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An automatic end-to-end chemical synthesis
development platform powered by large
language models

Yixiang Ruan1,2, Chenyin Lu2, Ning Xu1,2, Yuchen He1,2, Yixin Chen1,2, Jian Zhang2,
Jun Xuan2, Jianzhang Pan 2,3, Qun Fang2,3, Hanyu Gao 4, Xiaodong Shen5,
Ning Ye 6, Qiang Zhang 2,7 & Yiming Mo 1,2

The rapid emergence of large language model (LLM) technology presents
promising opportunities to facilitate the development of synthetic reactions.
In this work, we leveraged the power of GPT-4 to build an LLM-based reaction
development framework (LLM-RDF) to handle fundamental tasks involved
throughout the chemical synthesis development. LLM-RDF comprises six
specialized LLM-based agents, including Literature Scouter, Experiment
Designer, Hardware Executor, Spectrum Analyzer, Separation Instructor, and
Result Interpreter, which are pre-prompted to accomplish the designated
tasks. A web application with LLM-RDF as the backend was built to allow
chemist users to interact with automated experimental platforms and analyze
results via natural language, thus, eliminating the need for coding skills and
ensuring accessibility for all chemists. We demonstrated the capabilities of
LLM-RDF in guiding the end-to-end synthesis development process for the
copper/TEMPO catalyzed aerobic alcohol oxidation to aldehyde reaction,
including literature search and information extraction, substrate scope and
condition screening, reaction kinetics study, reaction condition optimization,
reaction scale-up and product purification. Furthermore, LLM-RDF’s broader
applicability and versability was validated on various synthesis tasks of three
distinct reactions (SNAr reaction, photoredoxC-C cross-coupling reaction, and
heterogeneous photoelectrochemical reaction).

Designing proper synthesis reactions and routes towards target com-
pounds is one of core tasks during drug discovery and process
development, requiring significant time and cost1. Due to the enor-
mous design space and necessity of experimental validation, this
processmainly relies on expert chemists and chemical engineers to go
through iterative design-make-test-analyze cycles to identify an

efficient synthesis route2,3. The multifaceted and complex require-
ments for synthesis reaction design, such as efficiency, cost, sustain-
ability, safety, scalability, and impurity control, make it hard to
formulate this task into a well-defined problem that can be tackled
algorithmically and autonomously without customized inputs and
decisions from experts4.
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The recent advancement of machine learning (ML) technologies
has shown great potential in expediting various subtasks during the
synthesis design5,6. Notable examples include deep learning based
quantitative structure–activity relationship (QSAR) model facilitating
drug molecule design7,8 and catalyst design9, rapid identification of
promising synthetic routes using machine-learning-aided synthesis
planning10,11, guiding automated high-throughput experimental plat-
forms to search for optimal reaction conditions12–14, and direct trans-
lation of multistep synthesis procedures from literature to
experimental execution via natural language processing (NLP)
models15. Despite this rapid involvement of machine learningmethods
in synthesis related tasks, the monolithic input-to-output nature of
existing machine learning methods makes them to only function as
powerful single-purpose tools for experts, while the goal of fully
autonomous end-to-end synthesis reaction design and development
still remains to be realized.

In November 2022, OpenAI released the large language model
(LLM) based ChatGPT tool, marking a significant leap towards the
artificial general intelligence (AGI). The enormous knowledge and
information packed in the LLM enables it to make decisions flexibly
according to the complex and non-standardized inputs (prompts). As

of now, various advanced LLMs, such as proprietary Anthropic’s
Claude16 and Google’s Gemini17 as well as open-source Llama3.118,
Mistral19 and Qwen220, have emerged and shown continuing perfor-
mance improvement. LLM-based agents, characterized by their strong
generalization abilities and broad applicability, have demonstrated
significant advancements in language proficiency and interaction with
humans21. Motivated by the outstanding performance of these agents,
scholars have explored and exploited their capability in the various
tasks of chemical and material research, such as literature mining22–29,
molecule and material discovery27,29–38, reaction condition recom-
mendation and optimization26–29,39–41, and lab apparatus
automation27–29,40–43.

The existing reports of LLM-based agents showed scattered cov-
erage of the stages in chemical synthesis development (Fig. 1a), but
have not presented a path to fully exploit the potential of LLM-based
agents in the entire development process. Herein, we proposed a
unified LLM-based reaction development framework (LLM-RDF) to
demonstrate the versatility and performance of LLM-based agents in
the entire of chemical synthesis reaction development process
(Fig. 1a). We selected aerobic alcohol oxidation to the aldehyde, an
emerging sustainable aldehyde synthesis protocol44 as a model
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Fig. 1 | Overview of LLM-based multi-agent system for reaction development.
a Workflow for chemical synthesis development facilitated by large language
model (LLM) technology, and comparison with representative published works.
(The gray lines denote the involvement of LLMs). b Diagram illustrating the

interactions between human chemists and the LLM-based agents for performing
tasks in the chemical synthesis development. c The web application with LLM-
based agents as backend for end-to-end reaction development.
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transformation to showcase the end-to-end synthesis development
facilitated by LLM agents. In addition to this case study, we further
demonstrated the applicability of LLM-RDF on three distinct scenarios
relevant to chemical synthesis development. The findings of this work
serve to map out the viable path to the autonomous end-to-end che-
mical synthesis development using the emerging LLM technology.

Results
LLM-based agents for end-to-end chemical synthesis reaction
development
A typical chemical synthesis reaction development workflow consists
of five steps: (1) literature search and information extraction, (2) sub-
strate scope and condition screening, (3) reaction kinetics study, (4)
reaction condition optimization, and (5) reaction scale-up andproduct
purification. To exploit the capabilities of LLM facilitating this devel-
opment process, we developed a set of LLM-based intelligent agents in
LLM-RDF to handle the fundamental tasks necessary to complete the
development steps above (Fig. 1b). These agents include Literature
Scouter, Experiment Designer, Hardware Executor, Spectrum Analy-
zer, Separation Instructor, and Result Interpreter. We chose to build
these agents based on GPT-4 model45 to maximize their capabilities in
context understanding and chemical knowledge reasoning. They were
pre-promoted using customized instructions and documents to
achieve consistent behavior and performance for a specific task.
Detailed LLM agent construction procedures can be found inMethods
section and Supplementary Information Section 1.

With the set of LLM-based agents developed above, we created a
web application to allow users accessing them using natural language in
a centralized manner, such that no coding was required during the
synthesis reaction development (Fig. 1c and Supplementary Movie 1).
After agents receive prompts and related reference documents from the
users describing the chemical task, they will analyze the requests and
infer the appropriate responses or solutions through in-context
learning46 and retrieval-augmented generation (RAG)47. If necessary,
theywould employ external tools to enhance their capability to respond
information out of the scope of the LLM knowledge itself, including
Python interpreter, academic database search, and self-driven reaction
optimization algorithms. In addition, there is a chain-of-thought
mechanism to allow agents to interact with these tools step-by-step,
thus maximizing their reasoning capability. Despite the advanced intel-
ligence of GPT-4 model used for these agents, human chemists are still
essential in the decision-making loop, responsible for evaluating the
correctness and completeness of agents’ responses, interconnecting
agents, and decidingwhether to directly implement their suggestions or
further communicate with them to tweak the responses.

Literature search and information extraction
To initiate the synthesis development of the aerobic alcohol oxidation
to the corresponding aldehyde, instead of manually finding relevant
reports in conventional academic search engines (e.g., SciFinder and
Web of Science), we directly input the request to Literature Scouter
agent with “Searching for syntheticmethods that can use air to oxidize
alcohols into aldehydes” prompt. Leveraging vector search technolo-
gies, Literature Scouter automatically sifted through the Semantic
Scholar database containing over 20 million academic literatures. The
use of the Semantic Scholar database instead of relying on the LLM’s
knowledge (i.e., training data used by OpenAI to train GPT-4) ensured
the accuracy of the chemistry details with proper references (Fig. 2b).

Among the various methods given by Literature Scouter (Fig. 2b
and Supplementary Table 1), we continued to query which method had
the greatest potential for practical applications. Literature Scouter
recommended the recently developed Cu/TEMPO dual catalytic system
developed by Stahl group48 as this method outpaced others in the
aspects of the environmental sustainability, simplicity, safety, chemos-
electivity, and substrate compatibility. After manually evaluating other

recommended methods, this Cu/TEMPO catalytic chemistry indeed
avoids the use of heterogeneous catalysts49, high-cost palladium
catalysts50, or light irradiation51 used in other approaches, proving to
have claimed potentials in practical applications as suggested by the
Literature Scouter. In addition, the chemoselective oxidation of the
target hydroxyl group in diols or polyols is attractive in practice as
function groupprotection and deprotectionwould not be required. The
Literature Scouter recognized the capability of Cu/TEMPO catalytic
system was able to selectively oxidize primary alcohols in presence of
the secondary alcohols on the same molecule (Supplementary Table 1).

Having identified the target transformation, we next turned to
extract the detailed reaction conditions for this catalytic system. The
literature document was provided to Literature Scouter to summarize
the detailed experimental procedures and options for various reagents
and catalysts (Fig. 2b and Supplementary Table 1). This information
served as the basis for the subsequent experimental exploration of this
chemistry.

As demonstrated in the task of method search and information
extraction from literature (Fig. 2a), Literature Scouter demonstrated
its capability to assist researchers to identify the possible methodol-
ogies necessary to achieve the target transformation under desired
conditions, and extracting the required experimental details for
executing the reaction. Compared to conventional workflow for
identifying the proper chemistry from literature database, Literature
Scouter alleviated the labor-intensive tasks of literature searching and
reviewing. Especially, when Literature Scouterwas connected to anup-
to-date academic journal database, it could propose the new
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Fig. 2 | LLM-based agents facilitated literature search and information
extraction. aWorkflow for literature search and information extraction copiloted
by Literature Scouter agent. b The interaction between human chemists with Lit-
erature Scouter. The dialog presented in the figure is simplified for the illustrative
purpose, and see details in Supplementary Table 1.
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chemistries that were not included in the LLM base model training
process (Supplementary Table 3).

Substrate scope and condition screening
With the literature reported aerobic alcohol oxidation protocol in
hand, understanding the substrate scope under various reaction con-
ditions for a methodology is essential for selecting the suitable reac-
tion conditions based on the target compound structure in practical
synthesis. It is typically challenging to predict the reaction yield based
on first-principle theories, while recently emerging machine learning
basedmethodsneed adecent amountof experimental data to train the
neural model for accurate predictions52,53. The recent development of
automated high-throughput screening (HTS) technology has been
proven as a powerful tool to accelerate the experimental data acqui-
sition for these substrate scope studies54,55. However, HTS technology
is still not a routine tool that synthesis practitioners would use on their
daily reaction development workflows. Apart from the high costs of
the required HTS hardware, the time-consuming programming for
executing the automation platforms and manual analysis of large
amount of HTS results create barriers for chemists with minimal cod-
ing experience to use HTS technology in their routine workflows.

To tackle the above-mentioned challenges, we implemented
Experiment Designer, Hardware Executor, Spectrum Analyzer, and
Result Interpreter agents to automate HTS investigation of the substrate
scope, such that thebarrier for routineusageofHTS technologycouldbe
significantly lowered. The HTS substrate scope study consists of a series
of subtasks, including HTS experiment design, automated HTS experi-
ments, gas chromatography (GC) analysis, and results analysis (Fig. 3a).

The automated HTS of this aerobic oxidation reaction requires
the reaction to run in the open-cap vial and continuous operation for
an extended period. Consequently, strictly following the procedure
and design space extracted by Literature Scouter from the literature
(Fig. 2b) leads to two challenges: the high volatility of acetoni-
trile (MeCN) solvent and the instability of the Cu(I) salts stock solution
(Cu(OTf) and CuBr). These issues significantly affect the reproduci-
bility of the experimental results. To address these issues, Experiment
Designer suggested switching to a higher boiling point solvent and
using the stable Cu(II) salts (Supplementary Table 4). Following its
recommendation, we replaced acetonitrile with dimethyl sulfoxide
(DMSO) as the solvent and used CuCl₂ and Cu(BF₄)₂ as Cu catalysts.

In HTS experiment design, Experiment Designer agent parsed the
HTSexperiment taskdescribed innatural language into the standardized
JavaScript Object Notation (JSON) experimental procedure and design
space that could be displayed on the web application (Fig. 3b, and see
details in Supplementary Tables 5–6 and Supplementary Fig. 9-11). To
execute the HTS task, we chosen Opentrons liquid handler (OT-2) as the
automated reaction screening platform since the Cu/TEMPO catalyzed
aerobic alcohol oxidation reaction only involved soluble reagents. In
addition, OT-2 liquid handler has a well-written Python API documenta-
tion, based on which Hardware Executor agent could compose liquid
handler running code. Thus, Hardware Executor converted the HTS
experiment task described in natural language to OT-2 execution codes
to load thenecessary labware andpipettes, plan the storage locations for
stock solutions, prepare the reaction mixtures as dictated by the
experimental procedures, and shake thevial plate toperformthe aerobic
alcohol oxidation (SupplementaryTable 7).With thisworkflow fromHTS
task described in natural language to automated reaction execution, two
rounds of HTS experiments were conducted (Fig. 4a-d), and each round
contained a full factorial screening of six alcohol substrates (six mono-
hydric alcohols for the first round and six diols for the second round),
four copper catalysts [CuCl2, CuBr2, Cu(OTf)2 and Cu(BF4)2], and two
bases [N-methylimidazole (NMI) and 1,8-diazabicyclo-[5.4.0]undec-7-
ene (DBU)].

After the HTS experiment, the products were characterized with
gas chromatography with parallel flame ionization detector and mass

spectrometer (GC-FID-MS). The use of parallel FID and MS detectors
enabled the simultaneous identification and quantification of the
components in the reaction crudes. Instead of labor-intensive manual
identification of peaks for reactants and yield calculation, Spectrum
Analyzer agent was used to automated this process (Fig. 3c). Specifi-
cally, GC-FID-MS analysis instructions and the rawchromatogramdata,
including FID intensity chromatogram and total ion chromatogram
(TIC) fromMS detector, were provided to Spectrum Analyzer. It could
identify the corresponding reactant and product peaks in TIC by
looking for their characteristic fragmentation patterns, and calculated
the reaction yield based on FID intensity chromatogram. Using
3-phenylpropargyl alcohol (3s) converting to the corresponding pro-
duct 3-phenylpropiolaldehyde (3p) as an example, Spectrum Analyzer
thought that 3s should have a 132 mass to charge (m/z) ratio signal for
the molecule itself and 115m/z signal for the fragment resulting from
the loss of a hydroxyl group, and 3p should have 130m/z signal for the
molecule itself and 102m/z signal for the fragment resulting from the
loss of the carbonyl group. Subsequently, Spectrum Analyzer wrote a
Python code to search TIC data for mass spectrometry peaks con-
taining the characteristic m/z signals and determine the retention
times of the substrate and product (Fig. 3d-e). Next, Spectrum Analy-
zer integrated the FID peak areas at the substrate and product reten-
tion times to determine the reaction yield (assuming that the response
factors of the products and substrates are the same in FID) (Fig. 3f).
The yields obtained by Spectrum Analyzer of all the monohydric
alcohols experiments were nearly consistent with those derived from
manual analysis using commercial chromatography software (Sup-
plementary Fig. 30).

Finally, we utilized Result Interpreter agent to summarize HTS
results (Fig. 4e-f) and explain observed patterns based on fundamental
chemistry knowledge (Supplementary Table 18). Result Interpreter
recognized that DBU base significantly outperformed NMI, and
the reactivity of copper salt followed the order of
CuCl2 < CuBr2 < Cu(OTf)2 ~ Cu(BF4)2. In addition, it concluded that
electron-withdrawing functional groups near the hydroxyl group (e.g.,
aromatic rings or unsaturated carbon bonds) could increase the oxi-
dation reactivity, which was consistent with chemistry principles56.
However, Result Interpreter’s ability to conduct further in-depth ana-
lysis was still limited with existing GPT-4 model as the backend. For
example, in explainingwhydiol9s and 10s exhibited no reaction in any
condition tested, it could only suggest superficially that the arrange-
mentof functional groupsor the spatial configuration of themolecules
might play a role. The literature-proposed mechanism involves the
chelation of copper catalyst by the vicinal diol substrates (9-10s) to
formanunreactiveCu-phenolate species, thus deactivating the copper
catalyst48.

Reaction kinetics study
As mentioned earlier, this copper/TEMPO catalytic system prefers to
oxidize primary hydroxyl group compared to secondary hydroxyl
group. We observed that dimethyl sulfoxide (DMSO) solvent (used in
the HTS experiment) gave superior primary alcohol (12s) oxidation
chemoselectivity compared to acetonitrile (MeCN) solvent (used in the
literature48) (Fig. 5b). To investigate the observed solvent effects,
Experiment Designer agent suggested that we could conduct oxida-
tion kinetics study for different solvent (Supplementary Table 19).
Recently, automated kinetic profiling has become an efficient tool to
help researchers establish reaction kinetic models57. However, similar
to theHTS technologydiscussed above, it is still not a routine tool used
in process development due to the high entry barrier for mastering
automated hardware and intricate programming involved in fitting
kinetics models. Experiment Designer, Hardware Executor, Spectrum
Analyzer, and Result Interpreter agents orchestrated to complete the
kinetic study task, consistingof subtasks including kinetics experiment
design, automated sampling experiments, proton nuclear magnetic
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resonance (1H NMR) analysis, and kinetic model fitting and analy-
sis (Fig. 5a).

In kinetics experiment design, Experiment Designer planned a
sampling schedule for time-course data collection. To provide

approximate reaction rate information for experimental design, we
firstly monitored the reaction via thin-layer chromatography (TLC)
and found that substrate 12s was rapidly consumed within the initial
first hour reaction time, and the reaction slowed down afterward.
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Based on this observation, Experiment Designer proposed a sam-
pling schedule spanning a 10-hour reaction period. Samples were to
be collected at 10, 20, 30, 40, 50, 60, 120, 240, 360, 480, and
600min, such that denser data points could be obtained during the
early stage of the reaction when the reaction rate was large (Fig. 5c
and Supplementary Table S20). Subsequently, Hardware Executor
agent generated the OT-2 running code based on the experimental
design proposed by the Experiment Designer. The coded OT-2 liquid
handler procedure contained a series of operations for sampling,
such as stopping the reaction’s shaking, pipetting to sample,
quenching the reaction in the sample, and resuming shaking (Sup-
plementary Table 21). The compositions of the sampled reaction
crude were analyzed by 1H NMR. Instead of manual analysis of the
NMR data, we provided Spectrum Analyzer with 1H NMR spectra and
approximate chemical shifts for characteristic hydrogen atoms in the
substrate, product, and byproducts (overoxidation products).
Spectrum Analyzer wrote a Python program according to the API
documentation for the TopSpin NMR processing software to auto-
mate the analysis of NMR data, the procedure of which included
identifying target peaks, performing peak integration, and calculat-
ing the compositions of the samples (Fig. 5d and Supplementary
Table 22).

Next, providing the obtained kinetics experiment results to Result
Interpreter, it fitted the time-course data to the kinetic model equa-
tions (Supplementary Table 23). The reaction rate for substrate to
product followed saturation kinetic dependence on the substrate
alcohol (Eq. 1)58, and in addition, the product overoxidation was
assumed to be a first-order reaction (Eq. 2). Result Interpreter calcu-
lated the corresponding reaction rate constants (k1, k2, k3), and the
proposed kinetic models fitted well with the experimental data (Fig. 5e
and Supplementary Fig. 39).

rProduct =
k1k2CSubstrate

1 + k1CSubstrate
ð1Þ

rByproducts = k3CProduct ð2Þ

Result Interpreter further concluded that the rate constant for the
product overoxidation (k3) was larger in MeCN than that in DMSO,
indicating that the product overoxidation rate had strong dependence
on the reaction solvent choice (Supplementary Table 24). This analysis
highlighted that Result Interpreter had the ability to understand the
underlying kinetics behind the observed the reaction selectivity.
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Reaction condition optimization
When a specific target compound is determined for process develop-
ment towards manufacturing, reaction condition optimization is
necessary to improve the synthesis efficiency along with other con-
siderations (e.g., costs and impurity generation)Instead of traditional
manual one-factor-at-time (OFAT) optimization, the recent develop-
ment of optimization algorithms, such as Bayesian optimization
(BO)12,14, and themixed-integer nonlinear program (MINLP) algorithm59,
have enabled the automated experimental platforms toperformclosed-
loop reaction optimization in an autonomousmanner. However, akin to
the HTS technology mentioned previously, the steep learning curve
associated with mastering automated hardware and optimization
algorithmsprevents thewidespreadadoptionof the self-driven reaction
optimization workflow as a routine tool in process development.

To address this challenge, we employed Experiment Designer and
Hardware Executor as the backend of a reaction optimization module
within our developed web application, such that users could interface
with the reaction optimization hardware system via natural language
(Supplementary Information Section 5.1 and 5.4). This hardware sys-
tem is a robotic platform capable of performing end-to-end reaction
and analysis, and the closed-loop reactionoptimizationwasdrivenby a
Bayesian optimization algorithm. Specifically, an automated synthesis
equipment (Unchained Big Kahuna) conducts the chemical reactions,
which are then analyzed by a high-performance liquid chromato-
graphy (HPLC) toprovide result feedbacks to theBOfor suggesting the
next-round reaction candidates. Although the LLMs have been used as
an optimizer in recent publications and shown superior performance
for optimizing reactions when provided kinetic information or reac-
tion knowledge, they still fell behind statistical optimization algo-
rithms (e.g., BO) for complex reaction systems41,60. Thus, we chose to
use BO as the optimizer in this work.

To demonstrate LLM-based agents copiloted reaction optimiza-
tion workflow (Fig. 6a), we conducted the condition optimization for
the selective oxidation of diol (12s) to the corresponding mono-
oxidized aldehyde product (12p). The reaction design space included
two continuous variables (i.e., equivalents of base and reaction time)
and twocategorical variables (i.e., types of bases and copper catalysts).
The optimization objective is to maximize the reaction yield of 12p.
First, Experiment Designer translated synthesis procedure description
[To a solution of substrate (0.05mmol) in DMSO (0.25mL) in a reactor
was added sequentially a solutionof (1) CuX2/bpy (0.25mL,0.01M), (2)
TEMPO (0.25mL, 0.01M), and (3) Base (0.25mL, 0.02M).] and work-
upproceduredescription [Add0.75mLHEDP.] into standardized JSON
procedure steps (Supplementary Table 37) for display on the web
application (Supplementary Fig. 44). Hardware Executor generated
code templates based on these JSON procedure steps to define the
automated synthesis platform operation workflows. Next, Experiment
Designer converted the optimization parameter space described in
natural language [I want to optimize four variables: 1. Reaction time:
45–90min; 2. Base volume: 0.125-0.25mL; 3. Cu catalyst: CuCl2, CuBr2,
Cu(OTf)2, Cu(BF4)2; 4. Base type: NMI, DBU.] into JSON format (Sup-
plementary Table 38) that was used as inputs for the Bayesian opti-
mizer (Supplementary Fig. 46). At last, users reviewed the entire
experimental plan before running the reaction optimization on the
automation hardware (Supplementary Fig. 47-50).

The self-driven optimization system iteratively conducted reac-
tions and proposed candidate experiments based on existing reaction
results, thus gradually improving the reaction yield of 12p (Fig. 6b).
Multiple high-yield reaction conditions were identified within the
design space (Supplementary Table 39). To automatically stop the
reaction optimization task when the expectation of further yield
improvement was diminished, we compared the statistical stopping
criterion and stopping decision given by the LLM-based agent Result
Interpreter. The probability of improvement (PI) metric, a typical sta-
tistical stopping criterion61, was first examined by stopping the

optimization when the cumulative number of proposed reaction
conditions with PI values below 0.01 reached two. This PI stopping
criterion was met after completing 36 experiments (Fig. 6c), based on
which the optimal conditions should be confidently identified. In
comparison, Result Interpreter was used to determine the appropriate
stopping point for the optimization task using the concept of balan-
cing exploration and exploitation for black-box function optimization
(Supplementary Table 40). During the exploitation of CuBr2-DBU
combination (after 12 experiments), Result Interpreter indicated that
the yield was sufficiently high to consider stopping optimization,
however, it still recommended further exploration in copper catalysts
based on exploration considerations. Then, BO continued to explore
two more catalysts (i.e., Cu(BF4)2 and Cu(OTf)2). After several small
condition adjustments proposed by BO near the high-yield conditions,
the reaction yield did not increase significantly, and a yield decrease
was observed in the 22nd experiment. Result Interpreter once again
suggested considering the cessation of the optimization. After the 26th

experiment, Result Interpreter assessed the reaction yield as suffi-
ciently high and the exploration of the reaction space as comprehen-
sively executed, explicitly recommending the termination of further
optimization (Fig. 6d). This comparison showed that the optimization
stopping suggestions given by Result Interpreter agent were more
intuitive and also required less experiments to identify high-yield
reaction conditions compared to PI stopping criterion. Unlike the PI
stopping criterion relying on human experience to pre-define the
stopping threshold (improper selectionmay lead to poor optimization
results or excessive number of optimization experiments), utilizing
Result Interpreter to terminate optimization offers better flexibility
and adaptability.

Reaction scale-up and product purification
In the process development, the scale-up investigation serves as a
critical phase to determine whether a small-scale chemistry is suitable
for further large-scale synthesis with similar reaction efficiency62. Here,
we used the high-yield reaction conditions found in the previous
reaction optimization task for targeting 1 gram scale synthesis of the
compound 12p to demonstrate the utility of LLM-based agents in
facilitating the reaction process development (Fig. 7a).

Among various high-yield (≥94.5%) conditions during the condi-
tion optimization of diol oxidation, Experiment Designer selected the
condition used in 35th experiment for scaling up (Fig. 7b, Supplemen-
tary Table 41). The choice of reaction conditions was made based on
the preference to the high product yield, short reaction time, and low
catalyst and reagent costs. The 35th experiment used a 45-min reaction
time, Cu(OTf)2 catalyst, and 1.34 equivalent DBU base, achieving a high
yield of 94.5% (Fig. 7c). To showcase LLM’s ability to facilitate reaction
scale-up, we first engaged with Experiment Designer to develop a
scale-up strategy for this gas-liquid biphasic reaction. Experiment
Designer proposed a two-stage scale-up strategy: first to 1 g to validate
the reaction’s reproducibility and stability, and then to 100 g to
assess feasibility for industrial production. The scale-up process
included key considerations such as maintaining efficient gas-liquid
contact, ensuring proper oxygen supply, and selecting appropriate
reactors for different scales (Fig. 7b and Supplementary Table 42). For
illustrative purpose, we targeted the 1-gram scale in this work.
Experiment Designer accurately calculated the stoichiometries of the
reagents based on the selected reaction condition for the 1 g scale-up
(Supplementary Table 43-44). We then conducted the scale-up
experiment according to the parameters proposed by Experiment
Designer.

Prior to the product purification using flash column chromato-
graphy, the optimal eluent composition is typically determined with
manual TLC. TLC fine-tunes the eluent polarity to ensure that the
retention factor value (Rf value) of the target compound falls within
0.2–0.3, and, at the same time, impurities are separated from the
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target compound. A recent publication has applied machine learning
model to predict the Rf value of a given compound structure in dif-
ferent eluent compositions63. However, due to the inevitable predic-
tion inaccuracy, this data-driven prediction model can only serve to
provide good initial eluent composition guesses to try, and chemists
still need to determine the eluent suitable for practical separation
processes by conducting iterative trial-and-error experiments based
on their own experience and the polarity-controlled separation prin-
ciples in TLC. To enable automated identification of optimal eluent
composition, we implemented Separation Instructor agent to replace
chemists for making eluent composition decisions during the iterative
TLC experiment. Here, TLC experiments were performed manually,
but the automated TLC device is commercially available to achieve

closed-loop optimal eluent composition identification in an autono-
mous manner. Upon inputting the initial TLC outcome of 12p separa-
tion at hexane : ethyl acetate = 1:1 ratio into Separation Instructor, it
advised to reduce the polarity of the eluent to decrease the Rf value of
12p. Following two iterative decision-and-experiment rounds,
Separation Instructor finalized the eluent composition (hexane : ethyl
acetate = 3:1), under which the product’s Rf value was 0.28 with 0.49 Rf
value for the impurity, providing a sufficiently large difference for
effective separation (Fig. 7b and Supplementary Table 45). Subse-
quently, this optimal eluent composition was used in the automated
preparative column chromatography system to successfully separate
the product, yielding 915mg of the product (12p) with the isolated
yield of 86% and a purity >98% (Fig. 7d).
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Applications
After validating the LLM-RDF copiloted workflow for the end-to-end
synthesis development on the case study of the aerobic alcohol oxi-
dation, we sought to explore its utility in real-world chemical synthesis
development tasks, including (1) reaction kinetics study of a nucleo-
philic aromatic substitution (SNAr) reaction, (2) reaction condition
optimization of a photoredox C-C cross-coupling reaction, and (3)
scale-up design of a heterogeneous photoelectrochemical reactor.

SNAr reaction ranks as the top-3 frequently used reaction types in
drug discovery and development for its capability of forming C-X
bonds64, and understanding its kinetics information is critical for

reaction mechanism elaboration, reactor engineering, and impurity
control. We employed Experiment Designer, Hardware Executor, and
Result Interpreter to accomplish the kinetic study of SNAr reaction
between an electron-deficient aryl fluoride (13) and an amine (14) to
form aniline (15) 65 (Fig. 8a). Experiment Designer proposed a sampling
schedule over a 2-h reaction period (Fig. 8b and Supplementary
Table 46), based on which Hardware Executor generated the OT-2
running code to automate the reaction sampling process (Supple-
mentary Table 47). Subsequently, the obtained kinetic data were
supplied to Result Interpreter, which identified r15 =0:2C13C

2
14 was the

best-fit kinetic model (R2 =0:995) among various possible kinetic
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Answer:  The core of scaling up this reaction is ensuring efficient gas-liquid 
contact for effective oxygen transfer. Propose a two-stage scale-up: 
● 1 g scale to validate reproducibility: Reactor: 250 mL round-bottom flask;
Mass transfer: Mechanical stirring; Oxygen source: Ambient air.
●100 g scale to assess industrial production feasibility: Reactor: > 20 L glass or 
stainless steel reactor; Mass transfer: bubbling device or gas distributor; 
Oxygen source: Air or oxygen introduced through gas distributor or bubbling 
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Fig. 7 | LLM-basedagents facilitated reactionscale-upandproduct purification.
aWorkflow for reaction scale-up and product purification copiloted by Experiment
Designer and Separation Instructor agents. b The interaction between human
chemists with Experiment Designer for reaction scale-up and Separation Instructor
for finding the optimal eluent composition (see detailed interaction dialogs in
Supplementary Table 41-45). The asterisk denotes that the numerical results were

directly provided by the large language model (LLM). c Radar chart for comparing
three high-yield reaction conditions obtained during self-driven reaction optimi-
zation (experiments 26, 32, and 35).d Proton nuclearmagnetic resonance (1HNMR)
spectrum of the purified target product (12p) in DMSO-d6 (See complete spectral
information in Supplementary Information Section 6.7).
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Fig. 8 | The applications of LLM-RDF in the chemical synthesis development.
a Nucleophilic aromatic substitution (SNAr) reaction. b Experiment Designer pro-
posed a 2-hour sampling schedule for SNAr kinetic experiments, and Hardware
Executor generated liquid handler OT-2 code to automate the sampling process.
cThe kineticmodel of the SNAr reaction identified byResult Interpreter as themost
suitable through analysis of kinetic data among various possible models.
d Mechanism of the SNAr reaction. e Photocatalytic cross-coupling reaction via
amino radical transfer (ART) strategy. f Workflow for automated photocatalytic
reaction optimization, in which Hardware Executor generated OT-2 running code,
OT-2 executed the experiments, and Bayesian optimization (BO) algorithm sug-
gested next-round trials. g Yield of 19 during the photocatalytic reaction optimi-
zation process driven by BO. h Result Interpreter’s recommendation at 15th

experiment to stop reaction optimization. i Photoelectrochemical decarboxylative
trifluoromethylation. j Photoelectrochemical reaction mechanism in tungsten tri-
oxide (WO3)fluorine-doped tin oxide (FTO)glass photoanode:The incident photon

(hν) excites the photoanode, generating electron-hole pairs (e⁻/h⁺) pairs. Electrons
flow to the circuit via FTO, while holes drive the oxidation of trifluoroacetate.
kMulti-electrode array approach proposed by Experiment Designer. The right part
illustrates thedivisionof thephotoanode into smaller sections. lThe left part shows
how Result Interpreter constructed a finite-element conductivity (FEC) model for
the current distribution simulation in FTO photoanode, revealing a 59% edge-to-
center current density drop in a single large-area electrode. The right part illus-
trates the optimization process of FTO photoanode dimensions by Experiment
Designer. 12 parallel-connected array photoanodes, each measuring 3.8 cm× 8.3
cm, meeting the design requirements. The heatmap plots of current distribution
for the FTOphotoanode in panel l share the color bar. The dagger symbol indicates
numerical results from LLM-based agents’ code interpreter, while the asterisk
denotes those provided by the LLM directly. The images of Opentrons OT-2 liquid
handler in Fig. 8b and f were obtained from the Opentrons website (www.
opentrons.com.cn).
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models (Fig. 8c and Supplementary Table 48). In terms of mechanistic
explanation, Result Interpreter inferred that the second-order depen-
dence on the concentration of N-methylpiperazine (C14) indicated the
bifunctional roles of 14 in SNAr reaction besides being a nucleophile
(Supplementary Table 48).However, similar to the previous discussion
on the diol inhibition mechanism on Cu/TEMPO catalytic system,
Result Interpreter based on GPT-4 base model lacks the in-depth
chemistry knowledge to propose the specific roles of 14 acting both as
a nucleophile and a base catalyst accelerating the reaction (Fig. 8d)65.

The recently discovered amino radical transfer (ART) strategy
enabled C(sp2)-C(sp3) cross-coupling reactions between alkyl boronic
esters and aryl halides undermild visible-light irradiation, representing
an important advancement in the cross-coupling chemistry (Fig. 8e)66.
Implementing such newly-developed chemistry in practice requires
extensive efforts in condition optimization due to the lack of historical
collection of experimental data on various substrate structures unlike
well-established chemistries. Thus, we chose to employ our LLM-agent
copiloted reaction optimization workflow for the cross-coupling of 2-
bromo-5-chloropyridine (18) and benzylboronic acid pinacol ester
(19). Since the mono-coupled product (20) could further react with
remaining 19 to form the bis-coupled byproduct (21), it is desired to
find the optimal condition to maximize the yield of 20. Hardware
Executor generated the OT-2 running code based on the optimization
task description for automating the execution of the experiments
(Supplementary Table 49). The experimental outcomewas fed into BO
to suggest next-round trial (Fig. 8f). After three rounds of iteration,
each consisting of five experiments (Fig. 8g), Result Interpreter con-
cluded that the diminishing gains in yield improvement made it rea-
sonable to terminate the optimization process (Fig. 8h and
Supplementary Table 50).Under the optimal reaction condition of 1.38
equivalents of morpholine, 3 equivalents of 19, and 10mol%
NiCl2•glyme over 7.1 h, substrate 18 was fully consumed, yielding 87%
of product 20 with almost no formation of byproduct 21 (Supple-
mentary Table 51).

The recently emerging semiconductor-based heterogeneous
photoelectrochemistryprovides an unique approach to achieve single-
electron transfer for radical generations67. However, due to the high
sheet resistivity (~7Ω/□) of the fluorine-doped tin oxide (FTO) glass
for loading semiconductor photoelectrocatalysts (Fig. 8j), its nonuni-
form current distribution on the large-size FTO glass electrode creates
significant challenges for scaling-up the synthesis throughput. To
address this scale-up challenge, we attempted to employ LLM-RDF to
propose a viable solution. Experiment Designer proposed the strategy
of dividing the large electrode into an array of multiple small elec-
trodes and connecting them in parallel, referred to as the multi-
electrode array strategy, and suggested optimizing the size of the
electrode units through finite element analysis (FEA) (Fig. 8k and
Supplementary Table 52). Following this strategy, we sought to
reproduce the photoelectrochemical microreactor (PEC-μReactor)
design that was carefully engineered via COMSOL simulation and
experimental validation by human researchers for decarboxylative
trifluoromethylation reaction68. Here, we targeted a total 380 cm2

photoanode size and <10% current distribution non-uniformity as
reported. Result Interpreter first determined the relationship between
electric potential and normal current density (Supplementary
Table 53 and 54), and utilized the open-source FEA simulation package
(FEniCS69) to construct a finite-element conductivity (FEC) model for
the current distribution simulation in FTO photoanodes (Fig. 8i and
Supplementary Table 55). The FEC model revealed that a single
380 cm2 photoanode (width : length = 1 : 2.2) had a 59% edge-to-center
current drop (Fig. 8l), resulting inefficient usage of photoanode.
Experiment Designer followed the multi-electrode array strategy and
identified that 12 small pieces of FTO photoanodes with 3.8 cm width
and 8.3 cm length (fixed width-to-length ratio as the large-size pho-
toanode) would suffice to keep the edge-to-center current drop within

10% (Fig. 8l and Supplementary Table 56). This photoanode scale-up
design proposed by LLM agents was consistent with the solution ori-
ginally reported68.

Limitations and outlook
With the extensive evaluation above of the LLM agents copiloted end-
to-end synthesis development, we identified several limitations and
areas for improvement in the future development of this technology.

Reliability of LLM-based agents’ response: The LLM-based agents
may provide incorrect responses, which, if without proper inspection,
could lead to experimental failure and data inaccuracies. For example,
Hardware Executor was only used for generating running codes for
automated experimental equipment, and the codes needed to go
through manual verification and simulated execution preview (Sup-
plementary Fig. 14-15, 62-63) before execution to avoid potential
equipment damage or even personal injuries70. A recent study has
demonstrated that introducing another LLM to automatically inspect
and modify the responses from LLMs could partially mitigate unreli-
able response issues71.

Lack of domain knowledge: Result Interpreter failed in this work
to analyze the underlying mechanisms behind the reaction selectivity
and kinetics, indicating the lack of advanced chemistry knowledge for
GPT-4-based agents. Recent studies have shown that incorporating
domain-specific chemical knowledge into LLMs, typically through fine-
tuning methods, significantly enhances their performance on
chemistry-related tasks38,72–77. RAG can also be employed to help LLM-
based agents bridge gaps in specialized knowledge. For example,when
Spectrum Analyzer was provided with the documentation of TopSpin
Python Interface, it could successfully automate the analysis of NMR
raw data.

Mathematical operations: One of the recognized limitations of
LLMs is their inherent difficulty in performing precise mathematical
operations and handling numerical data. To address this limitation, we
equipped the agents with integrated tools such as Python interpreter
and Bayesian optimization algorithms for handle numerical compu-
tations, reasoning, and processing. In addition, fine-tuning the LLMs
with datasets specifically curated for mathematical operations could
improve the model’s inherent ability to handle mathematical
calculations78.

Reproducibility and transparency: Closed-source proprietary
LLMs such as GPT-4 pose several challenges, including poor long-term
reproducibility, lack of transparency, and concerns over data privacy.
Building agents based on open-source LLMs would mitigate these
issues. In this work, we compared agents constructed using open-
source LLMs (Qwen2-72B and Llama3.1-70B) with those based on GPT-
4 in the task of reaction kinetics study (Supplementary Information
Section 4.6). The GPT-4-based agents outperformed the two tested
open-source models in completing all testing subtasks including
kinetic experiment design, automated hardware execution, NMR
analysis, and kinetic model fitting (Supplementary Fig. 40). However,
the open-source LLM-based agents also demonstrated acceptable
performance, despite some minor errors in code generation and
document information retrieval. These discrepancies were attributed
to the performance differences between the LLMs and the effective-
ness of the RAG method using OpenAI’s proprietary implementation
compared to open-source alternatives. However, with continuing
development of open-source LLMs, their capability to function as the
base model is expected to improve progressively over time.

Communication among LLM-based agents: In this work, all
developed agents were connected via human for message passing,
since we would like to involve human inspections on the agent-
generated experimental plans and results. This approach would avoid
any potential errors in agents’ response that might lead to hardware
malfunction. Moving forward with improved reliability of LLM base
models, it would be desired to develop amulti-agent system similar to

Article https://doi.org/10.1038/s41467-024-54457-x

Nature Communications |        (2024) 15:10160 12

www.nature.com/naturecommunications


AutoGen framework79 that allows direct communication between
agents. In this proposed system, human intervention would be only
required for critical decisions, such as automated equipment opera-
tions or complex experimental designs.

Discussion
In this work, wedeveloped and demonstrated LLM-RDF for the end-to-
end development workflow of the sustainable aerobic alcohol oxida-
tion, from methodological search to product purification. Then, its
utility was further demonstrated in three real-world chemical synthesis
development tasks. The specialized LLM-based agents showcased their
versatility in autonomous chemical research, undertaking tasks such as
synthesis method search, code composing for automated equipment,
spectrum signal processing and analysis, reaction stoichiometric cal-
culation, optimization of separation eluent composition, reactor
design, and deriving chemically informed conclusions. LLM-RDF
demonstrates a transformative approach to chemical synthesis that
integrates chemist users, LLM-based agents, and automated experi-
mental platforms, significantly streamlining the traditional expert-
driven and labor-intensive workflow of reaction development.
Although the LLM technology is still nascent in chemistry applications
primarily due to the aforementioned limitations, we would envision
that this work outlines a viable avenue to a deeper engagement of LLM
technology in reaction development and relevant fields in the future.

Methods
Construction of LLM-based agents
LLM-based agents developed in this work were based on OpenAI’s
GPT-4 model and two open-source LLMs (Qwen2-72B and Llama3.1-
70B). These intelligent agents include: (1) Literature Scouter: This
agent was developed using Consensus80 available from OpenAI’s GPT
store, which can access Semantic Scholar database for academic lit-
eratures. (2) Experiment Designer: This agent designs chemical
experiments and transforms reaction procedures and parameters
described in natural language into standardized reaction execution
protocols to interface with experimental platforms. (3) Hardware
Executor: Specific hardware running code examples or Opentrons
Python API manual were provided in the prompt, such that Hardware
Executor could generate running codes for the automation platforms
according to the standardized execution protocols. (4) Spectrum
Analyzer: This agent processes raw spectral data obtained from ana-
lytical apparatus (e.g., gas chromatograph and NMR), identifies the
target compound peaks, and calculates the reaction outcomes. (5)
Separation Instructor: This agent instructs on identifying the appro-
priate TLC eluent composition to be used for subsequent flash column
chromatography separation. (6) Result Interpreter: This agent inter-
prets and concludes experiment results based on fundamental che-
mical knowledge.

We provided detailed descriptions and instructions as pre-
prompts to teach them to perform chemical synthesis development
tasks. For more details, refer to the Supplementary Information
Section 1.

Web application
The web application functioned as the interface through which users
could interact with agents and experimental platform. The frontend
graphical interface was developed using the Vue.js and Node.js fra-
meworks, creating a user-friendly and interactive environment. For the
backend, the Python FastAPI framework was employed to manage the
logics of multi-agent system and experimental platform, including
interfacing with the LLM-based agents through the GPT-4 APIs hosted
on Microsoft Azure and handling the operations of the experimental
platforms. In addition, the web application was segmented into indi-
vidual modules corresponding to each task of the chemical synthesis
reaction development workflow.

OT-2 liquid handler platform
The experimentation for substrate scope screening, reaction kinetics
study, and condition optimization of photocatalytic reaction was
conducted using the Opentrons OT-2 liquid handling workstation. In
the OT-2, modules including the pipette module (P300 GEN2, 20-
300μL) for liquid transferring, heater-shakermodule (200-3000 RPM,
37-95 °C) for enhancing mixing of reaction mixture, and storage
module for storing reaction stock solutions. Operation codes, gener-
ated by the Hardware Executor, were uploaded to the OT-2 via its
desktop application or a Jupyter notebook to initiate automated
reaction execution.

Automated reaction optimization platform
The reaction condition optimization of the aerobic alcohol oxidation
was conducted using this automated hardware. The self-driven reac-
tion condition optimization platform consists of three modules,
including an automated synthesis equipment (Unchained Labs, Big
Kahuna), a HPLC (Thermo Fisher Scientific Vanquish), and a six-axis
robotic arm (AUBO-i5) with a linear track. Big Kahuna automated
experimental procedures, incorporating several components, includ-
ing an extended tip liquid dispenser (20-3000μL) for liquid transfer-
ring, the vortexing stations (60-3750 RPM) for mixing the reaction
mixture, and a vial/plate gripper for transferring reaction vials and
plates. HPLC analyzed reaction mixtures using a C18 reverse-phase
column, with water and MeCN as the mobile phases. The robotic arm
was responsible for transferring samples between Big Kahuna and
HPLC. This hardware platform was controlled via a customized Lab-
VIEW software, and experimental procedures and parameters were
defined by the JSON method files.

Reaction optimization algorithm
The Bayesian optimization algorithm and the PI stopping criterion was
developed and discussed in previous work61. In brief, it is composed of
Gaussian process (GP) model and acquisition functions (AF). GP was a
mixed kernel (Supplementary Equation (3)), combining the Matérn52
kernel (Supplementary Equation (1)) with the categorical kernel (Sup-
plementary Equation (2)), to handle the reaction’s design space, which
includes both continuous and categorical variables. The new experi-
ment candidates are proposed by maximizing the multi-points
expected improvement (qEI) acquisition functions:

xðkÞ
new

n oq

k = 1
= argmaxqEI xðkÞ

n oq

k = 1

� �

= argmaxEn ReLu maxi= 1, ::, qf xi

� �� fn x+� �� �� � ð3Þ

where fxðkÞ
newg

q

k = 1 is the q newly proposed reaction conditions, x+ is the
current optimal condition, and En indicates that the expectation is
taken under the posterior distribution at time n.

The probability of improvement (PI) value is a measure of the
possibility that the newly proposed reaction candidate could have an
improvement over the current optimal value (Eq. 4).

PI xð Þ=P f xð Þ≥ f x+� �
+ ξ

� �
=Φ

μ xð Þ � f x+ð Þ � ξ

σ xð Þ

� �
ð4Þ

where μ �ð Þ is GP’s mean, σ �ð Þ is GP’s standard deviation, Φ �ð Þ is the
normal cumulative distribution function, and ξ is the trade-off
parameter of exploitation and exploration.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Article https://doi.org/10.1038/s41467-024-54457-x

Nature Communications |        (2024) 15:10160 13

www.nature.com/naturecommunications


Data availability
All the relevant data generated in this study have been deposited in the
GitHub repository under https://github.com/Ruan-Yixiang/LLM-RDF81.
Source data are provided in this paper. Source data are provided with
this paper.

Code availability
All the relevant code are publicly available in the GitHub repository81

(https://github.com/Ruan-Yixiang/LLM-RDF). An online web applica-
tion demo is available at https://ruan-yixiang.github.io/LLM-RDF/#/
main (Note: this web application only deploys the frontend for illus-
trative purpose. For full functionality, both frontend andbackendneed
to be deployed by following the guidelines available in the GitHub
repository).
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