacity
designs (2.1, 10, 21, and 35 Ah), and 4 historical usages (1 laboratory
accelerated aging and 3 different EV-driving aging patterns). We
showcase the economic and environmental viability of the data gen-
eration in anupcomingbattery retirement scenarioof 2030globally by
saving 4.9 billion USD in electricity costs and reducing 35.8 billion

kilograms of CO2 emissions. Generally, the proposed data generation
method enables sustainable battery reuse and recycling decision-
making64, especially fordirect recycling, by devising appropriate useof
lithium supplements and other chemical reagents, critically important
to recycling costs and product qualities. Broadly, the generative
learningmethod inspires the promises of exploiting alreadymeasured
data to explore the unexhaustive data space, as opposed to separate
physicalmeasurements, alleviating thedata scarcity andheterogeneity
issues in critical estimation and predictive applications where data are
time-consuming, expensive, and polluting to retrieve.

Methods
Cross-attention mechanism
Cross-attention in neural networks enables a model to focus on spe-
cific parts of one input, i.e., the query, based on the information in
another input, i.e., the key and value. It is useful in scenarios where the
relevance of certain features in one data stream depends on the
additional information provided and has demonstrated successful
applications in battery health diagnosis and prognosis65–68. In battery
recycling pretreatment, retired batteries are under random retirement
conditions, i.e., state of charge (SOC) distributions. From expert
knowledge, the pulse voltage response exhibits considerable shift with
SOC. Therefore, the cross-attention enables the exploration of condi-
tional dependencies between pulse voltage responses and the SOC
retirement conditions. The general formulation of the cross-attention
mechanism is:

AttentionðQ,K ,V Þ= softmax
QKT

ffiffiffiffiffiffi
dk

p
 !

V ð1Þ

where, Q,K ,V represent the query, key, and value sequence, respec-
tively. dk is the scaling factor, typically the dimension value of the key
K . T is the transpose operator. The softmax function normalizes the
input vector so that the sum of the probabilities is 1, making the cal-
culated attention a valid probability distribution. In the cross-atten-
tion, the softmax is used to calculate the weights representing the
importanceof different elements in the input sequence. Given a vector
v= ½v1, v2, ���, vP � of real numbers, the softmax function for the i-th
element of this vector is given by:

softmaxðvÞi =
evi

PP
p= 1e

vp
ð2Þ

where the denominator is the sum of the exponentials of all elements
vi in the vector v, i= 1, . . . ,P. P is the number of elements in the vec-
tor v.

Encoder neural network with cross-attention
The encoder network in the variational autoencoder is designed to
compress input data into a latent space. It starts by taking the 21-
dimensional battery voltage response feature matrix x 2 RN × 21 as
main input and retirement condition matrix cond = ½SOC, SOH� 2
RN × 2 as input, where N is the sample size. The condition input is first
transformed into an embedding C, belonging to a larger latent space
with 64 dimensions. The conditional embedding C is formulated as:

C=ReLU cond �WT
c +bc

� �
ð3Þ

where, Wc 2 R64×2,bc 2 RN×64 are the condition embedding neural
network weighting matrix and bias matrix, respectively.

The main input matrix x, representing pulse voltage response
features, is also transformed into this 64-dimensional latent space H:

H=ReLU x �WT
h +bh

� �
ð4Þ
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where,Wh 2 R64×21,bh 2 RN×64 are themain input embedding neural
network weighting matrix and bias matrix, respectively.

Both H and C are then integrated via a cross-attention, allowing
the network to focus on the voltage responsematrix x conditioned by
the additional retirement condition information cond:

AttenEncoder =AttentionðH,C,CÞ ð5Þ

where, H 2 RN×64 and C 2 RN×64 are embeddings of pulse voltage
response data and retirement condition data, respectively.
AttenEncoder 2 RN×64 is the cross-attended output matrix from the
voltage response embedding H and the retirement condition embed-
ding C.

zmean and zlog var constitute a Gaussian distribution for each L=2
dimensional latent space:

zmean =AttenEncoder�WT
zmean

+bzmean
ð6Þ

zlogvar =AttenEncoder�WT
zlogvar

+bzlogvar ð7Þ

where, the zmean 2 RN×L, zlog var 2 RN×L are the mean and logarithm
of the variance of the Gaussian distributions, respectively.
Wzmean

2 RL ×64, bzmean
2 RN×L are the trainable weighting matrix and

bias matrix, respectively. Wzlog var
2 RL ×64, bzlog var

2 RN×L are the
neural network weighting matrix and bias matrix for the latent space
variance embedding, respectively.

Latent space scaling informed by prior knowledge
Certain retirement conditions, e.g., extreme SOH and SOC can be
under-represented in the battery recycling pretreatment due to data
scarcity or measurement budget. Specifically, the retired batteries
exhibit concentrated SOH and SOC, leading to poor estimation
performance when confronted with out-of-distribution (OOD) bat-
teries. Collected retired batteries are discharged lower than a certain
voltage threshold due to the safety concerns of the warehouse sto-
rage requirement, resulting in an upper-limit SOC typically lower
than 50%. Even if the explicit battery retirement conditions are still
unknown, we can use this approximated prior knowledge to generate
enough synthetic data to cover the actual retirement conditions.
Given two data generation settings, namely, interpolation and
extrapolation, we use different latent space scaling strategies. In the
interpolation setting, the scaling matrix T 2 RN×N is an identity
matrix I 2 RN×N assuming the encoder network and decoder net-
work can learn inherited data structures without taking advantage of
any prior knowledge. In the extrapolation setting, however, the
assumption cannot be guaranteed due to the OOD issue, a general
challenge of machine learning models. Here, we use the means of
training and testing SOC distributions to define the scaling matrix,
and prior knowledge of the battery retirement conditions, then the
latent space is scaled as:

ẑmean =Tmean � zmean ð8Þ

ẑlogvar =Tlogvar � zlogvar ð9Þ

where, Tmean 2 RN×N and Tlog var 2 RN×N are the scaling matrices
defined by the broadcasted mean, and variance ratio between the
testing and training SOC distributions, respectively. We emphasize
that the SOH distributions are irrelevant to such a scaling. This is
because these identical SOH values could be seen as representing
physically distinct batteries, i.e., they do not affect the scaling process.
Thus, feeding themodel with the same SOH values during training and

reconstruction does not present an OOD problem. On the other hand,
for the SOC dimension, our goal is to generate data under unseen SOC
conditions, where physical tests cannot be exhausted.

Sampling in the scaled latent space
The sampling step in the VAE is a bridge between the deterministic
output of the encoder neural network and the stochastic nature of the
scaled latent space. It allows themodel to capture the hidden structure
of the input data, specifically the pulse voltage response x and cond to
explore similar data points. The sampling procedure can be for-
mulated as:

z= zmean + e
1
2�zlogvar � ϵ ð10Þ

where, ϵ 2 RN×L, is a Gaussian noise vector sampled from
ϵ � Nð0, IÞ. The exponential term e

1
2�zlog var turns the log variance

vector into a positive variance vector. z 2 RN×L is the sampled latent
variable.

Decoder neural network with cross-attention
The Decoder Network transforms the sampled latent variable z back
into the original dataspace, reconstructing the input data or generat-
ing newdata attended on the original or unseen retirement conditions.
The first step in the decoder is a dense layer that transforms z into an
intermediate representation:

H0 =ReLU z �WT
d +bd

� �
ð11Þ

where, Wd 2 R64× L, bd 2 RN×64 are the neural network weighting
matrix and bias matrix for the latent variable decoding embedding,
respectively. H0 2 RN×64 is the embedded latent variable.

H0 is then integrated via a cross-attention, allowing the network to
focus on relevant aspects of the voltage responsematrixx conditioned
by the additional retirement condition embedding C0:

AttenDecodeder =AttentionðH0,C0,C0Þ ð12Þ

where,H0 2 RN×64 and C0 2 RN×64 are embedded latent variables and
retirement condition embedding, respectively. AttenDecodeder 2
RN×64 is the cross-attention output matrix from the embedded latent
variable H0 and the retirement conditions embedding C0. When
training, we let C0 =C, and the decoder reconstructs the input pulse
response data. When generating new data, C0 are the SOH and SOC
conditions of the new data to be generated. The reconstructed
(generated) data x̂ 2 RN×21 is calculated as:

x̂=σ AttenDecodeder�WT
o +bo

� �
ð13Þ

where, Wo 2 R21×64, bo 2 RN×21 are the neural network weighting
matrix and biasmatrix for the output transformation, respectively. σ is
the sigmoid activation function.

Loss functions
The loss function consists of two parts, i.e., the reconstruction loss and
the Kullback-Leibler (KL) divergence loss. The reconstruction loss, i.e.,
the mean square error (MSE) loss LossMSE between original and
reconstructed (generated) data, is:

LossMSE =
1
N

XN

i = 1

ðxi�x̂iÞ2 ð14Þ

where, xi 2 R1 × 21 and x̂i 2 R1 × 21 are the original and reconstructed
(generated) pulse voltage response data in each sample, respectively.
N is the sample size.

Article https://doi.org/10.1038/s41467-024-54454-0

Nature Communications |        (2024) 15:10154 11

www.nature.com/naturecommunications


KLdivergence loss LossKL, i.e., the KL divergencebetween original
and generated data, is:

LossKL = � 1
2

XN

i= 1

1 + zlog vari
� z2meani � ezlog var i

� �
ð15Þ

The total loss is the linear combination of LossMSE and LossKL:

Loss=ωxent � LossMSE +ωKL � LossKL ð16Þ

where, ωxent and ωKL are set to 0.5 to achieve a balance between the
generation accuracy and the diversity, respectively69. N is the
sample size.

Random forest regressor
We adopt a random forest algorithm to perform SOH estimation due
to the suitability of tabular data after feature engineering of the pulse
voltage response curves, which can be formulated as:

�y= �hðXÞ= 1
K

XM

m= 1

h X;ϑm,θm

� � ð17Þ

where �y is the predicted SOH value vector.M is the tree number in the
random forest. ϑm and θm are the hyperparameters, i.e., the minimum
leaf size and themaximum depth of the k th tree in the random forest,
respectively. The hyperparameters are set as equal across different
cases, i.e., M=20, ϑm = 1, and θm =64, for a fair comparison. Imple-
mentations are in the Sklearn Package (version 1.3.1) in the Python
3.11.5 environment, with a random state at 0.

Evaluation metric
The mean absolute percentage error is defined as:

MAPE%= 100%×
1
N

XN

i = 1

Ai � Fi

Ai

����
���� ð18Þ

where, Ai and Fi are the actual and estimated values, respectively. N is
the sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study has been deposited at the Zenodo
repository here70. Source data are provided as a Source Data file.
Source data are provided with this paper.

Code availability
The code for the modeling work has been deposited at the Zenodo
repository here71.
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