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UnidecNMR: automatic peak detection for
NMR spectra in 1-4 dimensions

Charles Buchanan 1,2, Gogulan Karunanithy 1, Olga Tkachenko1,
MichaelBarber1,Michael T.Marty 1,3, Timothy J.Nott 4,ChristinaRedfield 4&
Andrew J. Baldwin 1,2

To extract information from NMR experiments, users need to identify the
number of resonances in the spectrum, together with characteristic features
such as chemical shifts and intensities. Inmany applications, particularly those
involving biomolecules, this procedure is typically a manual and laborious
process. While many algorithms are available to tackle this problem, their
performance tends to be inferior to that of an experienced user. Here, we
introduce UnidecNMR, which identifies resonances in NMR spectra using
deconvolution. We demonstrate its favourable performance on 1 and 2D
simulated spectra, strongly overlapped 1D spectra of oligosaccharides and 2D
HSQC, 3DHNCO, 3DHNCAand3/4Dmethyl-methyl NOEexperimental spectra
froma rangeof proteins.UnidecNMRoutperforms anumberof freely available
algorithms and provides results comparable to those generated manually.
Introducing additional restraints, such as a 2D peak list when analysing 3 and
4D data and incorporating reflection symmetry in NOE analysis further
improves the results. UnidecNMR outputs a back-calculated spectrum and a
peak list, both of which can be easily examined using the supplied GUI. The
software allows interactive processing using nmrPipe, allowing users to go
directly from raw data to processed spectra with picked peak lists.

Nuclear magnetic resonance spectroscopy is the most widely used
experimental technique for characterising molecules, offering atomic
resolution structural and dynamical information about chemical and
biochemical systems. While NMR spectroscopy is ubiquitous, the
analysis of NMR data is largely manual1,2, which presents a substantial
bottleneck. In related fields, for example, X-ray crystallography3 and
cryogenic electron microscopy4,5, many viable automated analysis
techniques have been devised, allowing them to become largely
unsupervised high throughput methods6. This is not the case for NMR
owing in large part to the specific challenges associated with identi-
fying resonances in spectra7. We present here UnidecNMR, a general
method for identifying resonances in NMR spectra, the quality of
which is comparable to the results identified by experienced NMR

spectroscopists. We demonstrate the versatility of UnidecNMR
through its application to a wide variety of spectra including small
molecule 1D, 2D and 3D spectra of proteins, together with 3D and 4D
NOE spectra, much of which is low signal to noise. We recently
demonstrated the utility of UnidecNMR by implementing it into a full
analysis pipeline for saturation transfer experiments, uSTA8.

The first problem confronting an NMR spectroscopist once they
have acquired and processed their data is to determine the number of
resonances in their spectra, typically noting their chemical shifts and
intensities. Three major issues render peak detection challenging in
NMR: low signal-to-noise ratios, spectral overlap, and artefacts such as
T1 noise

9. Many computational tools have been written to perform
peak picking10–17 although a ‘standard’ has yet to emerge that can
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operate in 1-4D. While peak-picking algorithms generally have out-
standing performances on near-perfect data, their performance on
‘real’ problems tends to degrade, particularly in cases where signal-to-
noise ratios start to approach 1, where resonances are heavily over-
lapped and where there are large variations in intensity due to their
dynamics. Progress is largely made through manual analysis18. This
unfortunately is not an effective option for either new students or for
researchers unable to devote the necessary time for training and
provides an argument for researchers to turn to other tools. We aim to
address this here by providing a computational tool, UnidecNMR
(Universal deconvolver for NMR). This software and associated gra-
phical user interface (GUI) allow a user to process their multi-
dimensional FIDs easily and interactively into spectra, execute our
resonance identification algorithm and inspect the results, modifying
wherenecessary.UnidecNMRcan accelerate and simplify theworkflow
of both experienced and novice practitioners.

UnidecNMR is based on a Bayesian deconvolution algorithm that
was previously developed for the analysis ofMass spectrometry data19.
Deconvolution aims to separate ‘sources’ of resonances from acquired
data using a given point spread function, analogous to how supra-
resolution methods in light microscopy can locate light sources to
better precision than the diffraction limit20 (Fig. 1a). In this application,
the point spread function is a peak shape function which needs to be
effectively removed in order to locate the underlying resonances. To
produce UnidecNMR, we optimised the naïve core of the mass-spec

Unidec algorithm on a synthetic 1D dataset (Supplementary Fig. 4),
before demonstrating successful application to a synthetic 2D data-
set (Fig. 2).

When applied to experimental data, UnidecNMR is able to identify
the individual multiplets of resonances in an extremely overlapped 1D
NMR spectrum of a series of sugars (Figs. 1, 3). The algorithm is then
tested against experimental data acquired on 5 uniformly labelled
13C/15H/1H proteins of molecular weight ranging from 8.6 to 24.8 kDa
dimer (2D 15N HSQCs and 3D HNCO and HNCA spectra, Figs. 4, 5,
Supplementary Table 1), and then on a 25.4 kDa 236-residue dis-
ordered protein where the spectra are highly crowded (Fig. 6). The
testingdataset includes caseswhere all resonances are sharp andeasily
identified, to cases where signal to noise is low, and many resonances
have low signal to noise because of exchange broadening. We finally
analyse the performance of the algorithm on data acquired from 2
deuterated 13CH3 ILV labelled proteins (3 and 4D methyl-NOESY spec-
tra, Fig. 7).

We compare the peak-picking results from UnidecNMR to four
frequently encountered algorithms that can be freely downloaded and
already have user bases; PICKY, which relies on a singular value
decomposition of spectra10, WaVPeak, which takes advantage of a
wavelet smoothing and clustering technique11, NMRNet, which
employs a convolutional neural network based on machine learning12,
and the intrinsic peak picker in Sparky21, which in 2D (and 3D when
used with a 2D peak list to restrict the search space) can detect local
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Fig. 1 | UnidecNMRmethod and applications. a A schematic of the UnidecNMR
method: all locations above a noise threshold are initially possible peak locations
before UnidecNMR iteratively filters them down to final locations. b UnidecNMR
application to a 2D 15N-1HSQC spectrum of αB-crystallin (i, blue). the reconvolved
spectrum (iii, red) is easily compared against raw data (iv). Running UnidecNMR
without the clustering results in a spectrum whose apparent sensitivity has been

enhanced (ii, green). c Application to a 1D spectrum of 2,3-α-sialyllactose8 showing
a remarkable ability to discern individual assigned multiplets from a highly over-
lapped region of the spectrum. d Application to 3D HNCA spectrum of αB-crys-
tallin, showing raw (blue) and reconvolved spectra in projection, and in 1 and 2D
slices visualising how UnidecNMR simplifies resonance detection.
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maxima. UnidecNMR demonstrated superior performance to the first
three of these algorithms (we could not easily automate Sparky) on a
synthetic 2D dataset (Fig. 2). On experimental data, UnidecNMR again
substantially outperforms the other algorithms tested, and the
resulting peak lists were either similar to those obtained by an
experienced spectroscopist (Figs. 4–6 Supplementary Table 1), or in
the case of the NOESY spectra, superior evidenced by the larger
number of NOEs successfully identified that are consistent with the
known structure (Fig. 7). We further demonstrate that supplying a 2D
peak list when analysing 3 and 4D data (all 3 and 4D results in Figs. 4–7
use this approach) and including reflection symmetry when analysing
NOE data can both substantially improve the results (Fig. 7). The
algorithm is tested ‘to destruction’ and errors, both false positives and
false negatives on real data have been individually characterised
(Supplementary Figs. 5–7), each of which reflects ambiguous decisions
on the edge of human judgement. The software is released with a GUI
that facilitates rapid inspection and manual adjustment of the results
(Supplementary Fig. 3). For example, false negatives can easily be
identified within the GUI by overlaying the reconvolved and raw
spectra (Supplementary Figs. 2, S7cii). The time of the calculation
depends on the size and dimensionality of the data, but it completes in
5–30 s for a 2D spectrum, 30–120 s for a 3D, and several minutes for a
4D on a 2021 MacBook Pro equipped with an M1 Pro processor and
16GB of RAM. The package has been tested on Windows, Mac and
Linux environments. Overall, our algorithm is a tool for the analysis of

1-4D NMR data that is free for academic use, that at the very least,
provides an excellent ‘starting point’ for both new and experienced
users to facilitate rapid and effective analysis of NMR data.

Results
Theory
The kernel of the algorithm was originally developed to analyse mass
spectrometry data19, a problem that shares many features with NMR
data analysis. Themethod relies on the assumption that a spectrum of
intensities, I, can be reasonably expressed as a convolution of a peak
shape function, g, and an array of delta functions or sources, f, each of
which spans the same set of spectral frequencies, i. The algorithm aims
to perform the deconvolution that removes the peak shape function
from the data, providing a user with a list of sources, f, that dictates
both the peak positions and intensities. The kernel iterates (t) on the
intensities of each spectral element:

f t + 1i = f ti
Ii

ðf t � gÞi
ð1Þ

When the back-calculated spectrum, (f∗g), has the same intensity
as the data I at frequency i, then the ratio is equal to 1, f t + 1i = f ti and the
algorithm has converged19. The action of the algorithm is to suppress
sources that are adjacent to the true ‘centre’ of a resonance. A user
supplies a noise threshold and a peak shape function g (Fig. 1a). In our
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Fig. 2 | Testing of peak picking algorithms on synthetic data. Following opti-
misation of the UnidecNMR algorithm on 1D data (Supplementary Fig. 4) perfor-
manceof a range of freely available peak pickerswas assessed on simulated 2Ddata
(7200 spectra). Two Gaussian resonances were simulated with a function of signal
to noise (9 values ranging from 2 to 10) and separation (8 values, ranging from0.85
to 2.6 in units of the full-width half maximum, FWHMof the simulated resonances).
For each separation/SN combination, the seed for the random number that gen-
erates the noise was varied allowing us to derive an ensemble average over 100
repeats (see extendedmethods). In theUnidecNMRanalysis, a Gaussian peak shape
with the same width used for the simulation was used to deconvolve the data, with
the one manually tuneable parameter, ‘fac’ set to 1.6. In the tests that follow, the
width of the peak shape used byUnidecNMRwaspurposelymis-set for the purpose
of testing which demonstrated that the results are reasonably agnostic of the
precise value used, indicating that the peak shape chosen for analysis needs only to

be ‘roughly correct’ (Supplementary Fig. 1). a Simulated data illustrate a range of
signal-to-noise and separation values. The numbers 1–9 indicate where these
example data were taken from the full dataset, c. b Illustrative examples of three
spectra that provide a representative discrimination of the various algorithms
tested that couldbeeasily automated to iterate over the full dataset. OnlyNMRNet12

and UnidecNMR were able to resolve the peak with the closest separation whereas
only WaVPeak11, PICKY10 and UnidecNMR were able to distinguish the peaks with
the widest separation. NMRNet overpicked one of the peaks on the third spectrum,
which we have indicated in blue for clarity. c Overall performance on the entire
simulated 2D dataset. Only UnidecNMR, PICKY10 and WaVPeak11 achieve 100%
accuracy at the relatively trivial high separation/high signal-to-noise limit. The blue
contour line represents the threshold above which 100% accuracy is achieved,
allowing a convenient means by which to compare the different algorithms in this
test. UnidecNMR outperforms the other algorithms on these synthetic datasets.
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implementation, the initial intensities are set to the initial intensities of
the raw data found at each position, and then iteratively adjusted
according to Eq. (1) until convergence, where the final values in f
provide the central locations and intensities of the picked peaks. To
determine convergence, the changes made in intensities are assessed
in each step, and when these fall below a user-specified threshold, or
when the calculation exceeds a pre-specified number of maximum
iterations, the calculation stops. The selected peak shape g should be a
reasonable match for the average resonance in a spectrum, although
the final results are reasonably tolerant to this parameter beingmis-set
(Supplementary Fig. 1a), as expected in the case of experimental data
where there is a wide range of peak shapes. The algorithm canwork on
data of arbitrary dimensionality, which renders it highly amenable to
NMR analysis.

Performance on synthetic data
To test the algorithm, a dataset of 40,500 1D NMR spectra was simu-
lated by placing two resonances at predefined separations, and intro-
ducing noise sampled from a normal distribution to obtain a
predefined signal-to-noise ratio (Supplementary Fig. 4a, b, e). Naïve
implementations of Eq. (1) showed promise for peak detection but
tended to ‘over-pick’ the spectrum (Supplementary Fig. 4a, c). This
result follows from there being no unique solution when fitting an
arbitrary number of Gaussian functions to a Gaussian function22, and
so the final arrangement of peak locations, f, themselves, tend to
resemble a Gaussian function. From the perspective of peak detection,
this amounts to a failure, as too many resonances are ‘picked’. This
does, however, provide an unexpected feature of this algorithm—one
can apply it ‘naïvely’ with a peak shape set to be deliberately too wide
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Fig. 3 | Performance of UnidecNMR on 1D spectra. 1D proton spectra (blue) of
N-Acetylneuraminic acid (a) and 2,3-α-sialyllactose (b) together with the recon-
volved spectrum from UnidecNMR (red) as shown previously8. The deconvolution
was performed with the tuneable parameter fac = 1.4 using a peak shape fitted on
isolated resonances using the GUI. In each case, the multiplets identified by Uni-
decNMR (yellow) can be mapped to known assignments obtained from standard
multi-dimensional methods8. The peak shape used for the analysis was obtained by
fitting the most intense peak using the UnidecNMR GUI. There are small variations
in peak shape over the spectrum (see e.g., peak 6c at 3.45ppm in b), but this does

not compromise performance. a Two interconverting anomeric forms, α and β, are
observable. UnidecNMR functions well even when evolution due to J coupling is
present in the spectrum, imposed by the delays associated with using excitation
sculptedwater suppression.bTwo interconverting anomeric forms associatedwith
sugar a are observable (inset). Unique assignment cannot be obtained from a single
1D NMR spectrum, but each peak identified by UnidecNMR corresponds to
assignments achieved using standard methods8, as indicated (green). No water
suppression was used for this spectrum and so there are no distortions due to J
coupling present, which will yield optimal UnidecNMR performance.

Article https://doi.org/10.1038/s41467-024-54899-3

Nature Communications |          (2025) 16:449 4

www.nature.com/naturecommunications


and obtain a newNMRspectrumwith substantially enhanced apparent
resolution (Fig. 1bii).

After some development, the final version of UnidecNMR runs in
stages. Equation (1) is initially executed with a peak shape function g
whose FWHM is artificially increased by a factor ‘fac’. This suppresses
the tendency of the algorithm to pick peaks remote from the true
centre (Supplementary Fig. 4a, b). Second, we implemented a clus-
tering algorithm that combines intensity within a predefined window
whose width is characterised by the parameter ‘squash’. Both are
specified as a multiple of the FWHM of the input peak shape. Running

the algorithm against our database of simulated data allowed values of
fac and squash to be optimised in order to produce the maximum
number of correct results (Supplementary Fig. 4e, f). In this test, a
broad range of parameter space was identified where 100% accuracy
was achieved. Within the final implementation, ‘squash’ was fixed to
0.725/FWHM and is determined automatically from the user-supplied
peak width, and ‘fac’ is the only user-supplied parameter. In practical
implementations, this can be adjusted typically with the range 1.4–1.6,
with a value of 1.4 being suitable for 1D/2D data and 1.6 better suited
for 3D/4D (see also ‘Standard settings for using UnidecNMR’ in
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Supplementary). These values effectively set a limit on the resolving
power of our algorithm yet still allow asymmetric ‘shoulders’ to be
readily identified.

With optimised values of ‘fac’ and ‘squash’, the performance of
UnidecNMR was effectively perfect, provided that the signal-to-noise
ratio is greater than 3 and the separation of resonances is greater than
1.13 FWHM (Supplementary Fig. 4d for 1D, Fig. 2c for 2D). This is a
physically reasonable outcome, as these limits approximately coincide
with limits where a user would be confident in visually identifying two
resonances. Below these thresholds, the success of the algorithm falls
away from 100%, and its success depends on the exact shape of the
noise profile in an individual spectrum. It nevertheless remains rea-
sonably successful outside these windows and typically fails in cases
where an experienced user would also be unconfident.

We next performed a similar test on 7200 simulated 2D spectra
using the optimised parameters (Fig. 2). Here, it was possible to
compare results from UnidecNMR to the other freely downloadable
algorithms. The success of UnidecNMR in 2D was very similar to its
performance in 1D and was more effective than the other methods
tested (Fig. 2c). PICKY and WaVPeak both showed excellent perfor-
mance, but require higher S/N, and larger peak separations than Uni-
decNMR to obtain a 100% success rate. Notably NMRNet performed
very poorly in this test (Fig. 2c), although we note this program per-
formed substantially better when tested against ‘real’ experimental
data recorded on protein samples (Fig. 4).

To quantify the accuracy of the respective algorithm’s identified
peak locations, we calculated the difference between the found and
known locations in ‘correct’ spectra (SupplementaryFig. 8). This shows
that UnidecNMR performs better than all other algorithms at higher
signal-to-noise ratios and lower separations, a problem typically faced
in experimental data (i.e., heavy peak overlap where signal to noise is
reasonably high). Further, we quantified the reliability of intensities
extracted by UnidecNMR and found that except at very low separa-
tions, the error was <10% (Supplementary Fig. 9).

To run UnidecNMR in general, both a noise threshold and para-
meters that describe the peak shape in all dimensions must be sup-
plied. For convenience, we have implemented a general pseudo-Voigt
function that describes a mixed Gaussian/Lorentzian function. This is
parametrised by Lorentzian (σL) and Gaussian (σG) FWHM values in
ppm, the Euclideandistance (x) fromthe centre of thepeak in ppmand
a mole fraction n that determines the degree of Gaussian (n =0) and
Lorentzian (n = 1) character.
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Optimal performance is obtained when the shape characteristics
eithermatch or are slightly narrower than thoseobserved although the
algorithm is remarkably tolerant to mis-setting the peak shape (Sup-
plementary Figs. 1a, 4f). In practical applications, the algorithm can be
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Fig. 6 | Comparison of different peak-picking methods on the 236-residue
intrinsically disordered protein DDX4N1. A An NH projection of an HNCA
acquired on a 750MHz spectrometer, superimposed on a peak list derived from
UnidecNMR results from a high-resolution HSQC (Supplementary Fig. S6B)40. As
expected for a large IDP, the centre of the spectrum is heavily overlapped. B An
indication of the false negatives and false positives of the different methods tested
on a 2D 15N HSQC, and 3D HNCO and HNCA spectra. (i) On a high-resolution 2D 15N
HSQC, similar performance was found for Sparky, WaVPeak, PICKY, NMRNet, and
DEEP picker with ca. 30 false negatives and between 0 and 66 false positives. By
contrast, UnidecNMR picked exactly the same resonances as an experienced user
with two false positives (Supplementary Fig. S7A). For 2D analysis, the UnidecNMR
tuneable parameter ‘fac’ was set to 1.4. (ii/ii) Similar performance was found in 3

dimensions, with UnidecNMRpicking over 100more resonances in the two spectra
that weremissed by the other methods. The tuneable parameter ‘fac’was set to 1.6
for 3D data. The specific peaks that were missed by UnidecNMR are analysed
(Supplementary Fig. 7), arising from resonances appearing in the spectrum that
were not in theHSQC, arisingmost likely due to some sampledegradation.CA slice
from a heavily overlapped region in the HNCA illustrates the performance of Uni-
decNMR and the placeswhere the other algorithms fail to spot resonances. Overall,
the performance of UnidecNMR is almost identical to those obtained by an
experienced user. As these are N-H slices through a 3D spectrum, the distance of an
identified peak from the current, carbon, slice is indicated with the colour of the
peak, as shown in the key (bottom right).
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run iteratively and compared to the raw data to manually determine
appropriate peak shape parameters. Within our GUI, it is also possible
to select several intense, isolated resonances in a spectrum and run a
conventional optimiser to obtain a reasonable estimate for parameters
to describe the peak shape (Supplementary Fig. 3).

Performance against experimental data
Having demonstrated that our algorithm can function well against
synthetic data, we tested it against experimental data. Initially, we ran
the algorithm on 1D NMR spectra of sugar molecules that contain a
very largenumber of highly overlapped resonances. The algorithmwas
able to identify individual multiplets even in heavily overlapped
regions (Fig. 3), each of which was consistent with the known assign-
ment obtained using conventional methods.

To test further, 2D 15N HSQC, and 3D HNCO and HNCA spectra
from three proteins, HSP271,23, ubiquitin24 and αB-crystallin25 (NMR
data unpublished) were analysed. Spectra from these proteins provide
a range of difficulties, ranging from Ubiquitin and HSP27, where the
resonances are sharp and well resolved, to αB-crystallin, where there
are substantial contributions from chemical exchange leading to a
range in peak intensity and shape25. The performance of the algorithm
was measured against a peak list determined manually.

When assigning the backbone of a protein, 3D spectra such as the
HNCOandHNCA are analysed simultaneously26.Mirroring this, a 2DH/
N peak list was prepared using only the 15N HSQC and HNCO results
and supplied to the algorithm as a restraint for the starting locations
for peak positions. The resulting ‘boring’ mode produced excellent
results. We provide this as an option in the software and recommend
using this when analysing 3 and 4D data. In this vein, the HNCO and
NHSQC spectra were analysed in isolation while we employed a 2D

peak list for the HNCA (Fig. 4). As with the synthetic data, UnidecNMR
substantially outperformed the other algorithms, achieving almost
100% success rates, identifying all peaks and missing only 1 resonance
(Fig. 4, Supplementary Table 1). This error deserves some attention.
In fact, we would not expect this missing resonance to be identified
by a user given only this spectrum (Supplementary Fig. 5), due to
overlap, though its presence is confirmed by additional 3D experi-
ments. NMRNet, however, did identify two resonances in this location,
and so we report it as a peak missed by UnidecNMR. We note that in
this test, NMRNet tended to over-pick NMR spectra (Fig. 4). As our
algorithmprovides a back-calculated spectrum, it is straightforward to
compare its results to the raw data within our GUI (Supplemen-
tary Fig. 3).

One spectrum of note was an HNCO acquired on HSP16.5
(unpublished data), where the decoupler was mis-set, resulting in a
triplet for each peak in the 13C dimension (Supplementary Fig. 1b). By
increasing the effective peak width used for calculations, we were able
to account for this deficiency. By contrast, the other algorithms found
analysing this specific experiment highly challenging.

To increase the challenge further, we then analysed 15N HSQC,
HNCO/HNCA assignment spectra from a 236-residue intrinsically dis-
ordered protein DDX4N1 (Fig. 6). Disordered proteins are relatively
challenging targets because the range of chemical shifts spanned is
much narrower than for a folded protein and so overlap of resonances
is substantially higher. As before, UnidecNMRoutperformed the other
algorithms and returned results comparable to thoseobtained froman
entirely manual analysis. The small number of specific errors where
UnidecNMR diverged from the manual peak picks were analysed
(Supplementary Figs. 6, 7) were classified as ambiguous in the human
derived assignment.

Fig. 7 | Automatic picking of 3 and 4D methyl NOE spectra. Results from a 3D
methyl NOESY spectrum from ATCase (a) and a 4Dmethyl NOESY spectrum of EIN
(b). These figures were generated from outputs within our GUI. (i) The location of
two selected slices is indicated with respect to the relevant projections. It is
desirable when analysing 4D spectra to take 2D slices that have lower resolution
than the reference planes that include the direct dimension, as shown for EIN. (ii)
The corresponding slices focusing on identified NOEs from a pair of resonances,
and a cross peak between them. The specific cross peak feature is indicated
(orange). Orthogonal views can be selected within the GUI allowing a user to verify

that all resonances are centred on the selected plane. The deconvolved version of
the spectrum can also be shown side-by-side with the raw data. (iii) The cross peak
signal intensity, shown as a mean and standard deviation of the two reciprocal
resonances, shown versus the expected C-C distance from the corresponding
structure. 460 pairs of cross-peaks were identified for ATCase and 660 for EIN,
overall 60% more than obtained from a manual analysis29 (294, 420 respectively).
The picked peaks fall within a sensible range of distances indicating that the NOEs
are consistent with the expected structures (iii).
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Finally, we sought to test the algorithm against methyl-NOE data.
Two spectra were analysed; a 3D dataset from a dimer of regulatory
chains of aspartate transcarbamoylase from E. coli ATCase, acquired in
the laboratory of Prof. Lewis Kay27 and a 4D spectrum from the
N-terminal domain of E. coli Enzyme I (EIN1), acquired in the laboratory
of Prof. Marius Clore28. In both cases, a 2D H/C peak list was initially
prepared from a high-resolution 2D HMQC spectrum. As the proteins
are deuterated with only 13CH3 methyl groups labelled, the expected
distance of NOEs will be substantially longer than those spanned in
uniformly labelled samples, frequently extending to a C-C distance of
10Å29. Moreover, cross-peaks are expected to be symmetric with
minimal spin diffusion, such that if A->B is present then we also expect
B->A30. We provide an option in UnidecNMR to impose this require-
ment on the spectrum and to seek out only cross-peaks related by
reflection symmetry. The resulting peak list is returned as a set of
correlations between two resonances in the original 2D peak list, ready
for use in assignment software or in structure calculations.

For ATCase/EIN, 460/660 cross-peaks were picked by Uni-
decNMR, an increase of 60% from those picked previously by an
experienced user whose results were used for assignment (294/420)29.
The intensity of the resonanceswasplotted against the knowndistance
spanned in the protein to determine if the picked NOEs are consistent
with the expected structural forms (1d0931/1eza32 ATCase/EIN)
(Fig. 6A). Both plots revealed the vastmajority of theNOEs to bewithin
10Å and so are consistentwith the known structures (Fig. 6A) and have
a similar pattern to those picked manually29. For ATCase, several
relatively intense resonances were identified both manually and by
UnidecNMR that would indicate a distance >10Å29. As noted
previously27, these indicate a fluctuation in the loop adjacent to leucine
7 of ATCase present in the truncated dimer that is not present in the
WT structure used for analysis. In the case of methyl NOE spectra, as
60% more cross-peaks were identified, UnidecNMR performance
exceeds that of an experienced user.

Discussion
When publishing the first ‘triple resonance’ 13C/15N/1H backbone assign-
ment experiment, theHNCO, the authors noted that “because of the low
level of resonanceoverlap in the3Dspectra,muchof the3Dpeakpicking
can be done in a fully automated manner.”33. While this experiment
remains widely used, the goal of full automation has yet to be realised.

To move further towards this goal, UnidecNMR provides a pow-
erful computational tool for picking resonances in 1-4D NMR spectra.
In practice, a user supplies parameters that describe a peak shape that
will be ultimately used to back-calculate the spectrum, together with a
noise threshold. Both can be either estimated by the software or
manually adjusted in an iterative manner by a user. The target spec-
trum and the back calculation are in nmrPipe34 format. The resulting
picked peaks and back-calculated spectra can be inspected either in
our GUI or in any other preferred visualisation software. Against both
synthetic and experimental data, the performance of UnidecNMR is
substantially improved over the alternative freely downloadable peak-
picking algorithms tested in this article.

The algorithm offers two additional modes that can use prior
knowledge to improve performance, neither of which is typically
possible with existing peak-picking software. Providing a 2D peak list
limits the search space substantially in 3 and 4D applications, and in
the case of 3 and 4Dmethyl NOE spectra, a user can further specify the
additional requirement that symmetry will be imposed on any cross-
peaks. These peak lists can then be used for assignment29 or passed to
structural calculations.

The GUI is written in wx-python and uses the Python package
matplotlib35 to generate figures (Figs. 5a, 6, Supplementary Figs. 2, 3).
Matplotlib is widely used by NMR users to visualise data35 and our
softwaremakes it easy for the plotting functions to bemanually edited
to cater for individual preferences. We are taking advantage of the

outstanding nmrGlue package36, which allows NMR spectra to be read
intoPython. Thedeconvolution software iswritten inC++which canbe
executed from the command line and so can be incorporated into
automated workflows outside of our own GUI. The GUI and deconvo-
lution program have been tested in Linux, Mac and Windows envir-
onments. The simulated data comprising 40,500 1D and 7200 2D
simulated spectra (Supplementary Figs. 2, 4) and the experimental
data (Supplementary Table 1) will be made freely downloadable to
enable rapid and systematic comparison of peak-picking algorithms
going forward.

Overall, against the experimental data tested here, we find the
performance of UnidecNMR to be either comparable or, in the case of
methyl NOE data, substantially superior to the results generated by an
experienced spectroscopist (Pritišanac et al.29). A GUI is provided to
enable a user to quickly screen through the picks to both check the
results and manually amend, as required. The GUI also generates and
executes nmrPipe34 and SMILE37 scripts for interactive processing of
2-4DNMR. This allows a user to go straight from FIDs to processed and
picked spectra within one software environment using a few ‘clicks’.
While it is possible to add the algorithm to a fully automatic pipeline,
we nevertheless recommend inspecting the results manually. Either
way, by substantially reducing the time taken to analyse 3 and 4D
spectra, UnidecNMR has promise to both accelerate the workflow of
spectroscopists and reduce the barriers for non-specialist laboratories
to undertake a biomolecular NMR analysis to address their research
questions. The software and benchmark are free for academic use and
can be downloaded from http://UnidecNMR.chem.ox.ac.uk.

Methods
Simulation methods
NMR spectra with 2 peaks were simulated in 1 (Supplementary Fig. 4)
or 2 dimensions (Fig. 2) using a Gaussian function with a predefined
width. The difficulty of each spectrum was controlled by two axes: the
separation of the two peaks and the signal-to-noise ratio (y-axis, 1D—
Supplementary Fig. 4c, d, f, 2D—Fig. 2c, varied between 2 and 10 in
both cases).

For 1D spectra, a peak location function of 400 frequency points
was defined as zero everywhere except two points separated by the
given separation value (expressed as a function of FWHM, x-axis 1D—
Supplementary Fig. 4c, d, f, 2D—Fig. 2c ranging from0.85 to 2.6 in both
cases). A standard Gaussian peak shape function was defined and
convolved with this peak location to give a noiseless spectrum.

To define the signal to noise for each spectrum, a random noise
function was produced by drawing from a normal distribution. To
mirror what is typically done in the analysis of experimental spectra,
the highest intensity/standard deviation was taken from a defined
region of this signal-less function. Themagnitude of the noise function
was then adjusted before being added to the signal to produce a final
spectrum with the required signal-to-noise ratio.

500 1D spectrawere simulated for each of 9 signal-to-noise values
and 9 inter-peak separations (Supplementary Fig. 4). The same pro-
tocol was repeated for 2D spectra, and we chose 100 spectra for each
of the 9 signal-to-noise ratios and 8 separations (Fig. 2). As we were
producing somany spectra, carewas taken to vary the random seed to
ensure the noise distribution was not being repeated.

Experimental methods
All data, processing scripts and analysis are included as part of a
benchmark available for download as described in the data and code
availability statement. Methods to produce the materials described
and data acquisition are described below.

αB-crystallin (86 residues, present as a dimer, 19.8 kDa):
Sequence:
MRLEKDRFSVNLDVKHFSPEELKVKVLGDVIEVHGKHEERQDEHGFI

SREFHRKYRIPADVDPLTITSSLSSDGVLTVNGPRKQVS
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Residues 68–153 of Human αB-crystallin are known to form a
predominant dimer (19.8 kDa) at equilibrium, although all spectra
show signs of exchange broadening, consistent with previously
observed monomer-dimer interchange25,38. All spectra of αB-crystallin
core domain were recorded at 288K on an Oxford Instruments
600 MHz spectrometer equipped with a Varian Inova console and a
5mm triple resonance room temperature probe with z-axis gradients.

The 2D 15N-1H sensitivity-enhanced HSQC was recorded with 100
(15N) and 1024 (1H) complex points and 2110Hz (15N) and 9000Hz (1H)
sweep widths using an interscan delay of 1 s and 16 scans per FID for a
total duration of 60min. The sensitivity-enhanced HNCO was recor-
ded with 40 (13C), 15 (15N) and 1298 (1H) complex points with 1400Hz
(13C), 1400Hz (15N) and 9000Hz (1H) sweep widths using an interscan
delay of 1.5 s and 8 scans per FID for a total duration of 8 h 52min. The
sensitivity-enhancedHNCAwas recordedwith 30 (13C), 15 (15N) and 1152
(1H) complex points with 4500Hz (13C), 1210Hz (15N) and 9000Hz (1H)
using an interscandelayof 1.2 s and 16 scans per FID for a total duration
of 10 h 43min.

HSP27core (88 residues, present as a dimer 19.8 kDa)1,23:
Sequence:
GVSEIRHTADRWRVSLDVNHFAPDELTVKTKDGVVEITGKHEERQ

DEHGYISRCFTRKYTLPPGVDPTQVSSSLSPEGTLTVEAPMPK
Residues 86–171 (a.k.a. the core domain) of Human HSP27 are

known to form a predominant dimer (19.8 kDa) at equilibrium,
although all spectra show signs of exchange broadening, consistent
with previously observed monomer-dimer interchange. The 2D 15N-1H
sensitivity-enhanced HSQC was recorded at 298K on an Oxford
Instruments 750MHz spectrometer equipped with a Bruker Avance III
HD console and a 5mm TCI cryoprobe with z-axis gradients.

128 (15N) and 1024 (1H) complex points were acquiredwith 2257Hz
(15N) 10,000Hz (1H) sweep widths using an interscan delay of 1.4 s and
16 scans per FID for a total duration of 1 h 46min. Both the HNCO and
HNCA were recorded at 298K on an Oxford Instruments 600 MHz
spectrometer equipped with a Varian Inova console and a 5mm triple
resonance room temperature probe with Hz-axis gradients.

The sensitivity-enhanced HNCO was recorded with 50 (13C), 25
(15N) and 1532 (1H) complex points with 1256Hz (13C), 1056Hz (15N) and
8992Hz (1H) sweep widths using an interscan delay of 1 s and 8 scans
per FID for a total duration of 13 h 10min.

The sensitivity-enhanced HNCA was recorded with 40 (13C), 30
(15N) and 1532 (1H) complex points with 2700Hz (13C), 1056Hz (15N) and
8993Hz (1H) using an interscan delay of 1 s and 16 scans per FID for a
total duration of 24 h 55min.

Ubiquitin (76 residues, 8.5 kDa):
Sequence:
MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGK

QLEDGRTLSDYNIQKESTLHLVLRLRGG
All experiments were recorded at 298K on a 500MHz spectro-

meter equipped with a Varian console, as published previously24. The
2D 15N HSQCwas recorded with 128 (15N) and 1024 (1H) complex points
and 2000Hz (15N) 4000Hz (1H) sweep widths using an interscan delay
of 1.3 s and 4 scans per FID for a total duration of 26min.

The HNCO was recorded with 40 (13C), 40 (15N) and 1024 (1H)
complex points with 1500Hz (13C), 2000Hz (15N) and 3000Hz (1H)
sweep widths using an interscan delay of 1.1 s and 8 scans per FID. The
HNCAwas recorded with 60 (13C), 40 (15N) and 512 (1H) complex points
with 4000Hz (13C), 2000Hz (15N) and4000Hz (1H) sweepwidths using
an interscan delay of 1.3 s and 4 scans per FID.

HSP16.5 (113 residues, present as a dimer 24.8 kDa):
Sequence:
GSSSTGIQISGKGFMPISIIEGDQHIKVIAWLPGVNKEDIILNAVGDTLE

IRAKRSPLMITESERIIYSEIPEEEEIYRTIKLPATVKEENASAKFENGVLSVILP
KAESSIK

Methanococcus jannaschiiheat shockprotein 16.5 (HSP16.5) forms
a predominant dimer (24.8 kDa) when truncated to the ‘core’ alpha-

crystallin domain and shows many variable peak heights in spectra
again consistent with subunit exchange. The HNCO was recorded at
323 KonanOxford Instruments 600MHz spectrometer equippedwith
a Varian Inova console and a 5mm triple resonance room temperature
probe with z-axis gradients. 50 (13C), 25 (15N) and 1298 (1H) complex
points were acquired with 1400Hz (13C), 1400Hz (15N) and 9000Hz
(1H) sweep widths using an interscan delay of 1.5 s and 16 scans per FID
for a total duration of 36 h 57min.

DDX4N (236 residues, 25.4 kDa):
Sequence:
MGDEDWEAEINPHMSSYVPIFEKDRYSGENGDNFNRTPASSSEMD

DGPSRRDHFMKSGFA
SGRNFGNRDAGECNKRDNTSTMGGFGVGKSFGNRGFSNSRFED

GDSSGFWRESSNDCEDN
PTRNRGFSKRGGYRDGNNSEASGPYRRGGRGSFRGCRGGFGLG

SPNNDLDPDECMQRTGG
LFGSRRPVLSGTGNGDTSQSRSGSGSERGGYKGLNEEVITGSGKN

SWKSEAEGGES
1–236 residues of human DDX4 protein (sequence termed

DDX4N139).
DDX4N experiments were performed at 303 K on an Oxford

Instruments 750MHz spectrometer equipped with a Bruker Avance
III HD console and a 5mm TCI CryoProbe with z-axis gradients.
The 2D 15N-1H BEST-TROSY HSQC was recorded with 128 (15N) and
1024 (1H) complex points and respective sweep widths of 1597 Hz
and 9803 Hz using an interscan delay of 0.2 s and 32 scans per FID
for a total duration of 55min. The 3D BEST-TROSY HNCO was
recorded with 64 (13C), 64 (15N) and 1024 (1H) complex points and
2832 Hz (13C), 1597 Hz (15N) and 9804 Hz (1H) sweep widths using an
interscan delay of 0.2 s and 32 scans per FID for a total duration of
3 h 25min.

The 3D BEST-TROSY HNCA was recorded with 64 (13C), 64 (15N)
and 1024 (1H) complex points and 5291Hz (13C), 1597Hz (15N) and
9804Hz (1H) sweep widths using an interscan delay of 0.2 s and
156 scans per FID for a total duration of 16 h 6min. All spectra were
processed using the UnidecNMR software, which relies on NMRPipe
and nmrGlue.

Generalised instructions to run UnidecNMR
For best performance, we recommend a Lorentz-to-gauss window
function in all dimensions, which will result in a peak shape that well
matches a pseudo-voigt function (Eq. 2). Empirically, care to mini-
mise long Lorenztian tails tends to generate optimal results.
This choice is not essential, other window functions, including
exponential and sine-bell can be used. In practice, our experimental
dataset was processed using a small range of apodization functions
(Supplementary Table 2) and results are largely independent of this
choice.

The next step is to obtain general peak shape parameters for use
as the peak shape filter. There are a range of ways to do this. First, a
peak shape can be ‘guessed’, a trial UnidecNMR calculation is per-
formed, the result inspected, then the values adjusted based on whe-
ther the result has obvious over or under picked the spectrum. Second,
theUnidecNMRGUI loads in themost intense peaks detected, allowing
auser to eithermanually or algorithmicallyfit themwithin the software
(the ‘Fit Peaks’ tab). Sliders allow the various parameters to be adjusted
until the shape is as desired.

Once a peak shape has been determined, UnidecNMR can be run,
the result inspected, then the peak shape further tweaked until the
simulated spectrum well resembles the original and the positions of
the selected peaks look reasonable. The overlay of the reconvolved
spectrum and the original, as presented in the GUI, make this a
straightforward exercise (Figs. 1, 3, 5–7, S2, S7). Either the projections
in 3D/4D data or the overlay of the 3D/4D data specifically can be
compared in this way.
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Finally, a noise threshold has to be set. A useful protocol for this is
to inspect the data in the projections window, place the lower contour
in adesirable position, and thenpress ‘set’. In practical applications,we
typically run with a high threshold to enable a rapid computation
allowing assessment of the peak shape, before honing by lowering the
threshold to a level suitable to detect all relevant spectral features.

The number of CPUs can be set to any value, and the calculation
will be parallelised at the level of the Fourier transform via FFTW3.
Improvements in calculation time are achieved, but owing to the
complexities of parallelising Fourier transforms, reduction in calcula-
tion time will not be linear with the number of CPUs.

When running UnidecNMR, there are two further considerations.
The first is the convergence of the algorithm. Two numbers can be
selected: the maximum number of iterations and the convergence
threshold. These can be set in the GUI to ‘quick’, ‘medium’ and ‘accu-
rate’. Increasing themaximumnumberof iterations anddecreasing the
convergence threshold will result in a longer but more thorough cal-
culation. All results shown in the paper were achieved with either
‘medium’ or ‘accurate’ settings, but when initialising a calculation,
‘quick’ settings are helpful.

The values for convergence of the algorithm (maxIter, con-
vergence) were set as ‘quick’ (25, 10−5), ‘medium’ (50, 10−7) and ‘accu-
rate’ (100, 10−8). In calculations shown in this paper, the maximum
number of iterations typically halts the calculation. The final peak list
tends to vary slightly between ‘quick’ and ‘medium’, and rarely varies
when comparing ‘medium’ and ‘accurate’. In caseswhere the algorithm
performance seems poor, the maximum number of iterations should
be increased.

Finally, as described in the text, the optimiser has one further user
scalable parameter, ‘fac’. We find excellent results for 2D data with
fac = 1.4, and for 3D, 1.6when using the ‘boring’mode. If the program is
missing peaks that are highly overlapped, decrease fac. If it picks too
many, increase it. The settings become highly intuitive after running
the program a small number of times.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Benchmarking data is available for download from http://UnidecNMR.
chem.ox.ac.uk. The 2D HSQC and 3D HNCA/HNCO spectra from the
four proteins in the benchmark (ubiquitin, aB-crystallin, hsp27 and
DDx4) are present, with input files that allow their processing and peak
picking to be performed precisely as described in this manuscript (in
conjunction with the program, see “Code availability” statement).
These act as a template to allow users to adapt their own data to our
environment and as a validation that the software works as described
in this manuscript. Experimental details for the different systems and
spectrometer acquisition settings are found in the “Methods” section.
Supplementary Table 2 describes detailed settings for processing the
FIDs into spectra. Supplementary Table 1 describes how the different
peak-picking methods were scored.

Code availability
Software and benchmarking data are available for download from
http://UnidecNMR.chem.ox.ac.uk. The core algorithm is written in C++
andwill be available in pre-compiled binary form. The Python codewill
be distributed. This provides a GUI allowing access to the processing
functions of nmrPipe, a 1/2/3/4D spectrum viewer, from which the
peak-picking functions of the UnidecNMR can also be directly acces-
sed. The Software is distributed “AS IS” under this Licence solely for
non-commercial use. If you are interested in using the Software com-
mercially, please contact the technology transfer company of the
University to negotiate a licence. Contact details are:

“enquiries@innovation.ox.ac.uk”. We will thoroughly welcome com-
munity input both in improving theuser experience andexpanding the
benchmark to enable future development and improvement of com-
putational tools such as these.
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