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Proteome-wide profiling has revealed that targeted drugs can have complex
protein interaction landscapes. However, it’s a challenge to profile drug targets
while systematically accounting for the dynamic protein variations that pro-

duce populations of multiple proteoforms. We address this problem by
combining thermal proteome profiling (TPP) with functional proteoform
group detection to refine the target landscape of ibrutinib. In addition to
known targets, we implicate additional specific functional proteoform groups
linking ibrutinib to mechanisms in immunomodulation and cellular processes
like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we
identify variability in functional proteoform group profiles in a CLL cohort,
linked to treatment status and ex vivo response and resistance. This offers
deeper insights into the impacts of functional proteoform groups in a clinical
treatment setting and suggests complex biological effects linked to off-target
engagement. These results provide a framework for interpreting clinically
observed off-target processes and adverse events, highlighting the importance
of functional proteoform group-level deconvolution in understanding drug
interactions and their functional impacts with potential applications in preci-

sion medicine.

Proteins are responsible for execution of cellular processes and act as
critical mediators of phenotypic traits. Although the human genome
encodes approximately 20,000 unique protein sequences, a multitude
of processes including alternative splicing, post-translational mod-
ification (PTM), and proteolytic cleavage serve to significantly expand
this diversity, generating proteoforms in numbers several orders of
magnitude higher'. Additionally, important differences such as bio-
molecular interaction state, solute accessibility, or subcellular locali-
zation may lead to physically and functionally distinct but not
necessarily chemically distinct proteoform entities. Collectively, these
functional proteoform groups open the door to a much wider range of
function and evolution of adaptive phenotypes under selective

pressure’. Additionally, many diseases, such as cancer, have been
linked to changes that result in alterations of proteoforms, such as
decay of aberrant transcripts®, splicing dynamics’, translation*, and
post-translational modifications’. With highly variable proteomes that
are under continuous selective pressure, cancers demonstrate
numerous examples where protein complex composition®® and pro-
teoform drift”™ play important roles in biology and therapeutic
response. Therefore, targeting cancer-associated proteoforms has
emerged as an area of intense clinical interest, notably in pediatric
cancers', prostate cancer, melanoma™'°, and breast cancer”. This
highlights the importance of identifying and characterizing different
proteoforms, as well as developing drugs that target them. These
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efforts have the potential to significantly contribute to advancing
precision medicine and delivering on the promise of personalized
therapy.

In this context, development of targeted therapies for treatment
of cancer has been one of the major breakthroughs in the field. These
advances have been fueled by the improved ability to connect a dis-
ease phenotype to a specific causative protein, and then translate
these insights into a drug that targets that protein to correct its
function and restore the phenotype. Although the focus of targeted
drug discovery is on development of drugs that affect only a single
target, global mapping of drug-proteome interactions have revealed
that many approved targeted therapies affect more than a single target
protein'®®. These off-target effects can often help rationalize clinical
observations both with respect to efficacy and toxicity. However, the
full understanding of how drugs bind and affect different proteoforms
has been missing, given the difficulty of conducting proteoform-level
analysis on a high-throughput scale.

In general, proteoform species are challenging to detect and
quantify because they lack a one-to-one relationship with genetic
information, making their existence hard to predict and anticipate.
Additionally, proteoforms may occur at low quantitative levels, or only
transiently. Thus, molecular methods for proteoform characterization
have to allow for unbiased identification without a need to pre-define
or isolate variants, and offer high sensitivity and dynamic range. Tar-
geted proteomics techniques (including parallel reaction monitoring,
immuno- and proximity ligation assays) can support platforms for
flexible protein characterization with high sensitivity’®. But to effec-
tively characterize proteoforms, these methods must be set up with a
robustly pre-defined protein target or epitope. In the field of mass
spectrometry (MS)-based proteomics, both top-down and bottom-up
approaches have been used to conduct proteoform analysis without a
need to pre-define variants. For example, top-down proteomics has
been employed to assemble human proteoform reference maps®*;
however, this method currently has limitations in depth and
throughput®>. To address this issue, bottom-up proteomics uses
digested peptide libraries to achieve the broadest range of identifica-
tions. This makes it suitable for global proteome detection
approaches®, but at the cost of inferring proteoforms rather than
identifying them directly. The term “functional proteoform group”
specifies these inferred proteoforms, where data supports a
proteoform-level distinction but does not necessarily demonstrate a
unique, specific proteoform?.

Many methods for global proteoform inference have been
developed, including using abundance profiles?**?* and thermal pro-
teome profiling (TPP)”. TPP is a powerful method for systematic
detection and annotation of functional aspects of the proteome that
uses a series of temperature treatments to resolve proteins based on
their thermal stability*® which we have previously extended for func-
tional proteoform group identification?”. The unique thermal stability
of proteoforms can e.g., arise from different sets of PTMs, alternative
splicing or proteolytic processing, and interactions with proteins,
DNA, RNA, metabolites or drugs, therefore TPP approaches can cap-
ture many proteoform types**’, Furthermore, TPP can be applied to a
range of biological systems and used to analyze functional proteoform
groups in their natural contexts”.

Here, we use TPP to describe small molecule drug interactions
with functional proteoform groups. We map the target landscape of
ibrutinib, a clinically used Bruton tyrosine kinase (BTK) inhibitor*~%
Our choice to focus on ibrutinib is motivated by clinical data that point
to a complex relationship between on-target binding, efficacy, and
toxicity. For example, ~85% of chronic lymphocytic leukemia (CLL)
patients treated with ibrutinib develop BTK pathway mutations® .
However, some of these patients continue to respond to ibrutinib®-,
which could be attributed to a range of factors, including possibly
inhibition of additional targets. Although previous proteomics studies

have identified a wide range of ibrutinib off-targets'®**, which could be
clinically beneficial and useful for repurposing®* or harmful to
patients**?, many clinical observations remain to be rationalized.

Therefore, we hypothesize that analysis of functional proteoform
groups can provide a more complete picture of the ibrutinib target
landscape and extend our understanding of treatment sensitivity, off-
target events, and resistance mechanisms. Our study reveals additional
targets for ibrutinib, including functional proteoform groups involved
in Golgi trafficking, glycosylation, cell adhesion, and endosomal pro-
cessing, as well as some that may amplify drug efficacy and enable BTK-
independent immunomodulation.

Results
Functional proteoform group identification in ibrutinib-treated
cell lysates
To reduce the risk of ambiguity in distinguishing drug targets from
secondary protein stability changes, we performed TPP in cell
lysates. We used lysates from two different cell lines, a precursor-B
acute lymphoblastic leukemia cell line with a somatic form of BTK,
RCH-ACV* (RRID: CVCL _1851), and the adrenocortical carcinoma cell
line SW13 also with somatic BTK** (RRID: CVCL_0542). Lysates in the
presence of ibrutinib or equivalent volume of dimethyl sulfoxide
(DMSO) were prepared in technical replicates for a total of eight melt
curve sets. Each set was thermally denatured in a ten-point tandem-
mass tag (TMT) multiplexed temperature curve and pre-fractionated
using high-resolution isoelectric focusing** for in-depth peptide
detection by MS proteomics. In total, 175,379 unique peptides
mapping to only one gene symbol were detected from 11,043 gene
symbol stratified proteins. After functional proteoform group clus-
tering analysis” (Fig. 1a) of these peptides across the whole dataset,
16,079 functional proteoform groups were identified, representing
peptide groups with similar behavior in TPP. These thermally infer-
red proteoforms were investigated for differential melting using
nonparametric analysis of response curves (NPARC)*, considering
inferred proteoforms detected in all samples first across the entire
dataset and then within each lineage separately (Fig. 1b, Supple-
mentary Fig. 1A). Together, these analyses identified 2305 thermally
impacted proteoforms from 1936 gene symbols at a p-value thresh-
old of 0.05 (Supplementary Data 1), and 251 from 230 gene symbols
at a Benjamini-Hochberg adjusted p-value threshold (pAdj) of 0.05.
To validate our approach, we first examined whether TPP coupled
with MS proteomics was able to identify BTK, the primary target of
ibrutinib. BTK was only identified in the RCH-ACV lysates, which is
consistent with the lineage specificity of BTK. We identified two BTK
functional proteoform groups which had different baseline melting
behavior (BTK_1 and BTK_2) (Fig. 1c), and both were stabilized in the
presence of ibrutinib (Supplementary Fig. 1B). Although BTK_1 was the
only BTK functional proteoform group that met the pAdj<0.05
NPARC test significance threshold, BTK 2 was shifted based on a
p<0.05 threshold (pAdj = 0.22). BTK_1 contained several peptides
derived from the ATP binding site (Fig. 1d, Supplementary Fig. 1D) that
were not detected in BTK 2, which suggests that interactions, mod-
ifications, conformational changes, or splice variants reduced relative
representation of these peptides in BTK_2. We did not observe cysteine
481 (C481), the specific residue that is covalently targeted by ibrutinib,
in either functional proteoform group. We used BTK results to cali-
brate significance levels for further result interpretation, and we pro-
ceeded to consider pAdj < 0.05 as likely thermally impacted. Although
results such as BTK_2 meeting only a p < 0.05 threshold could be false
positives, they can not be excluded. For transparency, we noted these
cases may be plausibly thermally impacted and included them in
Supplementary Data 1, to ensure false negatives were not implied. In
addition to BTK, previous studies™ have revealed that ibrutinib binds a
wide range of proteins (Supplementary Data 2), and our analysis con-
firmed several of these (Supplementary Fig. 1C).
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Ibrutinib’s C481 BTK binding site is flanked by G and L residues,
and this sequence has been profiled in other off-target studies and is
known to be homologous in off-targets®. Although GCL enrichment
was not significant, we confirmed that ibrutinib targets in the p < 0.05
population display G*L motif enrichment in a 2-sample equality of
proportion test with Yates continuity correction, with notable over-
representation of amino acids that can be modified by
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phosphorylation flanked by G and L residues (GCL: p=0.169, GSL:
p=0.00089, GTL: p=0.00014, GYL: p=0.224, any G*L, p=0.00034)
(top hits annotated in Fig. 1b). Taken together, these results indicate
that TPP coupled with MS-based proteomics was sensitive to thermal
differences between drug and DMSO conditions. Overall, the fact that
we identified BTK as well as other known off-targets of ibrutinib serves
as internal validation of our experimental setup.
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Fig. 1| Characteristics of top ibrutinib binding candidates and BTK proteo-
forms. a Illustration of the functional proteoform group concept, seeking to pair
drug interaction information with specific study of protein variation lacking a direct
parallel with genetic information. Functional proteoform groups can include mul-
tiple chemical or physical proteoform types that have potential for differential
thermal stability and differential drug interactions. Created with BioRender.com.
b The top 51 functional proteoform group results differentially melting in ibrutinib-
treated versus untreated lysates, as determined by NPARC analysis, with high-
lighted GCL, GSL, GTL, or GYL sequences. Selected proteoforms meet a Benjamini-
Hochberg adjusted p-value threshold of less than 0.0001 for models with detection
in all cell lines. ¢ Fraction non-denatured for each BTK functional proteoform group
detected in RCH-ACV, colored by proteoform group membership assignment
demonstrating melting behavior by functional proteoform group and treatment

status, which illustrates the relative thermal stability difference which is seen in
both ibrutinib and vehicle melt curves. The melt curves for each condition repre-
sent n =10 temperatures each, each of the 10 temperature measurements per-
formed in technical duplicates for each treatment condition and detected only in
RCH-ACV. Melt curves are presented along with the 4PL curve fit and 95% con-
fidence interval of the fitted model, and each point shows the mean fraction non-
denatured and tstandard deviation (SD). d Structural diagram of peptide map-
pings, generated using the Alphafold structure for BTK generated using the
canonical FASTA sequence (sp|Q06187 | BTK_HUMAN), showing tube overlays for
peptides colored by their functional proteoform group assignments. Regions with
multiple matched assignments are displayed with blended translucent coloring,
and regions without assigned peptides appear as a gray amino acid backbone.
Source data are provided as a Source Data file.

Using proteoform group data to detect the effects of drug
binding on protein-protein interactions and complex formation
In addition to inhibiting activity of a target, drug binding may also lead
to conformational changes or allosteric effects that change how the
target interacts with its binding partners*. To identify cases where
thermal profiles indicated disruption of protein complexes, we per-
formed an over-representation analysis (ORA) to identify proteins that
form complexes in the CORUM database*’. Using false discovery rate
(FDR)-adjusted hits (pAdj<0.05), we identified twelve complexes
(Fig. 2a, Supplementary Data 3). Among these complexes, three hits
(CORVET, HOPS, class C VPS complex) (Fig. 2a, b, Supplementary
Figs. 2, 3) share common components and have known interconnected
biological functions as membrane tethering complexes*® and as
coordinators of signal transduction*’. Of particular relevance, this
signaling includes NF-kB and AP1, which are induced during
immunostimulation*’, and may represent a possible secondary route
towards maintaining ibrutinib drug effects. Another identified com-
plex, NUMAC (Supplementary Fig. 4), integrates chromatin remodel-
ing and histone methylation and plays a role in fine-tuning gene
expression during heart, lung, and immune cell development®**’, The
critical histone modifying component of NUMAC, CARMLI, has been
proposed as a cancer target and its knockdown enhances antigen-
induced proliferation and cytotoxicity in tumor-infiltrating T-cells®,
which is also observed in ibrutinib-treated patients®>*>. Among other
affected complexes, the p21(ras)GAP-FYN-LYN-YES complex, the
CD20-LCK-LYN-FYN-p75/80 complex and the BRAF-MAP2K1-MAP2K2-
YWHAE complex (Supplementary Figs. 5-7), also have functional links
to immunostimulatory signaling.

Protein-protein interactions are highly dependent on cell
lineage®, and we observed that the baseline thermal stabilities of
complex-associated functional proteoform groups and magnitude of
drug-induced thermal changes were not uniform between cell lines.
For example, the membrane tethering complexes were only indicated
in SW13 (Supplementary Figs. 2, 3), and two of the immunostimulatory
signaling complexes only in RCH-ACV (Supplementary Figs. 5,6). To
examine this further, we repeated the ORA tests within each cell line
separately (Supplementary Data 3) to allow the ORA to have proper
statistical input for background detection and because cell line back-
grounds affect baseline melting more than drug effects. This indicated
several SW13-specific results including the multisynthetase complex,
the EARP tethering complex, and the EIF2B2-EIF2B3-EIF2B4-EIF2B5
complex. These observations underscore that cell line-specific pre-
dominance of certain complexes could influence the range of inter-
actions and scope of functional drug influence. Despite the cell type
specificity of protein complex results, at functional proteoform group-
level, thermal changes still occurred for individual components across
both cell lines, such as the HOPS complex (Fig. 2b, Supplementary
Data 1). This implicates individual functional proteoform group targets
from enriched complexes, even where the protein complexes them-
selves are not indicated.

Our analysis also identified complexes without clear functional
links to the known on-target effects of ibrutinib. For example, the COG
complex is essential in intra-Golgi transport and glycosylation of pro-
teins and lipids®, and components were thermally impacted by treat-
ment in both cell lines (Fig. 2a, Supplementary Fig. 8). This complex is
primarily found as an octamer in the cytosol, and components are also
integrated into numerous other subcomplexes®, which were also
detected in the protein complex ORA (Supplementary Data 3).
Although the link between ibrutinib and COG components is not
known, changes in immunoglobulin glycosylation and secretion have
been identified in ibrutinib-treated CLL patients”, in agreement with
our results.

Another hit without a clear functional link to on-target pathways
was the WASH complex (Supplementary Fig. 9). This complex facil-
itates endosomal trafficking, surface receptor recycling®™ and main-
tenance of phagocytosis®. Ibrutinib treatment is reported to cause
defects in both receptor recycling®®, and endosomal trafficking®?,
particularly of importance in mechanisms of aspergillosis suscept-
ibility and immune cell egress. In addition to these potential links, the
WASH complex modulates platelet function through reducing allb3
integrin cell surface expression®, which mirrors a BTK-independent
ibrutinib effect on allbp3 integrin cell surface levels®.

To further map the pathways affected by ibrutinib, as indicated by
perturbations in functional proteoform groups, we used the BioGRID
protein-protein interaction database® and performed enrichment
analysis, using network topology analysis with network retrieval
prioritization®® (Supplementary Fig. 10, Supplementary Data 4). Input
hits were gene symbol IDs with at least one functional proteoform
group below the pAdj<0.05 threshold for at least one cell type. As
expected, we identified the B cell receptor signaling target pathway, in
alignment with the intended function of ibrutinib; however, we also
identified that ibrutinib had BTK-independent effects, including pro-
tein autophosphorylation, RNA localization, and cell adhesion. Con-
sistent with the ORA results, other top hits included organelle
membrane fusion and Golgi organization. Collectively, these analyses
showcase how functional proteoform group analysis of drug
effects can reveal specific changes at the level of protein-protein
interactions and complex formation. In the specific case studied here,
observed effects suggest potential, BTK-independent link between
ibrutinib, and COG and WASH complexes, and their respective cellular
functions.

Functional proteoform group analysis enables more nuanced
target identification

Although we observed good agreement between our studies and
previously reported ibrutinib off-target identification using
kinobeads' (Supplementary Data 2), we also observed some additional
hits, including several examples of clinically highly relevant targets. For
example, although not seen as a target in the kinobead study'®, we
observed that BRAF had two functional proteoform groups in our
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dataset (Fig. 3a, b) and was also a component of a complex flagged in
our ORA results (Supplementary Fig. 7). One functional proteoform
group was a significant hit in both cell lines individually and across the
entire dataset (Supplementary Data 1); however, the other, more
thermally stable proteoform did not exhibit significant changes upon
ibrutinib treatment for either cell line (Fig. 3b). When BRAF results are
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taken in aggregate on a gene symbol level, the results indicate that
BRAF is stabilized overall (Fig. 3c), which illustrates that aggregation of
this kind could mask the more nuanced behavior captured by the
functional proteoform group analysis (Fig. 3a, b). Therefore, this sug-
gests that BRAF may exist in distinct forms, with critical differences
that may have functional implications.
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Fig. 2 | Physically associated and functionally implicated ibrutinib binding
candidates. a Network plot showing the CORUM complex composition of the sub-
network of top NPARC hits and their associations according to the BioGRID inter-
action database. Nodes are plotted by size according to connectivity, and colored
labels indicate membership in an enriched CORUM complex. b Functional pro-
teoform group melting behavior for the HOPS complex, showing results flagged in
the enrichment analysis input where at least one individual cell line NPARC result
showed a shift meeting a significance threshold of p < 0.05, which include: VPS11_1,
VPS11_2, VPS16_1, VPS16_2, VPS18 1, VPS18 2, VPS33A 1, and VPS33A 2. The melt
curves for each condition represent n =10 measurements each, each of the 10
temperature measurements performed in duplicates for each experimental con-
dition and cell line, and are plotted with 95% confidence intervals of 4PL curve fits.
Each point shows the mean fraction non-denatured and error bars show +SD. The

complex enrichment result was significant when evaluated using data from both
cell lines, pAdj = 0.0392. ¢ Functional proteoform group melting behavior for the
WASH complex, showing flagged in the enrichment analysis input where at least
one individual cell line NPARC result showed a shift meeting a significance
threshold of p <0.05, which include: WASHC2C_1, WASHC4_1, WASHC4 2,
WASHC4 3, WASHCS 1, WASHCS5 2, and WASHCS 3. The melt curves for each
condition represent n =10 measurements each, each of the 10 temperature mea-
surements performed in duplicates for each experimental condition and cell line,
and are plotted with 95% confidence intervals of 4PL curve fits. Each point shows
the mean fraction non-denatured and error bars show +SD. The complex enrich-
ment result was significant when evaluated using data from both cell lines, pAdj =
0.0392, and in SW13, pAdj = 0.0348. Source data are provided as a Source Data file.

Here, several lines of evidence support this possibility. On one
hand, ibrutinib has been investigated for resensitizing BRAF-inhibitor
refractory melanomas®, a benefit not replicated with other BTK
inhibitors indicative of ibrutinib-specific off target effects. Addi-
tionally, CORUM over-representation results indicated that ibrutinib
treatment may interrupt BRAF interaction with MEK proteins (Fig. 2a,
Supplementary Fig. 7), and experimental structure of the BRAF
kinase domain in complex with MEK®® appeared to be consistent with
the mapping of BRAF_1 peptides (Fig. 3d). On the other hand, the
BRAF_2 functional proteoform group may represent a dimerized
form of BRAF. It is well established that BRAF is activated by RAS-
dependent dimerization®®, including with other RAF kinases (ARAF
and CRAF (RAF1)). Our results showed that RAF1 and ARAF were not
thermally impacted in any sample or proteoform group, leading us to
propose that the proteoform group of BRAF that appears insensitive
to ibrutinib are the hetero- or homodimers (Supplementary Fig. 11A,
B). Furthermore, dimerized BRAF may be the main population of
BRAF in cells, potentially explaining why kinobeads did not identify
BRAF as ibrutinib target'.

The identification of results with mixed drug binding affinity
between proteoform group sub pools suggests that these gene symbol
IDs would be harder to replicate in a traditional analysis. To probe this
generalization further, we examined replication across the full dataset.
Among the 217 pAdj <0.05 gene IDs that were not replicated in the
kinobeads study, 8.3% were hits for all proteoform groups, with the
rest having a proteoform group above p =0.05 or not clustered into
proteoform groups. But among the twelve kinobeads replicated gene
IDs, 42% were clustered into proteoform groups and were significant
for all proteoform groups. This demonstrates that results previously
identified at gene symbol level'® were proportionately -5 times more
likely to be thermally impacted for all clustered proteoform groups,
compared to unreplicated gene symbols.

Thermal proteome profiling may generally be a more sensitive
approach for certain drug contexts. However, not all replicated hits
from the kinobeads study would have been clear without proteoform
group clustering. For example, we identified two functional proteo-
form groups of the tyrosine kinase YES1, an important member of the
src kinase family. YES1 2 was stabilized in RCH-ACV and across the
whole dataset, but YES1_1 was not (Fig. 3e). Without functional pro-
teoform group clustering, in the gene symbol aggregated full data-
set, YES1 fell outside the significance threshold at p=0.0617,
pAdj=0.433 (Fig. 3f). Structurally, the stabilized YES1 2 peptides
mapped in the N-terminal region, which in src kinases is known as the
src N-terminal regulatory element (SNRE), an understudied and
intrinsically disordered region thought to perform lipid binding,
enacting regulatory functions and enabling cell type-specific roles™
(Supplementary Fig. 11d). These context-dependent lipid interactions
could be another mechanism introducing melting variance between
samples. The apparent baseline melting difference between RCH-
ACV and SW13 is notable, despite a lack of mutations in this protein
detected in the DepMap mutation profiling dataset®, further

supporting that YES1 baseline variation occurs and can be indepen-
dent of genetic sequence. Together, this indicates the YESI protein
could be susceptible to a range of important conformational states
or interaction partners that affect proteoform-level thermal stability
between cell lines, and which could also limit or enable context-
dependent ibrutinib binding.

Collectively, these examples illustrate how functional proteoform
group analysis could enable a more nuanced interpretation of drug
binding, one that is highly context and cell-line dependent. Addition-
ally, comparing and contrasting results obtained at the aggregate gene
symbol level and proteoform group level may indicate functionally
relevant differences worth examining further.

Validation by peptide resolved pulldown experiment

From qualitative proteoform identifications, some peptides may in fact
be specific or overrepresented in specific proteoforms in a way that
enables differential quantification. In these cases, to further validate
the ability of our proteoform group-level drug binding approach to
identify relevant drug-proteoform interactions, we performed an
ibrutinib probe click chemistry pulldown using the RCH-ACV cell line
and quantified proteoform groups by summation of PSMs. Results
were considered significant if they were replicated in two out of three
ibrutinib-treated preparations without DMSO detection, and results
detected in both ibrutinib and DMSO pulldown samples were excluded
from interpretation due to lack of statistical significance (Supplemen-
tary Data 5). The pulldown method has several notable limitations,
namely that it detects only more stable, direct drug interactions rather
than weaker interactions or those associated with protein complex
effects, and this method is additionally limited by its high peptide
detection threshold. Despite these considerations, we could never-
theless confirm 6 proteoform group-resolved pulldown hits from the
29 detected from peptide-matched RCH-ACV TPP proteoform hits,
including multiple previously uncharacterized results (Fig. 4a; Sup-
plementary Data 5). Among proteoform group results that were repli-
cated in the pulldown, we identified the WASH complex component
WASHC2C 1 (Fig. 4a, b), and both proteoform groups of BTK (Fig. 4¢).
We observed that WASHC2C_1 had higher mean pulldown intensity
than the BTK proteoform group BTK2 (WASHC2C.1=5.64x10°,
BTK 2 =7.48 x10%), although it was only detected at the 20 uM ibrutinib
probe dose. The second proteoform group that was not thermally
impacted, WASHC2C_2, was also not detected in the pulldown (Fig. 4b).
This preference of ibrutinib for WASHC2C_1 could hint at differential
post-translational modifications, lipid interactions, or other structural
differences consistent with a highly disordered protein (Fig. 4d) which
might influence binding affinities between these proteoform groups.
Alternatively, these differences might indicate that WASHC2C 1 is a
more prevalent form in the RCH-ACV cell line, which also has impli-
cations for ibrutinib targeting. Taken together, our study indicated that
MS-based proteomics coupled with TPP functional proteoform group
detection can lead to comprehensive identification of unknown tar-
gets; more specifically, our results indicate that the relationship

Nature Communications | (2025)16:1948


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-024-54654-8

d.

BRAF
) ) . Amino acid residue
A B A rino acid residue 800
BCR 00 | B8R Membership B oo
Protein kinase domain 400
I serine-threonine/tyrosine—protein kinase, catalytic domain 200
[ | Protein kinase C-like, phorbol ester/diacylglycerol-binding domain 0
[ | Raf-like Ras—binding Membership
Serine/threonine—protein kinase, active site m
_— ST 2
I I Protein kinase, ATP binding site B Muttiple
b BRAF BRAF, aggregated by gene symbol
L L]
RCH-ACV, BRAF_1 RCH-ACV, BRAF_2 Swi13 RCH-ACV
E 1.2 '8 1.2 g 1.2 ‘g 1.2 -
E (-] ~e- Ibrutinib 5 Ibrutinib ] -e- |brutinib E -o- lbrutinib
£ 08 -+ DMSO £ 08 DMSO £ 08 - DMSO £ 08 -+ DMSO
? b4 3 °
5 5 § 5
c 04 <04 c 04 c 04
S S S S
L 0.0 T 00 r r r 0.0 r r r T 0.0
40 50 60 40 50 60 40 50 60 40 50 60
Temperature (°C) Temperature (°C) Temperature (°C) Temperature (°C)
o raq DVISBRART orag OVISBRARZ d . BRAF, in complex with MEK
g = Ibrutinib s Ibrutinib
£ 0s -+ DMSO £ 0s DMSO
b b
£ £
2 2
c 04 c 0.4
i) ]
g g
T 00 . T T T 00 T T T
40 50 60 40 50 60
Temperature (°C) Temperature (°C)
. YEst
RCH-ACV, YES1_1 RCH-ACV, YES1_2
o 12 g 12 |
g £ Ibrutinib
g 08 g 08 DMSO
? 9
5 5
c 04 c 04
S S
g g
i 0.0 0.0 T T
40 50 60
Temperature (°C) Temperature (°C)
L — - - = = = = = = = = -
SW13, YES1_1 SW13, YES1_2 f
kel o 12
g o Ibrutinib g rutinib . YES1, aggregated by gene symbol
15 T
3 gos bMSO SW13 RCH-ACV
=4 c
B 1.2
g g 0.4 E 2 -e~ Ibrutinib g - |brutinib
2 2 g - ]
8 8 £ 08 bMso 08
w w 0.0 T T T < &
40 50 60 2 2 04
Temperature (°C) Temperature (°C) & 04 &
g 8
T 00 T 00
40 50 60
Temperature (°C) Temperature (°C)
g YES1
' Amino acid residue Amino acid residue
[ | (N | B [ | Membership
Protein kinase domain 400
SH2 domain 200
I serine-threonineftyrosine—protein kinase, catalytic domain ¢
- SH3 c_jomaln o ) ) Membership
l Tyrosine—protein kinase, active site kR
|| Protein kinase, ATP binding site 2

between the WASH complex and ibrutinib is likely physically robust
and requires further study.

Proteoform groups in CLL patients vary with treatment
A recent study generated comprehensive proteogenomics profiling of
primary CLL samples and also quantified ex vivo sensitivity to ibrutinib

in coculture”. Using this cohort of 68 patients profiled using HiRIEF
LC-MS/MS proteomics, peptides were summed to functional proteo-
form groups and considered by their relative abundance, an inde-
pendent metric not linked to their thermal behavior”’. To account for
technical aspects before interpreting the granularity lost or gained in
the aggregation process, we performed f-tests with BH multiple testing
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Fig. 3 | Specific ibrutinib target detection enabled by functional proteoform
group analysis. a Peptides mapping to their position on the canonical FASTA
sequence for BRAF (sp|P15056 | BRAF_HUMAN), colored by functional proteoform
group assignment (Membership) and highlighting interpro domain annotation.

b Functional proteoform group melting behavior for BRAF, labeled by cell line,
treatment, and proteoform. The melt curves for each condition represent n=20
measurements from 10 temperatures for each experimental condition and cell line.
Melt curves from 4PL curve fits show 95% confidence interval of the fitted model,
each point shows the mean fraction non-denatured and error bars show +SD.

c Protein aggregated melting behavior for BRAF, separated by cell line and treat-
ment. The melt curves for each condition represent n =20 measurements from 10
temperatures for each experimental condition and cell line. Melt curves from 4PL
curve fits show 95% confidence interval of the fitted model, each point shows the
mean fraction non-denatured and error bars show +SD. d Structural diagram of
peptide mappings over the PDB structure for BRAF bound to MEK and an ATP

analog, as described in ref. 68. Tube overlays color peptides by functional pro-
teoform group assignments. Regions without assigned peptides or belonging to
the MEK structure appear as a gray amino acid backbone. e Functional proteoform
group melting behavior for YES], separated by cell line, treatment, and proteoform.
The melt curves for each condition represent n =20 measurements from 10 tem-
peratures for each experimental condition and cell line. Melt curves from 4PL curve
fits show 95% confidence interval of the fitted model, each point shows the mean
fraction non-denatured and error bars show +SD. f Gene symbol aggregated
melting curve for the YESI protein, labeled by cell line and treatment. The melt
curves for each condition represent n = 20 measurements from 10 temperatures for
each experimental condition and cell line. Melt curves from 4PL curve fit show 95%
confidence interval of the fitted model, each point shows the mean fraction non-
denatured and error bars show +SD. g Interpro domains and associated peptide
mappings for YES1 functional proteoform groups. Source data are provided as a
Source Data file.

correction for simulated functional proteoform groups assembled
from randomized peptides within the gene symbol as a null distribu-
tion. This validated 2069 functional proteoform group hits as sig-
nificantly variable, from among 10722 detected in the study, including
many hits which were also thermally impacted by ibrutinib treatment
(Fig. 5a). This supports our clustering assignment for these hits, which
represent cases where the relevance of functional proteoform groups
in treatment response biology is supported by evidence of compara-
tive differences in abundance.

We next wondered whether off-targets were different in abun-
dance for treated patients, potentially supporting functional hypoth-
eses about indicated drug interactions. To perform this analysis, we
assembled treatment data from patient history at time of sample for
the cohort (Supplementary Data 6), identifying 3 were in ibrutinib
treatment and 1 had been pretreated with ibrutinib. Proteoform
groups were significantly altered between ibrutinib treated and
untreated patients for 629 proteoform groups out of the 2069 with
confident f-test variation differences (Fig. 5a, Supplementary Data 7),
supporting that a portion of increased variability could be associated
with treatment effects, despite the relatively low number of treated
patients. These hits included thermally impacted hits from our TPP
dataset, such as WASHC2C_1 (Fig. 5b), which was depleted, clarifying
that the functional impact of the ibrutinib interaction lowers abun-
dance and potentially limits function through direct antagonism or
depletion. In contrast, WASHC2C 2 was not significantly impacted by
ibrutinib treatment in our cohort (Fig. 5b).

Considering protein complexes enriched as off-targets, some
demonstrated abundance changes, indicating their functional rele-
vance. For the NUMAC complex, both proteoform groups of SCYL1
were significantly more abundant in ibrutinib-treated samples, and the
proteoform group CARMI_2 was trending as downregulated, becom-
ing significant (pAdj = 0.0380) when excluding the patient who had
been pretreated and was not currently in ibrutinib treatment (Sup-
plementary Fig. 11E). Given CARMTI’s pivotal role in chromatin remo-
deling and histone methylation®, CARMI_2 downregulation could
significantly impair the functions performed by the NUMAC complex.
And upregulation of SCYL1 indicates adaptive mechanisms to maintain
essential gene expression regulatory functions under pharmacological
stress.

Additionally, the BRAF-MAP2K1-MAP2K2-YWHAE complex was
supported by abundance changes for both BRAF and YWHAE, which
were downregulated (Supplementary Fig. 11F). Intriguingly, BRAF_2
was the only significant downregulated proteoform group, although
BRAF_1 was the proteoform group indicated in the TPP profiling and
pulldown. Extending our previous BRAF proteoform group distinction
hypothesis to a living cell, inhibitory ibrutinib interactions would not
only be expected to target BRAF 1, but also limit undimerized BRAF
incorporation into the RAF signaling axis as BRAF_2. Here, evidence of
this functional impact is supported by the significant upregulation of

ARAF, demonstrating compensatory RAF signaling mechanisms®’
(Supplementary Fig. 11F).

For the COG complexes, the TPP data indicated many sub-
complexes in a similar manner (Fig. 2a, Supplementary Fig. 8). But in
the clinical cohort, COG proteoform groups were indicated much
more specifically. Only COG6 was significantly altered for all proteo-
form groups, and while COG6_1 was highly downregulated (Fig. 5c),
COG6_2 was upregulated. Among other significantly affected proteo-
form groups were COGL_1, COG7_1, COG8 1, and COG3 ], all of which
were upregulated (Fig. 5c), and all of which also had at least one pro-
teoform group in the dataset unchanged with treatment (Supple-
mentary Data 7). This supports pharmacological interference limiting
COG6_1, and functional compensation from other components. Con-
sidering the unique phenotype of glycosylation alterations noted in
patients during ibrutinib treatment®’, these results cumulatively sup-
port that ibrutinib enacts highly specific reshaping of golgi function,
and could inform a framework for future work better annotating COG
complexes and resolving isoform and proteoform group-specific
functions. Together, our findings accentuate the importance of dis-
secting proteoform-specific dynamics to unveil the broader spectrum
of drug mechanisms and cellular adaptation.

Divergent proteoform group profiles in a high splice patient
subgroup with poor response to ibrutinib

In the study that first described the CLL cohort, a patient group was
shown to have poor prognosis and rapid disease progression, termed
ASB-CLL". Generally, this patient group demonstrated reduced abun-
dance and activity of components of B-cell receptor signaling, and
enhanced abundance of components of the spliceosome. These sam-
ples included two patients undergoing ibrutinib treatment, but also
many taken before treatment initiation. Overall, ASB-CLL was less
responsive to ibrutinib in vitro in a coculture test (Wilcoxon, p = 0.01)
(Fig. 6a), although still somewhat heterogeneous. Considering these
results, it was evident that better delineation of proteoform groups
relevant in ibrutinib treatment could improve the characterization of
relevant components in ASB-CLL driving drug resistance.

Spearman correlations were generated for three subsets of the
functional proteoform group abundance data: first, for all samples,
and next for the ASB-CLL group and other samples separately. Among
all samples, no correlations had especially high rho aligning with drug
response, consistent with a heterogeneous population of samples.
Only two results, SYNE2_1 and SMC3 1, achieved statistical significance
both in correlation to drug resistance and in evaluating abundance
variation relative to the null distribution; both are linked to nuclear
architecture and cell cycle progression. And on the other side, only one
functional proteoform group was linked to sensitivity, the RNA poly-
merase Il transcriptional repressor LRRFIP1_1. Therefore, besides gen-
eral indicators of cellular replication rates, stable biological differences
linked to drug response were not well represented in a linear model of
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correlation to drug sensitivity among all samples, and drug resistance
mechanisms in ASB-CLL are likely more specific to this subgroup
rather than extensions of generalizable observations.

Considering ASB-CLL separately identified many high correlations
towards both sensitivity and resistance, suggesting that their shared
biological background could lead to different functional feedback

Membership
o
2

loops and vulnerabilities in a treatment context. Notably, after filtering
for significant abundance variation relative to the functional proteo-
form group null distribution, the best correlating result was also an
ibrutinib binding target identified in the TPP data, BZW2_2 (Fig. 6b).
This protein is known to have several isoforms and to regulate non-
AUG initiated translation, and in the context of cancer, it is known to be
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Fig. 4 | Ibrutinib target validation by pulldown with functional proteoform
group aggregation. a Detected hits where results were in two preparations of
ibrutinib probe without detection in DMSO controls, which were detected with
peptides matching to functional proteoform groups in the pulldown data, showing
overlap with RCH-ACV TPP data. b Functional proteoform group melting behavior
for WASHC2C in RCH-ACYV, separated and labeled by treatment and functional
proteoform group. The melt curves for each condition represent n =10 measure-
ments each, each of the 10 temperature measurements performed in duplicates for
each experimental condition. Melt curves are presented along with the 4PL curve fit

and 95% confidence interval of the fitted model, each point shows the mean frac-
tion non-denatured and error bars show +SD. ¢ Pulldown intensities for each
replicate and dose, adjusted by log,(intensity + 1). Point sizes indicate pAdj, cor-
rected by BH, in the RCH-ACV TPP dataset, which were previously obtained using
NPARC to distinguish melting in the other dataset. The pulldown was performed in
triplicate experimental replicates for each condition. d Mobidblite mappings for
WASHC2C peptides by functional proteoform group, representing disordered
regions. Source data are provided as a Source Data file.

a MYC target’>”* and to suppress MYC translation at its in-frame, non-
AUG initiated isoform’™. In the context of B- and T- cell receptor sig-
naling, previous work has established that broad activation of protein
translation is essential for sustaining signaling”. Intriguingly, links
between BCR signaling, activation of translation, and efficacy of ibru-
tinib have already been well characterized in the context of CLL’,
where it was hypothesized that efficacy of ibrutinib may be in part
linked to its inadvertent MYC modulation, in the sense that MYC
translation is an essential oncogenic mechanism downstream of BCR
signaling in CLL. Therefore, lack of the BZW2_2 functional proteoform
group may demonstrate this previously characterized effect, repre-
senting lack of translational regulation and capacity for MYC onco-
genesis independent of BCR signaling.

Despite this conceptual link to BCR signaling, BZW2_2 is unlikely
to be physically associated with BCR components, and it was more
prominently destabilized in SW13 where BTK and BCR kinases are not
relevant to the lineage background (Fig. 6¢). Additionally, other EIF2
family proteins were also destabilized (Fig. 6d) and indicated as com-
ponents of the EIF2B2-EIF2B3-EIF2B4-EIF2B5 complex in the CORUM
analysis within the SW13 background (Fig. 6d, Supplementary Data 3).
Similarly to BZW2, EIF2 proteins are recruited to non-canonical start
sites, but as translation initiators instead of suppressors”’. Together,
these results suggest a functionally relevant off-target axis for ibrutinib
between similar proteins binding non-canonical translation start sites,
likely to be dependent on underlying protein translation phenotypes
and co-association in complexes, with potential lineage and cancer-
specific effects.

Discussion

This work demonstrates the potential of functional proteoform group
deconvolution to identify new targets of drugs, using ibrutinib as a
case study. Proteoforms can be inferred from untargeted thermal
proteomics data and in relevant cellular contexts by applying our
previous methods?”, and here we illustrate that functional proteoform
groups can also be distinguished with respect to their drug binding
abilities, leveraging the thermal impact of a drug for treatment-specific
proteoform inference. This is supported by independent target indi-
cations in clinical CLL data, and these results enable deeper inter-
pretation of the functional implications of drug activity and pave the
way for identification and annotation of specific proteoforms and the
roles they perform. We expect that functional proteoform group
deconvolution will further expand the range of therapeutically rele-
vant targets and improve the precision of personalized medicine.
Moreover, using functional proteoform group analysis for target
deconvolution could improve our understanding of adverse side
effects, mechanisms of action, mechanisms of resistance, and
polypharmacology.

Our study highlights the possibility that ibrutinib impacts many
more off-targets than previously known, which may converge in their
functional roles and impacted pathways. These results have far-
reaching implications in interpreting the primary and secondary
effects of ibrutinib treatment. For instance, ibrutinib-impacted func-
tional proteoform groups described in our analysis play roles in
mechanisms that may amplify drug efficacy, such as B-cell receptor
signaling, induction of bone marrow egress, and T-cell

immunomodulation. We also uncovered other functions that were
believed to be relevant clinically which may potentially be directly
impacted by ibrutinib, such as Golgi trafficking, glycosylation, and cell
adhesion. Collectively, the extended target list could enable elucida-
tion of the complexities of BTK-independent ibrutinib
immunomodulation.

Additionally, these results provide context for understanding and
addressing multi-causal common effects of clinical importance.
Aspergillosis is a very clinically common secondary infection” with
unclear etiology to explain its high incidence, but which has been
previously linked to endosomal defects®* in addition to immuno-
suppression. Additionally, considering BRAF is activated by RAS-
dependent dimerization®®, this mechanism leads to paradoxical trans-
activation of the pathway during V60OE/K-specific BRAF inhibitor
treatment, which has been identified to cause secondary skin cancers
and general skin toxicities”. A severe toxicity in early ibrutinib trials
was non-melanoma skin cancer, and recent meta-analyses have con-
tinued to reproduce the incidence of this as well as other cutaneous
toxicities®®, which may be linked to proteoform-specific BRAF binding
and paradoxical activation of the downstream pathway. More gen-
erally, our off-targets are consistent with receptor recycling defects, as
previously identified for contributing to key clinically observed ibru-
tinib effects such as lymph node shrinkage and immune cell egress via
modulating CXCR4°°. Together, our results provide a foundation for
examining and responding to mechanisms behind treatment
outcomes.

Although this approach extends the capabilities of functional
proteoform group-specific drug-target deconvolution, it has several
limitations that are worth noting. In general, our functional proteo-
form group inference requires in-depth peptide detection, as well as
significant instrument time and resources, which could potentially be
improved by method optimization. Also, it is inherent to mass spec-
trometry proteomics that purely technical differences could change
the identification and quantification of peptides, which will impact
downstream clustering analysis and proteoform group assignment.
Technical aspects are also especially important given the fragility of
native proteins, where many factors are critical for recapitulating
natural drug interactions, which leads to broad technical challenges in
replication across many methods of drug-target deconvolution®*,
Although we opted to quantify complete melt curves, which enables a
more cautious interpretation of technical aspects and regularity of
melting behavior, alternative melting quantification approaches such
as PISA® could support similar analysis while tailoring for high-
throughput applications. Despite improving quantification of melt
differences, focusing on full melt curve quantification limited our
study’s scope. Results from two cell lines indicated surprising biolo-
gical variability, reducing statistical power, and the true biological
variability between additional contexts may be higher. Future work
could provide a more comprehensive understanding of variability by
addressing inconsistencies when replicating experiments or compar-
ing results across different studies. More specifically, although our
experiments replicated a number of previously reported ibrutinib
targets, we were not able to confirm all of them, most notably other
TEC kinase family members and mutation-associated targets®.
Therefore, tailoring additional experimental setups to capture more
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realistic cellular or tissue environments may be needed to address
additional targets of drug activity. These wider ranging experimental
settings could also promote interpretation of context-specific results
more generally, such as by reconciling the status of the targets which
were not detected in both cell lines in this study or which were not
confirmed from other methodology. This may enable insight into

biological factors, or guide improvements in technical optimization.
We hope that by introducing analytical frameworks for systematic
delineation of functional proteoform groups, we might be able to
achieve more unified results between methodologies, supporting
future work scaling up this concept to have the technical power to
explore systems-level questions.
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Fig. 5 | Ibrutinib treatment effects by functional proteoform group in a CLL
cohort. a F-tests were performed for variance in abundance in the cohort, com-
pared against a null distribution of random re-subsetted membership identities
within-gene symbol proteoform groups, and for melting differences in the RCH-
ACV experiment. Dark points were significant results in this melting test, in SW13, or
across all samples. Colored, labeled points were significant in both analyses.

b WASHC2C_1 abundance in ibrutinib treated or pretreated samples compared to
the rest of the cohort, evaluated using a two-sided Wilcoxon rank sum test with BH
correction for multiple comparisons, pAdj = 0.00805. This effect was not detected
for WASHC2C_2, pAdj = 0.172. This analysis used n = 4 biological replicate ibrutinib
treated or pretreated patients with n =64 biological replicate controls who

received another treatment or were not yet treated. The top and bottom edges of
the box represent the first and third quartiles, with the median indicated by the line
within each box. The whiskers extend to 1.5 times the interquartile range. ¢ Selected
COG complex components with abundance changes during treatment, evaluated
using a two-sided Wilcoxon rank sum test with BH correction for multiple com-
parisons, COG6_1 (pAdj = 4.05 x 10), COG3_1 (pAdj = 0.0446), and COGI_1

(pAdj =0.00479). This analysis used n =4 ibrutinib-treated or pretreated patients
with n =64 controls who received another treatment or were not yet treated. The
top and bottom edges of the box represent the first and third quartiles, with the
median indicated by the line within each box. The whiskers extend to 1.5 times the
interquartile range. Source data are provided as a Source Data file.

Moving forward, we believe that our results and methods offer
valuable insights for the refinement of preclinical research strategies
and rationalize clinical observations. Continued research that extends
these methods and incorporates additional therapeutic agents, cel-
lular contexts, and functional interpretation approaches could
enhance our understanding of drug mechanisms and lead to better-
tailored precision medicine approaches.

Methods

Ethics

All procedures were conducted in accordance with the ethical guide-
lines and regulations approved by the Karolinska Institutet Research
Ethics Committee and adhered to all relevant ethical standards for
research. The collection of samples and clinical data, as previously
published for the same cohort”, was approved by the ethics commis-
sion of the medical faculty of the University of Cologne (13-091), the
Department of Hematology Heidelberg (Ethics vote S-686/2018) and
Etikprovningsmyndigheten (Ethical Review Authority) Dnr 2024-
04186-01. Written consent was obtained from patients according to
the declaration of Helsinki.

Cell cultivation. The childhood B-cell Precursor Acute Lymphoblastic
Leukemia RCH-ACV (RRID: CVCL_1851) cell line was obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
(DSMZ, German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany) and the adrenocortical carcinoma SWI13
(RRID: CVCL_0542) cell line was obtained from American Type Culture
Collection (ATCC). Roswell Park Memorial Institute (RPMI) 1640
(AQmedia, Sigma-Aldrich) supplemented with 10% fetal bovine serum
(FBS, Sigma-Aldrich), 20 mM HEPES (Gibco/Life Technologies), 1 mM
sodium pyruvate (Sigma-Aldrich), 1x MEM non-essential amino acids
(Sigma-Aldrich), and 1x Penicillin-Streptomycin (Sigma-Aldrich) was
used. Cell lines were grown at 37 °C and 5% CO, to a cell density of
~1-2 million cells/mL. Cells were harvested at 500 x g for 3 min and
washed twice with Hank’s Balanced Salt Solution (Gibco™ HBSS, no
calcium, no magnesium, no phenol red).

Cell lysis and protein concentration. RCH-ACV or SW13 cell pellets
consisting of ~200 million cells were thawed on ice and resuspended in
3 mL of a HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid,
Sigma-Aldrich) buffer (10 mM HEPES, 20 mM MgCl,). Cells were sub-
jected to three freeze-thaw cycles in liquid nitrogen and a 37 °C water
bath, respectively, followed by mechanical disruption via syringe
inversion. Protein concentration was determined using the DC protein
assay (Bio-Rad) according to manufacturer-specified instructions.

Lysate preparation and thermal proteome profiling. Aliquots of
700 uL of RCH-ACV or SW13 cell extracts with -2.3 mg protein per mL
were treated with either 100 uM Ibrutinib or equivalent vehicle volume
(DMSO) in duplicate experiments for ten min at 20 °C and with gentle
shaking at 700 rpm. The treated lysates from each condition were
aliquoted into ten 65 L aliquots, and each duplicate experiment was

heated at 10 designated temperatures ranging from 37 to 67°C in
order to denature and aggregate the proteins. The remaining soluble
protein fraction was cleared from the heat-aggregated proteins by
means of centrifugation (40 min, 21,000 x g, 4°C) and the resulting
soluble protein fractions were prepared for liquid chromatography
with tandem mass spectrometry (LC-MS/MS) analysis. Samples pro-
ceeded to digestion, desalting and mass-spectrometry proteomics
data acquisition. First, the samples were diluted to contain 50 mM
triethylammonium bicarbonate (TEAB, Sigma-Aldrich), 0.1% sodium
dodecyl sulfate (SDS, Sigma-Aldrich) and 5mM TCEP (tris(2-carbox-
yethyl)phosphine, Sigma-Aldrich). Reduction was performed at 65°C
for 30 min. The samples were then cooled down to room temperature
and alkylated with 15 mM of chloroacetamide (CAA, Sigma-Aldrich) for
30 min. The proteins were digested overnight at 37 °C with a 1:70 Lys-C
(Nordic Biolabs (Wako Chemicals GmbH)) to protein ratio and con-
secutively overnight at 37 °C with Trypsin (Thermo Fisher Scientific) at
a 1:30 enzyme to protein ratio. The digested peptides were labeled
using 10-plex tandem mass tag (TMT, Thermo Fisher Scientific), with
labeled sets established using one 10-plex set for each corresponding
10 point melting curve and using the same amount of respective label
for each sample. Labeling was performed according to the manu-
facturer’s instructions but with 2-h incubation before quenching the
TMT labeling reaction. Labeling efficiency was determined by LC-MS/
MS before pooling the TMT-labeled samples.

Desalting of peptides. Desalting was performed using solid-phase
extraction using SPE strata-X-C columns (Phenomenex). Prior to use,
columns were conditioned by first wetting them with 1 mL of 100%
acetonitrile (MeCN, Sigma-Aldrich), followed by a second wetting step
using 1 mL of an 80% MeCN solution containing 0.5% formic acid (FA,
Sigma-Aldrich). Next, columns were equilibrated by passing through
3 mL of 0.1% trifluoroacetic acid (TFA, Sigma-Aldrich). Subsequently,
the samples were acidified to a pH range of 2-3 using FA before being
loaded onto the cartridges. After sample loading, columns were
washed and desalted by passing 3 mL of 0.1% TFA through them. This
was followed by an additional wash with 0.25 uL of 0.5% FA. Peptides
were then eluted from the columns using two 500 pL aliquots of 80%
MeCN and 0.5% FA. Eluted peptides were subsequently dried using a
SpeedVac (Thermo Fisher Scientific).

High-resolution isoelectric focusing (HIiRIEF) of peptides. Prior to
LC-MS/MS analysis, 300 pg of the TMT-tagged peptide pools were pre-
fractionated using high-resolution isoelectric focusing (HiRIEF)*.
Sample pools were subjected to peptide IEF-IPG (isoelectric focusing
by immobilized pH gradient) in the pl range 3-10. Dried peptide
samples were dissolved in 250 L rehydration solution containing 8 M
urea, and allowed to adsorb to the gel bridge strip by swelling over-
night. The 24 cm linear-gradient IPG strips (GE Healthcare) were
incubated overnight in an 8 M rehydration solution containing 1% IPG
pharmalyte pH 3-10 (GE Healthcare). After focusing, the peptides were
passively eluted into 72 contiguous fractions, first with MilliQ water,
then with 35% MeCN, and lastly with 35% MeCN +0.1% FA, using an
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Fig. 6 | Ibrutinib ex vivo sensitivity associations in ASB-CLL. a Proportion of live
cells in CLL samples, showing 40 nM ibrutinib response normalized to solvent
control, obtained from ref. 71 and used as a baseline for correlation comparisons.
This analysis used n =12 biologically independent ASB-CLL samples compared
against n = 56 biologically independent controls. A two sample Wilcoxon rank sum
test is shown, p = 0.01. The top and bottom edges of the box represent the first and
third quartiles, with the median indicated by the line within each box. The whiskers
extend to 1.5 times the interquartile range. b BZW2_2 and BZW2_1 functional pro-
teoform group abundances were correlated to coculture viability values. Spearman
rho values and their 95% confidence interval (shaded gray area) are displayed in
each plot. The p value for the only significant result, between BZW2_2 and cocul-
ture response in ASB-CLL samples, was 0.0259, supporting that the -0.65 Spear-
man result is a plausible explanation rather than a null model where the correlation
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is zero. ¢ Functional proteoform group melting behavior for BZW2 proteoforms.
The melt curves for each condition represent n =10 measurements each, each of
the 10 temperature measurements performed in duplicates for each experimental
condition. Melt curves are presented along with the 4PL curve fit and 95% con-
fidence interval of the fitted model, each point shows the mean fraction non-
denatured and error bars show +SD. d Functional proteoform group melting
behavior for EIF2B5 proteoforms. The melt curves for each condition represent
n=10 measurements each, each of the 10 temperature measurements performed
in duplicates for each experimental condition. Melt curves are presented along
with the 4PL curve fit and 95% confidence interval of the fitted model, each point
shows the mean fraction non-denatured and error bars show +SD. Source data are
provided as a Source Data file.
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in-house constructed IPG extractor robotics device (GE Healthcare Bio-
Sciences AB, prototype instrument) into a 96-well plate (V-bottom,
Greiner product #651201). The resulting fractions were then dried in a
SpeedVac and kept at 20 °C.

LC-MS/MS runs of the HIiRIEF fractions. Online LC-MS/MS was per-
formed using a Dionex UltiMate™ 3000 RSLCnano System coupled to
a Q-Exactive-HF mass spectrometer (Thermo Fisher Scientific). Each
fraction was subjected to MS analysis. Samples were trapped on a C;g
guard-desalting column (Acclaim PepMap 100, 75 um x 2 cm, nanoVi-
per, Cis, 5um, 100 A), and separated on a 50 cm long C18 column (Easy
spray PepMap RSLC, C;g, 2 um, 100 A, 75 pm x 50 cm).

Buffers used: nano capillary solvent A: 95% H,0, 5% DMSO, 0.1%
FA; solvent B: 5% H,0, 5% DMSO, 95% MeCN, 0.1% FA.

At a constant flow of 0.25 pl min™, the curved gradient went from
2% B upto 40% B in each fraction, followed by a steep increase to 100%
B in 5 min. FTMS master scans with 60,000 resolution and mass range
of 300-1500 m/z were followed by data-dependent MS/MS scans
(35,000 resolution) on the top 5ions using higher energy collision
dissociation at 30% normalized collision energy. Precursors were iso-
lated with a 2 m/z window. Automatic gain control (AGC) targets were
1E6 for MS' and 1ES for MS% Maximum injection times were 100 ms for
MS! and 100 ms for MS2 Dynamic exclusion was set to 30 s duration.
Precursors with unassigned charge state or charge state 1 were
excluded. An underfill ratio of 1% was used.

Pulldown in lysate. To ensure the inference of binding results is
appropriate, an ibrutinib pulldown was performed using the RCH-ACV
cell line, with results performed in triplicate and two probe con-
centrations. The lysates were treated with DMSO, 10 uM, and 2 mM of
an ibrutinib-probe (PF-06658607, Sigma-Aldrich). For each treatment,
samples were incubated for 10 minutes at 20°C and with gentle
shaking at 700 rpm. Afterward, lysates were centrifuged at 21,000 x g
for 1-h at 4°C. A premix containing Azide-Biotin (Jena Bioscience)
(10 mM in DMSO), TCEP (52 mM, 15 mg/mL in ddH,0), THPTA (tris-
hydroxypropyltriazolylmethylamine, 1.667 mM in H,0), and CuSO,
(50 mM) was added to each sample. The samples were incubated at
room temperature for 1-h. Post-incubation, the samples were treated
with cold acetone for protein precipitation, stored overnight at —20 °C,
and subsequently subjected to centrifugation at 21,000 x g for 15 min
at 4 °C. Proteins were pelleted and washed twice with cold methanol.
The pellets were resuspended using a probe sonicator and treated with
0.2% SDS in Dulbecco’s phosphate buffered saline (DPBS, Gibco) with
the addition of 0.6 M urea (Sigma-Aldrich). Protein concentration was
determined, and equal amounts of protein were transferred to Protein
LoBind tubes containing prewashed (ImL 0.2% SDS in DPBS) neu-
travidin beads (Sigma-Aldrich). Samples were incubated for 1-h under
continuous mixing, followed by washing with 0.2 % SDS in DPBS, 6 M
urea in ddH,0, and DPBS. Following this step, samples proceeded to
on-bead digestion, desalting and mass-spectrometry proteomics data
acquisition. The data search was performed as described below.
Results were considered significant if they were replicated in at mini-
mum two out of three ibrutinib treated preparations without DMSO
detection. Results detected in both ibrutinib and DMSO pulldown
samples are not discussed or included in the hits count, but are
included in the supplementary data 5 if they were replicated in at least
two preparations.

On-bead digestion. The beads were resuspended in a buffer con-
taining 2M urea in 50mM TEAB and samples were subjected to
reduction and alkylation steps with 50 mM TEAB, 0.1% SDS, and 5 mM
TCEP. 1:40 Lys-C enzyme (Nordic Biolabs (Wako Chemicals GmbH))
was added, and samples were incubated overnight at room tempera-
ture. Trypsin digestion was performed at a 1:70 enzyme-to-protein
ratio for an 8-h incubation at 37 °C.

LC-MS/MS runs of the pull-down. Online LC-MS was performed using
a Dionex UltiMate™ 3000 RSLCnano System coupled to a Q-Exactive-
HF mass spectrometer (Thermo Fisher Scientific). Samples were trap-
ped on a C;g guard-desalting column (Acclaim PepMap 100, 75 pm x
2 cm, nanoViper, Cig, 5um, 100 A), and separated on a 50 cm long C;g
column (Easy spray PepMap RSLC, Cyg, 2 um, 100 A, 75 pm x 50 cm). A
3-h gradient was run with the following gradient profile: 0-6 min: 3%
12 min: 6% 185min: 37% 190 min: 42% 192 min: 99% 200 min: 99%
203 min: 3% 213 min: 3%.

Detection Settings: First scan: 70,000 resolution, 1IE6 AGC target,
100 ms max IT, mass range 300-1600 m/z. Data-dependent MS/MS:
35,000 resolution, 1E5 AGC target, 150 ms max IT, top 5 ion selection,
2 m/z isolation window, 1E3 min AGC target, 30 s dynamic exclusion.

Buffers Used: NanoA: 95% H,0, 5% DMSO, 0.1% FA, NanoB: 90%
MeCN, 5% DMSO, 5% H,0, 0.1% FA LoadA: 97% H,0, 3% MeCN, 0.1% FA
LoadB: 95% MeCN, 5% H,0, 0.1% FA.

Mass spectrometry data search. Raw mass spec outputs were pro-
cessed for quality control and quantified with a standardized pipeline,
ddamsproteomics version 1.0.2, openly accessible at: https://github.
com/lehtiolab/ddamsproteomics/releases/tag/v1.0.2.

The following adjustable parameters were specified: --genes
--hirief --fractions --symbols --isobaric tmtlOplex --denoms ‘DMSO01:126
DMS02:126 IBRUTINIB2:126 IBRUTINIB1:126'.

The mapping database was Homo_sapiens.GRCh38.92.

Functional proteoform group identification. Quantitative reporter
ion signals for PSMs were summarized to peptides by summation.
Reporter ion signals of all individual temperatures were normalized
using variance stabilizing normalization and converted to fold changes
relative to the first temperature. Next, a graph for each gene symbol
was created connecting all peptides (vertices) with weights (edges)
corresponding to their similarity in melting profile, to assign similar
melting peptides. The similarity was computed using weighted Eucli-
dean distance, according to the formulas as described”. Obtained
graphs were then used for community detection using the Leiden
algorithm. Only gene symbols for which at least ten peptides were
identified and with at least two peptides per sample were used as input
for graphs (a detected community had to be supported by at least
three peptides to be accepted to ensure that outlier peptides did not
affect robust functional proteoform group identification). Peptides
mapping to gene symbols for which these criteria were not fulfilled
were grouped to single proteoform groups, and peptides mapping to
gene symbols that were included in the community detection were
assigned to proteoform groups if the modularity of the detected
communities was higher than 1x10™ and the peptide ambiguity ratio
was lower than 0.5 (for peptides mapping to multiple genes, it is cal-
culated as the number of ambiguous peptides divided by the sum of
the number of gene-specific and ambiguous peptides). Modularity was
computed using the function modularity() of the igraph R package.
Through the assignment of peptides to communities, functional pro-
teoform groups for each gene symbol were created. Summarization to
proteoform groups was performed by summation of non-normalized
raw peptide data assigned to individual communities. Obtained func-
tional proteoform group signal intensities were then normalized per
temperature using variance stabilizing normalization, and relative fold
changes to the lowest measured temperature were formed.
Differential melting curve analysis was performed using NPARC,
as previously published and described in the context of this
analysis”*. NPARC compares protein stability between treatment
groups by fitting two competing models to the melting curve data: a
null model that assumes no difference between conditions and an
alternative model that allows for condition-specific differences in
protein thermal stability. Sigmoidal melting curves are fitted to the
data using smooth functions. An F-statistic is calculated to quantify the
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relative improvement of the alternative model over the null model. P-
values are computed based on an approximate F-distribution with
effective degrees of freedom estimated from the data, and multiple
testing correction is performed using the Benjamini-Hochberg
method. Each comparison was filtered to consider only full dupli-
cated melting curves in each treatment group.

Sequence composition profiling. Canonical amino acid sequences
were fetched from the Swissprot assembly on Uniprot using the Rcurl
package (5.2.0) (see: https://github.com/isabelle-leo/ibrutinib_
proteoforms, the github repository for the study). Sequences for
each matched gene symbol were evaluated as ibrutinib targets using
NPARC?*, and were included if they were indicated by any or all
lineage NPARC test with p<0.05. The proportion of sequences was
compared to the proportion in the detection background for the full
experiment. Proportional tests using 2-sample test for equality of
proportions with Yates’ continuity correction were performed
according to ref. 85.

Over-representation and network topology analysis. Over-
Representation Analysis (ORA) and Network Topology-based Analy-
sis (NTA) were performed using the R package WebGestaltR, version
0.4.6. The NTA was executed utilizing the WebGestaltR function, and
Biological General Repository for Interaction Datasets (Biogrid) ana-
lysis was obtained utilizing the Homo Sapiens network_PPI_BIOGRID
enrichment database, as included in the package. Gene symbols with
an adjusted p-value (pAdj) below 0.05 were used as the genes of
interest, with pAdj obtained from NPARC analysis of all melt curves
and including only results with eigth full melting curves. The resultant
network was processed with the Network Retrieval_Prioritization
method. Data was output for the top 100 results. Protein complex
enrichment was performed using ORA with the Comprehensive
Resource of Mammalian Protein Complexes (CORUM) database, also
retrieved in the R package as the Homo Sapiens network CORUM
enrichment database. The full list of unique gene symbols that had 8
full melting curves were used as reference genes, and gene symbols
with significant thermal melting changes as identified with NPARC
were used as the hits input. Significance was adjusted (pAdj) using the
FDR method Benjamini-Hochberg, BH, with a threshold of 0.05. A
minimum number of three gene symbols in each CORUM complex
category was required when assembling the input database. Multiples
of gene symbols representing different functional proteoform iden-
tities were considered separately, in both the enrichment list and the
background list, enabling the analysis to consider the background
chance of a gene symbol’s random identification accurately, and to
prioritize cases where proteoform groups under the same gene sym-
bol category share meaningful engagement across multiple measured
protein contexts.

CLL clinical data processing. The dataset includes 68 independent
patient samples, and 72 total samples including replicates, outlined in
supplementary data 6. The HiRIEF data was obtained from PRIDE,
accession: PXD028936 [https://www.ebi.ac.uk/pride/archive/projects/
PXD028936]. The PSM values were VSN normalized by set. Then, the
PSMs were summed by the following three parameters: by gene sym-
bol, by functional proteoform group (for matched peptides), and by
random functional proteoform group (shuffling only the membership
identification, also for matched peptides). When selecting random
peptides, the functional proteoform group membership identifier was
scrambled for the same set peptides, maintaining the proportion of
matched peptides per gene symbol to be comparable as possible to
the functional proteoform group summed data. After summation, the
data was log-transformed and median centered. The random peptide
data set was used as a null model in f-tests to evaluate functional
proteoform group variation and underlying noise in peptide-level data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The mass spectrometry proteomics data and processed clustering
analysis data have been deposited to the ProteomeXchange Con-
sortium via the PRIDE partner repository with the dataset identifier
PXD047187. Annotations of proteins were based on the Ensembl 92,
GRCh38.p13 human genome assembly released in April 2018. Source
data are provided in this paper as Source Data Files. Source data are
provided with this paper.

Code availability

All code used to perform the computational analyses described and to
reproduce the figures is hosted at: https://github.com/isabelle-leo/
ibrutinib_proteoforms. This code may be updated at a future date. The
code has also been deposited in zenodo: https://doi.org/10.5281/
zenodo.14134715. And the pipeline used to perform the DDA-MS
search is available on both github, https://github.com/lehtiolab/
ddamsproteomics/releases/tag/v1.0.2, and zenodo, https://doi.org/
10.5281/zenodo.14134606.
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