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Classical spin liquids are paramagnetic phases that feature nontrivial patterns
of spin correlations within their ground-state manifold whose degeneracy
scales with system size. Often they harbor fractionalized excitations, and their

low-energy fluctuations are described by emergent gauge theories. In this
work, we discuss a model composed of chiral three-body spin interactions on
the pyrochlore lattice that realizes a novel classical chiral spin liquid whose
excitations are fractonalized while also displaying a fracton-like behavior. We
demonstrate that the ground-state manifold of this spin liquid is given by a
subset of the so-called color-ice states. We show that the low-energy states are
captured by an effective gauge theory which possesses a divergence-free
condition and an additional chiral term that constrains the total flux of the
fields through a single tetrahedron. The divergence-free constraint on the
gauge fields results in two-fold pinch points in the spin structure factor and the
identification of bionic charges as excitations of the system.

Spin liquids are disordered yet highly correlated phases of matter
whereby magnetic degrees of freedom evade symmetry-breaking
long-range order down to lowest temperatures'. It has been shown
how such cooperative behavior can be succinctly described by emer-
gent gauge symmetries>. Frustrated Mott-insulating magnets have
been established as the key platform to realize classical and quantum
spin liquids, which can emerge as a consequence of competing inter-
actions stemming from either the architecture of the underlying lattice
or from strong spin-orbit coupling®'.

The pyrochlore lattice, composed of a network of corner-sharing
tetrahedra with magnetic ions located at the vertices, has proven to be
an excellent arena for the realization of spin liquid phases. In the
classical realm, examples of such highly correlated phases include the
well-known spin-ice phase**">*, the recent realizations of rank-2 spin
liquids’**" as well as mixed rank-1-rank-2 spin liquids. All these
liquid phases are realized in spin systems whose interactions are
bilinear in the spin degrees of freedom, taking the form S;7;S;. Here,
the H; spin coupling matrix in the generic case encompasses both
isotropic and anisotropic interactions between not only first but also
farther neighbors. This includes the isotropic Heisenberg terms
(Si - $)**, as well as, anisotropic Ising (S;S;)", Dzyaloshinskii-Moriya

(Dy - [S: x $;)°, and off-diagonal symmetric also known as pseudo-
dipole (SfSrjy +x < ¥)*, as well as their analogs for further-neighbor
interaction terms* >,

In contrast, much less attention has been devoted to spin Hamil-
tonians with three-body or four-body spin interactions, which might
also offer the possibility of realizing spin liquid phases with other types
of exotic emergent gauge symmetries at low temperatures. One
example of such a higher-body interaction is the isotropic biquadratic
interaction (S; - Sj)224'25. A recent work studied the physics resulting
from the biquadratic coupling on the pyrochlore lattice with an addi-
tional Heisenberg term?*. However, such a model features an order-by-
disorder selection of a magnetically ordered state at low temperatures.

In the present paper, we consider the so-called scalar spin chiral
term, a magnetic three-body interaction that arises in a t/U expansion
of the Hubbard model at half-filling in the presence of a magnetic
field*. This leads to the following spin-rotation invariant Hamiltonian,
which breaks time-reversal and parity symmetries*”*
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Fig. 1| Single-tetrahedron chirality. lllustration of an up-tetrahedron with the
direction of the chiral term specified for two of its faces, So - (S; x S5) and

So - (S2 % S3). Here, the black arrow denotes the high-symmetry [001] and [110]
directions.

where y;x=S; - (S; % S), with i, j, k being the corners of triangular faces
in up and down-tetrahedra. We have chosen the chirality such that, for
an up-tetrahedron, one term is Sqg - (S; X S;), where Sq is located at
[000], S; at 1[110], and S, at 1[101], see Fig. 1. Schematically, the
chirality of every triangular face of a single tetrahedron is associated
with a chiral vector pointing outwards of its corresponding tetrahe-
dron, such that we have a uniform chiral model. The above
Hamiltonian has previously been investigated on the Kagome lattice,
where both classical and quantum order-by-disorder mechanisms
drive the system into a long-range ordered state where the spins in
every triangle are constrained to point along one of the three global
Cartesian axis®.

Here, we shall study the classical limit (S - =) of the Hamiltonian in
Eq. (1) on the pyrochlore lattice. We demonstrate that the system
realizes a novel chiral classical spin liquid phase down to the lowest
simulated temperatures. The ground-state manifold is characterized
by the spins in every single tetrahedron pointing along four distinct
directions, with a restriction stemming from the chirality of the
Hamiltonian in Eq. (1). The identification of the constraints governing
the ground-state manifold allows us to study this manifold through an
effective 4-state Potts model on the pyrochlore lattice with an addi-
tional chiral term. The mapping to the 4-state Potts model permits us
to identify three intertwined color gauge fields that fulfill an emergent
Gauss’ law and whose single-tetrahedron fluxes fulfill a right-hand rule
in the ground-state manifold. The excitations of this emergent theory
are comprised of confined bionic charges with restricted mobility
originating from the energetically preferred right-hand rule between
the intertwined color gauge fields. The properties of the elementary
excitations, along with the thermodynamics of the system, suggest
that this minimal model describes a fractonic system where
the ground-state manifold is characterized by at least a sub-extensive
degeneracy. This Hamiltonian on the pyrochlore lattice,
therefore, constitutes a relatively simple spin model capable of rea-
lizing fracton physics, which might be instrumental in the study of
fracton systems, the restricted mobility of its excitations, and its

intricate thermodynamics. The remainder of the paper is organized as
follows: first, we start by considering the physics of an isolated tetra-
hedron subject to the chiral interaction, followed by classical Monte-
Carlo results for the full lattice system. Then we discuss the low-energy
manifold in terms of an effective Potts model and develop a corre-
sponding gauge theory. Lastly, we present numerical results for a
model which also includes nearest-neighbor Heisenberg interactions.
A concluding section closes the paper, while technical details are
relegated to the supplementary information.

Results

Single-tetrahedron analysis

As a first approach to the chiral Hamiltonian in Eq. (1), we study the
single-tetrahedron case by numerically minimizing the energy of a
four-spin configuration through an iterative minimization algorithm™.
This minimization results in spin configurations where the dot product
between two distinct spins equals (-1/3). This constraint is fulfilled by
the spin orientations

1 1 .-
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or equivalently by considering an all-out configuration of the spins, as
shown in Fig. 2a. This constraint permits the construction of
alternative ground-state configurations of a single tetrahedron, by
applying an even permutation of the spin orientations in the single
tetrahedron. Note that an odd permutation would instead result in a
higher-energy configuration as a consequence of the triple-product
term in the Hamiltonian in Eq. (1). To illustrate the construction of the
aforementioned single-tetrahedron ground states, up to a global O(3)
rotation, we associate the spin orientations {up, u;, u,, us} with a
unique color, {Red, Blue, Green, Yellow} = {R, B, G, Y}, which we refer to
as the coloring basis. This mapping identifies the all-out configuration
illustrated in Fig. 2a with the colored configuration illustrated in
Fig. 2b. For completeness, we note that there exists yet another
representation of the single-tetrahedron configurations in terms of
three emergent gauge fields B;f’ shown in Fig. 2¢, which we discuss in
detail in the subsequent sections. Using the coloring basis, we identify
12 distinct 4-color ground-state configurations obtained by applying
even permutations on the all-out configuration; these are shown
in Fig. 3.

We note that a spin configuration spanning the entire pyrochlore
lattice can be constructed by assigning a spin configuration in Fig. 3 to
all up tetrahedra while keeping the down-tetrahedra in an equivalent
low-energy configuration. These configurations possess an energy of
Eo =-1.5396/, per lattice site.

Numerical simulations

To investigate the ground states and thermodynamics of the Hamil-
tonian in Eq. (1) on the full pyrochlore lattice, we perform classical
Monte-Carlo (cMC) and iterative minimization (IM) simulations con-
sidering systems comprised of 4L spins with systems of size L =10. To
thermalize our system, we implement a Gaussian single-spin-flip
update®, an over-relaxation algorithm®**, and a multi-valley average
between independent cMC simulations inspired by the study of spin
glasses®. In addition to thermodynamic quantities, we compute the
equal-time spin-structure factor.

Figure 4 shows the internal energy and specific heat of the system
obtained from a cooling scheme. These quantities smoothly evolve
down to low T, with the specific heat plateauing at a value of C/kg=1
and the energy per site tending to E - -1.52/,. No signatures of a tran-
sition to a symmetry-broken phase are visible. We note that, although
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Fig. 2 | Single-tetrahedron spin, Potts, and gauge-field configuration. Example  (b), the Potts gauge fields B, By, and B’ colored in red, blue, and green,
of a single-tetrahedron minimum-energy configuration for the chiral Hamiltonian  respectively, in the single tetrahedron (c).
in Eq. (1) shown in the Heisenberg spin configuration (a), the color representation
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Fig. 3 | Allowed color configurations. Single-tetrahedron ground states S* of the chiral Hamiltonian in Eq. (1) in the color basis where the colors red, blue, green, and
yellow correspond to the spin orientations ug, uy, U, and u; as defined in the main text, respectively.
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Fig. 4 | Classical Monte-Carlo thermodynamics. a Internal energy and b specific
heat per site of the spin chiral Hamiltonian in Eq. (1), showing a smooth evolution as
a function of temperature. Note that the specific heat develops a double bump at
temperatures of order 107,.

the measured internal energy of the system is very close to the value
obtained from the single-tetrahedron analysis, there is a small devia-
tion when this is measured in a cooling-down scheme in cMC. We
discuss this deviation, as well as the double-bump structure in C(7), in
the next section.

To further investigate the finite-temperature behavior of the
chiral Hamiltonian in Eq. (1), we study the temperature evolution of the
(equal-time) spin-structure factor in three distinct temperature
regimes: one for temperatures above the double-bump features, one
chosen within the temperature window comprising the double bump,
and a temperature well below these features where we use both MC
and IM to improve the statistics of the measurement (we refer the
reader to the Supplementary Information (SI) for the precise expres-
sions of the correlation functions). The resulting structure factor is
shown in the [~h¢] and [1kO] planes in Fig. 5 for the three temperatures
considered. At high temperatures, broad features are observed indi-
cating an uncorrelated paramagnetic regime, see Fig. 5a. As the tem-
perature is decreased, these features sharpen up and lead to two-fold
pinch points**™*%° see Fig. 5b, resulting in connected bow-tie and
diamond patterns in the [hh€] and [hkO] planes, respectively. The two-
fold pinch points reflect dipolar correlations between the spin degrees
of freedom and are indicative of an energetically imposed Gauss’ law
constraint on certain gauge fields B, namely V- B® =0, describing an
effective low-temperature theory of the system>*. In particular, within
the double-bump temperature window, additional features in the
diamonds and bow-tie patterns appear. These anisotropic features
become more pronounced as the temperature is lowered below the
double-bump window resulting in a cross-like pattern in the [hkO]
plane and a dip along the direction of the two-fold pinch points in the
[hh€] plane, see Fig. 5c.

At high temperatures, the structure factor profile (the two-fold
pinch points and its location) is qualitatively similar to that observed
for the pure Heisenberg antiferromagnetic model (HAFM). In the
HAFM, the two-fold pinch points are associated with an emergent
gauge field abiding by a Gauss’ law, which in terms of the spin con-
figurations, translates into a vanishing magnetization in every
tetrahedron’. Therefore, the observation of these features in the pre-
sent model suggests that a similar vanishing magnetization constraint
might be present. Indeed, a study of the magnetization distribution
reveals that the system realizes a vanishing single-tetrahedron

magnetization as the temperature decreases, see SI for more details.
This indicates the observation of an energetic antiferromagnetic con-
straint governing the low-temperature configurations.

The vanishing single-tetrahedron magnetization and the two-fold
pinch-point features observed in the spin-structure factors suggest
that the ground-state manifold of the Hamiltonian in Eq. (1) is con-
formed by a variety of antiferromagnetic configurations. However, the
presence of additional features in the structure factor suggests that
further constraints, in addition to the vanishing single-tetrahedron
magnetization, exist in the ground-state manifold. This observation is
in line with the single-tetrahedron analysis whose spin configurations,
i.e., those shown in Fig. 3, are antiferromagnetic while the spins in a
single tetrahedron are constrained to point along the directions
{up, uy, u,, uz}, up to a global O(3) rotation.

To study the onset of this additional constraint as a function of
temperature, we measure the distribution of the dot product between
nearest-neighbor spins. As seen in Fig. 6a, the distribution develops a
peak at the value (-1/3) for temperatures below the double-bump
feature in the specific heat, while remaining relatively featureless for
higher temperatures. As the temperature is further decreased below
the double-bump feature, the distribution becomes sharper while
remaining centered at the value of (-1/3), suggesting that in the 7> O
limit, the ground-state configurations are those predicted by the
single-tetrahedron analysis. Consequently, we associate the onset of
this peak in the distribution with the system entering a temperature
regime where the spins in the system progressively adopt a colored
configuration.

On passing, we note that for the Hamiltonian in Eq. (1) on the
Kagome lattice” a similar double-bump feature in the specific heat was
also observed and associated with the system entering a temperature
regime where the spins in a triangle are confined to be pointing along
one of the global Cartesian directions®. In such a case, however, the
low-T specific heat reaches C/kg =11/12, a value associated with quartic
spin fluctuations above the ground-state configuration leading to the
entropic selection of a symmetry-breaking configuration at low tem-
peratures over a finite (due to Mermin-Wagner theorem) yet pro-
gressively growing correlation radius.

Thermalization and freezing

The lowest energy measured in a cool-down cMC scheme is
E(T > 0%) ~-1.52), (per site), close to the single-tetrahedron ground-
state energy of £o =-1.5396/,. However, it is important to note thatin a
cool-down scheme, our cMC simulations seem to plateau at an energy
slightly higher than E,. To address the origin of this discrepancy, we
consider a warm-up scheme starting from an all-out configuration at
T=0"and compare the evolution of the dot-product distribution and
the internal energy with those obtained from a cool-down scheme, see
Figs. 6b and Fig. 7. As observed for the cool-down scheme, the dis-
tribution of the dot product of the warm-up scheme develops a peak
centered at (-1/3) at low temperatures while appearing to be feature-
less at high temperatures. However, we note that at low temperatures,
the distribution of the warm-up scheme appears to be sharper com-
pared to that obtained from a cool-down scheme at the same
temperatures.

The discrepancy between the cool-down and warm-up evolution
procedures can also be observed in the internal energy of the system.
Indeed, the energies obtained at low T within the warm-up scheme are
consistent with the single-tetrahedron ground-state energy FEo,
whereas the cool-down scheme levels off at a higher value, see Fig. 7.
Although the warm-up scheme better represents the expected internal
energy, we note that this procedure appears to be “frozen” in the initial
all-out state up to temperatures where the double-bump structure in
Fig. 4 is observed. Indeed, the specific heat from the warm-up scheme
shows a distinct peak associated with a crossover from a low-
temperature ordered phase, the all-out order, to a high-temperature
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Fig. 5 | Spin correlation functions. Equal-time spin-structure factor for three

distinct temperatures in the high-symmetry [hh#] (left column) and [hkO] (right
column) scattering planes for the Hamiltonian in Eq. (1) where the formation of
sharp two-fold pinch points is observed as the temperature is decreased. Here,
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panels a, b, and ¢ correspond to structure factors in the [hh€] (left) and [hkO] (right)
scattering planes sampled at 7=1.585/,, T=0.251),, and in the T > 0%/, limit,
respectively.

disordered phase. The discrepancy between these two schemes, in
addition to the freezing of the warm-up scheme, suggests that the
cool-down scheme finds a locally stable configuration while the warm-
up scheme is trapped in the global energy minimum. Indeed, we have
verified that this low-temperature freezing is also observed when the
starting warm-up state is not a perfect k = O state, suggesting that the
freezing at low temperatures is independent of the starting 4-color
configuration for reasons we discuss below. For more details on the
warm-up scheme, we refer the reader to the SI.

The variation of thermodynamic quantities measured depending
on the different sampling schemes is characteristic of spin-glass
systems*®™*?, of certain spin liquids where non-local updates are nee-
ded to tunnel between distinct ground-state configurations or to move
and annihilate excitations''°, and of fractonic systems*>*, In the next
section, we discuss such a scenario by identifying an effective gauge
theory describing the ground-state manifold, which reveals the
emergence of complex gauge charges that are directly correlated with
the freezing and responsible for the mismatch between the warm-up

and cool-down schemes. For more details on the evolution of the cMC
results and the cool-down procedure, we refer the reader to the SI.

Effective Potts model and ground-state manifold

The construction of the ground-state manifold is greatly simplified by
considering distinct tiling patterns of 4-color states, however, this
construction does not provide us with an effective theory describing
the low-temperature physics of this model. Indeed, a common hall-
mark of classical spin liquids is the emergence of a low-energy field
theory that associates the constraints of the ground-state manifold
with the appearance of a gauge symmetry®.

Nevertheless, the characterization of the ground-state manifold
employing the 4-color mapping suggests that a theory describing the
low-temperature spin liquid phase is associated with a type of anti-
ferromagnetic g-state Potts Hamiltonian with g = 4 whose ground-state
manifold is given by the 4-color states shown in Fig. 3. A similar
mapping into an effective Potts model at low temperatures was per-
formed in refs. 46,47; this mapping was crucial when exposing the
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Fig. 6 | Cool-down and warm-up nearest-neighbor histograms. Histogram of the
nearest-neighbor spin correlation, S; - S;, for distinct configurations sampled from
our cMC simulations for different temperatures obtained for a a cool-downand b a
warm-up scheme. The vertical lines mark the value (-1/3), the predicted dot pro-
duct between neighboring spins in the ground-state manifold.

—&—  warm-up
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Fig. 7 | Warm-up and cool-down classical Monte-Carlo comparison. Internal
energy per lattice site was obtained using a warm-up and a cool-down scheme in a
classical Monte-Carlo simulation. The dashed line indicates the energy
Eo=-1.5396/, of the single-tetrahedron ground state.

ground-state constraints governing the low-energy manifold. The
regular 4-state Potts model, however, allows all 4-color states per tet-
rahedron. Thus, in order to preserve only the configurations listed in
Fig. 3, we consider the modified Potts Hamiltonian

M=) 6.0t D g (1= 6(5,5Y)), @)
(i)

where the first term corresponds to the usual Potts interaction, and the
second term corresponds to an energy cost J, given a 4-color state S¥
that is not a part of the list of 4-color states $* shown in Fig. 3, i.e., the
configurations obtained by performing odd permutations on the all-

out 4-color state. We refer to this second term as a chiral term for
reasons which will become clear in the subsequent discussion.

By construction, the ground-state configuration of the Hamilto-
nian in Eq. (4) (with the built-in constraint of having vanishing internal
energy) corresponds to ground-state configurations of the chiral
Hamiltonian in Eq. (1). Indeed, such equivalence can be numerically
established by obtaining ground-state configurations from the
Hamiltonian in Eq. (4) via a cMC and then translating these into the
corresponding Heisenberg spin configurations to successively com-
pute the energy for the Hamiltonian in Eq. (1). We note that this
equivalence can also be tested analytically, as the energy of all con-
figurations in Fig. 3 is replicated in all tetrahedra assuming a perfect
tiling can be performed in the full lattice. For more details on the chiral
Potts mode in Eq. (1), we refer the reader to the SI.

Gauge structure of the regular Potts model

Having demonstrated that the two models in Eqgs. (1) and (4) result in a
similar ground-state manifold, we now construct an effective gauge
theory capable of describing the correlations observed in the ground-
state manifold of the Potts Hamiltonian and, by extension, the chiral
Hamiltonian. As a starting point, we consider the regular Potts model,
i.e., the one with J, = 0, whose gauge theory on the pyrochlore lattice
for the antiferromagnetic case was studied in Ref. 48. The regular
4-state Potts model in this lattice can be described by an effective field
theory where three intertwined gauge fields {B!(f’} identified by the
index c € {x, y, z} are defined as

B (n=S(rz,, 5)

where u labels the sublattice index, r denotes an FCC lattice vector, ¢
also indexes the spin component, and z, is the local z-direction of the
spin in sublattice y, see the Sl for the definition of the local z directions.
On this basis, the all-out configuration is associated with the gauge-
field configuration illustrated in Fig. 2c. In the ground-state manifold,
the spin S,(r) corresponds to one of the four possible color
orientations {R, B, G, Y} ={uo, u;, u,, us}. At low temperatures, the
three intertwined fields follow an energetically imposed 2-In-2-Out
constraint indicating an emergent Gauss’ law V - B© =0, see SI for all
the ground-state single-tetrahedron gauge-field configurations. This
construction identifies an effective Hamiltonian for the g=4 Potts
model provided by

Hegp(Jy=0) / dr {JZ v B(C)(”Z} : (6)

This effective low-temperature gauge-field theory in Eq. (6)
implies that in the ground-state manifold the gauge fields fulfill a
divergence-free condition**°, equivalent to that of spin-ice, indicating
that the field lines associated with these fields can have no boundaries
and therefore consist of closed loops.

In Fig. 8a, we show a gauge-field configuration for a state in the
ground-state manifold. Extending the similarities with the spin-ice
phase, distinct ground-state configurations of this model can be
obtained by identifying closed loops conformed by two colors and
then interchanging the colors in the loop. In contrast with spin-ice,
violations of the divergence-free condition result in the generation of
two gauge charges, dubbed bions, which violate the divergence-free
constraints of two gauge fields concurrently and result in an energetic
cost proportional to J. For the regular Potts Hamiltonian, the bions are
free to move with no additional energy cost and are connected by
“Dirac strings” colored by the gauge fields associated with the bions. In
Fig. 8b, we illustrate a high-energy gauge configuration resulting from
applying an even permutation of the color degrees of freedom to the
tetrahedron in the center of Fig. 8a. This permutation results in the
generation of 8 bionic charges where the divergence-free constraint is
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Fig. 8 | Ground state and excited state gauge-field configuration. Configuration
of the Potts gauge fields B;f’ for a a ground-state k = 0 configuration, and b an

excited configuration where bionic excitations are present. Here, the red, blue, and
green arrows denote the local orientations of the Bf”, B}’ and B fields, respec-
tively. Note that, for the ground-state configuration, every tetrahedron obeys a two-

in-two-out rule for each Potts field, corresponding to a state with no charges
associated with any field. On the other hand, for the excited configuration, the red
(blue) spheres represent charges associated with a non-zero Gauss' law of the B;j”
(B,(,”) field in the corresponding tetrahedra, where the light (dark) color indicates
that the charge is positive (negative).

broken in the tetrahedra where the light-colored (dark-colored) bions
correspond to positively (negatively) charged bions of the corre-
sponding color field.

Gauge structure of the chiral Potts model

Let us now consider the full Potts Hamiltonian with J,>0 in Eq. (4),
which restricts the configurations to only those shown in Fig. 3. It is
clear that the inclusion of this chiral term does not change the emer-
gent Gauss’ law in the B, fields as the subset of configurations allowed
by the chiral term still fulfills the constraint of having a vanishing
V - BY. The introduction of this term, however restricts the allowed
chirality between the total flux of the three gauge fields in a single
tetrahedron, defined as

3 3
0 => BY=> Srz, @)
u=0 u=0
which, in the ground-state manifold, are constrained to be mutually
perpendicular, see the SI. In other words, the introduction of the chiral
term only permits those color configurations for which the product

oW . (d)()/) x 0(2)), 8)

yields a positive value.

To make this observation mathematically precise it suffices to
associate the even and odd permutations of the permutation group S,
with the proper and improper rotations of the tetrahedral group T,
respectively. This separation of both the S, and the T, groups can be
performed by considering the equivalence classes associated by the
sign of the permutation and the determinant of the transformation,
respectively. The equivalence classes then allow us to identify every
even (odd) permutation of the group S, with a proper (improper)
rotation in T,. Indeed, note that the single-tetrahedron configurations
shown in Fig. 3 can be obtained from proper rotations of the single-
tetrahedron group T starting from the all-out configuration in Fig. 2b.
By definition, proper rotations do not change the chirality of a math-
ematical construct, whereas improper rotations do. This property
implies that the chirality between the fluxes in the ground-state
manifold is a “built-in” energetic restriction of the Hamiltonian con-
sidered in Eq. (4). Consequently, and motivated by the effective theory
of the regular Potts model, we propose a minimal phenomenological

effective gauge theory that encompasses all the restrictions for the
gauge fields

Hefr = / dr |:jz V. B(C)|2 _jXO(X) . ((D(Y) x (D(Z)) , 9)

where the first term constrains the gauge fields to be divergence-free
while the second term enforces the right-hand chirality between the
fluxes, with J, being defined as a phenomenological positive constant.
Note that the proposed theory breaks time-reversal symmetry as it is
composed of both two-body and three-body terms. This is natural
given that the original Hamiltonian in Eq. (1) breaks time-reversal
symmetry as well.

Excitations of the chiral Potts model
The introduction of the chiral term in the Hamiltonian adds an energy
cost J, to the divergence-free gauge-field configurations, which results
in a left-hand chirality of the total fluxes ®“. This apparent small
modification to the Potts Hamiltonian results in crucial differences in
the ground-state manifold of the Potts model and its excitations, now
being bions and left-hand chiral fields. Indeed, flipping closed colored
loops connecting two different ground-state configurations of the
regular Potts model now results in high-energy configurations of the
chiral Potts model whose energy grows proportional to the length of
the closed loop: closed loops can be regarded as a chain of odd single-
tetrahedra permutations where each permutation has an energy cost
of J,, i.e. for each left-hand chiral tetrahedra resulting from this per-
mutation there is associated energy cost proportional to J,.
Consequently, the Dirac strings connecting the bionic excitations
now have a tension, associated with its length, resulting in the con-
finement of the bionic charges. It is then natural to ask what type of a
non-local update connects distinct ground-state configurations that
are constructed from even permutations in all the tetrahedra involved.
Note, however, that the relation of this update with proper rotations
(even permutations) implies that such a non-local transformation must
be a closed 2-dimensional surface as all tetrahedra involve at least
three of its four corners. Similar types of transformations have been
studied in fractonic systems where the closed surfaces can be asso-
ciated with the creation and posterior annihilation of fractonic
charges®.
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Indeed, starting from a k=0 state, the simplest non-local trans-
formation is identified as one that produces an even permutation in all
the triangles of an aleatory selected Kagome plane. Through this sole
transformation, we can identify a minimum degeneracy in the ground-
state manifold, which scales with the linear size L, and not with the
number of sites L3, indicating that the ground-state manifold has at
least a sub-extensive degeneracy associated with these transforma-
tions. These higher-dimensional non-local updates can be associated
with the restricted motion of the bionic charges, suggesting that the
bionic charges of the regular Potts model are fracton charges in the
chiral Potts model.

The restricted motion of these excitations results in glassy
dynamics typically observed in fracton systems*. Indeed, performing a
warm-up and cool-down classical Monte-Carlo simulation on the chiral
Potts model exposes a similar behavior to the one observed in Fig. 7: in
the cool-down scheme, the restricted motion results in freezing of
charges at low temperatures yielding an internal energy significantly
above the ground-state energy. In contrast, in the warm-up scheme
excitation cannot easily be created, and the system freezes in the initial
configuration. We refer the reader to the Sl for further details on the
chiral Potts model. Similarly, for the chiral model in Eq. (1), the frac-
tonic nature of these charges is responsible for the disagreement
between the internal energy illustrated in Fig. 7, as well as the histo-
grams of the nearest-neighbor spin correlation in Fig. 6 measured in
the warm-up and cool-down schemes. In the chiral Hamiltonian,
however, the continuous nature of the spin degrees of freedom allows
for a slow thermal depopulation of the gauge charges and, therefore, a
decreasing internal energy with decreasing temperature. The presence
of these charges, however, is reflected in the width of the histogramsin
Fig. 6, which are consistently broader in the cool-down simulations.
For more details regarding the difference between the cool-down and
warm-up schemes for the chiral Hamiltonian in Eq. (1), we refer the
reader to the SI.

Chiral and Heisenberg interactions

As previously mentioned, the chiral Hamiltonian in Eq. (1) is one of the
lower-order corrections when considering a Hubbard model with an
applied magnetic field. This chiral term, however, is obtained as the
next-to-leading order interaction after the usual Heisenberg interac-
tion. It is, therefore, natural to inquire about the behavior of the
Hamiltonian

Z Xijkr

ij, keA (10)

H=)>_S;-S;—J
)

which now includes both the chiral and the Heisenberg term J with
J>0. Naively, one could expect that the introduction of the Hei-
senberg interaction radically changes the overall physical behavior
of the system depending on the ratio of the interactions J/Jy.
However, as was previously discussed from the cMC simulations,
the ground-state manifold resulting from the chiral interaction
obeys a vanishing magnetization constraint which is the sole
constraint imposed by the Heisenberg interaction. Consequently,
the ground-state manifold of the Hamiltonian in Eq. (10) matches
that of the Hamiltonian in Eq. (1). However, this does not imply that
the thermodynamics of these systems are equivalent. Indeed, the
introduction of a Heisenberg interaction modifies the behavior of
the specific heat whereby the double-bump structure observed for
the chiral Hamiltonian (1) is no longer present for a sufficiently
large value of J and is instead replaced by a single broad bump,
see Fig. 9.

The location in temperature of this single bump appears to be
relatively stable to the value of J, suggesting a relation of this feature
with the chiral interaction parameter J, and the onset of the chiral
constraints on the ground state. Indeed, similar to the case for pure
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Fig. 9 | Effect of an additional Heisenberg exchange interaction on the
specific heat. Specific heat of the Hamiltonian in Eq. (10) for various values of the
Heisenberg coupling/. Here, the double-bump feature is only seen for the case /=0
and / =/, whereas a single bump is observed for higher values of J.
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Fig. 10 | Effect of an additional Heisenberg exchange interaction on the nearest-
neighbor correlations. Histogram of nearest-neighbor spin correlations for three
different temperatures measured for the Hamiltonian in Eq. (10) with /=10/,.

chiral Hamiltonian for which /=0, by studying the distribution of the
dot product between neighboring spins, we find that this distribution
develops a peak close to the value of (-1/3) when this bump is reached
and keeps on sharpening and approaching this value as the tempera-
ture is further decreased, see Fig. 10 for the case of /=10J,. It is worth
mentioning that the shape of this distribution in the antiferromagnetic
Heisenberg Hamiltonian with no chiral interaction, i.e., ;=0 and /=1,
resembles the shape of the high-temperature distribution in Fig. 10
down to the lowest temperature, see Sl for further details on the
evolution of this distribution.

Discussion

We have studied the classical limit of the chiral Hamiltonian in Eq. (1)
on the pyrochlore lattice using numerical and analytical tools to
describe its thermodynamics and characterize the Hamiltonian’s
ground-state manifold. Our results suggest that the chiral Hamilto-
nian realizes a classical spin liquid phase at low temperatures where
the excitations behave as fractons, i.e., quasiparticles with restricted
mobility®*****°, We model the ground-state manifold of this novel
chiral spin liquid by identifying 4 distinct orientations where the
spins in a single tetrahedron are constrained to point along (up to
global O(3) rotations) in the T > 0 limit. This constraint allows us to
characterize the ground-state manifold in terms of a 4-state Potts
model*® and identify an emergent gauge theory. The effective theory
employs three rank-1 fields which, in the ground-state manifold,
become divergence-free and whose intertwined fluxes in a single
tetrahedron follow a right-hand rule. The constraints found in the
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ground-state manifold lead to a sub-extensive degeneracy which
can be directly associated with even permutations of the spin states
in all the triangles of an infinite Kagome plane bisecting the system
in two.

The emergent gauge theory identifies the elementary excita-
tions of the system as so-called bions, previously identified as the
deconfined elementary excitation of a regular 4-state Potts model*s,
acquire a restricted motion associated with the right-hand rule
imposed in the total fluxes through a single tetrahedron in the chir-
al model. To further investigate the thermodynamics of its elemen-
tary excitations and its restricted motion, a non-local numerical
algorithm tailored to this system must be developed™*’. The
elementary excitations, the sub-extensive degeneracy, and the clas-
sical Monte-Carlo simulations presented are all consistent with the
typical behavior observed in fracton systems. We emphasize
that the restriction on the chirality of the gauge fluxes and the
restricted motion of the associated gauge charges fundamentally
differentiate the chiral spin liquid realized for the model in Egs. (1)
and (10) from previously identified pyrochlore spin liquid phases.
Additionally, and of particular interest for the study of fracton
models, the realization of fractonic charges identifies the chiral
Hamiltonian in Eq. (1) on the pyrochlore lattice as a “simple” fracton
model whose further study may shed light on the intricate physics
associated with these systems.

Finally, we also considered the extension of the chiral model by an
additional antiferromagnetic Heisenberg coupling. We demonstrated
that the overall properties of the model remain largely unchanged for
all strengths of the Heisenberg antiferromagnetic couplings
considered.

As we have previously discussed, the chiral interaction in Eq. (1)
descends from a t/U expansion in the presence of a magnetic field. To
realize the sign structure of Eq. (1) would require a local magnetic field
pointing towards (away from) the center of each tetrahedron. Such a
local magnetic field is known to be realized internally in pyrochlore
iridates A,Ir,0, where the A ions are typically rare-earth elements, and
both the A and the Ir ions occupy two interpenetrating pyrochlore
lattices. In this family of compounds, the Ir ions may undergo a phase
transition into an all-in-all-out symmetry-breaking phase at a tem-
perature well above the strength of the exchange interaction of the
rare-earth ions®’. The magnetic order in the Ir ions then results in an
effective molecular field along the local z-direction for the rare-earth
ions on the A sites®. Following Ref. 26, the introduction of such a weak
local magnetic field may result in the chiral spin interactions we con-
sidered. Consequently, we identify the family A,Ir,O; of compounds
where the Ir ions order into an all-in-all-out symmetry-breaking phase
to be the natural candidates for the realization of the chiral interaction
and, therefore, the chiral spin liquid we have introduced and studied in
the present work.

Furthermore, we note that even if the Hamiltonian for a candidate
material in this family of compounds does not exactly match the
interaction couplings considered in Eq. (10), the sole proximity to this
spin liquid may yield remnant thermodynamic features associated with
the spin liquid. Indeed, such remnant features behavior has been
predicted and observed for other spin liquids in the pyrochlore lattice,
this being the case for Yb,Ti,0,** and FeF5”, and even for other fru-
strated lattices as is the case for the recently synthesized trillium lattice
compounds K,Ni(SO,4);**.

A natural extension of this work would be to consider a model
with a staggered pattern of chirality on up- and down-tetrahedra,
similar to what has been studied on the Kagome lattice”. Moreover, in
the context of material realizations, it would be worthwhile to assess
the fate of the spin liquid phase upon adding anisotropic couplings.
Last but not least, studying the quantum counterpart of the present
chiral model could yield a yet unexplored chiral fractonic quantum
spin liquid.

Methods

Monte-Carlo simulations

Classical Monte-Carlo (cMC) simulations were performed on systems
of size L € {10, 12}, corresponding to N = 4L classical spins with |[S;| =1,
where we used 4 x 10* thermalization sweeps and 8 x 10* measurement
sweeps. For each sweep, the system was updated using two update
algorithms: a Gaussian update®, and a over-relaxation®. Additionally,
we performed an average of 10 to 100 independent MC simulations.
We also implemented a cMC 4-state Potts cMC with a single-spin-flip
update where the color of a site is randomly proposed and accepted
with the usual Boltzmann weight.

Data availability

This is a theoretical work with no experimental data produced. The
processed Monte-Carlo data are available in the publicly available
repository https://github.com/daniel-lozano/Classical_chiral_spin_
liquid. Further numerical data that support the findings of this study
are available from the authors upon request.
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