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% Check for updates Silicon photonics enables the construction of chip-scale spectrometers, in

which those using a single tunable interferometer provide a simple and cost-
effective solution. Among various tuning mechanisms, electrostatic MEMS
reconfiguration stands out as an ideal candidate, given its high tuning effi-
ciency and ultra-low power consumption. Nonetheless, MEMS devices face
significant noise challenges arising from their susceptible minuscule compo-
nents, adversely impacting spectral resolution. Here, we propose a distinct
paradigm of spectrometers through synergizing an easily-fabricated MEMS-
reconfigurable low-loss waveguide coupler on a silicon photonic chip and a
convolutional autoencoder denoising (CAED) mechanism. The spectrometer
offers a 300 nm bandwidth and a reconstruction resolution of 0.3 nm in a
noise-free condition. In a noisy environment with a signal-to-noise ratio as low
as 30 dB, the reconstruction resolution of the interferograms processed by the
CAED exhibits an enhancement from 1.2 to 0.4 nm, approaching the noise-free
value. Our technology is envisaged to provide a powerful and cost-effective
solution for applications requiring accurate, broadband, and energy-efficient
spectral analysis.

Optical spectrometry is a highly effective analytical tool employed in
both academic and industrial areas'. Its applications encompass
material analysis, medical diagnostics, and environmental
monitoring®>. To cater to the demands of portable, handheld, and
wearable applications, miniature spectrometers are rapidly
advancing®’. Chip-scale spectrometers based on silicon (Si) photo-
nic integrated circuits (PICs) boast several advantages, including
CMOS compatibility and high integration level, making them an
appealing option for developing high-performance miniature

spectrometers®’. Currently, most on-chip spectrometers utilize
planar dispersive optics, narrowband filters, and Fourier transform
(FT) interferometers'®™™. Computational spectrometry has recently
emerged as a new paradigm, utilizing computational methods to
approximate or reconstruct the incident spectrum from pre-
calibrated spectral response information'®. Computational spectro-
meters usually comprise arrays of photonic structures such as pho-
tonic crystal slabs”, photonic crystal nanobeam cavities, and
stratified waveguide filters’. The photonic structure arrays and
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corresponding detector arrays significantly increase the complexity,
footprint, and cost of the PICs. Over the past few years, several
spectrometers have been developed that make use of solely a single
tunable filter or interferometer paired with a single detector®?.
These devices offer a simpler, smaller, and more cost-effective
alternative for computational spectrometry.

The tunability in Si PICs is typically realized by thermo-optic
modulation and free carrier injection, both relying on the change of
the Si refractive index*>*. However, because of the weak perturbation
of the Si refractive index, these methods frequently result in high
power consumption®. In comparison, microelectromechanical sys-
tems (MEMS) attain modulation by spatially displacing photonic
components, consequently improving the modulation efficiency and
reducing the power consumption®?, Among a variety of MEMS
actuation mechanisms, electrostatic actuation stands out due to its
ultra-low standby power and reconfiguration energy consumption®.
Therefore, reconfiguration using electrostatic MEMS actuation offers a
simple, effective, and energy-efficient approach for the construction of
on-chip spectrometers.

Nonetheless, the presence of noise detrimentally affects the
quality of output generated by actuators used for converting infor-
mation to physical, chemical, or biological effects?®. MEMS actuators
are particularly susceptible to noise issues due to the movable struc-
tures and the small sizes of their electronic, mechanical, and other
components®?°. The spectral resolution of the spectrometer depends
on both the reconstruction algorithm and the measurement noise®. In
very noisy environments, conventional algorithms frequently produce
significant distortion of the reconstructed spectrum®. Therefore, it is
important to remove noise effects, especially for MEMS-enabled
spectrometers. However, it is challenging due to intricate noise
mechanisms. The application of deep learning technologies is nowa-
days considered as a potentially promising solution for this problem in
spectrum reconstruction®’**, Autoencoder is a deep learning tech-
nology that can adaptively learn the structure of data and represent
data efficiently®*°, Autoencoders have demonstrated markable bene-
fits for molecular property prediction”, image segmentation®®, and
quantum systems®’. Furthermore, they have been proven to be effec-
tive in reducing noise in single-cell RNA sequencing and ultrasonic
signals*®*, Denoising autoencoders, because of their weak constraints
from noise generation mechanisms, show potential for reducing
MEMS noise™.

In this paper, we present a paradigm of computational spectro-
meters based on the synergy between electrostatic MEMS modulation
and convolutional autoencoder denoising (CAED) mechanism. The
device features a waveguide coupler reconfigured by an integrated
MEMS cantilever actuator. Through a strategic reduction of the MEMS
tuning range by revealing its counterintuitive relationship with the
reconstruction performance, the device yields high fabrication effi-
ciency and optimum reconstruction resolution. On top of the ultra-low
power consumption enabled by the electrostatic MEMS tuning, a CAED
strategy is proposed and utilized to minimize the side effects of the
associated MEMS noise on the reconstruction performance. The
autoencoder is trained on a diverse dataset of chip-collected inter-
ferograms, achieving optimal noise reduction with a resolution
approaching the noise-free level. Spectrum reconstruction results
demonstrate the effectiveness of CAED in mitigating noise effects with
a low signal-to-noise ratio (SNR) of 30 dB, resulting in the improve-
ment of the resolution from 1.2 to 0.4nm. The proposed CAED-
facilitated MEMS spectrometer presents a promising solution for
broadband high-resolution spectral analysis in applications demand-
ing precision and power efficiency. The utilization of advanced deep
learning techniques of denoising autoencoders not only improves the
performance of MEMS spectrometers but also presents a universal
solution for mitigating noise-related challenges in computational
spectrometers with calibration matrices.

Results

Design and architecture

Our proposed denoising-autoencoder-facilitated MEMS computa-
tional spectrometer consists of a MEMS-enabled computational spec-
trometer (MECS) and a CAED mechanism. The concept of the
computational spectrometer here is analogous to FT spectrometers
and centers around the generation of interferograms*’. The inter-
ferograms at the output port are functions of received signal intensity
over time and are converted to a wavelength-dependent spectrum via
computational algorithms. The MECS is designed as a cantilever-
tunable waveguide coupler, consisting of a straight waveguide and a
cantilever waveguide (Fig. 1a). Both waveguides in the coupling region
are supported by a single-sided structure, while the straight waveguide
outside the coupling region is supported by a two-sided structure, thus
defining the movable and stationary parts. When applying a bias vol-
tage V, the cantilever waveguide can be electrostatically pulled down
while the straight waveguide remains immobile. A vertical coupling
gap h will be induced between the two waveguides, subsequently
resulting in a change in the effective index difference between the
symmetric mode (SMO) and the asymmetric mode (SM1) of the
waveguide coupler. The effective index difference An is a function of
both the voltage V and the wavelength A, thus can be represented by
An(A, V). According to the coupled-mode theory, the output power of
the straight waveguide can be described as*:

P,(A, V)=A(A)cos? <"7L An(A, V)> o))

where A(1) is the spectrum of input light, L is the coupling length.
When we apply time-variant bias voltage and thus time-domain
modulation of the vertical gap A, an interferogram P (A, V) will be
generated at the output port for each wavelength, as depicted in
Fig. 1b. Subsequently, we apply spectrum reconstruction algorithms to
the interferogram data, and the reconstructed spectrum is shown in
Fig. 1c. The existence of noise in the interferograms poses a challenge
in reconstructing the spectrum with closely adjacent peaks, thereby
limiting the reconstruction resolution.

To address this problem, we propose a CAED mechanism. The
architecture of the CAED is illustrated in Fig. 1d, which consists of an
encoder £ for compression and a decoder D for reconstruction. The
autoencoder enables denoising by learning a meaningful representa-
tion of input data through the compression and reconstruction pro-
cess. The encoder £ learns a compact representation of input
interferogram data, filtering out the irrelevant information from the
input, forcing the model to retain only the essential features for
reconstruction, and then the decoder D reconstructs the clean input.
The process can be expressed as:

Py(A, V)=(Do &P, V) 2

where o denotes the sequential application of functions. Convolutional
autoencoders, utilizing convolutional layers, prove exceptional profi-
ciency in capturing spatial structures and are particularly effective for
denoising tasks related to images or spatiotemporal data****. The
interferogram after denoising is shown in Fig. 1le, and the incident
spectrum can be accurately reconstructed from it, even when the two
peaks are closely adjacent (Fig. 1f). In other words, the spectrum
reconstruction performed to P4 improves the noise robustness of
the MECS.

MEMS spectrometer

We first work on the principle of the proposed MECS. As shown in
Fig. 2a-c, the device is fabricated on a silicon-on-insulator (SOI) wafer
that consists of a 0.22 pm thick silicon device layer and a 2 pm thick
buried oxide (BOX) layer. Both the straight and cantilever waveguides
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Fig. 1| Conceptual illustration of the spectrometer. a Schematic of the MEMS-
enabled computational spectrometer (MECS) featuring a waveguide coupler
reconfigured by an integrated electrostatic MEMS cantilever actuator. A spectrum
is coupled into the MECS chip for analysis. b Interferogram obtained at the MECS

b c
— — Interferogram without noise Input spectrum
—— Interferogram without denoising — Spectrum without denoising
Q
= | 2z
@ =
2 « @
£ [5)
= €
Computatioal
reconstruction
Volt: v =
oltage Wavelength
—
e f
—— Interferogram without noise Input spectrum
—— Interferogram with denoising — Spectrum with denoising
Q
2 >
2 2
2 L
IS =
Voltage V Wavelength

output port without denoising. ¢ Spectrum reconstruction result without denois-
ing. d Architecture of the convolutional autoencoder denoising (CAED) mechanism
used for interferogram denoising. e Interferogram with CAED. f Spectrum recon-
struction result with CAED.

are 0.35 um wide for single transverse-electric (TE) mode propagation.
The waveguide coupler is designed with an initial coupling gap of
200 nm and a coupling length of 2030 pm. When a bias voltage is
applied between the cantilever and the silicon substrate, electrostatic
attraction induces downward displacement of the cantilever wave-
guide, while the straight waveguide remains stationary due to insula-
tion grooves, as shown in Fig. 2d.

As illustrated in Fig. 2e, the coupling between the cantilever and
straight waveguides can be understood by the interference of two
supermodes (SMO and SM1) formed in the waveguide coupler. The
vertical coupling gap h, in conjunction with the wavelength A, defines
an effective index difference An(A, h) between SMO and SM], i.e.,
An(A, h)=ny(A, h) — n,(A, h). Specifically, An(A, h) can be approximated
by a polynomial function:

An, k) ~ (al +ad+ a3/12> (b1 +byh + byl +b4h3) =1 -f,(h)
3)

This approximation is validated using numerical calculations (see
Supplementary Note 1). The polynomial approximation can be fitted
with a 99.72% R-squared value. A is a function of the applied bias vol-
tage V and can be approximated as:

h(V) = ¢+, V+c3V2+c, V2 “)

We also validate this approximation using numerical calculations
(see Supplementary Note 2) and achieve a good fitting with a 99.95% R-

squared value. By combining Eqs. (1), (3), and (4), the output power of
the proposed spectrometer can be given as:

PO(A, V) =A(/1)C052 <”Lf1(/l) /{2(’1(1/))) (5)

For our designed waveguide coupler with a certain coupling
length L, an interferogram can be obtained at the output port by
applying a time-variant bias voltage, using a light beam with a wave-
length of A.

We investigate the relationship between the device tuning range
and the spectral reconstruction performance using correlation ana-
lysis (see Supplementary Note 3 and Fig. S3). We find that the fully
decoupled condition beyond a certain range leads to a larger self-
correlation width, indicating impaired reconstruction resolution.
Therefore, we adopt a moderately decoupled condition, which not
only guarantees satisfactory spectral resolution but also reduces the
required tuning range to a level achievable by the release of the BOX
layer*®. This approach significantly simplifies the device configura-
tion and fabrication process. Other attempts, such as employing a
trapezoidal supporting structure instead of subwavelength grating
for the suspended waveguides, possess lower fabrication restrictions
and improved wavelength scalability (see Fig. S4). Using a straight
waveguide as the bus waveguide, instead of the traditional direc-
tional coupler, reduces propagation loss and improves the SNR.
Additionally, edge couplers are utilized to enlarge the device band-
width (see Fig. S5). The static transmission spectrum and the fre-
quency response are provided in Supplementary Note 4. All these
attempts contribute to an enhanced, easy-to-fabricate, and large-
bandwidth MEMS spectrometer.

Spectrum reconstruction

Based on the interferograms obtained from the MECS, the spectrum
can be reconstructed as follows. We first collect a matrix Y that
indicates the spectral response of the device at each wavelength and
each bias voltage. Interferograms for wavelengths from 1.3 to 1.6 pm
(at a step of 0.1nm) are acquired by applying a sequential bias vol-
tage ranging from 0 to 29.9 V. The MEMS cantilever, measured 33 pm
in length, possesses an estimated electrostatic pull-in voltage
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Fig. 2 | MECS and spectrum reconstruction. a Overall structure of the MECS on a
silicon-on-insulator (SOI) wafer. b Front end of the waveguide coupler. ¢ Waveguide
coupling region. d Downward displacement of the MEMS cantilever and the inte-
grated cantilever waveguide under applied bias voltage. e Mode profiles of the
waveguide coupler under displacement. f Calibration matrix P of the MECS. The
wavelength range is swept in a 0.1 nm high resolution, and 64 steps of DC bias

Voltage (V)

voltage are gradually applied to the MEMS actuator. g Calculated spectral self-
correlation function C(AA) with a self-correlation width 61 of 0.28 nm. h Absolute
value of the averaged cross-correlation between one specific channel and all the
other channels. i Several reconstructed single-wavelength spectra over the 300 nm
bandwidth. j Average tuning power required to reach the corresponding applied
voltages. k Static power required to hold at the corresponding voltages.

of 34.3 V (see Supplementary Note 2). Due to the small displacement
of the cantilever at low voltage levels, which results in a
limited optical response, a higher voltage increment is chosen at
lower bias voltages, with 64 steps in total. Thus, the m-by-n matrix Y
now has dimensions m=64, n=3001, where m is the number of
bias voltages, and n is the number of wavelengths. As the laser
intensity, edge coupler efficiency, and detector responsivity vary at
different wavelengths, the 3001 elements in each row of the
matrix Y need to be normalized to cancel out these wavelength-
dependent testing system features. The normalization vector
W= [w, w,, m,w,,]T is the transmission spectrum of a reference
straight waveguide on the same chip and with the same design as that
of the MECS. Therefore, the calibration matrix P of our spectrometer
can be given as:

P=Y~diag(wf1, wy?, "vwﬁl) ©)

where diag represents the diagonal matrix form. Here, each column of
P (as shown in Fig. 2f) represents the interferogram of the corre-
sponding wavelength.

The performance of a spectrometer is expected to achieve two
properties: (i) The spectral response at each sampling channel has
diverse features, so that the correlation length in the wavelength span
can be small to provide high spectral resolution; (ii) The transmission
spectra for any two sampling channels should be very different, i.e.,
orthogonal, to provide a transmission sampling matrix with a large
rank’. Spectral self- and cross-correlations are calculated from the
calibrated matrix P and shown in Fig. 2g, h (see more details in Sup-
plementary Note 5). The self-correlation width, 84, is read as 0.28 nm,
providing an estimation of the spectral resolution. The low cross-
correlation approaching almost O indicates that the spectra of these
sampling channels contain very diverse features, which proves the
effectiveness of our designed time-domain modulation channels.
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Any output interferogram I, corresponding to a polychromatic
signal represented by a column vector R, can be expressed as:

I=P.R @)

Thereby, the incident spectrum R can be determined from the
interferogram I by solving the regularized regression problem, which
involves using inadequate constraints (i.e., the I with a size of 64) to
infer the R in a size of 3001. To specify a unique solution, the under-
constrained system can be solved by using the equation below:

ming {1 — P- (R, +Ry)[3 +a[Ry |, + BIR, (I3} ®)

where R; and R, denote the discrete and continuous component of R,
respectively. a and B denote the regularization parameters that
embody the intrinsic characteristics of the spectrometer. The optimal
values of & and S8 are determined via cross-validation analysis®. Using
Eq. (8), it is feasible to reconstruct a spectrum of arbitrary shape
without specific knowledge of spectral contents (see more discussions
on the reconstruction method in Supplementary Note 6). Our model
can accurately reconstruct an input single-wavelength spectrum with
an accuracy of +0.1nm over the entire working wavelength range
(300 nm bandwidth). Figure 2i presents the reconstruction of several
single-wavelength spectra across the whole bandwidth.

We characterize the device tuning energies at different applied
voltages using the method described in Ref. 27. The average tuning
power is derived as the tuning energy divided by the response time and
plotted in Fig. 2j. Even at the maximum applied voltage of 29.9V, the
average tuning power is less than 70 pW. Additionally, the capacitor
nature of the electrostatic MEMS actuator allows nearly zero standby
power consumption, as measured and shown in Fig. 2k.

Noise-free reconstruction and noise analysis

Before performing the denoising of MECS, we first determine the
noise-free reconstruction resolution for dual-wavelength spectra as a
reference. With noise present, an interferogram I consists of two
components, i.e., the actual interferogram I, and the noise inter-
ference e:

I=I,+e )

As a result of the stochastic nature of noise, the interferogram of
an identical light beam varies with each passage through
the same waveguide coupler. Compared to the interferogram
I, =1, +e; recorded during the calibration, the same interferogram
recorded during the spectrum reconstruction can be expressed as
I,=1,+e,=1;, — e, +e,. Since the absolute value of noise is hard to be
quantitated, we take the interferogram recorded during the calibration
as a reference. The noise in the interferogram during the subsequent
spectrum reconstruction is considered as the relative value
(Ae=e, —e;) with respect to this reference. The interferogram
recorded during the calibration is referred to as noise-free (Ae=0) in
the following content.

As verified by our previous work, a dual-wavelength interferogram
can be considered as the linear superposition of two single-wavelength
ones®, Therefore, the noise-free dual-wavelength interferogram can
be obtained by weighted summation of any two column vectors (i.e.,
single-wavelength interferograms with a wavelength interval of AA) in
the calibration matrix P, where the weights account for the realistic
nonideality of different amplitudes of two laser sources. The spectrum
reconstruction results for the synthesized dual-wavelength inter-
ferograms are shown in Fig. 3a. Figure 3b, c provide a zoom-in view of
the reconstructed spectrum when AA is 0.2 and 0.3 nm, respectively.
The reconstruction resolution is defined by the minimum resolvable
spacing between the two wavelengths, observed when the

reconstructed spectrum closely matches the input spectrum. In order
to quantify the reconstruction accuracy, here we utilize the widely
adopted metric named relative error &, which is defined as':

IR —RJ|,
e=— 2 10)
L

where R and R are the input and reconstructed spectrum, respectively.
The calculated ¢ in Fig. 3b, c indicates that distinguishing between two
peaks with a separation of less than 0.2 nm is challenging, and the
noise-free reconstruction resolution of the spectrometer is ~0.3 nm.
However, in practical scenarios, the measured interferograms are
inevitably influenced by noise, thus worsening the reconstruction
resolution. In fact, due to their tiny and movable components, sources
of noise in MEMS devices are quite diverse, including thermal noise,
shot noise, 1/f noise, and others?. In Supplementary Note 7, we analyse
the significant effects of thermal and shot noises on cantilever dis-
placement. Figure 3d illustrates the noise-induced floating displace-
ments of the cantilever waveguide, which impose noise on the
measured interferograms. After the calibration matrix collection, the
interferograms are measured by the MECS again for 1000 wavelengths
within the bandwidth. Then, we calculate their relative SNR, which is

defined as 10lg Ik 1>

I, -1, 2
from 30 to 55 dB, as shown in Fig. 3e. To investigate the impact of noise
on the reconstruction resolution, we apply white noise with the highest
noise level corresponding to 30 dB SNR to 20 randomly selected dual-
wavelength interferograms. The spectrum reconstruction resolution
falls in the range of 0.8-1.2 nm, which is significantly worse than the
noise-free value of 0.3 nm, as shown in Fig. 3f. According to the Ray-
leigh criterion (refer to Supplementary Note 8), the length of the
waveguide coupler needs to be extended 4 times to achieve the same
0.3 nm resolution. Therefore, it is imperative to mitigate noise effects.

The resulting SNR amplitude distribution ranges

To minimize the impact of noise on reconstruction resolution, an
intuitive strategy is to limit the noise during device design, which,
however, needs to be delicate while having limited effects. A noise
reduction algorithm for interferograms would be a more effective and
cost-efficient solution. Nevertheless, the interferograms formed by
scatter plots are irregular and lack discernible frequencies, making
traditional denoising techniques deficient*’. Considering that all col-
umn vectors in the calibration matrix P are linearly independent
eigenvectors, any dual-wavelength interferogram can be regarded as a
linear combination of two single-wavelength interferograms. This
represents a form of feature space combination that is well-suited for
autoencoder purification*®, Hereby, we propose a CAED mechanism to
acquire a compact representation of input data and eliminate irrele-
vant information from the input.

Convolutional autoencoder denoising

Denoising autoencoder aims to learn a representation robust to noise
added to the original data. Typically, training a denoising autoencoder
aims to reconstruct the original data with minimal error. However, if
the original data is complicated, the training process may be time-
consuming and may lead to underfitting. Additionally, if the auto-
encoder is overly specialized for a certain type of input, it may lose
generalizability to other patterns, necessitating different models for
different input spectra. Hereby, we employ a different, noise-oriented
training strategy: instead of training the autoencoder to recover the
input pattern, we recover the noise pattern and then subtract it from
the initial input data (see details in Supplementary Note 9)*. To be
specific, consider a noisy observation I, which consists of the original
data I, and the noise ¢, i.e., I=1, + e. Since e is simpler and has a more
consistent pattern, we train the autoencoder by learning e and sub-
tracting it from I, which is more effective than learning I, directly. The
schematics of the training and testing phases are depicted in Fig. 4a.
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The parameters of the autoencoder (i.e., encoder f and decoder g4)
are optimized as follows:

6*,9’*:argmingyg/%Zizlﬁ(emrgo'( 0(@)))

where £ is a loss function of mean squared error (MSE) between two
inputs. During training phase, the e® is derived by subtracting the
ground truth I from the input sample 1?). In test phase, we employ the
trained autoencoder to predict & and subtract it from the input
sample to derive the regenerated datai:,j), which can be represented as
follows forallj e {1, ..., L}:

iV=19 g, (f o <'(ﬁ>>

an

12)

While it is not necessary to include all possible patterns that will
appear in the testing phase in the training set, maintaining diversity is
crucial to ensure that the autoencoder learns the noise pattern rather
than the pattern of any specific input type. Therefore, we construct a
dataset comprising various input interferogram patterns, by sampling
from the calibration matrix P (Fig. 4b). Taking dual-wavelength

interferogram as an example, to ensure that each column feature of
matrix P has the same probability of being sampled in the synthesized
dataset, we reshape the transpose of P (P’ size of 3001 x 64) by con-
catenating its first 100 rows to its end, forming a new matrix Q with a
size of 3101 x 64. Index pairs (i, j) are randomly generated, where
0<j —i<100 and1<i<3001, and the ith row of matrix Q is added with
the jth row of Q to form dual-wavelength interferograms. Similarly,
index triplets (i, j, k) and index quadruplets (i, j, k, [) are randomly
generated to construct triple-wavelength and quadruple-wavelength
data. The three types of data, each with 10,000 samples, together
construct the mixed dataset (matrix M) of 30,000 samples. Gaussian
white noises corresponding to SNRs of 30 and 36 dB are then added to
each row of matrix M, forming an interferogram dataset N consisting
of 60,000 noisy interferograms. Noises of different levels are added to
enhance the diversity of the dataset, so as to improve the general-
izability of the trained model*.

The architecture of the convolutional autoencoder is depicted in
Fig. 4c, which consists of an encoder for compression and a decoder
for reconstruction. The encoder comprises convolutional layers,
maximum pooling layers, and residual blocks, while the decoder
includes transpose convolution layers and convolutional layers. The
performance of CAED is optimized by employing the residual block
and fine-tuning the convolution kernel size and the number of
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Fig. 4 | Construction of convolutional denoising autoencoder. a Noise-oriented
training scheme for the denoising autoencoder. b Make the noise dataset.

¢ Architecture of the convolutional autoencoder. d-f Optimization of convolu-
tional neural network (CNN) structural parameters based on reconstruction reso-
lution, including the number of convolutional layers, the number of residual blocks,

Training iterations

and the kernel size. Boxplots indicate median (middle line), 25th, 75th percentile
(box), and 5th, 95th percentile (whiskers). g Evolution of the mean squared error
(MSE) and the resolution in each generation, with increasing generations. The top
and bottom bars represent the maximum and minimum values of resolution,
respectively.

convolutional layers. According to Fig. 4d-f, the CAED model showing
the optimal noise reduction performance contains 5 convolution ker-
nels, 2 residual blocks, and 6 convolutional layers. During the training
process, MSE is used as the loss function, and the resolution of spec-
trum reconstruction is evaluated on the test set (Fig. 4g). The MSE
decreases rapidly during training, while the resolution gradually

improves and eventually stabilizes. The trained autoencoder demon-
strates great generalizability in denoising a variety of input inter-
ferogram patterns without the need for retraining for each specific
kind of pattern (see details in Supplementary Note 9).

Figure 5a-c shows the non-denoised, denoised, and noise-free
reconstruction resolutions of 20 sets of dual-wavelength
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Fig. 5 | Test of CAED effectiveness for spectrum reconstruction. Distribution of
reconstruction resolution with or without denoising under different SNR levels of
(a) 35dB, (b) 30 dB, and (c) 25 dB. Reconstruction of dual-wavelength spectrum
with or without denoising at different wavelength spacings of (d) 1.2 nm, (e) 1.1 nm,
(H 0.4 nm, and (g) 0.3 nm. h-j Reconstruction of a diverse range of incident
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spectra: (h) triple-wavelength spectrum, (i) broadband spectrum, and (j) mixed
broadband/narrowband spectrum. All the reconstructions are performed
throughout 3001 wavelength channels. For clarity, all the relative errors ¢ are cal-
culated within the displayed wavelength ranges.

interferograms under different SNR conditions of 35, 30, and 25dB,
respectively. The results show that CAED improves the reconstruction
resolution in all three noise scenarios (from 0.4-0.8 to 0.3-0.4 nm for
35dB SNR, from 0.8-1.2 to 0.3-0.4 nm for 30 dB SNR, and from 1.2-1.7
to 0.5-0.8nm for 25dB SNR). The resolution can be improved to
nearly the noise-free value for SNR of 30 dB and above. The denoising
performance of CAED at lower SNR levels of 20, 15, and 8 dB is pre-
sented in Supplementary Note 10, where resolution improvement is
also observed. For these lower SNR levels, a corresponding noise
training dataset may achieve better denoising results. Therefore, our
CAED mechanism can effectively work across the entire SNR range in
real-life applications.

Using the trained model, we first assess the effectiveness of CAED
on dual-wavelength interferograms by combining two tunable laser
sources via a 50/50 optical coupler. Figure 5d-g depict the recon-
struction results of the dual-wavelength interferograms with different
wavelength spacings. At a wavelength spacing of 1.2 nm (Fig. 5d) or
greater, the input spectrum can be accurately reconstructed regard-
less of whether the interferogram is denoised or not. Wavelength
spacings between 0.4 and 1.1 nm (Fig. Se, f) are where reconstruction
without denoising is not feasible, whereas denoising the interferogram
enables the spectrum reconstruction. At a wavelength spacing of
0.3 nm or less (Fig. 5g), the incident spectrum cannot be reconstructed
even when the interferogram is denoised. Therefore, the

reconstruction resolution is successfully improved from 1.2 to 0.4 nm
by CAED, almost approaching the noise-free value of 0.3 nm. In the
synthesized dataset used to train the model, the maximum wavelength
spacing of dual-wavelength spectra is 10 nm. To verify the effective-
ness of CAED when the spacing between two wavelengths exceeds
10 nm, we also studied three scenarios with wavelength spacings of 20,
30, and 50 nm in Supplementary Note 11. Consistent reconstruction
performance is observed, further illustrating that the denoising is
independent of the input spectrum pattern. Our spectrometer also
demonstrates robustness to temperature fluctuation of +8 °C, which
can be further extended to 10-70 °C as long as the calibration matrix at
each temperature is pre-recorded (see Supplementary Note 12), cov-
ering the reasonable operating temperature range for practical appli-
cations. In Supplementary Note 13, we further analyse the tolerance of
our spectrometer to fabrication errors.

Beyond the dual-wavelength experiment, a more challenging
triple-wavelength testing is conducted. The result presented in Fig. Sh
illustrates the successful reconstruction of three laser peaks and a
spectral spacing of 0.4nm between the two nearest peaks with a
relative error ¢ of 0.126. In addition, the reconstruction of a broadband
spectrum is demonstrated using an amplified spontaneous emission
(ASE) source as the input. As shown in Fig. 5i, the spectral features are
well recovered with a low relative error £ of 0.044. Furthermore, a
mixed spectrum is examined, which combines a broadband signal (the
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represents the performance of our device without denoising.

ASE source) with a narrowband signal (a laser source) via a 50/50
optical coupler. Figure 5j presents the resolved mixed spectrum with
an ¢ of 0.095, showing that a high reconstruction accuracy can still be
attained. In Supplementary Note 14, we perform the reconstruction of
a more broadband spectrum by simulation, providing additional evi-
dence of the 300 nm bandwidth. Our spectrometer can find numerous
real-life applications, for example, spectroscopic sensing of various
molecules, such as N-methylaniline with a well-defined absorption
fingerprint near 1.5 uym®.

Discussion

To benchmark our spectrometer, we conduct a comprehensive com-
parison with on-chip spectrometers that have been previously repor-
ted (see details in Supplementary Note 15)7'061819304252°61 " In most
reported spectrometers, a distinct trade-off exists between resolution
and bandwidth, as shown in Fig. 6a. Specifically, when the resolution
surpasses 1nm, the bandwidth tends to narrow down to less than
200 nm. Our proposed MEMS spectrometer demonstrates state-of-
the-art performance in terms of bandwidth, and further, with the
assistance of a denoising autoencoder, breaks through the trade-off
limitation between bandwidth and reconstruction resolution, achiev-
ing a bandwidth of 300 nm and a reconstruction resolution of 0.4 nm.
In addition to improving reconstruction resolution and robustness, the
autoencoder denoising, executed using the relative error between the
calibration matrix and measurements, has the potential to enhance the
tolerance of spectrometers to manufacturing imperfections in high-
volume production. Some recent demonstrations, leveraging narrow-
band filtering and computational reconstruction, have improved the
bandwidth-to-resolution ratios to several thousands, but often come
with the drawback of requiring extended sampling times. Additionally,
they commonly employed thermal tuning, necessitating meticulous
temperature control and high power consumption of over 30 mW. In
comparison, our device features ultra-low power consumption of less
than 70 pW thanks to the electrostatic MEMS reconfiguration, which is
three orders of magnitude lower, as illustrated in Fig. 6b.

Recently, physically multi-stage structures have become popular
practices for designing high-performance spectrometers by creating
abundant sampling channels®®®". As a pioneer in MEMS spectrometers,
our device, although limited to the simplest case, i.e., a single physical
stage, can see significant performance improvements by further
leveraging a multi-stage structure as illustrated in Fig. 7a. In this
simulation demonstration, we implement a 3-stage design with 8

voltage states per stage (i.e., 512 sampling channels in total). The cor-
responding calibration matrix is shown in Fig. 7b. Thanks to the
improved channel decorrelation and increased channel number, the
reconstruction resolution is improved by one order of magnitude (see
Supplementary Note 16 and Fig. S19). Meanwhile, despite the esti-
mated noise cumulated to 19 dB SNR in the 3-stage structure, our
current denoising autoencoder still achieves over twofold improve-
ment of resolution to 40 pm, as shown in Fig. 7c-f, which could be
further enhanced by accordingly optimizing the design of the auto-
encoder network. The multi-stage structure and the CAED mechanism
also work well in the reconstruction of triple-wavelength, broadband,
and mixed broadband/narrowband spectra (see Fig. S20). Regarding
footprint, our device is significantly smaller than those physically
multi-stage spectrometers, while less compact compared to some of
the narrowband-filter-based spectrometers. Nonetheless, narrowband
filters usually suffer from an inherent compromise between the SNR
and spectral resolution®®. To further shrink the footprint, we can
reduce the coupling gap of the waveguide coupler by replacing the
cantilever actuator with a comb-drive actuator, changing the current
out-of-plane reconfiguration scheme to an in-plane one (see Supple-
mentary Note 17). The driving voltage can also be reduced through
optimizing the structural parameters of the MEMS actuator (see Sup-
plementary Note 18).

In conclusion, our study represents a significant advancement in
the domain of on-chip optical spectrometry, specifically focusing on
MEMS-enabled devices. Our work highlights the inherent limitations of
existing on-chip spectrometers, emphasizing the advantages offered
by Si PICs and the efficacy of electrostatic MEMS modulation. Recog-
nizing the susceptibility of MEMS actuators to noise, we develop CAED
- a deep learning technology - to effectively mitigate noise effects and
elevate spectrum reconstruction resolution. The results underscore
the tangible potential of the proposed CAED-facilitated MEMS spec-
trometer. With the noise reduction capability at 30dB SNR, the
reconstruction resolution of the spectrometer is improved from 1.2 to
0.4 nm, approaching the noise-free value of 0.3 nm. Our approach lays
a solid foundation for broadband high-resolution spectral analysis,
particularly in applications demanding precision, power efficiency,
and noise resilience. Moreover, it is worth highlighting that the pre-
sented CAED mechanism would have broad applicability in computa-
tional spectrometers using calibration matrices, due to its weak
restrictions from noise generation mechanisms. Beyond its immediate
implications, the denoising autoencoders are ready to provide a
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strategic solution with far-reaching impacts on the ongoing evolution
of miniaturized optical devices®***%>%*,

Methods

Device fabrication

The MECS is fabricated on an 8-inch SOI wafer using 193 nm deep
ultraviolet (DUV) photolithography. The directional coupler and the
MEMS actuator are formed by reactive ion etching (RIE). An aluminium
(Al) thin film is then deposited and patterned for electrical connection
to power the MEMS actuator. At last, hydrofluoric acid (HF) vapor
etching is used to locally remove the BOX layer and release the
directional coupler and the MEMS cantilever.

Device characterization

For single-, dual- and multi-wavelength characterization, a set of tun-
able lasers (Santec TSL-510, 550, and 710) are adopted as the input,
which are also used to measure the calibration matrix. For broadband
characterization, a C +L band ASE broadband light source (Amonics
ALS-CL-13-B-FA) is used as the input. A polarization controller is used
to ensure that only TE-polarized light is injected into the on-chip
spectrometer. The spectrometer chip is mounted on an XYZ stage for
fiber-chip alignment, with the temperature controlled by a tempera-
ture controller. The light is coupled in and out of the chip through two
on-chip adiabatically tapered edge couplers for broadband operation.
The output light from the MECS is collected by a photodetector
(Thorlabs PDA-10CS-EC). Input spectra are also recorded using an
optical spectrum analyzer (OSA, Yokogawa AQ6370D) as references.
The recorded spectra from OSA have a fine resolution of 20 pm. The
reference input spectra are created by resampling the raw data into a
3001-point sequence with a coarser resolution of 100 pm. A semi-
conductor characterization system (Keithley 4200-SCS) is employed
for time-sequenced bias voltage supply to implement time-domain
modulation of the MECS. The sampling time grid is ~0.1 s, resulting in a
total sampling time of ~6.4 s given 64 sampling steps. The sampling

process can be accelerated by synchronizing the electrical voltage
scanning and optical power detection with a shared trigger signal.

Reconstruction implementation

Spectrum reconstruction is implemented using a MATLAB package of
iterative regularization methods and test problems for linear inverse
problems (IR Tools). This method can be used to reconstruct all types
of spectra, including discrete, continuous, and mixed spectra. The
CAED implementation in Python 3.6 uses Keras and its TensorFlow
backend. Adam is used for optimization with a learning rate of 0.002.
The learning rate is multiplied by 0.5 if the loss does not improve for 30
epochs. ReLU is used as the activation function for all layers except the
last output layer. The final output layer utilizes LeakyReLU as the
activation function. Our training of autoencoder is deployed on 4
pieces of NVIDIA TITAN Xp GPU. Training stops after 360 epochs. A
batch size of 128 is used for all datasets. For the dataset volume of
30,000, each training epoch takes 1s, the time taken for the total 360
epochs is ~6 min. After training, the model can be applied to random
input samples, with each sample taking 0.15 ps for prediction.

Data availability

The data that support the findings of this study are included in the
article and its Supplementary Information. Other data are available
from the corresponding authors upon request.

Code availability
The codes in support of the results of this study are available from the
corresponding authors upon request.
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