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Host dispersal relaxes selective pressures in
rafting microbiomes and triggers
successional changes

William S. Pearman 1,2,3 , Grant A. Duffy1, Robert O. Smith 1, Kim I. Currie4,
Neil J. Gemmell 2, Sergio E. Morales 3 & Ceridwen I. Fraser 1

What little we know about how microbiomes change over the course of host
dispersal has been gleaned from simulations or snapshot sampling of micro-
biomes of hosts undertaking regular, cyclical migrations. These studies sug-
gest that major changes in both microbiome richness and turnover occur in
response to long-distance movements, but we do not yet know how rare or
sporadic dispersal events for non-migratory organisms might affect the
microbiomes of their hosts. Here we directly examine the microbiomes of
rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and
oceanographicmodelling to study the impacts of ecological dispersal of hosts
on their microbiomes. We find that once dislodged from coastal shores and
adrift, kelp-associated microbial communities change profoundly—the core
microbes found on attached kelp give way to a few abundant taxa and many
rare taxa. Changes in microbial species richness and composition are strongly
linked to variability in sea surface temperature rather than length of time spent
rafting. These changes are associated with increased contributions of neutral
processes shaping community assembly. These findings highlight the role of
environmental predictability in triggering major community successional
changes and challenge the importance of host selection in determining the
microbiome.

Migratoryand long-distanceecologicalmovements canhaveprofound
impacts on host microbiomes, influencing community richness and
diversity1,2 of this ubiquitous and ecologically significant element of
global biodiversity3. While we have gleaned insights into microbiome
ecology from localized studies1 and from host organisms whose
movements are highly predictable (e.g., migrating whales4), direct
observation andmeasurement of long-distance ecologicalmovements
is often challenging because dispersal events can be temporally and
spatially disparate5. Longitudinal studies of microbiomes during dis-
persal are lacking, with most research examining discrete time points
within the dispersal period2,4,6 or conducting experiments removed

from the natural ecological context of the host7,8. The few studies
attempting to grapple with these difficulties show that surface-
associated microbiomes increase in richness in response to long-
distance ecological movement, while internal communities tend to
decline in richness7. With continuing environmental and climatic
change necessitating species range shifts9,10 and altering the timing
and nature of long-distance ecological movements11,12, understanding
the effects of movement onmicrobiomes will be a critical component
of predicting host response and survival in novel environments13.
Furthermore, understanding how microbial communities shift in
response to the dynamic environmental conditions experienced
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during movement could provide insight into microbiomes and host
resilience against rapid environmental change more broadly. Indeed,
environmental variability has been previously identified as a driver of
community assembly in microbiomes, shaping the relative contribu-
tion of deterministic and stochastic processes14.

A multi-tiered approach is needed to study the complexities of
microbiomes as they change in space and time. For example, while 16S
rRNA gene amplicon analyses can provide insight into microbial
community assembly15,16, it may miss the role of the host in facilitating
microbial community change. Host biology and genetics have been
repeatedly demonstrated to influence microbiome structure17–19,
including within the context of migratory birds20. Thus, study of the
microbiome also requires understanding of, and expertise in, these
host-centric factors. Furthermore, understanding host-microbiome
dynamics in response to long-distancemovement requires knowledge
of source locations and the environments that hosts’microbiomes are
exposed to while underway. Joint geographic and host-genomic data
can act as proxies for the former21,22, whilemodern-day remote sensing
technologies and environmentalmodelling canbe used to quantify the
latter.

Buoyant macroalgae present an ideal system for addressing
questions about host-movement-related changes tomicrobiomes, and
they lend themselves to the multi-tiered approach required to disen-
tangle the complexities of these questions. Macroalgae frequently
achieve long-distance dispersal21, their rafting routes can be inferred
from oceanographic drift modelling23, and surface oceanographic
conditions can be measured using in situ and remote monitoring24.
Furthermore, oceanic rafting can act as a vector for pathogenic
microbes; rafts of the pelagic brown alga Sargassum have been
implicated in the spread of pathogenic strains of Vibrio bacteria6 and
Durvillaea antarctica (southern bull kelp, rimurapa) has been identi-
fied as the likely transport vector of a microbial disease newly dis-
covered in New Zealand25 and other remote locations26. Indeed, at any
one time it is estimated that there are up to 70 million rafts of Dur-
villaea floating in the Southern Ocean27; rafting events are frequent,
can take place over tens of thousands of kilometres, and the source
populations of rafting individuals can be reliably inferred using high-
resolution genomic approaches21,23.

Durvillaea is a genus of large, intertidal macroalgae, and indivi-
duals are occasionally detached from the coast by wave activity,
sometimes then undergoing long-distance rafting21,23,28–30. The two
buoyant species ofDurvillaeawhichwe focus onhave been extensively
studied31–34, and a large amount of population genomic data exist for
these taxa across their distributions21,35–37. As a result, beach-cast kelp
and rafts can be confidently assigned to geographic sources21,23. Using
such macroalgal rafts, we can construct a pseudo-time-series dataset
by combining population genetic and oceanographic models to
reconstruct a raft’s likely journey. We can then compare the micro-
biomes of source populations to those of rafts to deconstruct the
effects of host dispersal on microbiome structure.

In this work we employ an integrated approach involving ocea-
nographic particle modelling, host genomics, and 16S rRNA gene
amplicon (microbiome) sequencing to study the microbiome dynam-
ics of two rafting macroalgae, Durvillaea poha and D. antarctica,
enabling testing of the Intermediate Stochasticity Hypothesis (ISH; ref.
14) andAnna-Karenina Principles (AKPs; ref. 38). These twohypotheses
are complementary explanations for how microbiome structure can
change in response to varying environments and dysbiosis, respec-
tively. The ISH is a modification of the Intermediate Disturbance
Hypothesis39 and suggests that alpha diversity will peak when the
variability or predictability of an environment is at an intermediate
point, where changes in environmental conditions lead to temporal
niche differentiation—and enable co-existence of more taxa. When
predictability is extremely high, competition between taxa within a
community drives alpha diversity down, and when predictability is too

low the environment changes too rapidly for most taxa to establish
within the community. The second, complementary, hypothesis is the
concept of Anna-Karenina Principles38—to paraphrase Leo Tolstoy: ‘All
happymicrobiomes are alike, each unhappymicrobiome is unhappy in
its own way’. This hypothesis is used frequently within the explicit
context of dysbiosis of microbial communities39–42, where shifts in
community structure in response todisturbances lead to a net increase
in the beta diversity of a community. These two hypotheses are par-
ticularly useful for understanding host-dispersal impacts on the
microbiome, because environmental variability may act similarly to a
disturbance in inducing dysbiosis. We show that Durvillaea associated
microbial communities are strongly influenced by the rafting process,
exhibiting evidence for both the ISH and AKPs.

Results
Host genomics
Using Genotyping-by-Sequencing, we were able to assign rafts col-
lected from the Munida transect (Fig. 1) to a range of populations
around New Zealand based on the 37,012 SNPs which were retained
after filtering. Based on these data, we assigned 9 rafts to populations
with high confidence, 16 rafts to localized geographic regions (e.g., the
Catlins, or the Otago Peninsula, Fig. 1), 10 to broader geographic
regions, and 2 rafts remained unassigned. Broadly, our rafts originated
from southern New Zealand, predominantly from 200 km of coastline
local to the transect used for raft collection, but with some rafts having
dispersed from further afield such as the sub-Antarctic Snares Islands.

Particle modelling
Using oceanographicmodelling of 99,999 simulated particles for each
raft, we found that between 0.07% and 65.59% (depending on specific
raft) reached the source location inferred via genetic analyses through
backward advection, with a median rafting time of between 3.33 and
132.00 days. Particles that did reach their source took between 0.58
and 728.71 days to arrive. Rafts which had high confidence source
assignments and/or more distant sources (e.g., Snares Islands) tended
to have fewer particles reaching the source location.

We identified 21 real-world undrogued SVP (Surface Velocity
Program) drifters that passed through the Munida Transect between
2015 and 2022. Variability in sea surface temperature (σ-SST) values
between real-world drifters and equivalent modelled trajectories were
statistically equivalent at an effect size of 0.25 (t = 2.57, d.f. = 20,
p =0.009, mean difference of −0.14, 90% confidence intervals of −0.21
and 0.07) (Fig. 2A). Comparisons of ‘static’ particles (i.e., kelp that
remain in place, rather than undertaking a drifting process) to ‘raft’
particles revealed that the latter had significantly higher variation in
sea surface temperature (Fig. 2B).

Integration/synthesis
Frommicrobial samples derived fromseawater andboth rafts andnon-
raft macroalgae, a total of 28,394 ASVs (amplicon sequence variant)
were identified, and following rarefaction 11,764 ASVs remained. Rar-
efaction curves of both ASV count and Shannon diversity supported
the rarefaction level of 4000 reads (Supplementary. Fig. 1). Raft
microbiomes were distinct from both seawater and non-rafts, with
increased Bray-Curtis dissimilarity observed in rafts relative to non-
rafts and raft microbiomes becoming increasingly dissimilar to non-
raft microbiomes with increasing rafting time. Rafts had significantly
higher average dissimilarity than non-raft microbiomes (P = 3.4 × 10−11,
Z = −6.628, Wilcoxon ranked sum test, Fig. 3B). The relationship
between dissimilarity and raft time, sea surface temperature, and
standard deviation of SST suggested that for beta-diversity, raft time
and standard deviation were most important, with less importance
attributed to sea surface temperature (Table 1; Fig. 3c–e), thesemodels
explain 11% of deviance in Bray-Curtis dissimilarity, with standard
deviation contributing more when higher. There was no evidence of
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kelp species-specific (D. antarctica vs D. poha) patterns observed via
clustering, with non-raft microbiomes clustering together regardless
of host species (Figs. 1c and 3a).

As with beta-diversity, rafts tended to have higher alpha diversity
(Fig. 4; Table 2), which exhibited a hump-shaped relationship with σ-
SST. The final GAMs (generalized additive models) used to predict
species richness/evenness consisted of sea surface temperature and its
standard deviation, and raft time for evenness (Table 2). Raft micro-
biomes typically had higher ASV richness and evenness than non-rafts
(mean richness: 104.4 ASVs vs 148.9 ASVs; mean Pielou’s evenness:
0.63 vs 0.70).

After classifying ASVs as either core, abundant, or rare based on
average abundance across raft or non-raft samples, we examined the
relative contributions of these groupings to community structure in
rafts and non-rafts. Core microbiomes were defined based solely on
non-rafts, as we were interested in seeing how the dominance of a
‘normal’ coremicrobial community is affected by rafting, 14 ASVs were
found as core across non-rafts (Supplementary. Fig. 2). We found that
within rafts, microbial communities were dominated by abundant
microbes (55%), and similar contributions of core and rare microbes
(mean percentages of 25% and 20%). Conversely, non-rafts had much
higher contributions of core microbes (59%), and lower contributions
of abundant and rare microbes (31% and 10% respectively) (Fig. 5).

iCAMP analyses of ecological processes shaping microbiome
assembly revealed that non-rafts were primarily shaped by homo-
geneous selection and ecological drift. Conversely, rafts were less
driven by selection (30.8% vs 65.4%), with a much larger contribution
of dispersal limitation (36.4% in rafts vs 7.8% in non-rafts; Fig. 6b;
Supplementary Table 1). Although the primary difference across all
phylogenetic bins was a reduction in homogeneous selection and an
increase in dispersal limitation, we note that one phylogenetic bin was
composed almost entirely of ASVs assigned to the genus Granulosi-
coccus, a widespread macroalgae-associated taxon, and an identified
core taxon. ThisGranulosicoccus bin was dominated by homogeneous

selection in non-rafts (82.1%) but not in rafts (9.1%) (Supplementary
Table 2). These results were reinforced by our observation that rafts
were typically in a state of dysbiosis, with dysbiosis scores ranging
from −0.2 to 0.35, while non-rafts ranged from −0.28 to 0.07; specific
score was significantly associated with standard deviation of SST
(Fig. 6b). Finally, we noted that raft communities had significantly
higher weighted mean rRNA operon counts than non-rafts (Supple-
mentary Fig. 3).

Discussion
Our findings indicate that changes in microbiome structure during
long-distance movement are predominantly influenced by the varia-
bility of the environment that hosts traverse (Figs. 3, 4). This influence
follows the relationship expected under the Intermediate Stochasticity
Hypothesis (ISH), which posits that environmental predictability can
contribute to the relative strengths of deterministic and stochastic
processes shaping the community, leading to changes in alpha
diversity14. Microbiome richness in rafts is better explained by a com-
bination of raft status (raft or non-raft) and standard deviation of sea
surface temperature (σ-SST), rather than rafting time (Fig. 4/Table 2).
This relationship between species richness and σ-SST (Fig. 4) is non-
linear and peaks at intermediate levels of variability, aligning with the
changes in alpha diversity predicted by the ISH14.

The variation in sea surface temperature found in many of our
rafts may also be partly explained by many rafts having crossed mul-
tiple water masses, as our sampling transect crosses neritic/coastal,
subtropical, and sub-Antarctic water masses. Transitioning through
thesewatermasseswouldnot only increase the rangeof SST towhicha
raft is exposed but would also alter the exposure tomacro- andmicro-
nutrient poor/rich waters—perhaps promoting increased variation in
the microbiome. Therefore, although we focus principally on sea sur-
face temperature and its variability, we do not suggest that it is sea-
surface temperature that inherently drives variation in the micro-
biome. Instead,we suggest thatmeanSSTandSSTvariability areuseful
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Fig. 1 | Map of sampling locations with associated rafting trajectories and
microbial and host relationships. a Map of sampling locations for source popu-
lation genetic data and raft genetic samples. Coloured areas around the coast
represent ‘source’ regions from which rafts could have originated, with multi-
colour zones indicating overlapping regions with differing levels of phylogenomic
uncertainty (e.g., all regions with pink represent a single region from which some
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in sea surface temperature over 5 years. Black lines indicate successful OpenDrift
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proxies for a broader suite of environmental variables that interact to
shape microbiome structure. Nevertheless, SST likely also directly
affects raft microbiomes as temperature underlies a range of other
processes such as biochemical rates43, where colder temperaturesmay
slow processes such as decomposition44. Furthermore, strong asso-
ciations between SST and salinity are well described across our sam-
pling transect45, and in turn, salinity is associated with phosphate,
nitrate, and chlorophyll concentrations46, supporting our use of SST as

a generic proxy for other environmental conditions. Sea-surface tem-
perature clearly delimits water masses, as shown in Fig. 1, and these
water masses harbour distinct microbial communities. Thus, in addi-
tion to passing through varying temperatures, rafts may pass through
distinct microbial environments—leading to exposure to an increased
suite of potential colonizers.

We suggest that higher or lower levels of environmental variability
result in selection for specific groups of taxa, while intermediate
variability results in weaker selection. These inferences are supported
by the larger contribution of stochastic processes to microbiome
assembly in rafts vs non-rafts (Fig. 6a), and the increased dysbiosis
scores (Fig. 6b). Previous epidemiological modelling has revealed that
less environmental predictability can lead to increased invasion of
opportunistic pathogens47. The suggested mechanism that promotes
increased pathogen proliferation is that lower predictability leads to
transient periods of low competition which leads to ‘easier’ invasion of
communities—within the microbiome, this pattern would appear as
increased dominance of neutral processes.

The dominance of homogenizing selection to microbiome com-
position in non-rafts (Fig. 6b) suggests a relatively tightly regulated
microbiome in stable established ecosystems15,40. However, micro-
biomes of rafting kelp contrasted strongly with those of non-rafts,
having both a reduced influence of selection on community structure

Table 1 | Generalized dissimilarity model between beta
diversity and environmental characteristics

Deviance explained
by variable alone (%)

Variable
Importance

P-value

Days spent rafting 7.11% 63.04% <0.001

SST 0.11% 0.95% <0.001

σ-SST 0.42% 3.7% <0.001

Total deviance
explained

11.28% –

Results from generalized dissimilarity model for relationships between beta-diversity (Bray-
Curtis) and sea surface temperature, standard deviation, and rafting time. Variable
importance and p-values are based on 1000 permutations. Models were produced using the
gdm R package.
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and higher beta-diversity of microbes than non-rafts (Fig. 6). Host
regulation of the microbiome may also be disrupted by dispersal,
leading to the loss of core microbes (Fig. 5). The reduced influence of
host selection and the transition towards dominance of neutral pro-
cesses in community assembly (Fig. 6a) may result in a further shift of
the microbiome away from a typical non-raft community and towards
potential dysbiosis.

The contrast between non-raft microbiomes and the increased
microbiome dysbiosis observed in rafts (Fig. 6) is a definitive realisa-
tion of Anna-Karenina Principles38. These principles have been applied
within a range of microbiome contexts38, with suggestions that
decomposition-associated or dysbiotic microbiomes can be examined
through the AKPs. Dysbiotic (‘unhappy’) microbiomes are thought to
shift away from being dominated by deterministic processes, and
instead become more shaped by stochastic processes, leading to
increased beta-diversity40—both expectations are supported for mac-
roalgal rafts (Figs. 3, 6). The apparent physical degradation symptoms
observed on some rafts are similar to what has been noted for another
brown alga, Ecklonia radiata, resulting from elevated temperature and
decreased pH48. In both E. radiata and Macrocystis pyrifera these
variables are also associated with microbiome dysbiosis48,49, further
supporting our hypothesis of dysbiosis in rafting algae. This raises the
question of how microbiome dysbiosis affects the establishment pro-
spects of raft offspring following dispersal to new habitat, as rafting is
the principal means by which new populations of Durvillaea are
established21,23,37. Rafting kelp themselves cannot re-attach to the
substrate but they may still reproduce within the new environment;
coalescent holdfasts of multiple individuals have been implicated in
the establishment of new populations arising from even a single
raft50,51. Interestingly, of the rafts studied here, those with the longest
inferred rafting periods were in a similar or lower state of dysbiosis
than rafts with a shorter inferred rafting period (Fig. 6b), and these
longer-lived rafts showed surprisingly high taxonomic overlap with
non-rafts (Supplementary Fig. 4), raising the possibility that a healthier
microbiome facilitates longer-term dispersal. Alternatively, it may be
that those rafts in better ‘health’ or condition are those which are
capable of long-distance dispersal and thus also have a more ‘typical’
microbiome, especially given the link between microbiome composi-
tion and macroalgal condition48,52.

Increased dysbiosis in macroalgal microbiomes is probably, in
part, driven by disruption of host selective processes (Fig. 6). Host-
imposed selection is an established driver in many plant microbial
communities40,53,54, and indeed disruption to this process has
been suggested as a causative factor in microbiome dysbiosis40.

Furthermore, the reduced influence of selection on both the whole
microbiota and also, more specifically, the dominant microbial core
taxon Granulosicoccus in rafts suggests that raft macroalgal micro-
biomes are in a state of dysbiosis. Thus, although a positive relation-
ship is observed between σ-SST and dysbiosis score this may also be
explained by, among other options, loss of host-regulatory capacity,
rafting duration, and other unsampled environmental conditions—or
more likely, a combination of all these and other interacting factors.

Despite shifts towards dysbiosis, kelp rafts are known to disperse
long distances while remaining reproductively viable21—which raises
the question of how algal rafts remain somewhat healthy despite a
dysbioticmicrobiome that appearsgeared towards ill health. However,
this may be explained by recent work which shows floating Durvillaea
is able to maintain high antioxidant and phlorotannin concentrations,
despite sub-optimal conditions, and these activities may limit the
extent of bacterial-induced decay and facilitate long-term rafting,
alongside preservative effects of cold oceanic conditions55. Similar
results have been observed in rafts of both Macrocystis pyrifera56 and
Sargassum spinuligerum57, indicating that buoyant macroalgae may
have physiological defences that inhibit degradation in the rafting
environment. Photosynthetic capability in rafts of both Macrocystis56

andDurvillaea55 has been demonstrated to be reduced relative to non-
rafts, suggesting that continued, albeit reduced, photosynthesis in the
rafting environment counteracts degradation processes during the
raft period.

Macroalgal rafts of Durvillaea are known to disperse many thou-
sands of kilometres, sometimes washing up on distant shores after
years at sea21, and the rafts tested in this study reveal only the initial
stages (up to 132 days) of this rafting process. This raises the question
of whether, over longer voyages, hosts retain some capacity to main-
tain themicrobiota in the face of extremely changeable environmental
and host conditions. Indeed, biofilm experiments have revealed that
turnover dictates community succession rather than priority effects58;
if this is the case for host-associated biofilms, then the successional
changes prompted by rafting may overwhelm any priority effects. Our
data strongly suggest that rafting triggers major successional changes
in community assembly, due to the increased abundance of faster-
growing bacteria relative to non-rafts (Supplementary Fig. 3)59. We
thus suggest that the likelihood of joint host-microbe dispersal over
broader scales is likely linked to themaintenance of selective pressures
regulating the community.

Highly dynamic environments, such as those experienced during
long-distance ecologicalmovements, havemajor impacts onmicrobial
community assembly and structure. If such extreme community

Table 2 | Generalized Additive Models for alpha diversity and environmental conditions

Component Term Estimate Std Error t-value p-value

A. parametric coefficients (Intercept) - Richness 4.831 0.035 137.197 <0.0001

Component Term edf Ref. df F-value p-value

B. smooth terms s(Mean σ-SST) 3.305 3.739 12.961 0.0068

s(Mean SST) 3.078 3.534 35.091 <0.0001

Adjusted R-squared: 0.152, Deviance explained 0.194 -REML: 1619.032, Scale est: 1.000, N: 178

Component Term Estimate Std Error t-value p-value

A. parametric coefficients (Intercept) - Evenness 0.696 0.030 23.033 0.0000

Component Term edf Ref. df F-value p-value

B. smooth terms s(Raft Time) 5.398 6.329 19.560 0.0037

s(Mean σ-SST) 5.325 6.200 20.353 0.0025

s(Mean SST) 2.729 3.258 6.814 0.0942

Adjusted R-squared: 0.261, Deviance explained 0.324 -REML: −277.821, Scale est: 1.000, N: 178

Results from generalized additive models for predicting richness and evenness of microbial communities associated with Durvillaea. Richness was modelled using negative binomial family, and
evenness with a beta regression family. In both instances, final models were chosen based on concurvity values and AIC scores. GAMs were produced using the mgcv R package.

Article https://doi.org/10.1038/s41467-024-54954-z

Nature Communications |        (2024) 15:10759 6

www.nature.com/naturecommunications


change is ubiquitous for stochastic long-distancemovements, wemay
find that many organisms are unable to bring their original microbial
community with them during range shifts and species invasions—
potentially resulting in selection for hosts which have flexibility with
regards to their microbiome. Indeed, recent work has shown that
invasive lineages of one alga are more flexible with regard to micro-
biome composition60. Selection for microbiome flexibility could facil-
itate future ecological invasions and range shifts.

Methods
Sample collection
All sampleswerecollectedunderMinistry of Primary Industries Special
Permits 824-2 and 644; no ethics or additional permits were required
to collect these samples. Sampleswerecollectedbetween January 2021
andMarch 2022, with kelp rafts sampled opportunistically at sea along
a 60 km oceanic transect (the Munida Time Series Transect, Fig. 1;
Supplementary Table 3) extending east from the Otago Peninsula,
southern New Zealand61, with a total of 37 independent rafts being

collected. When rafts with coalescent holdfasts were collected (i.e.,
multiple kelp individuals joined at the holdfast), only a single indivi-
dual from that raft was sampled. Rafts were collected via a grappling
hook and brought on board the RV Polaris II. Microbial samples were
collected from two separate blades and the palmate meristem region
of the thallus; tissue was first rinsed gently with sterile artificial sea-
water to remove transient microbes. The palmate meristem is the
section of the thallus immediately above the stipe, from which blades
extend; see (ref. 62; Supplementary. Fig. 5) for a diagram. Taking care
to sample tissues whichhadnot come in contactwith hands, grappling
hook, or the boat, a 25 cm2 area of tissue was swabbed back-and-forth
with a Qiagen OmniSwab, which was then ejected into a tube of sterile
DESS (20% DMSO, 250mMpH 8 EDTA, saturated with NaCl). A simi-
larly sized tissue piece was collected and stored in silica gel for DNA
extraction. Seawater, algal microbiome and tissue samples from non-
rafts were collected from Durvillaea populations (average of 10 hosts
sampled per population) around the South Island of New Zealand
using a similar procedure, to provide a reference dataset of Durvillaea
microbiomes. In addition to biofilm samples, we also collected 2 L
seawater samples at the locations where rafts were collected; these
were filtered using a bleach-sterilized vacuum filter with a 0.22 µM
polycarbonate filter and were subsequently stored in DESS and frozen.

Microbiome methods
DNA was extracted from swabs and seawater filters using either the
Qiagen PowerSoil or the PowerSoil Pro kit, following the manu-
facturer’s instructions. Optional incubation steps were included, and
samples were bead-beaten for 10minutes at 25Hz in a Domel Mill Mix
to aid lysis.DNAwas elutedusing a two-step elutionprocessof 50μLof
nuclease-free water at each step. 50μL of eluted DNA was then trans-
ferred to a 96-well microtiter plate and dried using an Eppendorf
SpeedVac.

16S rRNA gene library preparation was carried out on microbial
DNA at Argonne National Laboratories (ANL), following standard Earth
Microbiome Project sequencing protocols16. In short, DNA was ampli-
fied using updated 515 F (5′: GTGYCAGCMGCCGCGGTAA) and 806R
(5′: GGACTACNVGGGTWTCTAAT) primer pair to amplify the V4 region
of the 16S rRNA gene. Amplicons were then pooled equimolarly at ANL
and sequenced on an Illumina MiSeq. Amplicon sequences were first
demultiplexed using IDEMP and then processed in DADA2 (v. 1.26)63,
removing PhiX and chimeric reads, and truncating reads at the first
instance of a base with a quality value of less than two. Following
inference of amplicon sequence variants (ASVs), ASVs were processed
in the decontam R package (v. 1.16)64 to remove contaminant ASVs
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Fig. 6 | Influence of rafting of selective pressures anddysbiosis inmicrobiomes.
a Contributions of different ecological factors to community assembly in non-rafts
and rafts. b Dysbiosis score in relation to variation in sea surface temperature (x-

axis) and rafting time (shading), values above 0 indicate dysbiosis, those below 0
indicate a ‘normal’ microbiome. The line represents linear regression, with the
ribbon indicating the 0.95 confidence interval.

Fig. 5 | Ternary plot of core/rare/abundant microbes for raft and non-raft
microbial samples. Ternary plot of the distributions of microbial communities
associated with rafting and non-rafting Durvillaea. Core microbes were defined
based on contributions of towards overall community beta diversity, and abundant
microbes were defined as those with a mean abundance in non-rafts≥0.1%.
Coloured squares indicatemeans of each group,with lines indicating contributions
of each community class.
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using a prevalence approach (removing ASVs more abundant in
negative controls than in samples), using a threshold of 0.1. Finally,
amplicon sequence counts were rarefied to 4000 reads per sample
(Supplementary. Fig. 1) using the rarefy_even_depth function in the
phyloseq R package (v. 1.4)65. Bioinformatic scripts for these analyses
are available at https://github.com/wpearman1996/kelp_rafting_MS.
Phylogenetic inference of relationships between ASVs was conducted
using FastTree (v 2.1.11) with a GTR-CAT model, sequences were
aligned using MAFFT v7.505 with FFT-NS-2 and max iterations of 0.
Taxonomic classification of ASVs was performed using lotus266 with
the taxOnly option, using BLAST alignment against the PR267, SILVA68,
GreenGenes69, andHITdb70, with preferential treatment of databases in
the respective order (i.e., PR2 highest priority, and HITdb lowest
priority).

For each microbial sample (raft and non-raft), we calculated spe-
cies richness, Pielou’s evenness, and Bray-Curtis dissimilarity between
samples. To demonstrate the microbiome dissimilarity amongst these
populations (Fig. 1C), we merged replicate blade microbiome samples
for each individual using the merge_samples function in phyloseq and
created a neighbour-joining tree using ape (v. 5.7-1) based on Bray-
Curtis dissimilarity of models.

To understand how community structure varied broadly across
raft and non-raft communities, we conducted analyses based on
three classifications of ASVs—core, abundant, and rare. We did this
separately for rafts and non-rafts, classifying ASVs as either core,
abundant (non-core microbes with a mean abundance >0.1%71, and
rare (non-core microbes with a mean abundance ≤0.1%). Core
microbiomes were determined with non-rafts which originated from
the same geographic regions as the rafts using the spatial method
from ref. 72 with the last 3% decrease in explained Bray-Curtis dis-
similarity. This approach first characterises the explanatory value of
each microbe to overall beta-diversity (based on Bray-Curtis dissim-
ilarity) and then identifies the core taxa as those which result in a 3%
or more decrease in Bray-Curtis dissimilarity (See72 for an in-depth
explanation). Although not based solely on occupancy, this method
necessitates microbes must be found at least 80% of samples to be
classified as core. Ternary plots were created with the GGTern R
package (v. 3.5.0)73.

Relative contributions of different ecological processes to com-
munity structureweredeterminedwith the iCAMP (v. 1.6.3) framework
using the icamp.cm function with bin sizes of 24, and the confidence
method of testing15,74. This method broadly estimates the contribu-
tions of selection, drift, anddispersal to community structurebasedon
measures of pairwise taxonomic and phylogenetic dispersion. Beta
nearest taxon index was used as ametric of phylogenetic turnover, for
non-raft samples phylogenetic turnover was calculated within popu-
lations to account for meta-community structure. In order to assess
the influence of growth rate on community assembly, we exploited the
known relationship between rRNA operon copy number and max-
imumgrowth rate75 by aggregatingmicrobiomedata to the genus level
and retrieving themean rRNAoperon count for eachgenus from rrnDB
(v 5.8)76. A community level rRNA trait was then calculated as the
weighted mean of the genus level abundances of rRNA operon counts
following59.

Host genomics
For host genomic analysis, DNA from kelp tissue was extracted fol-
lowing an in-houseprotocol (developed tomaximiseDNAquantity and
purity for problematic kelp extractions), in which dried tissue was first
ground to a fine powder in 20-second bursts at 25Hz with 4mm steel
balls in a DomelMill Mix. To approximately 100mgof powder, 1.2mLs
of lysis buffer (6M Guanidine Hydrochloride, 250mM EDTA, 100mM
Tris-HCl, 1% Sodium metabisulphite, 1% polyvinylpyrollidone 30K),
and 20μL of Proteinase K (20mg/mL) was added, and mixed thor-
oughly, followed by overnight incubation at 65 °C. The lysate was

centrifuged for 2minutes at 10,000× g and 1mL of supernatant was
transferred to a tube containing 400μL of 5Mpotassium acetate. This
reaction was thoroughly mixed and incubated for 20min on ice, fol-
lowed by another 2minutes of centrifugation at 10,000× g. 1mLof the
supernatant was transferred to a tube of 1mL of precipitation solution
(20% PEG8000, 1.2M NaCl), and mixed thoroughly, followed by
another 20min incubation on ice. The mixture was centrifuged for
10 ×min at 15,000 g, and the supernatant was discarded. The DNA
pellet was then washed twice with wash solution (70% ethanol, 30% TE
buffer), and resuspended in nuclease-free water. Finally, the DNA
solution was cleaned using the Qiagen PowerClean Pro kit, following
the manufacturer’s instructions.

Genotyping-by-Sequencing (GBS) host libraries were prepared
following a modified protocol from Elshire et al.77 that has been opti-
mized for work with D. antarctica35. 750 ng of DNA from each sample
was digested using the PstI restriction enzyme, DNA was suspended in
17.8μl of nuclease-free water, and 0.2μL of PstI-HF (NEB #R3140L) and
2μL of 10X CutSmart buffer, alongside 2.25 ng of PstI sequencing
adaptor. Reactionsweremixed briefly by pipetting andwere then spun
down and incubated at 37 °C for 2 h. Following digestion, 5μL of 10X
T4 DNA Ligase reaction buffer, 1μL of T4 DNA ligase (NEB #
M0202LVIAL), and 24μL of nuclease-free water were added to each
reaction,mixed by pipetting, and then incubated using a PCR program
of 16 °C for 30min, 37 °C for 2min, 16 °C for 30min, 37 °C for 2min,
16 °C for 30min, 80 °C for 30min, and then storage at 4 °C.

The digested and barcoded DNA was then cleaned using a Qiagen
MinElute 96-well plate on a vacuum plate manifold using a vacuum
pressure of 800mbar was applied, and the wells were washed twice
with 30μL of nuclease-free water. Finally, DNA was resuspended in
23μl of nuclease-free water, by brief incubation at room temperature
for 5minutes, followed by 30 cycles of pipetting. A PCR reaction
consisting of 10μL of the cleaned DNA, with 25μL of 2X MyTaq HS
MasterMix, and 1μl of forward and reverseprimerwas conducted. The
PCR protocol consisted of 72 °C for 5min, 95 °C for 1min, then 24
cycles of 95 °C for 30 s, 65 °C for 30 s, 72 °C for 30 s, followed by a
5min hold for 4 °C.

PCR success was assessed visually based on gel electrophoresis,
and samples were pooled roughly based on the gel fluorescence of the
PCR products. DNA libraries were size selected using gel excision to
retain DNA between 200 and 600bp and then sequenced at the Bio-
molecular Resources Facility at the Australian National University on
an Illumina HiSeq with 75 bp paired-end reads.

The GBS sequence library was first quality-filtered using FastQC78

and trimmed to remove adaptors, PhiX reads, and homopolymers.
Libraries were then demultiplexed using STACKS79, using pro-
cess_radtags with the PstI enzyme, and inline barcodes. Following
established protocols and including those samples from refs. 21,80, we
aligneddemultiplexed reads toaD. antarctica reference genomeusing
BWA (v. 0.7.17)81 and then processed into SNPs using the STACKS
ref_map and populations module, with values of -p 1, -r 0.2. We then
removed SNPs with a minimum depth of <5, Minor Allele Count
(MAC) <2, and missingness >0.2, finally, we removed individuals with
fewer than 5000 SNPs per sample.

Following bioinformatic filtering, we conducted phylogenetic
inference using IQ-Tree (v. 2.2)82. Samples were assigned to popula-
tions based on bootstrap (n = 1000 bootstraps) results and proximity
to other known samples. Initial analyses indicated all rafts originated
from within New Zealand’s Exclusive Economic Zone, and thus we did
not include GBS samples from global datasets. Samples were assigned
to clades based on bootstrap values >80, i.e. assigned to a regional
group based on their position within clades containing samples of
known origin. Origin regions for particle modelling for each raft were
based on the maximum geographic range from which samples origi-
nated within each clade. Specifically, we traversed up the tree until a
nodewith >80 supportwas found, then the geographic range between
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the two most distantly found locations within that clade was used as
the inferred source location.

Particle modelling
To model potential backward trajectories of each collected kelp raft,
we used a Lagrangian drift particle model executed using the Leeway
module of OpenDrift (v 1.9.0, https://opendrift.github.io83, a widely
used oceanographic software package that has been validated against
real-worlddata84,85 andused tomodel, amongother things, eDNA86 and
marine debris87 transport. At each raft collection site (Fig. 1), 99,999
particles were randomly seeded laterally within a 1 km radius of the
collection coordinates (Supplementary Table 3) and at times ± 1 day of
the collection date86. These particles were then advected backward in
time using an hourly time-step (i.e. starting at the collection site and
tracking backward to potential raft origin locations). An hourly time
stepwas chosen so that particles were unlikely tomovemore than one
grid cell per time step. Backward trajectories were subsequently
compared to simulations with 15, 30, and 120min time-steps to test if
the Lagrangian simulation hadconverged to a stable result—changes in
time-step size did not result in any qualitative differences in our results
(see Supplementary. Figs. 6–7 for comparison of time-steps). Using an
Euler propagation scheme, advection occurred as a function of ambi-
ent water current (Global OceanReanalysis; GLORYS12; 10.48670/moi-
00021) and wind88 vectors, which varied depending on the drift
properties of each seeded particle. Both horizontal and vertical diffu-
sivity coefficients were set at 0m s−1 (i.e., no additional diffusion).
Sensitivity tests conducted across a plausible range of horizontal dif-
fusivity values89,90 did not yield any qualitative differences in our
results (see Supplementary Figs. 8–9 for sensitivity testing of diffu-
sivity coefficients). To cover a range of potential raft geometries,
seeded particles were parameterised as one of three particle types
(PIW-1, PIW-5, PIW-6 as defined in the Leewaymodel; https://opendrift.
github.io91,92). Each of these particle types represents the drift prop-
erties of a person-in-water (PIW) in one of three states (unknown state,
scuba suit—face up, deceased—face down, for PIW-1, 5, and 6, respec-
tively; Supplementary Table 4). In the absenceof specificdrift property
measurements for Durvillaea rafts, these three particle types were
chosen, based on our own qualitative field observations, as the most
similar to a rafting piece of kelp with an attached holdfast, in terms of
dimensions, buoyancy, and drift properties (Supplementary Table 4).
Smaller Durvillaea rafts like the ones we collected are comparable in
size and shape to a person lying horizontally on the water surface. We
do, however, acknowledge that while this ensures variety in particles
and resultant trajectories the parameters are somewhat arbitrary in the
absence of kelp-raft-specific parameters.

Backward advection of each particle from the point of sample
collection continueduntil oneof three conditionswasmet; theparticle
either left the area of interest (20–50° S, 120–179° E), camewithin 2 km
of the predefined coastal target zone (Fig. 1), or had been drifting for
two years without leaving the area of interest or entering the target
zone. The target zone for each collected raft was defined a priori based
on genetically inferred source locations of the kelp (see above). Par-
ticles that came into contact with coastline that was not identified as
the target zonewere assumed tomove offshore once current andwind
conditions allowed (i.e., they were not permanently stranded or
deactivated). The number of, and time taken for, particles to reach
their respective target zone was calculated for each raft. Equivalent
modelswere producedbasedon9999particles released at the site and
date of the passage of a real-world drifter through the Munida Trans-
ect, although advection occurred for up to 2 years before the collec-
tion date or till the particle collided with the coast. Real-world drifters
were identified from theGlobal Drifter Program91 andwere selected on
the basis being of being undrogued. Drogues extend to 15m depth so
their presence leads to drifter dispersal being heavily shaped by

geostrophic and Ekman currents; conversely, the trajectory of undro-
gued drifters is more shaped by wind-drag on the exposed portion of
the drifter and near surfacewind-driven andwave-induced Stokes drift
rather than by prevailing geostrophic and Ekman currents alone92,93.
Because kelp rafts are known to be heavily influenced by sea surface
processes via Stokes drift23, undrogued drifters represent a more
realistic analogue for a kelp raft than drogued drifters.

Sea surface temperature data
Environmental variability can determine the extent to which deter-
ministic and stochastic processes dominate community assembly14.
To examine the extent to which environmental variability shapes
microbial community assembly, we calculated the standarddeviation
of sea surface temperature (SST) along each raft trajectory, and the
standard deviation of SST for the 11 days prior to non-raft kelp
samples being collected. Daily SST data were retrieved from the
Operational Sea Surface Temperature and Ice Analysis (OSTIA) sys-
tem at a resolution of 1/20 degree24. We extracted SST for each time
point in a raft trajectory (or in the 11 days prior to non-raft collection
—the median rafting period), using the extract function in the R
package terra94. The mean raft time, SST and standard deviation for
each trajectory or sample was calculated, and the median of these
values was calculated as the representative SST and standard devia-
tion for each sample.

To validate the use of OpenDrift trajectories, we used data from
the Global Drifter Program 91,95

first identifying any SVP drifters which
had passed through theMunida transect between 2015 and 2022 using
the 6-hourly interpolated data (https://doi.org/10.25921/7ntx-z961).
Because kelp rafts are known to be heavily influenced by surface-level
waves, currents and wind23, we only examined the trajectories of
drifters that had lost their drogue (i.e., drifters driven by sea surface
processes rather than by prevailing currents alone96. For each of these
drifters, we extracted the trajectories for the 11 days (11 days was the
median successfulmacroalgal rafting period) prior to passage through
the transect and calculated the standard deviation of SST as above.
Equivalence testing was conducted between these data and the com-
parable trajectories generated for each drifter, using the mean stan-
dard deviation of SST for the 9999 comparable trajectories generated
for eachdrifter. Equivalence testingwas conductedwith twoone-sided
T-tests with an effect size of interest of 0.25 as implemented in the R
package TOSTER (v. 0.7.1)97.

Integration/synthesis
For dissimilarity analyses between rafts and non-rafts (i.e., average
dissimilarity of a raft to a non-raft), we only compared microbiome
samples from geographic areas which overlapped with potential
sources of kelp rafts (i.e., we only retained non-raft microbiome sam-
ples from the Catlins, Stewart Island, and the West Coast n = 46). For
these analyses, we defined ‘dysbiotic’ communities following98 using
the dysbiosisRpackagewith the function euclideanDistCentroids99—this
calculates the difference between each raft’s distance to the non-raft
and rafting centroids such that values greater than0 indicate dysbiosis
relative to non-rafts. For all other analyses, we utilized all non-raft and
raftmicrobiome samples (restriction to individual raft sub-samples did
not qualitatively alter our results). Bray-Curtis distances between
samples were modelled using Generalized Dissimilarity Models
(GDMs) in the gdm R package (v. 1.5.0-9.1). Generalized Additive
Models (GAMs) were conducted in the R package mgcv (v. 1.8.41)100,
using a negative binomial family for ASV richness and beta regression
family for evenness (because values are bounded between 0 and 1),
using raft time, sea surface temperature, and standard deviation of sea
surface temperature as smoothed terms,while using raft status (raft or
non-raft) as a linear term. Variable selection for GAMs was conducted
based on AIC and concurvity values.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The genetic and source data generated in this study have been
deposited in the Aotearoa Genomic Data Repository database with the
following https://doi.org/10.57748/m4fe-0d07 and https://doi.org/10.
57748/RDXN-1598. These data are available under restricted access as
they arise from culturally significant species in Aotearoa New Zealand;
access can be obtained by contacting the Aotearoa Genomics Data
Repository, who will liaise with indigenous groups regarding data
access. The remaining samples which have not been destructively
sampled are housed at the PortobelloMarine Laboratory, University of
Otago, Dunedin, New Zealand.

Code availability
Code underlying the results presented in this paper is available at:
https://github.com/wpearman1996/kelp_rafting_MS and at https://doi.
org/10.5281/zenodo.13910085.

References
1. Thie, N. et al. Linkingmigration andmicrobiota at amajor stopover

site in a long-distance avian migrant. Mov. Ecol. 10, 46 (2022).
2. Skeen, H. R., Cooper, N.W., Hackett, S. J., Bates, J.M. &Marra, P. P.

Repeated sampling of individuals reveals impact of tropical and
temperate habitats on microbiota of a migratory bird.Mol. Ecol.
30, 5900–5916 (2021).

3. Cavicchioli, R. et al. Scientists’ warning to humanity: micro-
organisms and climate change. Nat. Rev. Microbiol. 17,
569–586 (2019).

4. Bierlich, K. C. et al. Temporal and regional variability in the skin
microbiome of humpback whales along the Western Antarctic
Peninsula. Appl. Environ. Microbiol. 84, e02574-17 (2018).

5. Queiroz, A. de. The resurrection of oceanic dispersal in historical
biogeography. Trends Ecol. Evol. 20, 68–73 (2005).

6. Michotey, V. et al. In situ observations and modelling revealed
environmental factors favouring occurrence of Vibrio in micro-
biome of the pelagic Sargassum responsible for strandings. Sci.
Total Environ. 748, 141216 (2020).

7. Webster, T. M. U. et al. Environmental plasticity and colonisation
history in the Atlantic salmon microbiome: a translocation
experiment. Mol. Ecol. 29, 886–898 (2020).

8. Chong, R. et al. Looking like the locals—gut microbiome changes
post-release in an endangered species. Anim. Microbiome. 1,
8 (2019).

9. Pecl, G. T. et al. Biodiversity redistribution under climate change:
impacts on ecosystems and human well-being. Science 355,
eaai9214 (2017).

10. Berg, M. P. et al. Adapt or disperse: understanding species per-
sistence in a changing world. Glob. Change Biol. 16,
587–598 (2010).

11. Brooker, R. W., Travis, J. M. J., Clark, E. J. & Dytham, C. Modelling
species’ range shifts in a changing climate: the impacts of biotic
interactions, dispersal distance and the rate of climate change. J.
Theor. Biol. 245, 59–65 (2007).

12. Travis, J. M. J. et al. Dispersal and species’ responses to climate
change. Oikos 122, 1532–1540 (2013).

13. Baldassarre, L., Ying,H., Reitzel, A.M., Franzenburg, S. & Fraune, S.
Microbiota mediated plasticity promotes thermal adaptation in
the sea anemone Nematostella vectensis. Nat. Commun. 13,
3804 (2022).

14. Santillan, E., Seshan, H., Constancias, F., Drautz-Moses, D. I. &
Wuertz, S. Frequency of disturbance alters diversity, function, and

underlying assembly mechanisms of complex bacterial commu-
nities. NPJ Biofilms Microbiomes. 5, 1–9 (2019).

15. Ning, D. et al. A quantitative framework reveals ecological drivers
of grassland microbial community assembly in response to
warming. Nat. Commun. 11, 4717 (2020).

16. Caporaso, J. G. et al. Ultra-high-throughput microbial community
analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6,
1621–1624 (2012).

17. Blekhman, R. et al. Host genetic variation impacts microbiome
composition acrosshumanbodysites.GenomeBiol. 16, 191 (2015).

18. Woodhams, D. C. et al. Host-associated microbiomes are pre-
dicted by immune system complexity and climate. Genome Biol.
21, 23 (2020).

19. Grieneisen, L., Muehlbauer, A. L. & Blekhman, R. Microbial control
of host gene regulation and the evolution of host–microbiome
interactions in primates. Philos. Trans. R. Soc. B Biol. Sci. 375,
20190598 (2020).

20. Baiz, M. D., Benavides, C. A., Miller, E. T., Wood, A. W. & Toews, D.
P. L. Gut microbiome composition better reflects host phylogeny
than diet diversity in breeding wood-warblers. Mol. Ecol. 32,
518–536 (2023).

21. Fraser, C. I. et al. Southern Hemisphere coasts are biologically
connected by frequent, long-distance rafting events. Curr. Biol.
32, 3154–3160.e3 (2022).

22. Cook, A. B. et al. Amultidisciplinary approach to investigate deep-
pelagic ecosystem dynamics in the Gulf of Mexico following
deepwater horizon. Front.Mar. Sci. 7. https://www.frontiersin.org/
articles/10.3389/fmars.2020.548880 (2020).

23. Fraser, C. I. et al. Antarctica’s ecological isolationwill bebrokenby
storm-driven dispersal and warming. Nat. Clim. Change 8,
704–708 (2018).

24. Good, S. et al. The current configuration of the OSTIA system
for operational production of foundation sea surface tempera-
ture and ice concentration analyses. Remote Sens. 12, 720
(2020).

25. Mabey, A. L., Parvizi, E. & Fraser, C. I. Pathogen inferred to have
dispersed thousands of kilometres at sea, infecting multiple key-
stone kelp species. Mar. Biol. 168, 47 (2021).

26. Blake, C., Thiel, M., López, B. A. & Fraser, C. I. Gall-forming proti-
stan parasites infect southern bull kelp across the Southern
Ocean, with prevalence increasing to the south. Mar. Ecol. Prog.
Ser. 583, 95–106 (2017).

27. Smith, S. D. A. Kelp rafts in the Southern Ocean. Glob. Ecol. Bio-
geogr. 11, 67–69 (2002).

28. Waters, J. M., King, T. M., Fraser, C. I., Craw, D. An integrated
ecological, genetic and geological assessment of long-distance
dispersal by invertebrates on kelp rafts. Front. Biogeogr. 10.
https://escholarship.org/uc/item/195552tt (2018).

29. Waters, J. M., King, T.M., Fraser, C. I. & Craw, D. Crossing the front:
contrasting storm-forced dispersal dynamics revealed by biolo-
gical, geological andgenetic analysis of beach-cast kelp. J. R. Soc.
Interface 15, 20180046 (2018).

30. Garden, C. J., Currie, K., Fraser, C. I. & Waters, J. M. Rafting dis-
persal constrained by an oceanographic boundary. Mar. Ecol.
Prog. Ser. 501, 297–302 (2014).

31. Fraser, C. I., Nikula, R., Spencer, H. G. & Waters, J. M. Kelp
genes reveal effects of subantarctic sea ice during the
Last Glacial Maximum. Proc. Natl Acad. Sci. 106, 3249–3253
(2009).

32. Fraser, C. I., Velásquez, M., Nelson, W. A., Macaya, E. C. & Hay, C.
H. The biogeographic importance of buoyancy in macroalgae: a
case study of the southern bull-kelp genus Durvillaea (Phaeo-
phyceae), including descriptions of two new species. J. Phycol.
56, 23–36 (2020).

Article https://doi.org/10.1038/s41467-024-54954-z

Nature Communications |        (2024) 15:10759 10

https://doi.org/10.57748/m4fe-0d07
https://doi.org/10.57748/RDXN-1598
https://doi.org/10.57748/RDXN-1598
https://github.com/wpearman1996/kelp_rafting_MS
https://doi.org/10.5281/zenodo.13910085
https://doi.org/10.5281/zenodo.13910085
https://www.frontiersin.org/articles/10.3389/fmars.2020.548880
https://www.frontiersin.org/articles/10.3389/fmars.2020.548880
https://escholarship.org/uc/item/195552tt
www.nature.com/naturecommunications


33. Fraser, C. I., Spencer, H. G. & Waters, J. M. Durvillaea poha sp.
nov. (Fucales, Phaeophyceae): a buoyant southern bull-kelp
species endemic to New Zealand. Phycologia 51, 151–156
(2012).

34. Vaux, F., Craw, D., Fraser, C. I. & Waters, J. M. Northward range
extension for Durvillaea poha bull kelp: Response to tectonic
disturbance? J. Phycol. 57, 1411–1418 (2021).

35. Vaux, F., Parvizi, E., Craw, D., Fraser, C. I. & Waters, J. M. Parallel
recolonizations generate distinct genomic sectors in kelp follow-
ing high-magnitude earthquake disturbance. Mol. Ecol. 31,
4818–4831 (2022).

36. Parvizi, E., Dutoit, L., Fraser, C. I., Craw, D. & Waters, J. M. Con-
cordant phylogeographic responses to large-scale coastal dis-
turbance in intertidal macroalgae and their epibiota.Mol. Ecol. 31,
646–657 (2022).

37. Peters, J. C., Waters, J. M., Dutoit, L. & Fraser, C. I. SNP analyses
reveal a diverse pool of potential colonists to earthquake-uplifted
coastlines. Mol. Ecol. 29, 149–159 (2020).

38. Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stabi-
lity: applying the Anna Karenina principle to animal microbiomes.
Nat. Microbiol. 2, 1–8 (2017).

39. Connell, J. H. Diversity in tropical rain forests and coral reefs.
Science 199, 1302–1310 (1978).

40. Arnault, G., Mony, C. & Vandenkoornhuyse, P. Plant microbiota
dysbiosis and the Anna Karenina Principle. Trends Plant Sci. 28,
18–30 (2022).

41. Lavrinienko, A. et al. Applying the Anna Karenina principle for wild
animal gut microbiota: temporal stability of the bank vole gut
microbiota in a disturbed environment. J. Anim. Ecol. 89,
2617–2630 (2020).

42. Ma, Z. S. Testing the Anna Karenina principle in human
microbiome-associated diseases. iScience 23, 101007 (2020).

43. Boscolo-Galazzo, F., Crichton, K. A., Barker, S. & Pearson, P. N.
Temperature dependencyofmetabolic rates in the upper ocean: a
positive feedback to global climate change? Glob. Planet Change
170, 201–212 (2018).

44. Tala, F., Velásquez, M., Mansilla, A., Macaya, E. C. & Thiel, M.
Latitudinal and seasonal effects on short-term acclimation of
floating kelp species from the South-East Pacific. J. Exp. Mar. Biol.
Ecol. 483, 31–41 (2016).

45. Baltar, F., Currie, K., Stuck, E., Roosa, S. & Morales, S. E. Oceanic
fronts: transition zones for bacterioplankton community compo-
sition. Environ. Microbiol. Rep. 8, 132–138 (2016).

46. Morales, S. E., Meyer, M., Currie, K. & Baltar, F. Are oceanic fronts
ecotones? Seasonal changes along the subtropical front show
fronts as bacterioplankton transition zones but not diversity hot-
spots. Environ. Microbiol Rep. 10, 184–189 (2018).

47. Anttila, J., Laakso, J., Kaitala, V. & Ruokolainen, L. Environmental
variation enables invasions of environmental opportunist patho-
gens. Oikos 125, 1144–1152 (2016).

48. Qiu, Z. et al. Future climate change is predicted to affect the
microbiome and condition of habitat-forming kelp. Proc. R. Soc. B
Biol. Sci. 286, 20181887 (2019).

49. Minich, J. J. et al. Elevated temperature drives kelp microbiome
dysbiosis, while elevated carbon dioxide induces water micro-
biome disruption. PLOS One. 13, e0192772 (2018).

50. Kelly, E., Cowley, G. & Fraser, C. I. Holdfast coalescence between
buoyant and non-buoyant seaweeds. Mar. Freshw. Res. 72,
1838–1843 (2021).

51. Lizée-Prynne, D., López, B., Tala, F. & Thiel, M. No sex-related
dispersal limitation in a dioecious, oceanic long-distance tra-
veller: the bull kelp Durvillaea antarctica. Bot. Mar. 59, 39–50
(2016).

52. Marzinelli, E. M. et al. Continental-scale variation in seaweed
host-associated bacterial communities is a function of host
condition, not geography. Environ. Microbiol. 17, 4078–4088
(2015).

53. Sutherland, J., Bell, T., Trexler, R. V., Carlson, J. E. & Lasky, J. R.
Host genomic influence on bacterial composition in the switch-
grass rhizosphere. Mol. Ecol. 31, 3934–3950 (2022).

54. Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought
and host selection influence bacterial community dynamics in the
grass root microbiome. ISME J. 11, 2691–2704 (2017).

55. Tala, F. et al. Long-term persistence of the floating bull kelp Dur-
villaea antarctica from the South-East Pacific: Potential contribu-
tion to local and transoceanic connectivity.Mar. Environ. Res. 149,
67–79 (2019).

56. Rothäusler, E., Gómez, I., Karsten, U., Tala, F. & Thiel, M. Physio-
logical acclimation of floatingMacrocystis pyrifera to temperature
and irradiance ensures long-term persistence at the sea surface at
mid-latitudes. J. Exp. Mar. Biol. Ecol. 405, 33–41 (2011).

57. van Hees, D. H. et al. Cast adrift: Physiology and dispersal of
benthic Sargassum spinuligerum in surface rafts. Limnol. Ocea-
nogr. 64, 526–540 (2019).

58. Brislawn, C. J. et al. Forfeiting the priority effect: turnover defines
biofilm community succession. ISME J. 13, 1865–1877 (2019).

59. Nemergut, D. R. et al. Decreases in average bacterial community
rRNA operon copy number during succession. ISME J. 10,
1147–1156 (2016).

60. Bonthond, G. et al. The role of host promiscuity in the invasion
process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).

61. Baltar, F., Stuck, E., Morales, S. & Currie, K. Bacterioplankton car-
bon cycling along the Subtropical Frontal Zone off New Zealand.
Prog. Oceanogr. 135, 168–175 (2015).

62. Pearman,W. S., Morales, S. E., Vaux, F., Gemmell, N. J. & Fraser, C.
I. Host population crashes disrupt the diversity of associated
marine microbiomes. Environ. Microbiol. 26, e16611 (2024).

63. Callahan, B. J. et al. DADA2: high-resolution sample inference from
Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

64. Davis, N.M., Proctor, D.M.,Holmes, S. P., Relman,D. A. &Callahan,
B. J. Simple statistical identification and removal of contaminant
sequences in marker-gene and metagenomics data.Microbiome
6, 226 (2018).

65. McMurdie, P. J. & Holmes, S. phyloseq: an R Package for repro-
ducible interactive analysis and graphics of microbiome census
data. PLOS One. 8, e61217 (2013).

66. Özkurt, E. et al. LotuS2: an ultrafast and highly accurate tool for
amplicon sequencing analysis. Microbiome 10, 176 (2022).

67. Guillou, L. et al. The Protist Ribosomal Reference database
(PR2): a catalog of unicellular eukaryote small sub-unit rRNA
sequences with curated taxonomy. Nucleic Acids Res. 41,
D597–D604 (2013).

68. Quast, C. et al. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids
Res. 41, D590–D596 (2013).

69. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA
gene database and workbench compatible with ARB. Appl.
Environ. Microbiol. 72, 5069–5072 (2006).

70. Ritari, J., Salojärvi, J., Lahti, L. & de Vos,W.M. Improved taxonomic
assignment of human intestinal 16S rRNA sequences by a dedi-
cated reference database. BMC Genomics. 16, 1056 (2015).

71. Logares, R. et al. Patterns of rare and abundant marine microbial
eukaryotes. Curr. Biol. 24, 813–821 (2014).

72. Shade, A. & Stopnisek, N. Abundance-occupancy distributions to
prioritize plant core microbiome membership. Curr. Opin. Micro-
biol. 49, 50–58 (2019).

Article https://doi.org/10.1038/s41467-024-54954-z

Nature Communications |        (2024) 15:10759 11

www.nature.com/naturecommunications


73. Hamilton, N. E. & Ferry,M. ggtern: ternary diagramsusingggplot2.
J. Stat. Softw. 87, 1–17 (2018).

74. Stegen, J. C. et al. Quantifying community assembly processes
and identifying features that impose them. ISME J. 7,
2069–2079 (2013).

75. Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA
operon copy number to investigate bacterial reproductive stra-
tegies. Nat. Microbiol. 1, 1–7 (2016).

76. Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T.
M. rrnDB: improved tools for interpreting rRNAgene abundance in
bacteria and archaea and a new foundation for future develop-
ment. Nucleic Acids Res. 43, D593–D598 (2015).

77. Elshire, R. J. et al. A robust, simple genotyping-by-sequencing
(GBS) approach for high diversity species. Orban L., editor. PLoS
One. 6, e19379 (2011).

78. Andrews, S. FastQC: a quality control tool for high throughput
sequence data. 2010.

79. Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2:
analytical methods for paired-end sequencing improve
RADseq-based population genomics.Mol. Ecol. 28, 4737–4754
(2019).

80. Pearman W. S. et al. Macroalgal microbiome biogeography is
shaped by environmental drivers rather than geographical dis-
tance. Ann. Bot. (2023) In Press:mcad151.

81. Li, H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. ArXiv13033997 Q-Bio. http://arxiv.org/
abs/1303.3997 (2013).

82. Minh, B. Q. et al. IQ-TREE 2: newmodels and efficient methods for
phylogenetic inference in the genomic era. Mol. Biol. Evol. 37,
1530–1534 (2020).

83. Dagestad, K. F., Röhrs, J., Breivik, O. & Ådlandsvik, B. OpenDrift
v1.0: a generic framework for trajectory modelling.Geosci. Model
Dev. 11, 1405–1420 (2018).

84. Dagestad, K. F. & Röhrs, J. Prediction of ocean surface trajectories
using satellite derived vs. modeled ocean currents. Remote Sens.
Environ. 223, 130–142 (2019).

85. Xiong, J., MacCready, P. Intercomparisons of five ocean particle
tracking software packages. Geosci. Model Dev. Discuss. 1–24
https://doi.org/10.5194/gmd-2023-45 (2023).

86. Andruszkiewicz E. A. et al. Modeling environmental DNA transport
in the coastal ocean using lagrangian particle tracking. Front. Mar.
Sci. 6, https://www.frontiersin.org/articles/10.3389/fmars.2019.
00477 (2019).

87. Soares, M. O. et al. Marine debris provide long-distance pathways
for spreading invasive corals. Sci. Total Environ. 900,
165637 (2023).

88. NOAA National Centers for Environmental Prediction (NCEP).
NOAA/NCEP Global Forecast System (GFS) Atmospheric Model.
http://pacioos.org/metadata/ncep_global.html (2011).

89. Krumhansl, K. et al. Permeability of coastal biogeographic barriers
to marine larval dispersal on the east and west coasts of North
America. Glob. Ecol. Biogeogr. 32, 945–961 (2023).

90. Quigley, C. N., Roughan,M., Chaput, R., Jeffs, A. G.&Gardner, J. P.
A. Combined biophysical and genetic modelling approaches
reveal new insights into population connectivity of New Zealand
green-lipped mussels. Front. Mar. Sci. 9, https://www.frontiersin.
org/articles/10.3389/fmars.2022.971209 (2022).

91. Lumpkin, R., Özgökmen, T. & Centurioni, L. Advances in
the application of surface drifters. Annu Rev. Mar. Sci. 9,
59–81 (2017).

92. Grodsky, S. A., Lumpkin, R. & Carton, J. A. Spurious trends in
global surface drifter currents. Geophys. Res. Lett. 38, https://
onlinelibrary.wiley.com/doi/abs/10.1029/2011GL047393
(2011).

93. Poulain, P. M., Gerin, R., Mauri, E. & Pennel, R. Wind effects on
drogued and undrogued drifters in the Eastern Mediterranean. J.
Atmos. Ocean Technol. 26, 1144–1156 (2009).

94. Hijmans, R. J., Bivand, R., Pebesma, E. & Sumner, M. D. terra:
Spatial data analysis. https://cran.r-project.org/web/packages/
terra/index.html (2023).

95. Lumpkin, R. & Pazos, M. Measuring surface currents with Sur-
face Velocity Program drifters: the instrument, its data, and
some recent results. In: Kirwan Jr A. D., Griffa A., Mariano A. J.,
Rossby H. T., Özgökmen T., editors. Lagrangian Analysis and
Prediction of Coastal and Ocean Dynamics Cambridge. 39–67
(Cambridge University Press, 2007). Available from: https://
www.cambridge.org/core/books/lagrangian-analysis-and-
prediction-of-coastal-and-ocean-dynamics/measuring-
surface-currents-with-surface-velocity-program-drifters-the-
instrument-its-data-and-some-recent-results/
1651AFE86C84DF2F9761263A6A4F794D.

96. Brügge, B. & Dengg, J. Differences in drift behavior between
drogued and undrogued satellite-tracked drifting buoys. J. Geo-
phys. Res. Oceans 96, 7249–7263 (1991).

97. Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for
psychological research: a tutorial. Adv.Methods Pr. Psychol. Sci. 1,
259–269 (2018).

98. AlShawaqfeh, M. et al. A dysbiosis index to assess microbial
changes in fecal samples of dogs with chronic inflammatory
enteropathy. FEMS Microbiol. Ecol. 93, fix136 (2017).

99. Wei, S., Bahl, M. I., Baunwall, S. M. D., Hvas, C. L. & Licht, T. R.
Determining gut microbial dysbiosis: a review of applied indexes
for assessment of intestinal microbiota imbalances. Appl Environ.
Microbiol. 87, e00395–21 (2021).

100. Wood, S. N. Fast stable restricted maximum likelihood and mar-
ginal likelihood estimation of semiparametric generalized linear
models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

Acknowledgements
We thank Xiaoyue Liu and Frances Perry for their help collecting kelp
rafts, alongside the skippers of the Polaris II, Bill Dickson andMark Elder.
We also thank the variousmembers of theMunida tripswho helped spot
kelp rafts, and LindaGroenewegen andDougMackie for their help in the
lab. WSP was supported by a University of Otago Doctoral Scholarship
and PhD funding from Departments of Marine Science, Anatomy, and
Microbiology and Immunology. CIF and GAD were supported by a
Marsden Fund grant, managed by Royal Society Te Apārangi (MFP-20-
UOO-173). Research costs were also funded by a Rutherford Discovery
fellowship to CIF (RDF-UOO1803). We wish to acknowledge the use of
New Zealand eScience Infrastructure (NeSI) high-performance com-
puting facilities, consulting support and/or training services as part of
this research. New Zealand’s national facilities are provided by NeSI and
funded jointly by NeSI’s collaborator institutions and through the Min-
istry of Business, Innovation & Employment’s Research Infrastructure
program. URL https://www.nesi.org.nz.

Author contributions
W.S.P., S.E.M., C.I.F. and N.J.G. conceived the study.W.S.P. and K.I.C.
conducted field work, K.I.C. organized boat expeditions. W.S.P.
performed lab work. G.A.D., W.S.P. and R.O.S. conducted data ana-
lysis. R.O.S. and G.A.D. conducted the oceanographic modelling.
N.J.G., C.I.F. and S.E.M. provided supervisory oversight and con-
tributed to study design and planning. W.S.P. wrote the manuscript
draft with input from all authors. All authors read and approved the
manuscript.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-024-54954-z

Nature Communications |        (2024) 15:10759 12

http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.5194/gmd-2023-45
https://www.frontiersin.org/articles/10.3389/fmars.2019.00477
https://www.frontiersin.org/articles/10.3389/fmars.2019.00477
http://pacioos.org/metadata/ncep_global.html
https://www.frontiersin.org/articles/10.3389/fmars.2022.971209
https://www.frontiersin.org/articles/10.3389/fmars.2022.971209
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011GL047393
https://onlinelibrary.wiley.com/doi/abs/10.1029/2011GL047393
https://cran.r-project.org/web/packages/terra/index.html
https://cran.r-project.org/web/packages/terra/index.html
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.cambridge.org/core/books/lagrangian-analysis-and-prediction-of-coastal-and-ocean-dynamics/measuring-surface-currents-with-surface-velocity-program-drifters-the-instrument-its-data-and-some-recent-results/1651AFE86C84DF2F9761263A6A4F794D
https://www.nesi.org.nz
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-54954-z.

Correspondence and requests for materials should be addressed to
William S. Pearman.

Peer review information Nature Communications thanks Alexandra
Campbell and theother, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-54954-z

Nature Communications |        (2024) 15:10759 13

https://doi.org/10.1038/s41467-024-54954-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Host dispersal relaxes selective pressures in rafting microbiomes and triggers successional changes
	Results
	Host genomics
	Particle modelling
	Integration/synthesis

	Discussion
	Methods
	Sample collection
	Microbiome methods
	Host genomics
	Particle modelling
	Sea surface temperature data
	Integration/synthesis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




