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Enantioselective construction of C-B axially
chiral alkenylborons by nickel-catalyzed
radical relayed reductive coupling

Weihua Qiu1, Rencai Tao1, Yong He1, Yao Zhou 2, Kai Yang 1 &
Qiuling Song 1,3

The catalytic asymmetric synthesis of axially chiral alkenes remains a daunting
challenge due to the lower rotational barrier, especially for longer stereogenic
axis (e.g. C-B axis). The asymmetric radical difunctionalization of alkynes
represents an efficient strategy for these targets. Key to the success of such
transformations lies in aryl-stabilized highly reactive alkenyl radical inter-
mediates, however, it remains an elusive whether a boryl group could play a
similar role. Here we report a nickel-catalyzed atroposelective radical relayed
reductive coupling reaction of our designed ethynyl-azaborines with simple
alkyl and aryl halides through a boron-stabilized vinyl radical intermediate.
This transformation enables a straightforward access to the challenging axially
chiral alkenylborons bearing a C-B axis in generally high enantioselectivity and
excellent stereoselectivity.

Axially chiral scaffolds are widely found in natural products, chiral
catalysts, ligands, andmaterials1–5. Over the past decades, great efforts
have been made for the synthesis of atropisomers featuring abundant
skeletons, and biaryl derivatives are undoubtedly the most widely
studied6–13. Recently, several challenging skeletons of axially chiral
compounds have attracted considerable interest. For example, axially
chiral styrenes are one challenging family of chiral compounds due to
their relatively lower rotational barrier between different atropisomers
compared to their diaryl counterparts14–16 (Fig. 1a). Despite significant
achievements in the field, the investigations of axially chiral alkenes
have focusedon theC −CandC-N stereogenic axes. In this context and
as part of our continued research interest in the C-B axial chirality17–20,
we aimed to develop an alkenylboron scaffold based on the 1,2-aza-
borine units for expending the structural diversity of axial chirality
(Fig. 1a). The interesting structure, derived from the replacement of
the C =C bond of all-carbon aromatic rings with a B-N bond, can
maintain the aromatic character and showgreat potential in functional
materials, ligands and medicinal chemistry21–27 (Fig. 1b). For the
designed alkenylboron atropisomers, their synthesis may be more

challenging than the counterpart styrene atropisomers owing to the
lower rotational barrier resulting from the fact that the Csp2-B bond is
longer than the Csp2-Csp2 bond28–31.

Recently, tremendous progress has been made in the transition
metal-catalyzed difunctionalization of alkynes via an aryl-stabilized
vinyl radical intermediate, which serves as a powerful strategy to
accessmulti-substituted alkenes32–42. Noteworthily, such a strategy has
been successfully applied for the construction of axially chiral styrenes
by Zhang43 and Liu44 groups respectively. Considering the feasibility of
the process, we envisioned that an atroposelective difunctionalization
of ethynyl-azaborines through an azaborine-stabilized vinyl radical
intermediate could be an efficient approach to construct the designed
C-B axially chiral alkenylborons. However, compared to the extensive
studies on theα-borylalkyl radicals45–50 (Fig. 1c, left), the research on α-
borylvinyl radicals is very rare and undeveloped51, which seems to
totally be ignored by chemical community (Fig. 1c, right). Although α-
borylvinyl radicals can theoretically serve as a fascinating intermediate
to construct multi-substituted alkenylborons, only one example from
iron-catalyzed radical addition of ethynylboronic acid pinacol ester
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involves such radical intermediate so far51. Herein, we report an atro-
poselective radical alkylarylation of ethynyl-azaborines to enable the
axially chiral alkenylborons (Fig. 1d). Mechanistically, the catalytic
protocol involves alkyl radical addition to the ethynyl moiety and
cross-coupling of the resulting α-borylvinyl radical with nickel com-
plex. This chemistry enables a straightforward access to the challen-
ging axially chiral alkenylborons under mild conditions in generally
high enantioselectivity and excellent stereoselectivity.

Results
Reaction conditions optimization
To overcome the above-mentioned challenges, we firstly designed and
synthesized the sterically hindered ethynyl-azaborine 1a52–54. Then,
ethynyl-azaborine 1a, 3-iodoanisole (2a) and tert-butyl iodide (3a) were
employed to investigate the envisaged atroposelective radical relayed
reductive coupling with NiBr2·DME as catalyst and tetra-
kis(dimethylamino)ethylene (TDAE) as reductant. Toour delight,when
pybox L1 was used as chiral ligand, the reaction could proceed
smoothly (Table 1, entry 1), delivering the desired axially chiral alke-
nylboron 4a in 39%NMR yield and −30% enantiomeric excess (ee). The
preliminary result encouraged us to find amore efficient ligand for this
transformation. Other pybox ligands L2-L5 could efficiently promote
this transformation inmoderate enantioselectivities (Table 1, entries 2-
5), and chlorine-substituted pybox ligand L4was determined to be the
best one (Table 1, entry 5, 48% yield and 86% ee). Chiral quinolin-2-yl
pybox L6, bisoxazoline ligand L7, and diamine ligand L8 proved lar-
gely ineffective in this reaction (Table 1, entries 6-8). Themixed solvent
(2-MeTHF/DCE) could slightly improve the yield and enantioselectivity
(Table 1, entry 9), and the better enantioselectivity (89% ee) was
obtained through decreased reaction temperature (Table 1, entry 10).
The optimal reaction condition was furnishedwhenMgCl2 was used as

an additive (Table 1, entry 11, 72% yield and 92% ee). In addition, other
Ni catalysts, such as NiCl2·DME and NiBr2, afforded inferior results
(Table 1, entries 12 and 13).

Substrate scopes
With the optimized asymmetric radical relayed reductive coupling
conditions in hand, we first evaluated the substrate scope of aryl
iodides (Fig. 2). Generally, aryl iodides bearing electron-donating,
-neutral and -withdrawing substituents proceeded smoothly under
the standard conditions, furnishing the corresponding axially chiral
alkenylborons 4a-4v with good to excellent enantioselectivities
(83–93% ee). The lower to moderate yields for some axially chiral
alkenylboron products were mainly due to the hydroalkylation pro-
cess of ethynyl-azaborines51,55. The reaction showed good halogen
compatibility, not only ethynyl-azaborine 1a but also aryl iodines (2c,
2i-2l and 2o), which offers valuable handles for further late-stage
functionalization. Importantly, sensitive functional groups on the
benzene ring, such as cyano (4 l and 4m), aldehyde (4n), ester (4o-
4s), alkene (4r), ketone (4t), trifluoromethyl (4 u), and tri-
fluoromethoxy (4 v), also worked well. The absolute configuration of
4m was determined by X-ray crystallographic analysis. Notably, aryl
iodides derived from L(-)-borneol, geraniol and gemfibrozil were also
well compatible, and furnished the desired three-component cou-
pling products 4q–4 s in moderate yields with good to excellent
diasteroselective (4q, >20:1 dr) and enantioselectivities (89% ee and
92% ee). 2-Naphthalene iodine is also a good substrate for this atro-
poselective radical relayed reductive coupling reaction (4w). Het-
erocyclic derivatives, such as thiophene and pyridine, were also
suitable candidates for this reductive coupling to give axially chiral
alkenylborons 4x and 4 y with good to excellent enantioselectivities
(82% and 91% ee).
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Next, the scope of ethynyl-azaborines in this protocol was also
examined (Fig. 3). 1,2-benzazaborine ring of ethynyl-azaborines bear-
ing alkyls, halides, and phenyl could all undergo this atroposelective
coupling reaction to deliver the corresponding axially chiral alke-
nylborons 4z-4ae in 55%–74% yields with 89%–94% ee. Notably, when
the bromo group on ethynyl-azaborine was replaced by phenyl group,
the reaction also performed smoothly under the standard conditions,
providing the corresponding product 4af in moderate yield and good

enantioselectivity (41% yield, 83% ee). The installations of isopropyl or
phenyl to the nitrogen atomhad little effect on the enantioselectivities
(4ag and 4ai, 89% and 92% ee) for this protocol. Of note, further
reduction of the steric hindrance of ethynyl-azaborine would decrease
the enantioselectivity of the target product (4ah, 88% yield, 81% ee).
Finally, the reaction of other unactivated tertiary alkyl iodides also
worked well to deliver the desired axially chiral alkenylboron products
4aj-4al in 42%–61% yields with 84%–87% ee.
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Downstream applications and transformations
The potential value of this reaction was further illustrated by synthetic
transformations (Fig. 4). The resulting axially chiral alkenylboron
products have been pre-installed with a bromo group, providing a
handle for later functionalizations, which could undergo Negishi and
Sonogashira coupling to achieve alkylation, arylation and alkynylation
(5, 6 and 7). In addition, the new chiral (P, olefin) ligand 8 was suc-
cessfully synthesized via in situ axially chiral lithium intermediate with
high retention of the enantiopurity.

Mechanism investigations
To elucidate the radical process of this reductive coupling, control
experiments were carried out (Fig. 5a). Firstly, TEMPO as a radical
scavenger was added to the three-component reaction, and the for-
mation of coupling product 11 was completely inhibited. Meanwhile,
the addition of 1,1-diphenylethylene almost interrupted this reductive
coupling reaction, whereas affording compound 13, which may be
derived from the addition of tert-butyl radical to 1,1-diphenylethylene.
Fortunately, when the reaction of ethynyl-azaborine 10was carried out
in the presence of BrCCl3, the corresponding vinyl-CCl3 adduct (14)
was detected by HRMS. Notably, the reaction of ethynyl-azaborine 10
with a smaller steric hindrance (ethyl group on N atom) in the absence
of aryl iodide gave double addition products 15a and 15b aswell as self-
coupling product 15c.Moreover, hydrogenation ofα-borylvinyl radical
intermediates was detected by GC-MS in the process of substrate
investigation. Theseexperiments suggest that anα-borylvinyl radical is
involved in this coupling reaction. Then, several control experiments
with nickel species were also carried out (Fig. 5b). Firstly, the stoi-
chiometric reaction of aryl iodide, Ni(COD)2 and 4,4’-dtbbpy furnished

Ar-Ni(II)-I complex 16. Only trace amount of three-component coupling
product 17 was obtained by mixing complex 16, ethynyl-azaborine 9
and tert-butyl iodide, while more obvious product 17 could be
observed when reductant TDAE were added. Moreover, when the
catalytic amount of the complex 16 was employed in the cross-over
reactionwith 3-iodoanisol, compounds 11 and 17were obtained in 75%
yield and 6% yield, respectively. Overall, these results suggest that the
reduction of complex 16 is necessary for this catalytic cycle.

Based on the results of the above experiments and previous
literatures43,56–58, we proposed aNi(I)/Ni(II)/Ni(III) cycle for the asymmetric
radical relayed reductive coupling (Fig. 6, left): the chiral Ni(I) speciesA
generated in situ undergoes oxidative addition into the aryl iodine 2a
to afford the Ar-Ni(III)L* intermediate B, which is reduced by TDAE to
produce the Ar-Ni(I)L* complex C. The activation of alkyl iodide 3a by
the Ar-Ni(I)L* complex C generates an alkyl radical D and a Ar-Ni(II)L*
species E. Alkyl radicalD undergoes regioselective addition to ethynyl-
azaborine 1a to afford the α-borylvinyl radical F, which can combine
with Ar-Ni(II)L* species E to deliver the Ni(III) intermediate G. The
excellent E-stereoselectivity of alkene may stem from steric
hindrance32–40. The final reductive elimination of the Ni(III) intermediate
G yields axially chiral alkenylboron 4a and regenerates the chiral Ni(I)

catalyst. However, Ni(0)/Ni(I)/Ni(II)/Ni(III) catalytic cycle can’t completely
rule out (Fig. 6, right), which involves the oxidative addition of Ni(0)
species to aryl iodides.

In conclusion, we have developed a nickel-catalyzed atropose-
lective radical relayed reductive coupling reaction, leading to the for-
mation of the challengingC-B axially chiral alkenylborons. Themethod
features mild conditions, high enantioselectivity and excellent ste-
reoselectivity. The key mechanistic feature of the process is the
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generation and transformation of a boron-stabilized vinyl radical. It is
expected that the concept obtained here will encourage the develop-
ment ofmore asymmetric transformations around themultifunctional
α-borylvinyl radical intermediates.

Methods
General procedure for the synthesis of C-B axially chiral
alkenylborons
In a glove box, a 10mL Schlenk tube was charged with NiBr2·DME
(0.01mmol, 10mol%), ligand (0.01mmol, 10mol%), the bromination
of B-ethynyl-2,1-borazaronaphthalene (0.1mmol, 1.0 equiv), aryl iodide
(0.13mmol, 1.3 equiv), alkyl iodide (0.3mmol, 3 equiv), MgCl2
(0.1mmol, 1.0 equiv), 2-Me-THF (1mL) and DCE (0.1mL). The resulting
mixture was stirred at room temperature for 1min. Then TDAE
(0.21mmol, 2.1 equiv) was added. The reaction tube was taken out of
the glove box and reacted at −5 oC for 24 h. Upon completion, proper
amount of silica gel was added to the reaction mixture. After removal
of the solvent, the crude reaction mixture was purified on silica gel to
afford 4.

Data availability
The data that support the findings of this study are available within the
article and its Supplementary Information files. All other data are
available from the corresponding author upon request. Crystal-
lographic data for the structures reported in this Article have been
deposited at the Cambridge Crystallographic Data Centre, under
deposition numbers 2346898 (4m). Copies of the data can be
obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
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