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The hippocampal CA3 subregion is a densely connected recurrent circuit that
supports memory by generating and storing sequential neuronal activity
patterns that reflect recent experience. While theta phase precession is
thought to be critical for generating sequential activity during memory
encoding, the circuit mechanisms that support this computation across hip-
pocampal subregions are unknown. By analyzing CA3 network activity in the
absence of each of its theta-modulated external excitatory inputs, we show
necessary and unique contributions of the dentate gyrus (DG) and the medial
entorhinal cortex (MEC) to phase precession. DG inputs are essential for pre-
ferential spiking of CA3 cells during late theta phases and for organizing the
temporal order of neuronal firing, while MEC inputs sharpen the temporal
precision throughout the theta cycle. A computational model that accounts
for empirical findings suggests that the unique contribution of DG inputs to
theta-related spike timing is supported by targeting precisely timed inhibitory
oscillations. Our results thus identify a novel and unique functional role of the
DG for sequence coding in the CA3 circuit.

M Check for updates

Although it is well established that the hippocampus supports episodic
and spatial memory'?, the computations that are performed by each of
its subregions, particularly by the dentate gyrus (DG), are not well
characterized. The sparse activity of the DG granule cells in both the
number of active neurons and firing rate has motivated theories that
DG facilitates memory formation through the distinct encoding of
unique events. This is supported by the observation that spatial firing
patterns of DG cells show pattern separation®>, which is in turn con-
sistent with the general conceptual framework that the DG mossy fiber
projections to CA3 support memory by promoting the generation of
new and distinct hippocampal firing patterns®'°. However, behavioral

studies have suggested that the role of DG in memory may be broader
due to its essential role in support of complex spatial working memory
where items need to be held in temporary storage for successful goal-
directed behaviors™,

Consistent with the role of DG in working memory in addition to
pattern separation, CA3 sharp wave ripples (SWRs) have been shown to
occur during working memory, to depend on the DG during working
memory, and to predict subsequent correct choices”. These findings
suggest that the associative circuits created by the dense direct and
indirect recurrent pathways in the DG-CA3 network™* support the
generation of SWRs (150 - 250 Hz oscillation), which are thought to
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originate in CA3 with modulation from the CA2 and DG
subregions™*". SWRs occur during slow-wave sleep and during pau-
ses in ongoing behavior and consist of short bouts of neuronal activity
that correspond to a time-compressed replay of sequences from
behavioral episodes™™?. Decoding of such sequences in CAl has
revealed that they reflect available trajectories within an environment
including spatial locations either behind or in front of the animal*>*.
Stored hippocampal sequences have, in turn, been shown to be
important for learning and memory consolidation*** and are also
proposed to guide behavior by facilitating decision-making and future
route planning?**>?% (but see ref. 29).

While the relation between SWRs and memory has been pre-
dominantly investigated in the hippocampal CAl region, the finding
that DG-dependent SWR activity in CA3 reflects the planning of future
action" is consistent with a proposed broader role of DG in which its
circuits are hypothesized to perform error correction to maintain
accurate temporal order during the chaining of CA3 sequences in
behavior*’. However, complex memory tasks are highly dynamic with
frequent transitions between brain states associated with predominant
frequency ranges, each likely reflecting distinct underlying network
mechanisms for memory encoding and retrieval®. A complementary
brain oscillation that is also strongly associated with sequential neu-
ronal activity is theta (6-10 Hz oscillation). Unlike SWR activity that
occurs during non-movement, theta is prominent and critical when
memory is encoded during periods of active exploration®*,

During theta states, the binding of cells into sequences has been
proposed to be supported by theta phase precession**, which is a
network mechanism that results in sequences when the spiking of
multiple overlapping place cells is organized within each theta cycle.
For each place cell, spiking first occurs at a late theta phase upon entry
into a place field and at progressively earlier phases of theta at the exit
from the field. This mechanism organizes the sequential firing such
that place cells that are further ahead of the animal spike later within
the theta cycle. The resulting compression of sequences from the
behavioral time scale (seconds) to within the time scale of synaptic
plasticity (milliseconds) may facilitate the storage of sequences in
synaptic matrices®**°. At the population level, the precession of indi-
vidual place cells can lead to spike sequences within each theta
cycle® 442 that may also reflect past and future paths of the
animal****, Therefore, phase precession is a critical mechanism during
theta states for organizing spike sequences during behavior and has
been observed in the neural networks of all hippocampal subregions as
well as in their theta-modulated input, the medial entorhinal cortex
(MEC)45,46.

Although theta phase precession is observed throughout the
hippocampus and entorhinal cortex, most mechanistic models of
phase precession have focused on the CAl region and on recurrent
connections in CA3*, Involvement of the DG in phase precession has
initially been suggested in a model that considered the strong synaptic
facilitation of mossy fiber synapses onto CA3 cells as a potential source
for increasing excitation throughout the extent of the place field*>
Conversely, the DG has also been noted in network models as a brain
region that can complement the direct recurrent CA3 to CA3 con-
nections by a longer recurrent loop that includes dentate mossy cells
and dentate granule cells. Accordingly, the connections in this loop
have been proposed to include fixed asymmetrical weights that can
give rise to sequential and predictive firing patterns*>*. Although
these computational models raise the possibility that DG may con-
tribute to phase precession with a function that differs from other
input pathways, it has not been experimentally tested whether DG
inputs are even necessary for phase precession at its direct target cells
in CA3, and if necessary, whether the observed effects after selective
loss of DG inputs can further constrain computational approaches.

While the effects of DG inputs on theta-related spike timing have
not been determined, MEC inputs to CAl are known to be necessary for

CALl phase precession and for CAl cell pairs to maintain their spiking
order in theta cycles®. However, given that the MEC inputs to CA3 are
complemented by a second extrinsic input from strongly phase pre-
cessing cells in DG*, it is possible that MEC inputs are not as strictly
required for phase precession in CA3 compared to CA1”. Here, we,
therefore, compared the contributions of DG inputs and MEC inputs to
provide an understanding of the respective contributions of two
external excitatory inputs to CA3 theta phase precession. To distin-
guish the role of the two inputs, we analyzed and compared CA3
network dynamics during theta oscillations from previously published
recordings of CA3 cells during working memory tasks with either intact
or diminished MEC or DG inputs**. Based on our finding that DG
contributes to prospective coding during SWRs"”, we hypothesized
that DG also predominantly controls the emergence of prospective
coding during theta oscillations. Our results are consistent with a
contribution of DG, but not MEC inputs, to prospective coding and to
the organization of temporal relations between CA3 neurons. We
devised a phenomenological computational model to synthesize these
findings and to make predictions of how the summation of inhibitory
and excitatory oscillatory inputs might support phase preces-
sion in CA3.

Results

To test the contribution of DG and MEC inputs to CA3 phase preces-
sion, two previously published datasets with recordings of neuronal
activity in the rat hippocampal CA3 region were analyzed*. In these
datasets, CA3 cells were recorded in hippocampus-dependent working
memory tasks after lesioning either dentate granule neurons or the
MEC (Supplementary Figs. S1, S2a, b), and each lesion group was
paired with a respective control group (Supplementary Table SI).
Because the working memory tasks required the rats to follow chosen
trajectories, coverage of space was inevitably non-uniform. We,
therefore, reasoned that the method of defining spike trains by first
identifying place fields and then identifying passes through fields may
not be precise as a result of uneven coverage and directly identified
bouts of each cell’s increased neuronal activity by selecting spike trains
from the temporal firing patterns (see Supplementary Fig. S2c for
details on the criteria). We only considered neuronal activity during
locomotion (Supplementary Fig. S2d) when there is a reliable occur-
rence of theta oscillations. Given that we included only spikes within
trains and during movement periods, only a proportion of all recorded
spikes (34.3% vs. 20.4% DG control and lesion; 30.6% vs. 22.5% MEC
control and lesion) were included as qualifying trains and further
analyzed (Supplementary Fig. S3). While spike trains were identified
solely by timing and velocity criteria, we confirmed that the trains
clustered preferentially at one or few spatial locations, as would be
expected for CA3 place cells. In addition, we confirmed that there were
only minor differences in firing rate and spatial precision measure-
ments when comparing cells between the control group for DG lesions
and the control group for MEC lesions, even though the number of
spikes per train and the path length during trains differed between
these groups (Supplementary Fig. S3a). These analyses confirm that
the spatial firing characteristics of the two control datasets are com-
parable even though they were taken from two different spatial
working memory tasks**.

Furthermore, we also examined whether lesioning a large pro-
portion of DG or MEC inputs to CA3, which are each excitatory, had
major effects on firing rates and spatial firing characteristics. Com-
pared to controls, DG lesions did not alter firing rate, sparsity, or
spatial information, but decreased selectivity and yielded longer path
lengths during trains (Supplementary Fig. S3b). On balance, there is
not a major overall change in excitation relative to inhibition, but if
there are any effects, they are generally in the direction of broader
fields. The results are, therefore, not consistent with the notion of a
merely reduced excitation, such that only the late (i.e., higher rate)
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portion of the spatial field is observed in the lesion condition. Per-
forming the same analyses for MEC lesions compared to controls
yielded lower selectivity and spatial information, longer path lengths
during trains, and increased sparsity (Supplementary Fig. S3c). Again,
the less precise spatial firing is inconsistent with the notion that only a
portion of the firing field is retained. However, the minor decrease in
firing rate with MEC lesions suggests that loss of excitation may be
more prominent with MEC lesions compared to DG lesions.

In addition to examining the changes in the spatial firing patterns
and firing rates with the lesions, we also examined whether LFP oscil-
lations were changed by either of the two lesions (Supplementary Fig.
S4). We did not observe any major effects of either lesion on the power
of delta, theta, and slow gamma oscillations, but the power of fast
gamma oscillations was increased with the MEC lesions, and theta
phase-fast gamma amplitude co-modulation was markedly reduced
with DG lesions. In addition, the lesions resulted in a minor decrease in
theta oscillation frequency [DG control vs. lesion: 7.92 + 0.21 Hz and
7.28 + 0.56 Hz, median + interquartile range (iqr), n=7 and 11 sessions,
rank sum=103, p=2.5x10"* MEC control vs. lesion: 7.32 +0.40 Hz
and 7.07 £ 0.84 Hz, n =13 and 20 sessions, z-statistic =2.23, p=0.026,
Mann-Whitney (MW) tests], and MEC lesions in a loss of speed mod-
ulation of theta frequency (MEC control and lesion: r=0.238,
p=11x107° and r=0.038, p=0.35, linear regression). However, the
theta oscillation frequencies after DG and MEC lesions were indis-
tinguishable (DG vs. MEC lesion, z-statistic =1.09, p=0.27, MW test)
such that any differences in the precise timing of CA3 cells between the
lesion groups cannot be attributed to a difference in LFP patterns. We
also examined the symmetry of the wave shape of theta oscillations
because notable asymmetry has been reported in CA1*. In our CA3 LFP
recordings, we did not find major asymmetry of theta waves, and there
was no added asymmetry with either DG or MEC lesions (Supple-
mentary Fig. S5). The shape of theta waves is, therefore, not a source of
bias for any of the phase measurements.

DG granule cell input was necessary for the full expression of
phase precession in CA3 neurons

Although it has long been known that there is substantial phase pre-
cession in DG cells*, it is not clear whether DG inputs are necessary for
phase precession in its direct target cells in CA3. We, therefore, com-
pared phase precession in CA3 cells between DG-lesion and control
rats, which were trained to perform a dentate-dependent radial 8-arm
maze WM task (Supplementary Table S1)”. We began by determining
the level of phase precession in each control CA3 cell by plotting the
theta phase of all spikes in a cell’s qualifying trains against the distance
covered during the train. The slope was then calculated for each cell
(“slope-by-cell” analysis), and phase precession was evident in the
negative circular-linear regression slopes (Fig. 1a). We then performed
the corresponding analyses in DG-lesion rats. In rats with DG lesions
(Supplementary Fig. S1), substantial loss of mossy fiber innervation
was previously confirmed for all recording sites that are included in the
analysis, and the extent of DG granule cell loss was previously quan-
tified by scoring the remaining mossy fiber density at CA3 recording
sites”. Here, we combined CA3 cells from all recordings at sites with
complete or partial mossy fiber loss (see “Methods” for a detailed
description). In CA3 cells recorded at these sites, phase precession was
less pronounced and more variable than in controls (Fig. 1b). The
median circular-linear regression slope value in the slope-by-cell ana-
lysis was —149.4° for the control CA3 cells and only — 79.2° for CA3 cells
from the DG-lesion animals. Both medians were significantly negative
(Fig. 1c; control: n=84 cells, z-statistic =-6.19, signed rank=396,
p=2.96x10"% DG-lesion: n=68 cells, z-statistic=—-2.63, signed
rank =742, p=0.0043, one-sided sign tests) though with a reduced
slope of phase precession in the DG-lesion compared to the control
group (Fig. 1c; z-statistic = - 3.63, p=2.84 x10™, MW test). When con-
sidering the fraction of CA3 cells with negative compared to positive

slopes, a lower proportion displayed negative slopes in lesion com-
pared to control rats (88.1% in CTRL®® vs. 69.1% in LESION®®; x* test
for proportions, x*=8.34, p=0.0039). When adding the further con-
dition that the slopes had to be not just negative, but also pass a
significance criterion, the proportion of cells with significantly nega-
tive slopes also differed (Fig. 1c, shaded bars; 61.9% in CTRL®® vs,
38.2% in LESION®®:; x? test for proportions, x* = 8.43, p=0.0037).

Differences between the control and DG-lesion groups were also
apparent from the distribution of slopes obtained from the circular-
linear regression analysis of single pass data (“slope-by-train” analysis;
Fig. 1d). Here, we used the slopes of individual spike trains and, for
statistical comparisons, averaged the slopes of each cell’s trains
(Fig. 1e). We then compared the cells’ averages across groups and
found that the median cell-averaged slope was significantly less than
zero in control and DG-lesion rats (CTRL®®: n =84 cells, z-statistics =
-6.3, signed rank =381, p=1.9 x107'°, LESION®®: n = 68 cells, z-statis-
tics=-1.98, signed rank=849, p=0.024, one-sided sign tests). In
addition, the median slope of cells from lesion rats was significantly
different from the median slope of control cells (z-statistic =-4.39,
p=12x107, MW test). Further, the proportion of CA3 cells with
negative mean slopes was higher in cells from control than from lesion
rats (Fig. le, right; 83.3 % vs. 69.1 %, x¥*=4.3, p=0.038, x> test of pro-
portions). Taken together, these analyses demonstrate that CA3 phase
precession is diminished when the dentate granule cell input to CA3
neurons is reduced. In particular, the analyses with single-train slopes
revealed that the remaining inputs to CA3 after DG lesions yield less
reliable single-train phase precession.

MEC inputs to CA3 were also necessary for the expression of
phase precession in CA3 neurons

The MEC is known to be necessary for CAl phase precession®*. How-
ever, it is not known whether CA3 also requires MEC input to generate
phase precession or can generate phase precession with DG con-
nectivity alone. Thus, we next tested whether DG alone can support
CA3 phase precession by analyzing recordings of CA3 cells in MEC-
lesion rats. The MEC lesions were consistent between rats and included
93.0% of the total volume, with damage approximately matched across
cell layers (95.3% of layer I, 92.4% of layer 1, and 91.4% of deep layers;
Supplementary Fig. S1c)*. We extracted qualifying spike trains recor-
ded in CA3 of MEC-lesion animals as described above. The slope-by-
cell analysis revealed that the CA3 cells of control rats displayed phase
precession (Fig. 2a) and that precession was reduced, but not abol-
ished in MEC-lesion animals (Fig. 2b, c; CTRL™E®: n =101 cells, median
slope: —120.4°; LESIONME: =158 cells,~ 66.9°; control vs. lesion: z-
statistic = - 2.34, p=0.0193, MW test; control less than zero: z-statis-
tic=-6.18, signed rank =750, p=3.16 x10'; lesion group less than
zero: z-statistic=—3.6, signed rank =4204, p=1.57x10™, one-sided
sign tests). The proportion of cells with negative slopes was lower in
the MEC-lesion rats when all cells with negative slopes (83.2% and
70.3%, CTRLMEO ys, LESIONM™EO, ¥2=552, p=0.0188) and when only
cells with significantly negative slopes were considered (54.5% in
CTRLM vs, 38.6% in LESION™EO, y2=6.26, p=0.0124, x* tests for
proportions). As with DG lesions, the slope-by-train analysis showed
that reliable negative single-train slopes were seen for trains from
control CA3 cells but less for trains from CA3 cells of MEC-lesion rats
(Fig. 2d, e; medians less than zero: CTRLME®, z-statistic = - 6.9, signed
rank =550, p=3.4 x 10", LESION™, z-statistic =—2.9, signed rank =
4628, p=0.0021, one-sided sign tests; Median of CTRLM™E® vs,
LESION™EO: z-statistic=-3.9, p=9.3x107°, MW test; proportions of
negative slopes: 84.2% and 65.8%, CTRL™® vs, LESION™©, y2=10.5,
p=0.0012, x* test). These observations support a role for MEC in
the generation of robust phase precession in the CA3 of rats. There-
fore, the DG-CA3 network alone is incapable of generating phase
precession at control levels—for this, both the DG and MEC inputs are
necessary.
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Fig. 1| Dentate granule cell input is required for intact phase precession in CA3.
a Intact phase precession in control CA3 cells. Left, schematic of the major theta-
modulated excitatory inputs to CA3. Right, Two example CA3 cells and their spatial
firing patterns (gray lines, path; black dots, spike locations; red dots, spike locations
of an example spike train; scale bar, 50 cm), an example spike train and corre-
sponding LFP trace (red ticks, spikes; solid line, 6-10 Hz filtered LFP; gray line, raw
LFP; scale bars, 250 ms and 500 pV), and phase-versus-normalized distance plot
(black dots, spikes; red dots, spikes of example train, 1 cycle =360°). Solid green
lines in the plot indicate significant phase precession (p < 0.05; circular-linear
regressions). b Data as in (a) but for CA3 cells without DG inputs. Dashed green lines
indicate the lack of phase precession (p > 0.05; circular-linear regressions; LFP scale
bars, 250 ms and 500 pV; Path scale bar, 50 cm). ¢ Phase precession slopes and
proportions of phase precessing cells. One slope per cell was obtained by pooling
the spikes of all trains and by fitting a circular-linear regression to this pool (slope-
by-cell analysis). The median magnitude of the slopes (violin plots; n =84 control
(CTRL) and 68 DG lesion (LESION) CA3 cells, z-statistic=-3.62, p=2.8 x10*, MW

test) and the proportion of negative slopes (bar plots; only negative slopes,
X>=8.34, p=0.0039; negative and significant slopes, x>=8.43, p=0.0037, chi-
square test) were reduced by the DG lesion. d Slopes for all trains from control
(CTRL®9, left) and DG-lesion (LESION®®, right) CA3 cells (slope-by-train analysis).
Each row depicts the slope values from each of the trains of one cell (blue ticks), and
cells are sorted from top to bottom by their trains’ median slope (black tick when
negative, purple tick when positive). Shaded regions correspond to negative values.
e Phase precession slopes (violin plots; n = 84 control and 68 DG lesion CA3 cells, z-
statistic =— 4.39, p=1.2x10"°, MW test) and proportions of phase precessing cells
(bar plots; x*=4.28, p=0.038, chi-square test) from the slope-by-train analysis. For
analysis of proportions, a cell was considered phase precessing if the median slope
was negative. Violin plots in panels (c, e): Outline, distribution; shading, negative
slopes (inner shading in ¢, negative and significant slopes); error bars, 1.5 times the
interquartile interval above the third and below the first quartile.

*p < 0.05,*p < 0.01, **p < 0.001. Source data are provided as a Source Data file.

Putative granule cells exhibited a narrow theta phase preference
at the onset of spiking

To next ask whether the temporal profile of DG granule cell
spiking is precise enough to organize the spiking phase of CA3
neurons, we analyzed neuronal activity from rats in which we were
able to record single units from the DG (n =35 cells, see Methods).
Putative granule cells showed phase precession (Supplementary
Fig. S6a, b), which was accompanied by a strikingly narrow theta
phase preference at the onset of spiking. The phase preference
then broadened over the course of the spike train. Putative mossy
cells and CA3 pyramidal cells, although phase precessing, showed
a relatively broad theta phase variability throughout the entire
spike train (Supplementary Fig. Sé6c). These findings are sugges-
tive of a particularly critical role of DG granule cells in providing

temporal information to CA3 pyramidal cells upon entering the
place field.

DG and MEC lesions had qualitatively distinct effects on CA3
phase precession

After confirming that both the DG and MEC were necessary for CA3
phase precession at control levels, we asked whether there were qua-
litative differences in the phase precession patterns when each of these
inputs were diminished. Phase precession can be reduced by either
limiting the theta phase range over which spiking occurs or by
heightening the variability around a monotonically decreasing pre-
cession slope, or both. To determine whether the theta phase range
was altered by the lesions, we calculated the onset and offset theta
phase of CA3 spike trains. The onset phase of trains - defined by first
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Fig. 2 | Medial entorhinal cortical input is required for intact phase precession
in CA3. This figure follows the presentation of Fig. 1 but with data from CA3 cells
with lesioned MEC inputs and respective controls. a, b Firing patterns of example
CA3 cells in control and MEC-lesion rats. Solid green lines in the phase-versus-
normalized distance plot indicate significant phase precession (p < 0.05; circular-
linear regressions) and dashed green lines indicate a lack of significant phase pre-
cession (p > 0.05; circular-linear regressions). Scale bars for LFP: 500 pV and

250 ms, for path: 50 cm. ¢ Phase precession slopes (violin plots; n =101 control
(CTRL) and 158 MEC lesion (LESION) CA3 cells, z-statistic = -2.34, p=0.019, MW
test) and proportions of phase precessing cells (bar plots; controls vs. lesion, only
negative slopes, x> =5.52, p=0.019; negative and significant, x>=6.26, p = 0.0124,
chi-square tests) from the slope-by-cell analysis. The magnitude of the slopes and

the proportion of negative slopes were reduced by the MEC lesions. d Slopes for all
trains from CTRL™ (left) and LESION™ (right) CA3 cells. Each row depicts the
slope values from each of the trains of one cell (yellow and orange ticks), and cells
are sorted from top to bottom by their trains’ median slope (black tick when
negative, purple tick when positive). e Phase precession slopes (violin plots; n =101
control and 158 MEC lesion CA3 cells, z-statistic =—3.91, p=9.3 x 105, MW test) and
proportions of phase precessing cells (bar plots; x?=10.50, p =1.2 x1073; chi-square
test) from the slope-by-train analysis. Violin plots in panels (c, e): Outline, dis-
tribution; shading, negative slopes (inner shading in c, negative and significant
slopes); error bars, 1.5 times the interquartile interval above the third and below the
first quartile. * p <0.05, ** p < 0.01, ** p < 0.001. Source data are provided as a
Source Data file.

calculating the circular mean of first-cycle spikes of each train and by
then taking the median over all of the cell’s trains - no longer con-
sistently occurred at late phases in CA3 cells of DG-lesion rats
(Fig. 3a, b). For control cells, there was a clear peak in the distribution
of onset phases (®,,) during the late phase of the theta cycle, past the
trough, and accordingly, the circular mean of all onset phases was
228.4°. For cells from DG-lesion rats, onset phases had approximately
the same circular mean (226.7°), but strikingly, were broadly dis-
tributed over the theta cycle (n = 84 and 68 cells for control and lesion,
X>=24.4, p=5.0x107%, circular MANOVA; phase concentration para-
meters: CTRL®® k=191, LESION®® x=0.42, U=25.8, p=3.7x107,
concentration test). As expected for phase precessing cells, the dis-
tributions of offset phases () — defined as the circular median phase
of the spikes in the last cycle of each train - were earlier in the theta
cycle for cells from control and DG-lesion rats (mean offset phases,
79.6°, and 53.1°). In contrast to the onset phases, the offset phases did
not show differences in their distributions or concentrations between

cells from DG-lesion rats compared to control cells (Fig. 3b; x>=3.25,
p=0.20, circular MANOVA; concentration: CTRL®® x=0.80,
LESION®® x=0.95, U=0.32, p=0.57, concentration test). Selective
effects on the timing of the onset phases, but not of the offset phases
were further confirmed by measuring the dispersion of the phases of
the first spikes and of the phases of the last spikes across spike trains of
each cell. With DG lesions, the dispersion of the first spikes, but not of
the last spikes increased (Fig. 3¢; first: z-statistic=—4.11, p=3.9 x10%;
last: z-statistic = —1.33, p = 0.18, MW tests).

With MEC lesions, effects on the CA3 cells’ median onset and
offset phases were not observed (Fig. 3d and e; onset phases: CTRL®®
246.1°, LESION®® 238.7°, n=101 and 158 cells for control and lesion,
x*=118, p=0.56, circular MANOVA; onset phase concentration:
CTRLM g =1.49, LESION™EC x =1.33, U = 0.44, p = 0.51, concentration
test; offset phases: CTRLM©: 77.0° LESION™®©: 90.5°, y*=2.18,
p=0.34, circular MANOVA; offset phase concentration: CTRLMEC g =
1.08, LESIONMEO x=1.16, U=0.15, p=0.70, concentration test).
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Fig. 3 | DG lesions, but not MEC lesions substantially broaden the onset phase
of CA3 spike trains. a Onset and offset phases of spike trains from CA3 cells in
control (CTRL®®) and DG-lesion rats (LESION®®). In each of the four raster plots,
each row displays the onset phase (®,,,) or offset phase (D) of the trains of a cell
(in gray), and the cell's median onset or offset phase (light blue, control; dark blue,
DG-lesion). Cells within each panel are sorted from top to bottom by their median
onset/offset phase. Data are repeated from 2m to 4T for clarity, and two LFP theta
cycles are displayed on top for reference. b The cells’ median onset and offset
phases (shown in blue in panel a) were compared between control and DG-lesion
rats. Data are repeated from 2 to 41t. Note the greater concentration of onset
phases in the ascending (i.e., late) portion of the theta cycle in cells from control
compared to DG-lesion rats. The distribution of onset phases differed between
CTRL®® (light blue bars; n =84 cells) and LESION®® groups (dark blue line; n=68
cells, x*=24.4, p=5.0 x10°%, circular MANOVA) with a higher concentration in the
control group (phase concentration: CTRL®® k=191, LESION®® x=0.42, U=25.8,
p=3.7x107, concentration test). Offset phases were not altered by the lesion
(x*=3.25, p=0.20, circular MANOVA; phase concentration: CTRL®® x=0.80,
LESION®® g =0.95, U=0.32, p=0.57, concentration test). ¢ The dispersion of the
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phase of the first and last spikes was calculated across spike trains of each cell, and
the cells’ dispersions were compared between control and DG-lesion rats. Disper-
sions of the cells’ onset phase but not of the cells’ offset phase increased with DG
lesions (onset: z-statistic = - 4.11, p =3.9 x 10°5; offset: z-statistic=-1.33, p=0.18,
MW tests). The arrowheads mark the median circular variance values (control, light
blue; lesion, dark blue). d-f, As (a-c), but for the cells from MEC-lesion rats
(LESION™E9) and their corresponding controls (CTRLME®), Onset phase values
again peaked in the ascending phase of the theta cycle, but their distribution was
not altered by the lesion (n=101 CTRL™ and 158 LESION™© cells, y*=1.18,
p=0.56, circular MANOVA; phase concentration: CTRL™® g =1.49, LESION™©
k=133, U=0.44, p=0.51, concentration test). Similarly, the distribution of offset
phases did not differ between cells of MEC-lesion and control rats (y*=2.18,
p=0.34, circular MANOVA; concentration: CTRLM© x=1.08, LESIONM® x=1.16,
U=0.15, p=0.70, concentration test). Dispersions of onset and offset phases were
moderately broadened by MEC lesions (onset: z-statistic = - 2.30, p = 0.021; offset:
z-statistic = - 2.16, p = 0.031, MW tests), which is consistent with an overall increase
in variability in theta phase preference. n.s., not significant, *** p < 0.001. Source
data are provided as a Source Data file.

Furthermore, effects on the dispersions of first and last spikes across
spike trains were moderate and approximately matched (Fig. 3f; first: z-
statistic=-2.30, p=0.021; last: z-statistic=-2.16, p=0.031, MW
tests), which is consistent with an overall increase in variability in theta
phase preference. Taken together, the selective effects on the onset,
but not offset phase with DG, but not with MEC lesions indicate that it
is predominantly the DG input rather than the MEC input to CA3 that is
involved in setting the narrow, late-onset theta phase of CA3 spikes.
These results were also confirmed when repeating the same analyses
by using the cells’ place fields rather than the cells’ spike trains (Sup-
plementary Fig. S7), which confirms that qualitative differences in the
effect of DG and MEC lesions on temporal firing patterns in CA3 cannot
be attributed to methodological details.

The finding that DG lesion effects on the onset phase are coupled
with a broadening of the phase dispersion can be interpreted as the
emergence of “noise” spikes in early theta phases which would increase

the phase variance and shift the mean to earlier phases upon entry to
the place field. To further examine this possibility, we analyzed several
measurements of spike phase distribution. When measuring spike
phase distribution across all theta cycles regardless of the distance
traveled by the rat, the CA3 spike phase in control cells was con-
centrated in the middle of the theta cycle, as expected (Fig. 4a)*".
Spike phase distributions across theta cycles shifted towards earlier
phases of the theta cycle with DG lesions while the shift was in the
opposite direction with MEC lesions compared to their respective
controls (Fig. 4a; mean theta phase: CTRL®® n=84 cells, mean
phase =173.4°, LESION®® n =68 cells, mean phase=74.1°, x* statis-
tic=18.4, p=0.0001; CTRLM® n=101 cells, mean phase=157.1°,
LESION™© =158 cells, mean phase=172.3°, x* statistic =0.74,
p=0.69; X2 test for proportion of spikes contained in each of the three
theta bins). The shift to earlier phases with DG lesions was accom-
panied by an increase in the proportion of spikes in the first third of the
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Fig. 4 | With reduced DG input, peak probability of CA3 spiking shifts to earlier
theta phases. a Left, For control CA3 cells, distribution of spike incidence across
early, middle, and late theta phases. Top right, The proportion of CA3 spikes early
in the theta cycle was markedly increased with DG lesions (mean theta phase:
CTRL®® n =84 cells, mean phase =173.4°, LESION®® n = 68 cells, mean phase =
74.1°, ¥* statistic =18.4, p = 0.0001, ¥ test for proportion of spikes in each of the
three thirds). Dotted lines, data from control CA3 cells, as shown to the left. Bottom
right, with MEC lesions (LESION™E®), there was no change in the phase distribution
of CA3 spikes (CTRLM n =101 cells, mean phase =157.1°, LESION™© n =158 cells,
mean phase =172.3°, ¥ statistic = 0.74, p = 0.69; X’ test for proportion). b Average
number of spikes over a 360°-cycle from the first spike in the train. In trains from
cells of DG-lesion rats, the median number of initial-cycle spikes increased by 23.8%
compared to control cells (from 2.61to 3.23, n =84 CTRL®® and 68 LESION®® cells,
z-statistic = - 4.38, p =1.2 x 10°°, MW test). In MEC-lesion rats, the median number of
initial-cycle spikes increased by 16.5% compared to control trains (from 2.49 to

2.9 spikes, n=101 CTRL™® and 158 LESION™EC cells, z-statistic = - 2.74, p = 0.006,
MW test). ¢ Fraction of CA3 spikes at early, middle, and late phases of the theta
cycle as a function of normalized (%) distance during the train. At the onset of
control trains, a low proportion of spikes is typically observed at early phases, but
this proportion increases with DG lesions. d Top, DG lesions selectively increased
the variability of spike phase in the first half of a spike train (from 5% to 45% of the
normalized distance, MW tests; Holm-Bonferroni corrected; see Supplementary
Table S2 for statistics). See Fig. 1b, for example spike trains that show this effect.
Bottom, MEC lesions did not increase the variability of theta phase along the dis-
tance through the field (MW tests; Holm-Bonferroni corrected; Supplementary
Table S2). * p<0.05, * p<0.01, * p < 0.001. For most theta cycle-based analyses,
similar results were obtained when repeating the analyses by using the cells’ place
fields rather than the cells’ spike trains (Supplementary Fig. S7ii). Source data are
provided as a Source Data file.

theta cycle in DG-lesion rats, which could result either from the addi-
tion of spurious spikes compared to controls or solely from redis-
tributing the same number of spikes. To test whether additional spikes
were present in early theta cycles in DG-lesion rats, we counted the
number of spikes in the first 360° cycle after the first spike and for each
neuron, averaged the number of spikes over all spike trains. The
number of initial-cycle spikes increased by 23.8% in trains from cells of
DG-lesion compared to control rats (from 2.61 to 3.23, n =84 CTRL®?
and 68 LESION®® cells, z-statistic=-4.38, p=12x107°, MW test).
Similarly, the median number of initial-cycle spikes increased by 16.5%
in spike trains of cells from MEC-lesion compared to control rats (from
2.49 to 2.9 spikes, n =101 CTRL™ and 158 LESION™EC cells, z-statis-
tic=-2.74, p=0.006, MW test; Fig. 4b). Both lesion groups therefore
showed disinhibition at the onset of the spike train, but this was
accompanied by more early-phase spikes in only cells from DG-lesion
rats (see Figs. 3¢, 4a).

In additional analyses that consider the distance traveled during a
spike train, we binned the normalized distance during each spike train
into 10 bins and considered the joint distribution of spike phase and
normalized distance (Fig. 4c). Here, we found that DG lesions resulted
in a particularly pronounced redistribution of spikes to earlier theta
phases in early bins. This redistribution reduced the proportion of late-
phase spikes that are normally observed in the early section of the path
such that the theta phase when spikes occurred was now remarkably
similar irrespective of distance along the path. In addition, the circular
variance of CA3 spike theta phase was selectively increased in the first
half of the path (Fig. 4d, top; pairwise comparisons between CTRL®®
and LESION®? are significant in the first five of ten bins, Holm-
Bonferroni corrected p<0.05, see Supplementary Table S2 for
detailed statistics) such that the variance in all bins with DG lesion

reached levels that are in controls only observed in the second half. In
contrast, circular variance took on similar values in MEC control and
lesion rats (Fig. 4d, bottom; pairwise comparisons between CTRL™E
and LESION™E® all bins not significant, see Supplementary Table S2
for detailed statistics). The broadening of the onset phase distribution
at the onset of the train together with the increase in firing rate in the
initial theta cycle (Fig. 4c) is consistent with the possibility that DG to
CA3 input is critically involved in restricting the spiking in the begin-
ning of the train to late-theta phase (“prospective”) CA3 spiking by
inhibiting spurious spikes in the early phases of the theta cycle.

Analytically reducing phase variability partially recovered phase
precession of CA3 cells from MEC-lesion rats

If a lesion impairs phase precession by increasing the variance of the
phase distribution, it might be feasible to recover phase precession
by analytically reducing the phase variance. Phase variance can be
reduced by replacing, within each theta cycle, all spikes with their
mean timestamp. However, if the main effect of a lesion is a reduc-
tion in slope or phase range, replacing the spikes with their cycle
mean should not restore phase precession. When we replaced the
spikes of each theta cycle with their mean phase within the cycle
(‘cycle-mean analysis’), the effect of the lesion could be largely
recovered in MEC-lesion rats, but not in DG-lesion rats. The rescue of
the MEC lesion was observed both when all trains were combined as
well as when individual trains were analyzed separately (Supple-
mentary Fig. S8). With the cycle-mean analysis, the mean of the cells’
slopes in MEC-lesion rats was no longer distinguishable from control
rats (CTRLM©: n=101 cells, —97.4° per traversal vs. LESIONME:
n=158 cells, — 84.6° per traversal, z-statistic = - 1.44, p=0.151, MW
test), while it remained different from controls in DG-lesion rats
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(CTRL®9: n=84 cells, — 96.6° per traversal vs. LESION®®: n=68
cells, — 5.6° per traversal, z-statistic=— 4.23, p=2.4 x1075, MW test)
(Fig. 5a-c). In all cases, however, the mean slope was less than zero
for each of the groups (CTRL®®: n=84 cells, z-statistic =-6.49,
p=44x10", LESION®®: n=68 cells, z-statistic=-2.33, p=0.01;
CTRLMEO: n =101 cells, z-statistic=—-7.42, p=5.9 x10™*, LESION™E©:
n=158 cells, z-statistic = - 7.56, p =2 x10™; one-sided sign tests), as
without cycle averaging (Fig. 5c; compare with Figs. 1 and 2). We also
tested to what extent the calculation of the cycle mean reduced
phase variability compared to the original spike trains. In DG-lesion
rats, there was only a minor difference in the variance of the phase
probability over all trains of each neuron between the original and
cycle-mean analyses (circular variance =0.733, cycle-mean circular
variance = 0.661, z-statistic=2.04, p=0.041, MW test; Cohen’s
d=-0.308). However, in the two control groups and in the MEC-
lesion group variance was substantially reduced by taking the cycle
mean (CTRL®®: circular variance =0.707, cycle-mean circular var-
iance = 0.557; CTRL™E: circular variance = 0.782, cycle-mean circular
variance = 0.603; LESION™E®: circular variance =0.805, cycle-mean
circular variance = 0.634; tests of difference between original and
cycle-mean variances: all p-values <107, MW tests; Fig. 5d: compare,
for each panel, the difference of medians indicated by the solid and
dashed vertical lines; Cohen’s d for CTRL®®, CTRL™X, and
LESION™E® respectively: — 0.809, - 0.917, — 0.779). Taken together,
these results indicate that increased within-cycle variability makes a
major contribution to diminished phase precession in cells from
MEC-lesion animals. In contrast, increased within-cycle variability
was not identified as the key source for reducing phase precession in
DG-lesion animals.

Theta-scale temporal correlations of CA3 cells were preserved
with MEC lesions but not with DG lesions

Phase precession is associated with the occurrence of ordered neu-
ronal firing patterns within each theta cycle* such that sequential fir-
ing within a theta cycle (‘theta sequence’) corresponds to the order in
which place fields are traversed, but with the timing in the theta cycle
compressed compared to the behavioral time scale. For example, two
adjacent place cells are activated one after another within milliseconds
in a theta cycle, while the rise and fall in firing rates when traversing the
fields occurs on a much slower time scale. Phase precession is thought
to link the slower behavioral sequence to the faster pairwise temporal
correlation in theta cycles. However, dissociations between theta
sequences and phase precession have been reported. Phase precession
without theta sequences can be observed in a novel environment and
without CA3 inputs to CAI**’, and theta sequences have been
observed with impaired phase precession®®. Given that theta phase
precession and theta sequences can be dissociated, we asked whether
the precise pairwise timing at the theta scale was diminished when
phase precession was impaired by the reduction of either DG or MEC
inputs to CA3. To measure whether time-compressed ordering within
the theta cycle occurred, we measured whether there is a relation
between the timing on the theta scale (i.e., the temporal difference in
the spike cross-correlation of cell pairs) and the behavioral scale (i.e.,
the distance between the peak firing locations of place fields; see
Methods)”.

While there was a strong correlation between the spatial separa-
tion of place fields and the theta phase difference of cell pairs in
controls (CTRL®®: n=30 pairs, r=0.651, p=9.87x107°, Pearson’s
correlation), we found that the behavioral order of firing was not
reflected on the theta-cycle time scale in cell pairs from DG-lesion rats
(Fig. 6a-d; LESION®®: n=14 pairs, r=-0.187, p=0.523, Pearson’s
correlation). This effect was observed even though the proportion of
neuron pairs with phase precession in DG-lesion rats was comparable
to that in control rats (Fig. 6d, right). Contrary to the result with DG
lesions, the CA3 pairs in the MEC-lesion rats maintained their spiking

order in theta cycles compared to their firing order on the maze
(Fig. 6e-h; CTRL™® n=19 pairs, r=0.654, p=0.0024; LESION™©
n=27 pairs, r=0.624, p=5.02x10™; Pearson’s correlations), despite
reduced phase precession in comparison to neuron pairs from control
rats (Fig. 6h, right) and different from the loss of ordering that has
been reported in CAI**. Thus, it seems that the MEC is not critical in
maintaining theta-scale spike ordering when there are DG inputs that
are sufficient for organizing temporal relationships of CA3 spiking
within theta cycles.

A phenomenological computational model of phase precession
in CA3 cells revealed distinct effects of DG and MEC inputs on
the inhibitory signal

To gain a further mechanistic understanding of whether and how the
effects on phase precession observed in lesion animals can arise from
single-cell integration of the two excitatory theta-modulated inputs to
CA3, we devised a minimal phenomenological model based on oscil-
latory interference. We chose to minimize the number of free para-
meters (see below) of the model to be able to quantitatively fit
simulations of the spiking dynamics to the phase precession statistics
observed in the data sets. Although our analyses of experimental data
had to be limited to the two excitatory inputs to CA3 that were
manipulated in lesion experiments, we reasoned that if a computa-
tional model based on oscillatory interference were to emulate the
lesions, it must account for inputs beyond the manipulated inputs.
Inhibition has been shown to mediate input gain control, precise spike
timing, and enhanced coding in networks®** and can thus be con-
sidered essential for controlling the theta phase of pyramidal cell
spikes*. Therefore, we included an inhibitory oscillation in the model
that can be viewed as corresponding to the observed oscillations of a
large fraction of hippocampal interneurons at the LFP theta
frequency®>®°. Based on recordings from DG and MEC principal cells
that are known to project to CA3, the excitatory inputs from each of
these two regions were considered to oscillate at frequencies slightly
above the LFP theta frequency®” %, In addition, the relative contribu-
tions of DG and MEC inputs varied along the place field to reflect the
proposal that entorhinal inputs provide sensory cues at the true place
field location while intrahippocampal circuits govern the prospective
spiking®*°7., We allowed the model to have four free parameters: a
phase shift between the two excitatory inputs denoted by ¢, a phase
shift between excitation and inhibition denoted by @;,p,, the oscillatory
amplitude of inhibition denoted by A, and a DC component for the
inhibitory oscillation (baseline inhibition) denoted by /pc. Although the
full range of possible { parameters was tested, it is relevant to note
that experimental data® suggest that neurons with direct MEC inputs
to DG (i.e., MEC layer Il neurons) and DG inputs to CA3 show activity
over ~90° ranges of the theta cycle that are approximately over-
lapping. Even if inputs were to originate from neurons at the extremes
of these distributions, the difference in Y would, therefore, typically
not exceed + 90°.

The output of the model CA3 cell was determined by the place
modulated’>”* combination of the three inputs (two excitatory and one
inhibitory) from which a threshold value that was constant across the
place field was subtracted. Spikes were generated stochastically via an
inhomogeneous Poisson point process with an intensity measure
defined by the total excitatory drive minus the threshold. The simu-
lated spike phases were extracted with respect to an 8 Hz oscillation
representing the LFP theta oscillation, which was considered to be
phase-locked to the inhibitory oscillation (see Methods). The differ-
ence angle between intracellular and LFP oscillation was chosen as
180°, since it produced the largest spike rates at the uninhibited phase
(e.g., ref. 46). Accordingly, the largest spike rates in the data would
occur at the minimum inhibition phase of the model. Variations of LFP
phase shift by +45° from 180° did not qualitatively alter the result
(Supplementary Fig. S9a).
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We simulated CA3 model neuron spikes for a broad range of
parameter values. We observed for the full model (Fig. 7a) that phase
precession can be consistently obtained in single trials and on trial
average (Fig. 7b, ¢) but was less prominent when either of the two
excitatory components was removed (averages shown for each lesion
in Fig. 7c). To determine how parameter values under this model
corresponded to the experimental data from the control and lesion
groups, we calculated four phase precession measurements - slope,
explained variance R?, onset phase, and offset phase - from the model
spike data in the full A versus @;,, parameter space. We then identified
the region of the parameter space in which the model generated phase
precession measurements that corresponded to those obtained in our
empirical data (i.e., the middle 80th-percentile of the empirical
observations in the experiments). This was done separately by
matching the control data to the control model and the lesion data to
each of the respective lesion models. In the control model, only a
limited range of phase shifts (¢;,,) between the inhibitory input and
the excitatory inputs generated phase precession measurements that
corresponded to data from control animals. When the DG input was set
to zero in the model, the model-generated phase precession data
matched with the empirical data over a broader and shifted set of @i,
values compared to controls (Fig. 7d). The set of parameter A values
was also shifted downwards with the lesion, which is expected when
decreasing the total amount of excitation by setting one of the exci-
tatory inputs to zero. In contrast, when MEC-lesion empirical data were

Fig. 5 | Distinct patterns of temporal reorganization of CA3 spiking after DG
and MEC lesions. a Phase-distance plot of spikes from an example CA3 cell from
an MEC-lesion rat. All spikes of the cell’s trains are included. b Phase-distance plot
of the same cell after replacing the spikes within each theta cycle with the mean
phase of the spikes within each cycle. Using the cycle mean yielded a negative
precession slope. An inconsistent distribution of spikes within theta-cycles after
MEC lesions may thus have precluded the detection of phase precession.

c Distribution (violin plot) of circular-linear regression slopes calculated from the
cycle means. With regression slopes from cycle means there was no difference
between cells from control and MEC-lesion rats (n =101 and 158 cells, z-statis-
tic=-1.44, p=0.151, MW test), while the difference between cells from control
and the DG-lesion rats was retained (n =84 and 68 cells, z-statistic = - 4.23,
p=2.4x1075, MW test). However, as in analyses without within-cycle phase
averaging (see Figs. 1 and 2), all groups showed some level of remaining phase
precession (median slope less than zero: CTRL?®: n =84 cells, z-statistic =-6.49,
p=4.4x10", LESION®®: n = 68 cells, z-statistic = - 2.33, p = 0.01; CTRL™:
n=101 cells, z-statistic=-7.42, p=5.9 x 10, LESION™©: n =158 cells, z-statis-
tic=-7.56, p=2x10"; one-sided sign tests). d Circular variance of theta phase
with either all spikes (filled bars) or with each cycle’s spike mean (solid lines). In all
groups, the circular variance decreased after replacing each cycle’s spikes with
their mean, though the effect is least pronounced for CA3 cells of DG-lesion rats.
The median circular variance of cycle mean spikes (dashed vertical lines) and all
spikes (solid vertical lines), respectively [CTRL®?, 0.557 and 0.707 (effect size =
- 0.809; z-statistic=—5.22, p=1.8 x1077); LESION®?, 0.661 and 0.733 (effect
size = - 0.308; z-statistic = - 2.04, p = 0.041); CTRL™®, 0.603 and 0.782 (effect
size =— 0.917; z-statistic = - 6.16, p=7.5x10™°); LESION™E®, 0.634 and 0.805
(effect size =—0.779; z-statistic =— 7.26, p=4.0 x 1073, MW tests)]. Violin plots:
Outline, distribution; error bars: 1.5 times the interquartile interval above the
third and below the first quartile. n.s., not significant, * p <0.05, * p <0.001.
These results were confirmed when repeating the same analyses by using the
cells’ place fields rather than the cells’ spike trains (Supplementary Fig. S7iii).
Source data are provided as a Source Data file.

matched with model data with the MEC input set to zero, the model
data could reproduce the empirical data with values of @;,, that were
largely unchanged, along with downward-shifted A values compared
to the control empirical/model data match (Fig. 7e). This suggests that
the loss of the excitatory MEC inputs requires a compensatory
reduction of inhibitory amplitudes, but that the increased phase
variability observed in MEC-lesion data requires no major adjustments
in the timing of inhibition.

Interestingly, the other two free parameters in the model - phase
differences between the two excitatory inputs (i.e., ) up to at least
+90° and the addition of an inhibitory DC component up to a value of
1.1 - did not produce overly distinct ranges of match with empirical
data (Supplementary Figs. S9b, S10a). In addition, major imbalances
between excitatory input amplitudes of DG and MEC (75/125 or 125/75,
Supplementary Fig. S10b) did not result in substantial variation in the
state space for allowable empirical data. With complete lesions of each
of the excitatory inputs to the model, there is an expected compen-
satory response in inhibition amplitude, which is approximately equal
with the loss of MEC and DG inputs (Fig. 7e). However, accounting for
the match of empirical data to the model after each of the two lesions
required different adjustments in the @;,, dimension. We found that
the inhibition phase needed to be broader after the loss of DG inputs,
while it remained approximately in the control range after the loss of
MEC inputs. Taken together, the lack of responsiveness of the model to
changes in the  parameter (i.e., within the physiological range of
+90°) compared to its dependence on @, is interesting because it
shows that phase precession is determined to a larger degree by the
phase differences between excitatory and inhibitory inputs than by
phase differences between two excitatory inputs. Overall, our simula-
tions demonstrate that the range of observed effects in the CA3 circuit
can, in principle, be generated by the interaction of major excitatory
and inhibitory theta-modulated inputs to a CA3 cell (Fig. 7 and Sup-
plementary Fig. S11).
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Fig. 6 | DG but not MEC inputs are required for the temporal organization of
CA3 cell pairs at the theta-cycle time scale. a Pairs of simultaneously recorded
CA3 cells with overlapping place fields were selected for the analysis of spiking in
shared theta cycles. Cells 1 and 2 are from a control rat, and cells 3 and 4 are from a
DG-lesion rat. Each place field is delineated by a contour that corresponds to 20% of
the maximum firing rate (dot inside contour, location of peak firing). Each pair of
overlapping fields is depicted with the one that is entered first in black and the one
entered second in red. Black arrow, running direction. Scale bar, 50 cm. b Phase-
position plots of the cell pairs’ spikes (red and black dots, from the cells depicted in
red and black in a) while running in the direction indicated by the horizontal arrows
(corresponding to the direction in a). ¢ Cross-correlation of the spikes (arrow, peak
of the cross-correlation function nearest zero lag; inset, cross-correlogram for a
window width of 4 seconds). d Left, Phase shift at the theta-cycle time scale plotted
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against the distance between place field peaks (solid and dashed lines, linear
regression for data from control and DG-lesion rats; CTRL®®: n =30 pairs, r = 0.651,
p=9.87x107, Pearson’s correlation). Right, Proportion of cell pairs where neither,
one, or both neurons in the pair displayed phase precession. Although a substantial
number of pairs in the DG-lesion group were phase precessing, the phase preces-
sion did not yield a relation between pairwise spike-time difference and distance
between fields (LESION®®: n =14 pairs, r=- 0.187, p = 0.523, Pearson’s correlation).
e-h, Same as a-d except that the CA3 data are from the MEC-lesion group and their
respective controls. Despite marked deficits in phase precession, there is a strong
correlation between spike-time difference and place field distance (CTRLM® n=19
pairs, r=0.654, p=0.0024; LESION™© n =27 pairs, r=0.624, p=5.02 x10*; Pear-
son’s correlations). n.s., not significant, ** p < 0.01, ** p < 0.001. Source data are
provided as a Source Data file.
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Discussion

The DG is the first processing stage in the intrahippocampal circuit and
is considered to perform a number of specialized computations that
are critical for memory such as spatial and temporal pattern separation
as well as novelty detection’°. Furthermore, computational models
also emphasize that the dentate-CA3 network forms a loop that could
be used for generating and storing sequences®***, which in turn can be
used for guiding ongoing behavior and decisions?>****, While there is
recent evidence for a contribution of DG to the activation of CA3
ensembles during SWRs", the role of DG inputs to CA3 during periods
when theta oscillations are predominant has not been established.
Here, we show that diminished DG inputs to CA3 cells resulted in a
substantial disruption of precise spike timing within theta cycles and in
reduced theta phase precession. The reduced phase precession was
accompanied by a disrupted temporal order of the spiking within a
theta cycle for cells with overlapping place fields. It is possible that
effects on the temporal activity patterns of CA3 cells are not specific to
DG inputs but might emerge when any of the theta-modulated exci-
tatory inputs to CA3 are diminished. We, therefore, compared the
effects from reduced DG inputs to CA3 with the effects of reducing
MEC inputs to CA3. Similar to our observation with DG lesions, we
found that loss of MEC inputs resulted in reduced phase precession.
Despite the phenomenological similarity when considering standard
phase precession measurements, we identified profound differences
in the effects of each manipulation of the major excitatory inputs on
precise timing. Only DG but not MEC lesions precluded spikes from
selectively occurring late in the theta cycle at the onset of spike trains,
and only DG but not MEC lesions disrupted the pairwise timing
between cells that are co-active. Given that manipulations of each of
the two theta-modulated inputs to CA3 resulted in distinct effects of
spike timing at the theta scale, we generated a minimalistic compu-
tational model that allowed direct comparisons to data and identified
distinct coupling of each of the excitatory inputs to local inhibition as a
plausible mechanism of how these differences emerge. By comparing
the model to empirical data, we recognized that the effects that
resemble DG lesions were more readily achieved by varying the
amplitude and phase of the inhibition while the effects that resemble
MEC lesions were more readily achieved by varying only the amplitude
of the inhibition. Taken together, DG inputs to CA3, therefore, have a
particularly pronounced role in generating the preferential spiking of
CA3 cells during late theta phases and for the temporal order of
spiking within a theta cycle.

While standard measurements of phase precession can broadly
indicate that spike timing is altered, the more detailed measurements
in our study provide further insight into the pattern of disruption. The
selective effect on late spiking during the initial theta cycles is evident
in the finding that diminished DG inputs preferentially broadened the
phase of spiking within a theta cycle at the onset, but not at the offset
of a spike train. We note that these phase shifts were unlikely a result of
traveling wave theta phase differences due to tetrode placement’ as
this would have altered onset and offset distributions to the same
extent, contrary to our observations. Rather, in-depth analyses of
spiking during theta cycles revealed that DG lesions resulted in a
broadening of the phase window during which spikes are generated
during the initial theta cycles. In addition, we also found that the
relative timing of CA3 cell pairs on a theta-cycle time scale depended
on DG. Importantly, neither the pronounced broadening of the onset
phase nor the selective effects on spike timing at the onset of spiking
were observed with MEC lesions, which nonetheless reduced phase
precession in CA3 to a similar extent as the DG lesions. Given that MEC
layer Il does not only project directly to CA3 but also to DG”, it might
have been expected that MEC lesions result in larger deficits when
direct effects on CA3 and indirect effects via DG on CA3 combine. For
example, it could have caused the minor decrease in CA3 firing rates
with MEC lesions. However, the preserved pairwise spike timing of CA3

after MEC lesions and the moderately preserved phase precession in
CA3 after MEC lesions differ from the profound disruption of pairwise
spike timing with DG lesions and from the previously reported pro-
found disruption of the temporal order in pairs of CAl cells and of
phase precession in CAl cells after MEC lesions®*’¢. Our results also
exclude the interpretation that the MEC lesions have effects over a
broader range of theta phases than the DG lesions. The onset phases
broadened with DG lesions, but were precisely matched to controls
with MEC lesions. Similarly, circular variance increased selectively in
the first half of trains with DG lesions, and not in any part of the trains
with MEC lesions.

The less pronounced effect on the timing of CA3 firing patterns
with MEC lesions compared to DG lesions could be a consequence of
remaining LEC and medial septal inputs to DG, which preserve critical
aspects of DG firing patterns. Similarly, the more severely disrupted
CAl than CA3 firing patterns with MEC lesions could be a consequence
of a more major role of MEC projections to CAl than to CA3 and/or a
more minor role of the second external excitatory inputs — CA3 inputs
to CAl as opposed to DG inputs to CA3. As a consequence, the addi-
tional preserved inputs from DG are sufficient to preserve temporal
organization in CA3 while CA3 inputs to CAl are not*. The DG inputs
thus confer the CA3 circuit with the propensity to generate sequential
activity patterns, such that this computation - even when MEC inputs
are diminished - can emerge with remaining DG projections to CA3*.
Our data, therefore, suggest the broader DG-CA3 circuit is required to
support the computations that generate theta sequences. While this
observation is inconsistent with an early phase precession model that
uses asymmetric synaptic weights in the recurrent CA3 network to
generate phase precession®, it has more recently been shown that
recurrent networks need to be combined with external inputs or with
mechanisms that lead to firing frequency adaptation to robustly gen-
erate phase precession or predictive coding’**”’. While our data or any
data that we are aware of do not directly test the role of recurrent
collaterals, our findings support the notion that external inputs to CA3
are needed in addition to or in lieu of recurrent circuits for the gen-
eration of phase precession and for precise theta-scale spike timing. To
test the suggested role of DG, spiking network models will need to be
developed that consider separate DG and MEC inputs to CA3 in con-
junction with a separate role of somatic and dendritic inhibition.

How is the DG-CA3 projection specialized to support the emer-
gence of precise spike timing? Initial models of the DG contribution to
phase precession have emphasized the strong facilitation at mossy
fiber synapses from DG granule cells to CA3 pyramidal cells®. In this
scenario, an initially weak excitatory input would be facilitated by
repeated activation of the synapse across theta cycles and become
increasingly more effective in overcoming rhythmic inhibition, such
that spiking occurs at progressively earlier theta phases across theta
cycles. However, this straightforward model is not consistent with
recent data, which show that inputs from granule cells to inhibitory
interneurons in CA3 will result in feedforward inhibition that at least
matches, if not exceeds, the facilitation at mossy fiber synapses to CA3
pyramidal cells, in particular at the time scale across theta cycles’®”®,
which is particularly relevant to phase precession. Accordingly, our
analyses suggest that DG and MEC circuits make qualitatively different
contributions to the organization of the precise temporal profiles of
CA3 spiking, consistent with a model in which DG inputs effectively
promote spiking at late theta phases early in the spike train of a CA3
neuron (i.e., upon entry into the place field) (Fig. 8a). In contrast, later
in the spike train (i.e., in the middle and near the exit from the place
field), MEC inputs appear to ensure an appropriate mean theta phase
of CA3 spiking by driving CA3 neurons in time windows around a
monotonically decreasing mean theta phase over successive theta
cycles (Fig. 8b).

Given the major role of inhibition in shaping the spike timing in
intact neural circuits, we used a phenomenological model and made
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sure that it was sufficiently minimalistic (i.e., had few free parameters)
to allow comparisons to experimental data. While keeping the para-
meters to a minimum, we reasoned that it was essential to add the well-
established oscillating inhibitory inputs in addition to the two oscil-
lating excitatory inputs that were tested in our analyses of experi-
mental data. The model is, therefore, conceptually related to previous
models of phase precession that have considered oscillatory

interference between an inhibitory somatic drive and dendritic
excitation®**%° except that two independent excitatory inputs rather
than a single input were used here. Model parameters included the
theta phase difference between the excitatory and inhibitory inputs
and the oscillatory amplitude of inhibition. By exhaustively searching
the parameter space of the model, we identified model parameters
that gave rise to phase precession measurements that corresponded to
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Fig. 7 | A single-cell model with two oscillating excitatory inputs and an inhi-
bitory input reproduced the main empirical results. a Model construction. The
three inputs are modeled after DG, MEC, and local inhibition converging onto the
CA3 model neuron. The excitatory DG and MEC inputs oscillate at faster-than-LFP
frequencies (vpg = 8.6 Hz, V\ec = 8.5 Hz) with DG inputs more prominent early in
the field and MEC inputs more prominent later in the field. The inhibitory input
oscillates at 8 Hz throughout the place field, corresponding to the LFP theta. Small
Gaussian noise is added to the inhibitory input to ensure robustness against minor
perturbations. The excitatory inputs contribute positively at the fixed phase dif-
ference (, which is taken to be 0° from published findings®® on DG and MEC
population activity. The inhibitory input contributes negatively to the total drive at
a phase differential @;,, relative to excitation at place field entry. Finally, the total
drive is rectified. A reference 8 Hz oscillatory inhibition is displayed at the bottom
left, which is used to extract the phase of the simulated spikes. The phase-distance
relationship is then depicted as for experimental data. Not all steps are displayed
for brevity (see “Methods” for full details). b Phase-versus-normalized distance
plots of spikes generated by the model. Three randomly selected single-pass
examples show phase precession. The values of A/@i, =3/260° (inhibitory oscil-
lation amplitude and phase), Ipc = 0 (inhibition DC component) and { = 0° (exci-
tatory phase differential) are the same across the three plots. The measured slopes
from the simulated data are displayed at the top of each panel along with the
statistical significance based on circular-linear regression. ¢ Phase-versus-
normalized distance plot for spikes across multiple passes. Panels from top to
bottom are generated by the control, DG lesion, and MEC lesion models (1

cycle =360°). The measured slope and significance of phase precession are dis-
played on top of each panel based on circular-linear regression. n.s., not significant,
* p<0.05, ** p<0.001. Lesion experiments were simulated by setting the DG or
MEC input to zero, and all other parameters as in b except for A lesion = 2. In both
lesion cases, phase precession slopes are reduced. d, e DG and MEC lesions alter
CA3 phase precession in qualitatively different ways. d, Values of the slope,
explained variance (R?), onset phase (®,,,), and offset phase (@) are shown for
combinations of A and @;,, parameters. The color scale in each panel is according
to the color bar to the right. The range of model A-@;,,, parameter space that
corresponds to empirical phase precession values are shown in blue and white plots
to the right with white areas depicting the space that yields 80% of the empirical
measurements. The intersection between white areas for multiple phase precession
measurements is displayed in the overlap plots at the bottom (dark blue to white, O
to 4 measurements overlap). The zone of overlap for all four measurements is
delineated with outlines (black or white lines) that are projected back onto all other
panels. e, left, Distribution of parameter values A and @;,, that result in a match with
the empirical control and lesion data. To match the empirical phase precession
measurements, the DG-lesion but not the MEC-lesion model is forced to take on a
shifted set of @i, values. e, right, Distributions of ®,, and @ values that are
generated by the A-@;,, parameter space that corresponds to the overlap areas of
each model type. The DG lesion model generates the broadest ®,,, distribution. DG
control, light blue; DG lesion, dark blue; MEC control, yellow; MEC lesion, red.
Source data are provided as a Source Data file.

the empirical observations. We then eliminated either the DG or the
MEC input to the model and repeated the search for a feature space of
rhythmic inhibition that corresponded to the empirical data. The
resulting phenomenological models can reveal patterns of rhythmic
inhibition that are compatible with the observed changes in the tem-
poral firing patterns of CA3 cells. By mapping the experimental find-
ings to the computational model, we found that the results suggest
that the DG and MEC input pathways could be exerting two different
types of effects on the inhibitory subnetwork. The consequences of
loss of DG inputs can be explained by a combined expansion in the
inhibition phase and decrease in the inhibition amplitude, whereas the
consequences of loss of MEC inputs can be explained solely by a
decrease in inhibition amplitude (see Fig. 7e). The shifts in amplitude
are expected because the loss of one of the excitatory pathways results
in diminished excitation that is offset by a lower level of inhibition.
Interestingly, the model without DG input is compatible with a less
constrained input to fast-spiking interneurons that are targeted by
granule cell projections to CA3%#% In contrast, MEC inputs are known
to not only target pyramidal cells but also somatostatin interneurons
that predominantly control dendritic inhibition, and manipulations of
dendritic inhibition have been shown to be without effect on the
average spike phase throughout the place field®?, which resembles our
observation that the model without MEC inputs does not need major
adjustments to the inhibitory phase to explain data. Although these
predictions from the model are yet to be confirmed by recording from
identified dendrite-targeting and soma-targeting interneurons, these
data suggest that effects from manipulating excitatory inputs do not
only arise from diminished direct connectivity to principal cells, but
also from how these inputs engage inhibitory interneurons. In parti-
cular, our data are consistent with the mossy fiber inputs to CA3 more
strongly engaging somatic inhibition, which determines the theta
phase of spikes, and with MEC more strongly engaging dendritic
inhibition which does not directly set the theta phase. The different
functions of input pathways imply that manipulations and models that
link phase precession to theta sequences and theta sequences to
behavior will need to consider multiple input pathways and perhaps
even a much larger circuit that includes other brain regions with phase
precession, such as MEC and CAL.

It is generally assumed that firing at precisely timed theta phases is
a prerequisite for generating sequences of neuronal firing patterns*-*,
but the combinations of inputs that are necessary for implementing

these computations have not been established. For example, one
model of phase precession proposes that phase precession can
emerge by combining two excitatory inputs that each have a different
phase preference with respect to the theta cycle®®. When the strength
of one input increases and of the other decreases along the animal’s
path, the spiking of a cell that integrates these inputs would show a
phase shift over successive theta cycles. We tested versions of our
model in which we offset the phases of the two excitatory inputs with
respect to each other, and we show that there are no major qualitative
differences compared to versions in which the two excitatory inputs
are in phase. Rather, we observe that the inhibitory phase continues to
constrain the match to control data for any of these models, which
suggests that the phase of the inhibition with respect to excitation
rather than a phase difference between excitatory inputs is the most
critical parameter.

Taken together, our data and phenomenological model identify
that it is the spikes in the initial theta cycles and at late phases of the
theta cycle that are particularly dependent on DG input and on pre-
cisely timed inhibitory oscillations. The late-phase spikes are thought
to emerge from internally stored patterns of synaptic strength that
generate prospective neuronal activity®®, and our results thus suggest a
critical contribution of DG for such activity patterns to emerge in CA3
networks. This is conceptually aligned with our previous report that
the DG network contributes to prospective neuronal activity patterns
during SWRs" and is consistent with the hypothesis that DG inputs are
essential for sequence coding, future planning, and for generating
intrinsic “look-ahead” spikes in CA3**7%%*%, While such a function has
been proposed by numerous computational models, our results pro-
vide experimental evidence for the role of DG beyond the previously
established functions of pattern separation and novelty detection*®.

Methods

Subjects and surgical procedures

All experimental procedures can be found in previous publications
describing data analyzed in the present study'>*. We reanalyzed and
compared CA3 activity patterns from these data, including a total of 31
rats (Supplementary Table S1). These included 4 control and 9 dentate-
lesion rats (7 and 16 sessions; DG lesion experiment) with CA3 or dual
CA3-DG (2 of the 4 control rats) single-unit recordings, 7 control and 8
MEC-lesion rats (18 and 20 sessions; MEC lesion experiment) with CA3
single-unit recordings, and 3 control rats with only DG recordings.
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Male Long-Evans rats between the ages of 3 and 6 months (300-350 g)
were used as subjects. The animals were kept on a 12-hour light-dark
cycle (7 AM to 7 PM dark) and housed individually. In vivo recordings
were conducted in the dark phase. Rats were restricted to 85% of their
ad libitum weight and given full access to water. All procedures were
conducted in accordance with the University of California, San Diego
Institutional Animal Care and Use Committee, at the University of
California, San Diego according to National Institutes of Health
guidelines.

Experimental procedures and brain lesions

The details of the DG lesion and MEC lesion experiments were pub-
lished previously*>. In brief, rats in the DG lesion experiment were
trained on the 8-arm radial maze to perform a spatial-working
memory task (see Behavioral tasks section). Rats initially designated
to receive DG lesions (1 =9 animals; LESION®®) underwent a surgical
procedure during which colchicine was bilaterally infused along the
septal-temporal axis of the DG. The remaining rats (n=4 animals;
CTRL®®) were subjected to a sham lesion. During the same surgical
procedure, a hyperdrive of 14 independently moving tetrodes was
implanted above the right hippocampus for electrophysiology as
described below. Rats in the MEC lesion experiment were trained on
a working memory task, the figure-8 continuous spatial alternation
task (see Behavioral tasks section). These rats underwent a surgical
procedure in which the control rats (n=7 animals; CTRLM)
received a sham lesion (injection of the vehicle) and the experimental
rats (n = 8 animals; LESION™E®) received an excitotoxic lesion of MEC
by an injection of NMDA.

In post-mortem histological material, the final position of the
recording tetrodes was confirmed by performing cresyl violet stain-
ing of the sectioned brain tissue. In the DG Lesion experiment, the
loss of dentate granule input to CA3 cells was confirmed by TIMM
stains as previously described in detail””. The extent of DG granule
cell damage was quantified in a localized fashion. Specifically, each
tetrode ending location was scored based on the intensity of the
TIMM-positive staining in histological sections. Scores of 0 (- 0%
TIMM-positive signal), 1 (<30% signal), or 2 (<70% signal), and 3
(>70% signal) were assigned to each of the tetrodes in DG-lesion
animals, and only tetrodes with scores of 0, 1, and 2 were included in
the LESION®® data set. The extent of MEC lesions was confirmed
quantitatively>, and on average, 93.0% of the total MEC volume was
ablated (95.3% of layer 11, 92.4% of layer Ill, and 91.4% of deep layers)
with any sparing typically observed in the most ventral portions of
MEC (Supplementary Fig. S1).

Hyperdrive implants

An array of 14 independently movable tetrodes was implanted over
the right hippocampus in all 31 rats (control group: 4.0 mm posterior
and +2.7 to + 2.9 mm lateral to bregma; DG lesion group: 3.5-4.4 mm
posterior and +2.8 to +3.2 lateral to bregma; MEC lesion group:
- 4.0 mm posterior and + 2.8 lateral to bregma). The hyperdrive was
secured with skull screws and dental cement to prevent mechanical
instability. The tetrodes (with tips platinum plated to 150-300 kQ at
1kHz) were slowly lowered each day over a period of 2-4 weeks to
ensure recording stability and minimize damage to the brain. Depth
records, LFP signals, and neural spiking markers were used to esti-
mate tetrode distance from the target region. After an initial period
of larger advances, the tetrodes were moved only in small increments
over several days until a satisfactory signal (i.e., low-amplitude mul-
tiunit activity) was observed. Once near CA3, the tetrodes were
allowed to settle inside the stratum pyramidale of the CA3 of the
hippocampus with no further active movement of the tetrodes to
maximize recording quality (i.e., high-amplitude multiunit activity).
In 3 of the 31 rats all tetrodes were lowered to the dentate
granule layer.

Electrophysiological recordings

A Neuralynx Cheetah recording system with a multichannel head-
mounted preamplifier was used for LFP and single-unit recordings. A
signal from a skull screw was used as animal ground, and a reference
signal from the neocortex was subtracted from the hippocampal sig-
nals to increase the hippocampal signal-to-noise ratio. Unit recordings
were filtered at 600Hz to 6 kHz, and spike waveforms above an
amplitude of 40 pV were time-stamped and recorded at 32 kHz for
1ms. LFP recordings were filtered between 1 and 425Hz in the DG-
lesion experiment and between 1 and 450Hz in the MEC-lesion
experiment.

Behavioral tasks

DG lesion experiment (spatial working memory on the 8-arm
radial maze). The rats in the DG lesion experiment were trained to
perform a DG-dependent spatial working memory task®. The task used
a maze with a central platform and 8 radial arms that each had a
proximal segment that could be lowered and raised. The rats were first
placed on the central platform (i.e., “stem”) of the 8-arm maze with all 8
arms lowered such that the reward cups at the end of each arm were
inaccessible to the animal (Supplementary Fig. S2a). Next, the experi-
menter raised one arm at a time, for four arms, following a previously
generated pseudorandom sequence. The rat was allowed to run down
eachraised arm, and uponiits return to the stem, that arm was lowered,
and the next arm in the sequence was raised. Once the rat had visited
all four experimenter-forced arms (“forced choice” phase), all 8 arms
were raised and available for the rat to visit (“free choice” phase). The
optimal strategy would consist of the rat visiting every one of the four
arms unvisited during the forced-choice phase without reentering any
arm. A total of 16 rats (n=4 CTRL®®; n=9 LESION®®, n =3 with only
DG recordings) were trained and tested in this task while performing
single-unit recordings in CA3 and/or DG.

MEC lesion experiment (spatial working memory on the figure-
8 maze). In the MEC lesion experiment, the rats were trained to per-
form a hippocampus-dependent alternation task on the figure-8
maze®, In this task, a rat is placed in a delay zone at the base of the
figure-8 maze (Supplementary Fig. S2b) and is required to run up the
“stem” of the maze toward a T-junction from where it can choose
between reward locations on either the left or right before returning
on aside arm to the delay zone. Blocks of trials with and without delays
were performed. In non-delayed trial blocks the delay site is not used
to restrict the animal’s movements. In delayed trial blocks a barrier
restricted the rat’s progress for 2, 10, or 60s for each trial. These
blocks were not distinguished for the analyses presented here. The
first lap (“trial 0”) is discarded. However, it is used to determine the
success of the animal in choosing the right or left reward on the fol-
lowing lap. From the second lap onwards (trial 1 and later), a trial is
“correct” if and only if the animal chooses to visit the reward location
not visited on the preceding trial. If the animal chooses the same side
more than once, it will not receive a reward at the visited reward site. It
will, however, continue to receive reward items at the appropriate
reward sites as soon as it chooses the side not chosen on the previous
trial. A total of 15 rats (n=7 CTRL™; n =8 LESION™®) were trained
and tested on this task while CA3 recordings were performed.

Data analyses

All statistical tests were chosen to appropriately match the underlying
data distributions. In the case of testing proportions, x* tests were
used. For testing of differences between central tendencies, first the
normality and homoscedasticity were tested with Anderson-Darling
and F-test, respectively. Data were not normally distributed, and Mann-
Whitney (MW) or Kruskal-Wallis tests were applied. For testing of dif-
ferences between circular means, one-factor MANOVA was used. For
comparing distributions, the Kolmogorov-Smirnov test was used. The
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Fig. 8 | Schematic of how DG and MEC lesions can disrupt CA3 temporal coding.
a Top left, In control animals, initial spikes of the place field occur late in the theta
cycle and progressively advance to earlier phases further into the place field. Spikes
are depicted by gray circles. Top middle, Compared to the control condition, DG
lesions result in redistributed/additional CA3 spikes early in the theta cycle at the
onset of trains (gray circles with black outline). Top right, theta cycle averaging
(gray diamonds) is unable to rescue phase precession from this pattern of results.
Bottom, Schematic of spiking with reference to the theta cycle, corresponding to
the above plots. b Schematic of how MEC lesions can disrupt CA3 temporal coding.
Top left to right, Two spike trains are depicted by different shades of gray.
Increased spike time variability within and across spike trains in each cycle lowers
the likelihood of detecting phase precession with MEC lesions in the spike-by-cell
analysis. Theta averaging rescues phase precession because, in contrast to (a), it at
least partially reverses the heightened variability across successive traversals of the
place field (i.e., trains 1 and 2). MEC thus supports the consistency of theta phase
coding in CA3 pyramidal cells.

o level was set to 0.05 for all experiments and tests. All hypothesis
testing was performed two-sided unless noted otherwise. Multiple
comparisons correction was performed only in the case of Fig. 4d and
is presented in Supplementary Table S2. All other p-values are pre-
sented uncorrected for multiple comparisons.

Spike sorting. Spike sorting was performed offline using a custom
version of MClust 3.5 (Redish, A.D., http://redishlab.neuroscience.
umn.edu/MClust/MClust.html). Clusters were selected in the sleep

sessions before and after a behavior and matched to the data recorded
during the behavior to ensure consistency and reliability. The cross-
correlogram was used as an additional criterion to ensure cluster
independence. Only well-separated clusters were retained for analysis.

Spatial firing properties. The measurements included in Supple-
mentary Fig. S3 are defined as follows. Let N be the total number of
spikes of a given cell, and the number of such spikes that were part of a
detected train (as defined below) denoted N,. The proportion of spikes
assigned to a train is defined % The firing rate is defined as A= ¥ where
T is the summed total duration in seconds of all behavioral trials in a
given session. The number of spikes per train is calculated for each cell
as the N/N¢ where Ny is the number of detected trains for that cell.
To calculate the train length we first found the physical position of the
first and last spikes of a train on the maze (points P;=(x;,y;) and
Py =(xy,Yy)). The train length L is calculated as L=>"Y,||P; — P, 41|,
where ||| is the L, norm. The number of bins covered was calculated as
the total number of square bins of size 2 by 2 cm that contained at least
one point from the path of a detected train. The information content
measure was adapted from ref. 86 and was calculated as
H=3%" A(x)log, ’%X) p(x)6x, where A is the mean firing rate, and p is the
probability mass function of the rat’s position over the spatial bins of
the maze. The selectivity and sparsity measurements were adapted

from ref. 46 and are defined, respectively, as S= E]Eg‘z]]

and s= g,

where E is the expected value over the spatial bins and A is the mean
rate as defined above.

Rate map construction. First, intervals during the periods delimited
by trial timestamps in which the velocity of the animal exceeded 2 cm/s
were selected. For each cell, all spikes that occurred outside these
intervals were excluded for the construction of rate maps. Next, the
environment was divided into square bins of side length 5 cm and the
spikes that occurred in each such bin were counted. The occupancy
matrix was constructed similarly by counting the number of position
tracking points falling in each spatial bin multiplied by the tracking
acquisition rate (29.97 FPS). The rate map was the result of the
element-wise division of the spike count matrix by the occupancy
matrix, spatially smoothed with a 2-d Gaussian kernel size 15 cm.

Spike train detection. A spike train was defined as a set of 5 or more
consecutive spikes with a maximal inter-spike interval of 500 ms.
Additional criteria were imposed on the selection of spike trains for
analysis (Supplementary Fig. S2c). A spike train (a.k.a. “pass”) was
deemed valid for analysis if it was at least 300 ms and no more than
2500 ms in duration, its corresponding path was at least 20 cm long, its
corresponding path endpoints were at least 10 cm apart in physical
space, and if the average velocity of the animal during the pass
exceeded 2 cm/s. All of a cell’'s detected trains were discarded if its
mean firing rate over the duration of the behavior was smaller than
0.1Hz or greater than 5 Hz.

LFP analysis and theta phase extraction. Local field potentials were
recorded from one of the electrodes for each tetrode. The raw LFP
signal was filtered in the theta range (6-10 Hz), and the channel with
the largest theta rectified RMS power was selected as the reference for
phase precession analysis. The phase estimate was obtained by
f=atan2 330068 under linear interpolation, where H(-) is the Hilbert
transform and s is the 6 Hz to 10 Hz filtered LFP signal.

For power analyses of frequency bands in addition to the theta
range (6-10 Hz), the raw LFP signal was filtered in delta (1-4 Hz), slow
gamma (25-50 Hz), and fast gamma (50-100 Hz) and band power was
calculated using Matlab’s ‘bandpower’ function. Phase-amplitude
coupling of theta and gamma oscillations was performed using
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published Matlab code (https://github.com/tortlab/phase-amplitude-
coupling)¥. In addition, the speed dependence of theta frequency was
analyzed by first calculating the time-resolved spectrogram (5s mov-
ing window in steps of 0.5s) of the LFP using Chronux (mtspec-
gramc_fast function, 1-20 Hz with time-bandwidth product TW=3
and number of tapers K=35), by then finding the frequency with the
peak power in the 6-10 Hz band at each position, and by finally esti-
mating the theta frequency associated with each position by linearly
interpolating the spectrogram-based frequency estimates. Next, the
speed in each session was binned with a resolution of 2. cm/s, and a
regression analysis was performed for the data points of each session
as well as for the data points of all sessions of a group.

To confirm that the phase estimate is not unduly biased by
asymmetric theta waves, as previously shown for CAl recordings®,
we examined theta wave asymmetry at all CA3 recording sites that
were selected as the reference for phase precession analysis. To
calculate an asymmetry index, we adapted the methods of ref. 56
with minor modifications to account for the higher gamma ampli-
tude in CA3 compared to CAl. We began by bandpass filtering the
raw LFPs in the theta band (6-10 Hz) and in the broader 1-80 Hz
band, as in ref. 56. Using the 1-80 Hz bandpass-filtered signal, we
then identified the maximum within the first half the theta cycle
(0-180° of the 6-10 Hz filtered signal) and the minimum within the
second half of the theta cycle (180°-360° of the 6-10 Hz filtered
signal) and marked these extrema as peaks and troughs, respec-
tively (Supplementary Fig. S5a). The asymmetry index was then the
ratio of the duration of the ascending wave segment (trough to
peak) divided by the duration of the descending wave segments
(peak to trough) on a logarithmic scale. Using this scale, zero cor-
responds to a symmetric wave shape. To then quantify the asym-
metry for each recording session, we calculated the mean
asymmetry index over all theta cycles of a recording session (Sup-
plementary Fig. S5b).

Quantification of phase precession. The distance and theta phase
variables were extracted from detected trains. For each train, the
last sampled (x,y) coordinate before the first spike and the first
sampled (x,y) coordinate after the last spike was marked as the
start and end of that train’s corresponding trajectory. Next, spike
positions were normalized with respect to the start and end points,
yielding vector d of normalized distances. Taken together with the
theta phase vector 8 described above, the circular-linear regres-
sion was then computed on the (d, 8) pairs for each train or cell, as
described below. The circular-linear regression produced a slope
value s and the estimate of explained variance R2. The onset phase
®,, was calculated for each train as the circular mean theta phase
of the spikes occurring in the first (possibly truncated) theta cycle
of the train. The offset phase ®.¢ was defined similarly, except
over the last theta cycle of the train. These four values are referred
to as phase precession “measurements” in the modeling section.
For statistical analysis of onset and offset phases, the median of
the mean phases of each cell’s trains was taken, which resulted in
one value per cell.

Population level quantification of remaining phase precession
Two methods were employed for the quantification of the phase pre-
cession in each data set: slope-by-cell analysis and slope-by-train
analysis.

Slope-by-cell analysis. In this method, for each CA3 cell, we per-
formed the circular-linear regression analysis on the set of all spikes
that belonged to a detected train from that cell. A cell was deemed to
exhibit “phase precession” if the circular-linear regression p-value was
less than a = 0.05 and the slope was negative®®. The quantification of
proportions was performed on the values thus obtained.

Slope-by-train analysis. Here, the circular-linear regression was per-
formed on the spikes from individual trains i of each cell, to produce
phase precession measurements. To obtain a cell-specific slope value,
the s values were averaged for each cell. The statistical comparisons
of proportions were then performed on the cell-averaged values (such
that each cell contributed a single slope value regardless of the number
of its trains). The @y, and @ values were only defined for trains,
though instead of averaging them per train, they were directly used to
find the distributions used in Fig. 3.

Calculation of circular variance and statistical tests of circular data
(e.g., theta phase values). The circular statistics toolbox CircStats®
was used for the computation of statistical quantities, such as the
circular variance of theta phase (‘circ_var’ function of the CircStats
toolbox). The CircStats toolbox®’ also implements many statistical
recipes by ref. 90 and was used for statistical tests of circular data.

Spike phase variance analysis. For Fig. 5d, the circular variance was
calculated either across all spikes of each neuron or across the time-
stamps resulting from replacing each cycle’s spikes with their mean.
Notice that even though this operation reduces the total number of
spikes, it will not necessarily reduce the variance; this would depend
on the distribution of spikes within the theta cycle and the phase
reliability firing windows of a cell over multiple trains. As shown, the
outcome of this analysis, therefore, depends on the experimental
conditions (CTRL, DG lesions, or MEC lesions).

Standard place field definition. Standard place fields of neurons were
defined as the area within the 20% contour of the place maps, and this
definition was used for Supplementary Figs. S6 and S7. Normalized
distances along the path from the entry to the exit were calculated, and
the distances were divided into 10 bins for further analysis. For
example, we calculated the circular standard deviation across all spikes
of each cell in each bin and plotted the mean values together with the
error bars representing the standard error of the mean (Supplemen-
tary Fig. S6c¢).

Onset, offset, and binned theta phase estimation. The onset firing
phase was defined as the circular mean phase of the spikes occurringin
the first (partial) theta cycle of each train. The offset firing phase was
analogously defined as the circular mean phase of the spikes occurring
in the last (partial) theta cycle of each train. The histograms in Fig. 3 are
obtained from the single train onset and offset phase values for each
group. To estimate firing probability in the binned theta cycle (Fig. 4),
we assigned a bin label (early, mid, or late, corresponding to [0, 21t/3),
[211/3, 41/3), [411/3, 2m), respectively) to each spike and plotted the
resulting discrete probability distribution (panels a and b). This
approach was repeated for each of 10 equal bins of the normalized
position of spikes within a train to get a “position-resolved” theta bin
firing probability estimate (panel c).

Test for common mean in circular data (Circular MANOVA). As
suggested by ref. 91, we used a one-factor MANOVA test to test for
differences in the mean of circular data (e.g., theta phase). Each phase
6 was treated as a single observation with two response variables
cos(0) and sin(0), with the experimental group (control or lesion) as
the sole factor. The p-value was automatically obtained by Matlab’s
‘manoval’ function by comparing the test statistics with the chi-square
distribution with 2 degrees of freedom. This procedure is referred to in
the main text as “circular MANOVA.” We avoided using the Watson-
Williams test due to its inapplicability when the mean resultant length
of the pooled data is <0.45, as well as the superior performance of
MANOVA?”., Other tests (permutation tests, Kuiper test, Watson’s U?,
CircStats® test for common medians) returned similar patterns of
results (not shown).
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Test for common concentration parameter in circular data. As
suggested by ref. 91, we used the concentration test from the Direc-
tional toolbox”>. However, we translated this code to Matlab before
applying it to data.

Calculation of effect size. To quantify the effect size of linear ratio
scale data (linear data), we used Cohen’s d defined as d= %

—1)y +(n,—1)- .
wheres;, = /%, and n; are the number of data points and

v; are the data variances. To quantify effect size for circular data, we
used the same formula but using the circular version of mean and
variance functions.

Cell pair sequence analysis. Two simultaneously recorded units were
considered a “pair” for the purpose of sequence analyses if (a) there
were at least 50 theta cycles in which both units spiked, (b) at least 20%
of each unit’s spikes throughout the session occurred in theta cycles in
which the other unit also spiked, and (c) at least 10% of all theta cycles
in which a unit spiked included spikes from the other unit as well. For
each unit pair, the cross-correlogram was computed and the relative
time, 1, of the peak closest to the zero time lag was found. The physical
separation of the peaks of the two units’ place fields, d, was computed
and used to make the tuple (d, 1). In the case of the 8-arm maze where
runs in opposite outbound and inbound directions were possible, each
unit pair was treated twice—once for the inbound run and once for the
outbound. We confirmed that in all cases, only one of the two-run
directions had enough spikes to reliably assess pair co-modulation
(i.e., the unreliable direction did not contribute a (d, 7) tuple). Once all
(d,7) tuples were obtained for each experimental group (CTRL®?,
LESION®®, CTRL™™, and LESION™E), a linear regression model was
fit to the data to assess the significance of the relationship between
place field separation (d) and theta co-modulation (7), as reported in
Fig. 6. For the phase precession plots in Fig. 6b and Fig. 6f, trains from
each cell were first mapped to the animal’s path. The path equivalent of
each train was then projected onto the line segment connecting the
place field peaks of the two cells via a dot product. The midpoint of this
line segment was considered the origin (x =0) and was used on the x-
axis of the phase-position plots. The sign of the direction of travel was
defined to be positive if Cell 1's place field was visited before Cell 2’s
place field; otherwise, it was considered negative.

Computational model

Model description. The model CA3 neuron received three distinct
inputs. Two of these were excitatory (i.e., positively contributed to the
model neuron’s total drive) and one was inhibitory (i.e., negatively
contributed to the total drive). The excitatory inputs modeled the DG
and MEC monosynaptic excitatory drive that CA3 principal cells
receive, while the inhibitory input modeled the total inhibitory input
that these neurons receive. The equations governing the value of each
of the three functions took the following forms:

Gpg®=Ypg (1 + cos (Zm/DGt)> @)
GMEC(t):yMEC (1+ Ccos (¢+ZTTI/MECt)> 2)
GINR(©=Ipc +Acos(g+2m/NHe) 3)

where vPG6 =8.6 Hz, yYMEC =8 5Hz, and vINH =8 Hz, and Ipc repre-
sented the DC (baseline) component of inhibition. In the above
equations, P controls the theta phase difference of the two excitatory
inputs by essentially timing only the MEC input while the DG input
remains the same. Effectively, this could cause the place field to shift

around slightly which we shall ignore. Since the mean firing phase in
DG and MEC is roughly similar in empirical data®®, we chose = O for
the main analysis. Variation of { up to +90 degrees, however, did not
qualitatively alter the result (Supplementary Fig. S9). The values for the
oscillation frequencies in the theta range (8.6 Hz for DG and 8.5 Hz for
MEC) were estimated from Supplementary Fig. 15 in ref. 68. Ipc was
drawn from a Gaussian with a constant mean between 0.5 and 25 (with
specific values given in Results) and a variance of 0.025.

To produce the total drive, the inputs were combined as follows:

1
G(f)=H<MD(;(f) -GpgO+Mpec® - Gpec®) — gGINH(t)> “4)

H is the Heaviside function (“rectify” step in Fig. 7) and M repre-
sents a spatial modulation function to each of these inputs to mimic
the influence of DG and MEC inputs to the early and late portions of
place fields, respectively (see Fig. 4)". These functions are defined as
follows:

MpG(X)=N(0.3,0.45)"DG ®)

MpgC(X)=N(0.7,0.75)"™MEC ©

where p =0.128 and 17 =1.88 are concentration parameters and
N, (1, 0) is the Gaussian function with mean p and standard deviation o.

In addition, @ denotes the excitatory-inhibitory phase differential,
which in the text is referred to by @;,, for clarity, and A denotes the
amplitude of the inhibitory modulation. These two parameters were
systematically varied by simulating all combinations (250 steps of A in
the range [0, 5] and 1000 steps of ¢ in the range [0°, 360°]). Gain
coefficients yp and ypgc were set to O to simulate DG and MEC
lesion experiments, respectively. In addition, we also simulated that
each of the excitatory inputs is 60% percent of the other (ratio: 75/125)
while leaving the total excitation intact to show that the model is
robust to substantial variations in the relative strength of the two
excitatory inputs (Supplementary Fig. S10b).

Spike generation. The total drive obtained in the previous step was
normalized to define a probability distribution and used as an intensity
function for an inhomogeneous Poisson process to generate the
spikes. The phase precession measurements were calculated for these
simulated trains as described for the empirical data, but by assuming
that the animal moves at a constant velocity.

Mapping of model output to empirical data. The phase precession
measurements (slope, variance explained, onset phase, offset phase)
obtained by simulating the model with various combinations of free
parameters (A and @;,,) were individually compared to those
obtained by analyzing the experimental data from control, DG-lesion,
or MEC-lesion rats. To match the model inhibitory phase with theta
phase in the empirical data, we aligned the maximal CA3 firing in the
data with the time of minimum inhibition in the model (LFP phase =
180°). We confirmed that this alignment between the empirical and
model LFP phase resulted in a broad range of A and ¢;,;, parameter
combinations to reproduce data (Supplementary Fig. S9a). Each set of
empirical phase precession measurements was compared to the phase
precession measurements obtained from analyzing the corresponding
model instantiation (CTRL to full model (no terms set to 0), LESION®®
to “DG-lesion” model, and LESION™© to “MEC-lesion” model). Each
measurement from the model that was within the 80th percentile
centered on the median of the empirical data was considered admis-
sible (white regions in the binary plots of Fig. 7d). Free parameter
combinations that included all four admissible measurements were
accepted (‘Overlap’ plots, bottom panels in Fig. 7d). Finally, the
accepted free parameters were compared between lesion and control
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instantiations of the model by plotting the histogram of their dis-
tribution (Fig. 7e). To produce a sufficiently large sample size when
determining ®,, and @ values that the model assumes within the
allowable empirical A / ®inn Parameter space, we expanded the
admissible space to correspond to the 90" percentile centered on the
median of empirical data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Additional data that support the findings of this study are not in
standardized formats but can be made available without restrictions
upon request to the corresponding authors. Source data are provided
in this paper.

Code availability

All custom code for processing the data and for generating the model
is freely available from a GitHub repository (https://github.com/
cleibold/CA3phaseprecession) and from Zenodo (https://doi.org/10.
5281/zenodo.13907008). Any additional information required to rea-
nalyze the data reported in this paper is available from the corre-
sponding authors upon request.
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