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Multi-omics analyses reveal biological and
clinical insights in recurrent stage I non-small
cell lung cancer

Chengdi Wang 1,2,5 , Jingwei Li1,2,5, Jingyao Chen1,2,5, Zhoufeng Wang1,2,5,
Guonian Zhu1,2, Lujia Song1,2, Jiayang Wu1,2, Changshu Li1,2, Rong Qiu3,
Xuelan Chen4, Li Zhang1,2 & Weimin Li 1,2

Post-operative recurrence rates of stage I non-small cell lung cancer (NSCLC)
range from 20% to 40%. Nonetheless, the molecular mechanisms underlying
recurrence hitherto remain largely elusive. Here, we generate genomic, epi-
genomic and transcriptomic profiles of paired tumors and adjacent tissues
from 122 stage I NSCLC patients, among which 57 patients develop recurrence
after surgery during follow-up. Integrated analyses illustrate that the presence
of predominantly solid or micropapillary histological subtypes, increased
genomic instability, and APOBEC-related signature are associated with recur-
rence. Furthermore, TP53 missense mutation in DNA-binding domain could
contribute to shorter time to recurrence. DNA hypomethylation is pro-
nounced in recurrent NSCLC, and PRAME is the significantly hypomethylated
and overexpressed gene in recurrent lung adenocarcinoma (LUAD). Mechan-
istically, hypomethylation at TEAD1 binding site facilitates the transcriptional
activation of PRAME. Inhibition of PRAME restrains the tumor metastasis via
downregulation of epithelial–mesenchymal transition-related genes. We also
identify that enrichment of AT2 cells with higher copy number variation bur-
den, exhausted CD8 + T cells and Macro_SPP1, along with the reduced inter-
action between AT2 and immune cells, is essential for the formation of
ecosystem in recurrent LUAD. Finally, multi-omics clustering could stratify the
NSCLC patients into 4 subclusters with varying recurrence risk and subcluster-
specific therapeutic vulnerabilities. Collectively, this study constitutes a pro-
mising resource enabling insights into the biological mechanisms and clinical
management for post-operative recurrence of stage I NSCLC.

Lung cancer is deemed to be themost frequently diagnosedmalignant
tumor and leading cause of cancer-related mortality worldwide1.
Approximately 85% of lung cancer cases are non-small cell lung cancer
(NSCLC), while lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) serve as the two major subtypes of NSCLC2,3. In
current clinical practice, surgery is the standard of care for early-stage
NSCLC2. However, despite surgical resections, recurrence remains a

significant challenge. As estimated, 20–40% of patients with stage I
NSCLC experience tumor recurrence4–6. Approximately 80% recur-
rences occur within 2 years after surgery and result in treatment
failure7. The 5-yearpost-recurrence survival is dismal, ranging from15%
to 16.6%5,8. Therefore, there is an urgent need to decipher the biolo-
gical mechanisms underlying post-operative recurrence among stage
I NSCLC.
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Tounderstand the events that facilitate tumorigenesis and related
processes including recurrence and metastasis, established studies
have demonstrated the complex interplay of molecular abnormalities
and interactions within the tumor microenvironment9,10. For instance,
genomic instability, arising frommolecular events like TP53mutations
and intratumoral heterogeneity, contributes to lung cancer recurrence
and metastasis6,11–14. There also exists a crucial association between
DNA differential methylation in early-stage NSCLC and subsequent
recurrence15. Importantly, tumors are complicated ecosystems com-
posed of a diverse array of cell types whose interactions are integral to
tumor evolution. In lung cancer, the enrichment of alveolar type 2
(AT2) cells and reduced proportion of alveolar type 1 (AT1) cells
represent higher malignancy16. Furthermore, a pronounced enrich-
ment of CD163+ macrophages is correlated with more aggressive
cancer subtype and poorer prognosis17, and metastatic lung tumor is
characterized by an immunosuppressive state featuring increasedM2-
type macrophages18,19. However, comprehensive molecular character-
ization for post-operative recurrence of stage I NSCLC is lacking.
Additionally, single platform profiling fails to capture the complexity
of the tumor ecosystem, with research on epigenomic patterns
remaining limited. Therefore, the integration of multi-omics analyses
emerges as a crucial step to unravel the comprehensive molecular
characteristics contributing to post-operative recurrence, ultimately
informing personalized clinical decision-making.

In this study, we conduct genomic, transcriptomic and epige-
nomic analyses on samples from 122 stage I NSCLC patients based on
whole-exome sequencing (WES), nanopore sequencing, RNA sequen-
cing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) techni-
ques. Our multi-omics study has explored the molecular aberrations
and depicted the tumor ecosystem associated with early recurrence
after surgical resections. This study provides a promising resource
enabling future research on stage I NSCLC recurrence to investigate
the biological mechanisms and uncover potential therapeutic
strategies.

Results
Overview of the stage I NSCLC cohort
To comprehensively illustrate the multi-omics characteristics of post-
operative recurrence in early-stage NSCLC, samples from 122 stage I
NSCLC patients without prior therapy were enrolled. Frozen fresh (FF)
tumors and paired adjacent normal tissues were collected from 47
patients. DNA and RNAwere extracted and profiled byWES, nanopore
sequencing and RNA-seq. Formalin-fixed and paraffin-embedded
(FFPE) tumors and matched normal adjacent tissues from 61 patients
were profiled using WES. Furthermore, 14 fresh resected (FR) tumors
and 11 adjacent normal samples from remaining 14 patients were
involved in scRNA-seq. According to at least 3 years of follow-up,
patients were subordinated into recurrent (Rec, n = 57) and non-
recurrent (NonRec, n = 65) groups (Fig. 1a). Clinicopathological char-
acteristics are provided in Supplementary Table 1.

Primary NSCLC tumors from patients who develop recurrence
exhibit distinct genomic features
To reveal the genomic characteristics associated with the post-
operative recurrence, we performed a comprehensive analysis cover-
ing 108 NSCLC patients, including 47 patients with FF tissues and 61
patients with FFPE tissues, which unveiled a spectrum of somatic
mutations, gene signatures, clonal architectures, and structural varia-
tions (SVs) across Rec and NonRec groups.

Consistent with previous studies20,21, we found that known
somatic mutations in oncogenes and tumor suppressor genes includ-
ing TP53 (47%), EGFR (30%), APC (11%) were prevalent in our cohort
(Fig. 1b, Supplementary Data 1). We also applied a finer subtype clas-
sification to LUAD samples, assigning them to low-grade (lepidic), mid-
grade (acinar, papillary) and high-grade (micropapillary, solid)

predominant groups22. The recurrence rate was highest in patients
with tumors in high-grade predominant group. TP53mutation was the
most prevalent mutation among all groups, yet its occurrence was
significantly higher in the predominantly high-grade group (75%) than
in themid-/low-gradepredominant groups (46%and 29%, respectively;
Supplementary Fig. 1a). Moreover, TP53 mutation was more frequent
in Rec groupof LUAD (Supplementary Fig. 1b), suggesting a potentially
higher malignant nature. Then, we further analyzed the mutations
related to site-specificdifferences and timingof recurrence. Compared
to the intrathoracic recurrence, the patients developed extrathoracic
recurrence had higher mutation proportion of known driver genes
including TP53 and EGFR (Fig. 1c-d). TP53 missense mutation in DNA-
binding domain has been reported to influence the function of p5323,
thus we also investigated its role in timing of recurrence and revealed
that it was significantly associated with poor recurrence-free survival
(RFS) (Supplementary Fig. 1c).

According to mutation profiles, we identified 4 mutational sig-
natures (Sig1, Sig2, Sig3 and Sig4) (Supplementary Fig. 2a, b). Sig 1 is
associated with the APOBEC family, while Sig 2 related to defective
DNAmismatch repair (dMMR) is defined by C> T transitions24, both of
which were increased in Rec group (Fig. 1e). In addition, despite no
difference on copy number variation (CNV) burden and tumor muta-
tion burden (TMB) between Rec and NonRec groups, the homologous
recombinationdeficiency (HRD) scorewas significantly higher in LUAD
Rec group (Fig. 1f, Supplementary Fig. 2c-d).

To shed light on the clonal architectures associated with NSCLC
recurrence after surgery, we performed the phylogenetic analysis
using PyClone-VI. Among all patients, multiple clones were profiled in
most cases (Supplementary Fig. 3a). Then we examined whether the
patterns of phylogeny were associated with the lung cancer recur-
rence. Survival analysis indicated LUAD with multiple clones was
associated with a significantly worse RFS (Supplementary Fig. 3b). In
addition, among LUAD cases, the inferred phylogeny demonstrated
that driver mutations including EGFR,MET and ALK occurred in clones
with high cellular prevalence, which could be designated as early
mutations triggering tumorigenesis. Tumor suppressor TP53mutation
rarely occurred in clones with maximum cellular prevalence in LUAD
NonRec group, while its frequency inmajor clones of LUAD Rec group
was significantly increased (Supplementary Fig. 3c, d), indicating a
potential contributor for LUAD recurrence. For LUSC, the tumor sup-
pressors were mostly detected in major clones among both Rec and
NonRec groups (Supplementary Fig. 3a, e). Long-read sequencing
could enhance the characterization of SVs that was possibly associated
withNSCLCrecurrence25,26, thuswe alsodetected SVs betweenRec and
NonRec groups. Among the somatic SV landscape, duplications
emerged as the predominant type with a total of 891 in our cohort,
followed by 687 deletions (Supplementary Fig. 3f). Based on reported
NSCLC-related genes20,21,26,27, we identified SV statuses in selected
oncogenes and tumor suppressors (Supplementary Fig. 3g). Among
these SVs, in the LUSC Rec group, patient FF_33 had a deletion in PTEN,
whose expression was significantly decreased compared with normal
sample (FPKM: 975.294 vs 2648.635) (Supplementary Fig. 3h). More-
over, another case FF_41 in LUAD Rec group exhibited a significant
duplication in EGFR, and the RNA-seq indicated a sharply increased
expression level compared with paired normal sample (FPKM:
7777.238 vs 2102.873) (Supplementary Fig. 3i). Particularly, both of
them had no somatic mutation for corresponding genes, suggesting
that SVs have the potential to regulate downstream transcriptomic
alterations and trigger the NSCLC recurrence after surgery.

To summarize, we provided a comprehensive genomic landscape
and analyzed distinct genomic factors linked with NSCLC recurrence.
We delineated that increased genomic instability characterized by a
TP53 mutation-dominant phylogenetic pattern, higher HRD score,
signatures of dMMR and APOBEC cytidine deaminases could con-
tribute to lung cancer recurrence after surgery.
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Fig. 1 | Overview of study design and genomic features of NSCLC recurrence
cohort. a Schematic representation of the study design. b Clinicopathological
features and somatic gene mutations between Rec and NonRec NSCLC groups in
both FF and FFPE cohorts. Clinicopathological features and somatic genemutations
of cases with extrathoracic recurrence (c) and intrathoracic recurrence (d). e Violin
plot depicting contributions of mutational signatures in Rec (n = 25) and NonRec

(n = 22) groups. fViolin plot depictingHRDscore inRec (n = 53) andNonRec (n = 55)
groups. P-values are obtained from unpaired two-sided Wilcoxon ranked-sum test.
The boxes indicate the median value, interquartile range, with whiskers extending
from the box boundaries to upper/lower quartile ± 1.5 interquartile range. LASC,
lung adenosquamous carcinoma. The schematic in (a) was created using BioRender
(https://www.biorender.com). Source data are provided as a Source Data file.
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DNA methylation associated with post-operative recurrence
Alterations to the epigenetic landscape, exemplified by DNA methy-
lation, have contributed to tumorigenesis, recurrence and metastasis
in various cancers, including lung cancer15,28. Here, we applied nano-
pore sequencing data to evaluate DNA methylation profiles between
Rec and NonRec NSCLC groups. We identified differentially methy-
lated regions (DMRs)withWald test (P < 0.05 anddifference >0.1). The
differential methylation landscapes of LUAD and LUSC between Rec
and NonRec groups were presented in Fig. 2a and Fig. 2b respectively.
In general, 11,412 DMRs were found in LUAD, while 28,671 DMRs were
identified in LUSC (Supplementary Fig. 4a). In both LUAD and LUSC,
we observed similar trends in distributions of DMRs across different
regulatory areas. Most of these changes happened in the intron
regions, followed by the distal intergenic areas and promoter regions.

Analysis of CpG methylation levels indicated that both LUAD and
LUSCdisplayedthesignificanthypomethylationinRecgroupcompared
to NonRec group (Fig. 2c). To identify the epigenetically dysregulated
pathways in NSCLC recurrence, we conducted pathway enrichment
analyses of hypomethylated genes in the Rec group (Supplementary
Fig. 4b-c), which demonstrated that EMT in LUAD and inflammatory
response in LUSCwere activated. EMT is awell-known cellular program
participating in malignant progression through reshaping intercellular
and cell-extracellular interactions29. In addition, KEGG analysis demon-
strated that Rap1 signalingpathway and ECM-receptor interactionwere
enriched in both LUAD and LUSC Rec groups.

DNA methylation could regulate the gene expression, and the
interplay of differential methylation and gene expression in primary
lung cancer lesions has been utilized to predict cancer progression30.
In total, we identified 1642 and 3613 significantly hypomethylated
genes in Rec groups of LUAD and LUSC, respectively. Additionally, we
examined expression levels of hypomethylated genes in Rec group. It
was intriguing thatwediscovered6genes in LUADand8genes in LUSC
that were hypomethylated and upregulated simultaneously in Rec
group (Fig. 2d). Transcription factors (TFs) binding could be dimin-
ished by methylation on their DNA binding sites31. Thus, to investigate
how methylation of TF binding sites impacts expression of target
genes, we identified sets of TFs driving the overexpression of hypo-
methylated genes for further analyses. Subsequently, we utilized the
activity scores to evaluate the association between expression of
specific genes and the methylation level of TF binding sites (Fig. 2e, f).
Here, we observed that the most strongly activated gene was PRAME
located on chromosome 22. Among the relative TFs of PRAME, TEAD1
plays a pivotal role in regulating tissuehomeostasis and tumorigenesis.
Aberrant activation of TEAD1 and its coactivator YAP/TAZ have been
implicated in progression of various cancers32–34. Our results also
revealed that hypomethylation at the TEAD1 binding site was corre-
lated with PRAME overexpression (Fig. 2g), and the TEAD1 expression
was positively related to PRAME expression (Fig. 2h).

In summary, significant hypomethylation in Rec group was
observed compared to NonRec group, which might affect the gene
expression levels and lead to post-operative recurrence.

Transcriptomic signatures related to stage I NSCLC recurrence
after surgery
Differential expression analysis was utilized to identify transcriptomic
features associated with post-operative recurrence in stage I NSCLC.
There were a total of 85 differentially expressed genes (DEGs) in LUAD
and 206 DEGs in LUSC between Rec and NonRec groups (adjusted
P <0.05 and |log2FoldChange| > 1) (Fig. 3a, b, Supplementary Fig. 5a).
Highly expressed genes in recurrent LUAD included PRAME, DRAIC,
and DUXAP8 (Fig. 3a), while COL22A1, TIMD4, and PLA2G2D were sig-
nificantly upregulated in Rec group of LUSC (Fig. 3b). Then we inte-
grated clinical data to evaluate the prognostic value of DEGs. DRAIC
and DUXAP8 in LUAD, as well as TIMD4 and COL22A1 in LUSC were
demonstrated as potential “High-Risk Genes” correlated with poorer

RFS (Supplementary Fig. 5b). Interestingly, DRAIC and DUXAP8 were
considered as oncogenes promoting the progression of breast cancer
and pancreatic cancer, respectively35,36. Moreover, the cavity-resident
macrophages with high expression of TIMD4 could impair anti-tumor
activity of CD8 + T cells to facilitate the cancer progression37.

To explore the biological processes driving the lung cancer
recurrence, we then conducted gene set enrichment analysis (GSEA)
on the MSigDB Hallmarks gene sets and revealed enriched pathways
through comparison of Rec and NonRec groups (Fig. 3c, d, Supple-
mentary Fig. 5c). Activation of the pathways such as EMT and angio-
genesis, known to trigger cancer cell migration and dissemination38,39,
was observed in Rec groups of LUAD and LUSC (Fig. 3c, d). In addition,
GO and KEGG analyses also indicated extracellular matrix and cell
adhesion molecules-related pathways were upregulated in Rec group
(Fig. 3e, f ). Notably, extracellular matrix remodeling could contribute
to detachment of epithelial cells from adjacent cells and basement
membrane, which is essential for EMT40. Cell adhesionmolecules such
as integrin might lead to tumor angiogenesis41. Therefore, EMT and
angiogenesis are common biological behaviors associated with the
stage I NSCLC recurrence.

The tumor immune microenvironment (TIME) plays the crucial
role in lung cancer progression. To characterize the TIME correlated to
NSCLC recurrence, the single sample gene set enrichment analysis
(ssGSEA) scores were calculated with defined gene sets (Naïve: TCF7,
SELL, LEF1, CCR7; Exhausted: LAG3, TIGIT, PDCD1, HAVCR2, CTLA4;
Cytotoxic: TNFSF10, CST7, GZMA, GZMB, NKG7, GNLY, IFNG, PRF1). And
we observed that the naïve and exhausted signatures were evidently
higher in the Rec group (P =0.03179, 0.01580, respectively), while the
cytotoxic score was not significantly different between Rec and Non-
Rec groups, suggesting an immunosuppressive environment con-
ducive to recurrence (Fig. 3g).

Above all, our investigation revealed the keyDEGs associatedwith
NSCLC recurrence and highlighted that the activated EMT and angio-
genesis signatures might contribute to the post-operative recurrence
of stage I NSCLC. Moreover, the higher exhausted score was observed
in Rec group than NonRec group, suggesting a suppressive TIME.

PRAME as a critical gene for stage I LUAD recurrence after
surgery
As aforementioned,weobserved that PRAMEwas highly expressed and
hypomethylated in LUAD Rec group. In function, PRAME regulates the
cell death and retinoic acid receptor signaling42, which could con-
tribute to the tumor progression and worse prognosis.

To achieve an integrated perspective, we created a coordinate
axis integrating the dimensions of transcriptomic and epigenomic
results in LUAD Rec group compared to NonRec group, where the
PRAME genewas identified to be themost significant gene considering
bothdifferential expression anddifferentialmethylation levels (Fig. 4a,
Supplementary Data 2). In correlation analysis, an inverse correlation
was evident between methylation and expression of PRAME in LUAD
samples (Fig. 4b). Further, based on the expression level of PRAME,
LUADsampleswereclassified intoPRAME-high and PRAME-lowgroups.
Hallmark analysis showed that multiple proliferation and metastasis-
related pathways such as EMT, MYC targets v1, E2F targets and
MTORC1 signaling were significantly positively enriched in PRAME-
high group, compared to PRAME-low group (Fig. 4c). Moreover, sur-
vival analysis showed high expression of PRAME was associated with
poor RFS with a P-value of 0.0065 (Fig. 4d).

To investigate the role of PRAME in LUAD recurrence, we firstly
amplified PRAME cDNA into A549, PC9, and H1299 cells (PRAME-OE
cells). Wound healing assay revealed a significantly enhanced cell
migration rate in PRAME-OE cells, compared to control cells (Fig. 4e
and Supplementary Fig. 6a, d). Transcriptome analysis indicated that
PRAME overexpression upregulated the EMT gene signature, the E2F
targets gene signature, and multiple pathways involved in cell
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proliferation and migration (Fig. 4f–h). The results of RT-qPCR vali-
dated that the relative expression levels of the EMT-related genes
ACTA2, COL1A1, DAB2, MMP2, and TAGLN were upregulated after
PRAME overexpression (Fig. 4i and Supplementary Fig. 6b, e). Con-
sistent with transcriptome analysis, western blotting showed that
proliferation and migration-associated proteins mTOR, PCNA, and

Rap1 were upregulated in PRAME-OE cells compared to control cells
(Fig. 4j and Supplementary Fig. 6c, f). Additionally, we introduced
small interfering RNA (siRNA) targeting PRAME gene to repress its
expression in A549, H1299, and PC9 cells. siPRAME cells displayed
significantly suppressed cell proliferation and migration compared to
siNC cells. Western blotting showed that PRAME gene silencing
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significantly inhibited the expression of mTOR, PCNA, and Rap1 pro-
teins (Supplementary Fig. 7).

To further validate the in vivo role of PRAME, we designed two
single guide RNAs (sgRNAs) with the CRISPR Design Tool and trans-
duced sgRNAs into A549 cells with Cas9. PRAME disruption was

confirmed by western blotting. PRAME disruption significantly inhib-
ited cell proliferation and migration (Fig. 4k, l). RT-qPCR showed that
the relative expression levels of the EMT-related genes ACTA2,COL1A1,
MMP2, and TAGLN were significantly repressed in sgPRAME A549 cells
compared to those with sgScr (Fig. 4m). Consistently, western blotting

Fig. 2 | Methylation characterization of NSCLC cohort. Distribution of DMRs in
LUAD (a) and LUSC (b). cThe comparison ofmethylation level betweenRec (LUAD,
n = 18and LUSC, n = 5) andNonRec (LUAD, n = 10 and LUSC, n = 12) groups. P-values
are obtained from unpaired two-sided Wilcoxon ranked-sum test. The boxes indi-
cate the median value, interquartile range, with whiskers extending from the box
boundaries to upper/lower quartile ± 1.5 interquartile range. d Venn diagrams
depicting the hypomethylated and upregulated genes between Rec and NonRec

groups in LUAD (top) and LUSC (bottom). Activity map integrating the association
betweenmethylation of TF binding site and expression of target genes in LUAD (e)
and LUSC (f). g Correlation betweenmethylation level of TEAD1 binding motif and
PRAME expression. h Correlation of TEAD1 and PRAME expression. P-values are
obtained from the two-sided t-test, and “R” represents the Pearson correlation
coefficient. Source data are provided as a Source Data file.

Fig. 3 | Transcriptomic characterization of Rec and NonRec NSCLC groups.
a Volcano plot showing DEGs in Rec and NonRec LUAD groups (DESeq2 method).
b Volcano plot showing DEGs in Rec and NonRec LUSC groups (DESeq2 method).
c EMT and angiogenesis scores between Rec andNonRec LUADgroups. d EMT and
angiogenesis scores between Rec and NonRec LUSC groups. e KEGG and GO
pathway enrichment between Rec and NonRec LUAD groups (hypergeometric
distribution). f KEGG and GO pathway enrichment between Rec and NonRec LUSC

groups (hypergeometric distribution). g The naïve, exhausted, and cytotoxic states
assessment derived from ssGSEA scores between Rec (n = 23) and NonRec (n = 22)
groups. P-values are obtained from GSEA (c, d) and unpaired two-sided Wilcoxon
ranked-sum test (g). The boxes indicate themedian value, interquartile range, with
whiskers extending from the box boundaries to upper/lower quartile ± 1.5 inter-
quartile range. Source data are provided as a Source Data file.
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showed that PRAME disruption reduced the expression levels of cell
proliferation and migration-related proteins mTOR, Rap1, and PCNA
(Fig. 4n). Then sgPRAME cellswere transplanted into the recipientmice
through tail vein injection. 24 days after transplantation, mice were
harvested. Biopsy showed some lesions with specific mcherry fluor-
escent protein expression in lungs, which indicated that the lesions
were derived from the transplanted cells. Decreased lesions were

observed in the lungs of recipient mice with sgPRAME cells than in the
lungs of control mice (Fig. 4o). Consistently, pathological analyses
showed that there were reduced lesions in lungs of recipientmice with
sgPRAME cells (Fig. 4p, q). Taken together, these data strongly sug-
gested that PRAME deficiency inhibited LUAD metastasis in mice.

To summarize, our integrated analysis identified the PRAME gene
as a key mediator of LUAD recurrence due to its high expression and
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hypomethylation. We comprehensively validated the biological func-
tion of PRAME through a series of in vitro and in vivo experiments.
These findings elucidated the crucial function of PRAME activation in
enabling LUAD progression, highlighting its potential as therapeutic
target for preventing recurrence.

Loss of AT2 features and gain ofmalignancy are related to LUAD
recurrence after surgery
To unveil the role of tumor ecosystem in post-operative recurrence of
LUAD, we collected fresh tumor specimens and adjacent non-tumor
samples from 14 patients for scRNA-seq. Following quality control
procedures, high-quality transcriptomes from a total of 118,860 cells
were obtained (Supplementary Data 3). Annotated by knownmarkers,
these cells were assigned into 15 major clusters including epithelial
cells (AT1, AT2, basal, ciliated, and club cells), fibroblasts, endothelial
cells as well as immunocytes (lymphocytes, and myeloid cells) and
visualized by t-distributed stochastic neighbor embedding (tSNE)
(Fig. 5a and Supplementary Fig. 8a, b). Although all cell clusters were
presented in both Rec and NonRec groups, AT2 cells were more
abundant in theRec group,while AT1 cells andCD8+ Tcells weremore
enriched in NonRec group (Fig. 5b).

Since AT2 cells were considered as the origin of LUAD43–45, we first
investigated the transcriptomic heterogeneity of AT2 cells between
Rec and NonRec groups. According to gene expression profile, AT2
cells were assigned into AT2-SFTPC cells characterized by the high
expression of typical AT2 markers including SFTPC, and AT2-like cells
defined by decreased expression of SFTPC as well as upregulated cell
proliferation genes46,47. We further subgrouped AT2-like cells into 5
clusters (AT2-like 1-5), among which AT2-like 2 took a higher propor-
tion in Rec group (Supplementary Fig. 8c). The pathway enrichment
indicated the hallmarks of tumor progression including hypoxia, EMT,
and angiogenesis were enriched in AT2 cells of Rec group (Fig. 5c),
which were mainly reflected in AT2-like 1 and AT2-like 2 clusters
(Supplementary Fig. 8d, e). To further investigate the malignant state
ofAT2 cell subpopulations, inferCNVwas appliedwith adjacent normal
tissues as the reference. As expected, almost no CNV events were
detected in normal tissues. AT2 cells from the Rec group exhibited
relatively higher heterogeneity of CNV than NonRec group (Fig. 5d).
For instance, CNV amplifications were more enriched in the chromo-
somes 7 and 8 in AT2 cells from the Rec group, and deletions on
chromosomes 18, 19 and 20 were also evident. Given the relationship
between cancer and large-scale CNV, AT2-like cells were termed LUAD
cells (Supplementary Fig. 8f). Specifically, AT2-like 2 subpopulation
obtained significantly larger scale of chromosomal CNVs than other
clusters, demonstrating a more malignant phenotype. In addition, to
better understand the evolutionary dynamics of AT2 cell clusters
during LUAD recurrence, we performed pseudotime analysis using
Monocle 2. We detected two different differentiation trajectories. The
route 1 trajectory exhibited the increased abundance of AT2-SFTPC

cells, which was mainly consisted of cells from NonRec group. How-
ever, throughout the route 2 developmental trajectory with high
expression of MDK, SAA1, and ITGB8 genes, the proportion of AT2-
SFTPC cells was reduced, while AT2-like 2 maintained a high propor-
tion. Moreover, route 2 ended with cells from Rec group, and the CNV
burden exclusively accumulated along the route 2 trajectory (Fig. 5e,
Supplementary Fig. 8g). Therefore, route 2 resembled the cellular
trajectory of post-operative recurrence. Overall, we have provided
insights into the heterogeneity of AT2 cells and identified AT2-like 2-
cell subpopulation, which might contribute to LUAD recurrence.

Transcriptional reprogramming of immunocytes towards a
recurrent microenvironment in LUAD
To resolve the distinctive TIME contributing to the lung cancer
recurrence, we next conducted unsupervised clustering for macro-
phages/monocytes and CD8 +T cells. Macrophages/monocytes held
the highest abundance inmyeloid cells (Fig. 5a), which are reported to
be pivotal in reshaping tumor microenvironment (TME)48. Here, they
were subclustered into 5 clusters, namelyMacro_KLRB1,Macro_FABP4,
Macro_PPARG, Macro_SPP1 and monocytes (Fig. 6a). The pathway
enrichment exhibited an activated involvement in inflammatory
pathways in macrophages/monocytes of Rec group compared to
NonRec group (Fig. 6b). The Macro_SPP1 highly expressing CD14 was
defined as monocyte-derived macrophages (MDMs) playing crucial
pro-tumorigenic role, while Macro_PPARG was considered as the
tissue-resident macrophages (TRM)49,50. Despite the similar propor-
tions of macrophages/monocytes among groups (Fig. 5b), the abun-
dance of specific subpopulations, including Macro_SPP1 and
monocytes, was higher in Rec group than NonRec group (Fig. 6c).
Furthermore, pseudotime analysis revealed that Macro_SPP1 and
monocytes were predominantly at the end phase of differentiation
path characterized by upregulation of VEGFA, a crucial modulator of
angiogenesis51, and activation of inflammation-related pathways via
KEGG enrichment (Fig. 6d). Consistently, hallmark pathway analysis
also indicated that inflammatory response was enriched in these two
clusters (Fig. 6e, f ). Taken together, our analyses revealed that
enrichment of Macro_SPP1 and monocytes contributed to the lung
cancer recurrence via triggering angiogenesis and tumor-promoting
inflammation.

CD8 + T cells were assigned into 5 subclusters (CD8-CCR6, CD8-
GZMH, CD8-GZMK, CD8-LAG3, and CD8-XCL1). Compared with the
NonRec group, the higher proportions of CD8-CCR6, CD8-LAG3, and
CD8-GZMK were observed in Rec group (Supplementary Fig. 9a). To
illustrate the transcriptional heterogeneity of CD8 +T cells between
Rec and NonRec groups, we assessed the expression states of cyto-
toxic, exhausted and naïve phenotypes. Among these subpopulations,
CD8-CCR6 overexpressed both exhaustedmarkers (CTLA4 and TIGHT)
and naïve genes (SELL and CCR7) and thus designated as early-
exhausted CD8 + T cells. CD8-LAG3 were defined as exhausted

Fig. 4 | Role of PRAME and relative experimental validations. a Scatter plot
correlating the expression fold change with the differential methylation level of
overlap genes. b Scatter plot demonstrating hypomethylation of PRAME was
associated with its upregulated expression between Rec and NonRec groups. P-
values are obtained from the two-sided t-test. “R” represents the Pearson correla-
tion coefficient (a, b). c Biological processes involved in PRAME high/low expres-
sion. P-values are obtained from GSEA. d Kaplan-Meier analysis showing the RFS
characterized by low (blue) and high (red) expression of PRAME. The P-value is
obtained from the two-sided log rank test. e The cell migration rates of PRAMEOE

cells compared to PRAMENC A549 cells (n = 3 biological replicates). GSEA revealing
the enrichment of EMT (f) and E2F targets (g) in the PRAMEOE cells compared to
PRAMENC cells. P-values are obtained from GSEA. h KEGG pathway enrichment of
PRAMEOE cells compared to PRAMENC cells (hypergeometric distribution). i The
relative expression levels of EMT-related genes in PRAMENC and PRAMEOE A549 cells
(n = 3 technical replicates). j Representative western blotting pictures of three

independent experiments for PRAME, mTOR, Rap1, and PCNA in PRAMENC and
PRAMEOE A549 cells. k Relative cell viability of sgPRAME and sgScr A549 cells (n = 3
biological replicates). l The cell migration rates of sgPRAME and sgScr A549 cells
(n = 3 biological replicates). m The relative expression levels of EMT-related genes
in sgPRAME and sgScr A549 cells (n = 3 technical replicates). n Representative
western blotting pictures of three independent experiments for PRAME, mTOR,
Rap1, and PCNA in sgPRAME and sgScr A549 cells. o Representative brightfield (up)
and fluorescent (down) images showingmetastatic lesions in the lungs of recipient
mice with sgPRAME and sgScr A549 cells. p Representative images of H&E staining
of the lungs of recipient mice with sgPRAME and sgScr A549 cells. q. Statistical
graphs showing the lesion number of metastases in the lungs of recipient mice
(n = 5mice). Data are shownasmean ± SD (e, i, l,m) andmean± SEM (q) (Two-tailed
Student’s t test). Data (k) are shownasmean ± SD (Two-way anova). Source data are
provided as a Source Data file.
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Fig. 5 | Single-cell transcriptomic profiling of stage I LUAD recurrence. a tSNE
depicting the composition of 15 different phenotypes from LUAD patients includ-
ing 10 patients in NonRec group and 4 patients in Rec group. bCell percent ratio in
NonRec and Rec groups. c The significantly enriched hallmarks of highly expressed

genes in AT2 cells between Rec and NonRec groups (hypergeometric distribution).
d CNV inferred by scRNA-seq. e Ridge plot and heatmap showing the cell density
and dynamic changes in gene expression of AT2 cells with the pseudotime. Source
data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55068-2

Nature Communications |         (2025) 16:1477 9

www.nature.com/naturecommunications


Fig. 6 | The macrophages/monocytes landscape of stage I LUAD recurrence.
a tSNE plots of macrophages/monocytes colored by subtypes. b The significantly
enriched hallmarks of highly expressed genes inmacrophages/monocytes between
Rec group andNonRec group (hypergeometric distribution). cCell percent ratio of
macrophage/monocyte subclusters between Rec and NonRec groups. d Ridge plot

and heatmap showing the cell density and dynamic changes in gene expression of
macrophages/monocytes with the pseudotime. The significantly enriched hall-
marks of highly expressed genes in Macro_SPP1 (e) and monocytes (f) (hypergeo-
metric distribution). Source data are provided as a Source Data file.
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CD8 + T cells, CD8-GZMH showed the cytotoxic feature, while CD8-
XCL1 and CD8-GZMK exhibited the naïve characteristics (Supplemen-
tary Fig. 9b). We next investigated the cell transitions of CD8 +T cells.
In pseudotime analysis, the transition initiated with CD8-GZMH, the
cytotoxic subtype with higher proportion in the NonRec group, and
eventually reached an exhausted state (Supplementary Fig. 9c). Addi-
tionally, the pathway analysis also revealed the immunodeficiency-
related pathway was enriched, and cytotoxicity-associated pathway
was repressed in CD8+ T cells from Rec group compared to NonRec
group (Supplementary Fig. 9d, e). Thus, the immune-suppressed TME
featured by low cytotoxic and high exhausted state was associated
with post-operative recurrence of lung cancer.

Cell-cell interactions playa crucial role in cancerprogression52.We
used CellPhoneDB to decipher the potential crosstalk contributing to
lung cancer recurrence based on ligand-receptor (L-R) interactions.
Generally, the cellular interactions weremuch fewer in Rec group than
NonRec group (Supplementary Fig. 10a, b). Specifically, the reduced
crosstalk between AT2 cells and myeloid cells in Rec group was evi-
dent, indicative of the less contact between tumor cells and corre-
sponding environment. In spite of the decreased interactions, the
cellular interactions in regard to CD8-GZMK and CD8-CCR6 were
stronger in Rec group than NonRec group (Supplementary Fig. 10c, d).
Therefore, the general diminished cell-cell communications, along
with the enhanced regulations of exhausted T cells, might be the
essential biological behavior contributing to the colonization of lung
cancer cells in the recurrent sites.

To better support our findings, we applied immune infiltration
and survival analyses based on bulk RNA-seq data for major sub-
phenotypes. Consistent with findings of scRNA-seq analysis, the
abundance of CD8-CCR6, CD8-GZMK, CD8-LAG3, Macro_SPP1, and
monocytes were significantly higher in Rec group than NonRec group
(Supplementary Fig. 10e, f ). The AT2 like 2 and Macro_SPP1 were
indeed related to poorer prognosis (Supplementary Fig. 10g, h), fur-
ther validating their role in recurrence.

In conclusion, the enrichment of Macro_SPP1 with highly inflam-
matory signature, immunosuppressive state, and reduced cell-cell
communications in TMEmight be crucial for stage I LUAD recurrence.

Multi-omics integration yields insights into the recurrence-risk
stratification and precise therapy of NSCLC
Given that we have characterized the genomic, epigenomic, and
transcriptomic landscape between Rec and NonRec groups, unsu-
pervised non-negative matrix factorization (NMF) clustering was
adopted to divide the tumors into 4 subclusters (nmf1, nmf2, nmf3,
nmf4) (Fig. 7a, Supplementary Fig. 11a,b). Survival analyses demon-
strated integrated subtypes could help stratify the recurrence risk for
patients, among which nmf1 and nmf2 exhibited a high risk of recur-
rence, nmf3 represented a moderate risk of recurrence, while cases in
nmf4 showed a low risk of recurrence (Supplementary Fig. 11c). We
further delved into the multi-omics characteristics of each subtype.
Despite of high frequency of EGFR mutation in LUAD, tumors in both
nmf1 and nmf2 groups lacked EGFR mutation (Fig. 7a, b). The
nmf1 subtype was mainly composed of tumors from both LUAD and
LUSC Rec groups, which was featured by enrichment of EMT, angio-
genesis, and hypoxia pathways, as well as highest exhausted score
(Fig. 7c–f, Supplementary Fig. 11d), suggesting the strong invasiveness
and potential of immune escape. For nmf2 subcluster primarily
involving tumors from LUAD Rec group, MYC targets, G2M check-
point, E2F targets pathways were activated, and dMMR signature was
also enriched (Fig. 7f, Supplementary Fig. 11e). The nmf3 subcluster
consisted of LUAD tumors, and half of them were from Rec group,
characterized by high proportion of EGFRmutations (Fig. 7a, b). Lastly,
the nmf4 including an overwhelming majority of tumors from LUSC
NonRec group was distinguished by a remarkable smoking signature,

as well as comparatively low level of angiogenesis score (Fig. 7d,
Supplementary Fig. 11e).

Based on the molecular characteristics above, we further focused
on therapeutic vulnerabilities of certain subcluster. The nmf1 sub-
cluster exhibited the highest level of angiogenesis activation and
exhausted score calculated by the expression of genes including LAG3,
TIGIT, PDCD1, and CTLA4 (Fig. 7d, Supplementary Fig. 11d). The pre-
vious studies have highlighted that the anti-angiogenic agents such as
bevacizumab could improve the prognosis of NSCLC with angiogen-
esis features, and T cells with high expression of exhausted genes are
closely related to immunotherapy efficacy53,54. Interestingly, VEGFR
inhibitor-immune-checkpoint inhibitor (ICI) combinations were
reported to enhance the efficiency of immunotherapy55. Therefore,
combination therapy of ICIs and anti-angiogenic agents might be an
optimal treatment for individuals in nmf1. In addition, Aurora kinase
inhibition has been proved to be a novel therapeutic strategy for
cancers with MYC amplification, and targeting WEE1 could inhibit the
G2Mpathway56,57, indicative of the potential options for nmf2 subtype.
The recurrence rate in nmf3 group, exhibiting high EGFR mutation
rate, was as high as 50% among our cohort (Fig. 7a). Thus, EGFR-TKI
might be benefit for cases with EGFR mutation categorized into nmf3
cluster to decrease the risk of recurrence after surgery. Additionally,
the patients in nmf4 subcluster were mainly from NonRec group,
hence the adjuvant therapy might be unnecessary. These results
underscored the potential of multi-omics subcluster-based therapy in
NSCLC to guide the personalized treatment after surgery and reduce
the risk of recurrence.

Discussion
Cancer recurrence is a complex process orchestrated by distinct
molecular features of tumor cells and the dynamic variations within
the tumor microenvironment58–61. To comprehensively elucidate the
biological behavior of post-operative recurrence in NSCLC, we per-
formedmulti-omics profilings on a large cohort with NSCLC to analyze
the crucial molecular characteristics promoting the post-operative
recurrence. We found that NSCLC samples in the Rec group exhibited
an increased genomic instability and DNA hypomethylation. Tran-
scriptomic analyses also revealed the activation of EMT and angio-
genesis pathways in the Rec group. Specifically, we identified and
validated PRAME as a critical gene promoting the LUAD recurrence.
Additionally, our study presented a high-resolution landscape of the
cellular heterogeneity and intercellular crosstalk in Rec and NonRec
groups of NSCLC. Finally, we conducted multi-omics clustering to
stratify the recurrence risk of NSCLC patients and guide precise post-
operative treatment.

The genomic instability featured by dysregulation of oncogenes
and tumor suppressor genes, clonal evolution, and SVs, has been
documented to promote tumor progression and recurrence62,63. In our
study, the mutation frequency of TP53 was significantly increased in
the Rec group of LUAD. TP53 mutation is a frequent event in multiple
cancers,whichmight be associatedwith cancer recurrence64,65.We also
underscored that the presence of predominantly solid or micro-
papillary pattern, highly invasive LUAD histological subtypes66, was
related to LUAD recurrence. In addition, our results revealed APOBEC
and dMMR signatures were enriched in Rec group compared with
NonRec group, both of which have been reported to drive the DNA
damage and tumor evolution67,68, and higher HRD score was found in
LUADRecgroup. The tumor clonal heterogeneity is highly represented
by genomic complexity and offers soil for tumor evolution and
recurrence14,69. Thus, we further investigated the clonal architectures
and revealed that a TP53 mutation-dominant phylogenetic pattern
might promote the LUAD recurrence. In terms of large-scale chro-
mosomal alterations, we found PTEN deletion and EGFR duplication
could facilitate the recurrence via gene expression regulation. In
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Fig. 7 | Multi-omics integration of NSCLC cohort and biological features.
a Heatmap showing the multi-omics integration of NSCLC tumors into 4 NMF-
derived clusters. Panels exhibiting clinical features, mutations of selected genes,
methylation level, mutational signatures, and angiogenesis score. b The propor-
tions of gene mutation for each subcluster. The enrichment of EMT (c), angio-
genesis (d), and hypoxia (e) assessed via ssGSEA in each subcluster. f Heatmap of

pathway enrichments in each subcluster detected by ssGSEA. P-values are obtained
from unpaired two-sided Wilcoxon ranked-sum test (c–e) and GSEA (f). The boxes
indicate the median value, interquartile range, with whiskers extending from the
box boundaries to upper/lower quartile ± 1.5 interquartile range. *P value < 0.05.
Source data are provided as a Source Data file.
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summary, our analyses emphasized the importance of enhanced
genomic instability in lung cancer recurrence after surgery.

Combination of the epigenetic and transcriptomic profiles could
provide deeper insights into biological mechanism of NSCLC recur-
rence. In general, the recurrent cases exhibited a hypomethylation
pattern. We conducted pathway enrichment analyses of hypomethy-
lated genes in the Rec group and found the activation of crucial
pathways associated with cancer recurrence such as EMT,
Rap1 signaling, and ECM-receptor interaction. The hypomethylation
could be linked to gene expression, therefore transcriptome analyses
also showed that the same pathways including EMT were significantly
positively enriched in the Rec group. Consistently, previous studies
showed that DNA hypomethylation was an adverse factor for tumor
recurrence and metastasis70–72. Binding sites for stemness- and
proliferation-associated genes OCT4, SOX2, NANOG, and SIN3A are
specifically hypomethylated in breast cancer71. In this study, we
explored the methylation of TF binding sites in regulating targeted
gene expression. In Rec group, we found hypomethylation of TEAD1
binding site associated with higher expression of PRAME. TEAD1
directly binds the YAP/TAZ complex, acting as gene expression reg-
ulators and harmonizing cellular growth, differentiation and devel-
opment, and Hippo-YAP pathway is frequently dysregulated in human
cancers73–75. Our findings further support TEAD1 as a potential ther-
apeutic target to prevent NSCLC recurrence, with promise in precision
oncology76. Correlative analyses between the DNA methylation and
transcriptomic profiles showed enrichment of multiple proliferation
and recurrence-related pathways and genes in the Rec group. Further,
these high-risk transcriptomic and epigenetic traits specific to the Rec
group may serve as predictors of post-operative recurrence risk and
inform clinical treatment77.

Additionally, we identified and validated PRAME as a potential
biomarker and therapeutic target, which has been defined as a cancer-
testis antigen78,79. High levels of PRAME expression have been reported
to correlate with unfavorable OS in medulloblastoma and acute mye-
loid leukemia80,81. And in acute lymphoblastic leukemia, targeting
PRAME could prevent recurrence after hematopoietic stem cell
transplant82. In our study, PRAME exhibited significant hypomethyla-
tion and overexpression in the Rec group of LUAD, associated with
poor RFS. To validate its function, we conducted both in vitro and
in vivo assays. The results demonstrated that PRAME overexpression
significantly enhanced the proliferative and migratory abilities of
LUAD cells, while PRAME silencing inhibited these capabilities. Fur-
thermore, compared to the control group, mice with sgPRAME had
fewer lung metastatic lesions, indicating deficiency of PRAME could
significantly suppress lung cancer metastasis. Therefore, these results
indicate that PRAME may play an important role in promoting LUAD
recurrence and could serve as potential therapeutic target.

The TME plays a pivotal role in tumor initiation and progression83.
AT2 cells act as stem cells in lung regeneration after damage84, and are
often considered a major origin of LUAD13,85. In this study, we found that
the significantly enriched AT2-like 2 subpopulation in the LUAD Rec
group had a higher CNV burden and was involved in activated pathways
such as EMT and angiogenesis, collectively indicating the increased
malignancy. Notably, we discoveredMDK and SAA1, themalignant genes
promoting cancer progression86,87, may be responsible for LUAD recur-
rence. Additionally, we observed that CD8+T cells in theRec groupwere
in a low cytotoxic and high exhausted state, which has been also
observed in hepatocellular carcinoma recurrence88. Regarding myeloid
cells, theMacro_SPP1marked by inflammatory signature was enriched in
the Rec group. Indeed, monocyte-derived Macro_SPP1 represents a
shared cell state in lung cancer, pulmonary fibrosis, and COVID-1989, and
is predominant in liver metastasis with a pro-metastasis role90. Con-
sistently, highly angiogenic, inflammatory, and immune-suppressed TME
profiled in our study were the distinguished features for highly pro-
liferative and invasive LUAD91. Moreover, the lack of intercellular

interactions and enhanced regulations of exhausted T cells were evident
in Rec group, which could contribute to the formation of suppressive
TIME. Interestingly, a recent studyalso revealed that reduced interactions
would reshape the metastatic microenvironment of pancreatic cancer92.
Overall, scRNA-seq analyses revealed the enrichmentof highly aggressive
AT2-derived malignant cells, exhausted CD8+T cells, and Macro_SPP1
might be an important mechanism responsible for lung cancer
recurrence.

The principal innovation of this study lies in the application of
multi-omics technology to comprehensively analyze the character-
istics in early-stage NSCLC associated with recurrence. Unsupervised
clustering stratified patients into high-risk (nmf1, nmf2),moderate-risk
(nmf3), and low-risk (nmf4) recurrence groups, and each subcluster
showed the distinct biological features and therapeutic vulnerabilities.
The nmf1 subtype displayed enrichment of angiogenesis and the
highest exhausted score, indicating the potential response to the
combination therapy of anti-angiogenic drugs and immunotherapy93.
The nmf2 subtype showed a significant activation ofMYC targets, G2M
checkpoint pathways and thus may benefit from aurora kinase inhi-
bitors and WEE1 inhibitors56,94. Furthermore, the nmf3 subtype char-
acterized by a high frequency of EGFR mutations may be sensitive to
EGFR-TKI. Lastly, we propose that adjuvant therapy is not required for
nmf4 subtype exhibiting the lowest risk of recurrence. Therefore, the
multi-omics subclustersmight guide the precise treatment and reduce
the post-operative recurrences of stage I NSCLC.

Nevertheless, further efforts shouldbe applied to validate outcomes
of this study. Although the multi-omics profilings could inform the stra-
tification of recurrence risk and precise post-operative management,
experimental evidence and prospective multicenter studies are required
for clinical application of our findings. Additionally, the cohort in our
study involves resectable samples fromprimary lung cancers, whichmay
limit the investigation of recurrent tumors. Therefore, incorporation of
primary tumors and matched specimens from recurrent sites could
better elucidate the developmental trajectory of lung cancer recurrence.
Despite the existing limitations, our studyprovides a valuable insight into
the mechanisms underlying NSCLC recurrence.

Taken together, this study has systematically provided a landscape
of stage I NSCLC recurrence through multi-omics comparisons con-
ducted fromgenomic, epigenomic, and transcriptomic dimensions.We
hope that these findings will contribute to more effective recurrence
risk stratification and precise therapy after surgery. This dataset could
also represent a valuable resource to facilitate future exploration on
basic and clinical research of NSCLC post-operative recurrence.

Methods
Patients and ethics statement
A total of 122 patients diagnosed as having NSCLC at West China
Hospital, Sichuan University in China between 2014 and 2020 were
enrolled in this study, among which 57 patients had recurrence during
the follow-up until August 2024. All patients were treated surgically,
and those received neoadjuvant therapy before surgery were exclu-
ded. Tumors and matched distal normal lung tissues were obtained
during surgery. Normal tissues were obtained from a location 5 cm
away from the tumormargin. All sampleswere evaluatedby twoexpert
pathologists independently to determine the pathological status. The
tumor staging was determined according to the TNM system of the
International Association for the Study of Lung Cancer (9th edition)95.
This study protocol was approved by the Institutional Review Board of
West China Hospital, Sichuan University (Ethics: Project identification
code: 2020.232). As the information on sex or gender was not relevant
in this study, no related analysis was carried out. The clinical char-
acteristics of patients were shown in Supplementary Table 1, and all
patients provided written informed consent for the collection of
samples and the publication of relevant clinical information before
enrollment.
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Sample collection and preparation
Immediately after surgery, the resected tumors along with matched
normal tissues were promptly processed. For the FF samples, tissues
were snap-frozen in liquid nitrogen at −80 °C until further processing.
The FFPE samples were fixed in 10% neutral buffered formalin for
24–48 h, ensuring thorough penetration and fixation, followed by
embedding in paraffin to provide structural preservation suitable for
long-term storage. The FR samples were put in Hank’s Balanced Salt
Solution (HBSS, Life Technologies), and finely minced into cubes
smaller than 0.5mm3 using scalpels and transferred to a 15mL conical
tube (BD Falcon) with 8mL pre-warmed HBSS, 1mg/mL collagenase I
as well as 0.5mg/mL collagenase IV.

Library preparation for whole exome sequencing and data
preprocessing
For WES, FF samples were processed using AllPrep DNA/RNA Mini Kit
following the manufacturer’s protocol to efficiently extract high-
quality DNA. In contrast, FFPE samples underwent deparaffinization
and then DNA extraction. The concentration of DNA was assessed by
Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer (Life Technologies,
CA, USA). DNA quantity and quality were monitored with 1% agarose
gel. For DNA sample preparation, a total of 0.6μg of genomic DNA per
sample was utilized as input. Both FF and FFPE DNA samples were
fragmented to an average size of 180–280bp and subjected to DNA
library creation following established Illumina paired-end protocols.
To capture the exome, the Agilent SureSelect Human All ExonV6 Kit
(Agilent Technologies, Santa Clara, CA, USA) was employed in accor-
dancewith themanufacturer’s instructions. Subsequently, the libraries
were sequenced on the Illumina Novaseq platform, generating 150 bp
paired-end reads.

Fastp (v.0.23.4) was used for quality control of the sequencing
data with default parameters. MultiQC was then used to aggregate the
quality control results across all samples. The sequencing reads
demonstrated high base quality scores across the length of the reads.
Next, reads were aligned to the reference genome GRCh38.p13 from
GENCODE using BWA (v.0.7.17) mem with default parameters. Gene
annotations wereobtained from theGENCODE (v.42) gtf file. Samtools
(v.1.6) was then utilized to sort the alignments and merge bam files
across multiple lanes for the same sample. PCR duplicates were
marked and removed using Sambamba (v.0.6.6-2)96. And the bam files
were sorted again and indexed using samtools. Base recalibration was
performed with GATK BaseRecalibrator, using known variants from
dbsnp_146.hg38.vcf.gz, Mills_and_1000G_gold_standard.indels.hg38.
vcf.gz, and 1000G_phase1.snps.high_confidence.hg38.vcf.gz. Finally,
GATK ApplyBQSR was used to recalibrate the base quality scores
across all reads.

Somatic variant calling
Single-nucleotide variants (SNVs) were called using GATK
Mutect2 in tumor-normal mode, where a tumor sample was
matched with a normal sample from the same patient. To filter
out likely false positive calls due to deamination artifacts,
Mutect2 was used to enable filtering on read orientation. GATK
GetPileupSummaries, CalculateContamination, and LearnRea-
dOrientationModel tools were subsequently utilized to calculate
sample contamination. GATK FilterMutectCalls was used to fur-
ther filter the initial Mutect2 callsets based on the previously
calculated contamination and orientation bias metrics. Filtering
criteria were: (1) removal of variants with base quality <18 and
depth <10; (2) removal of variants with depth <5 in the tumor
sample. Indels called by both Strelka2 and MuTect2 were con-
sidered true positives. Finally, called SNVs were annotated using
GATK Funcotator and the somatic annotation database funcota-
tor_dataSources.v1.7.20200521 s. Maftools package was utilized
for variant visualization. Driver gene analysis was performed

using Oncodrive and MutSigCV (v.1.4) algorithms, and important
mutated genes included TP53, EGFR, and KRAS, etc.

Mutation signature analysis
We employed the NMF to explore mutation signatures, in which tri-
nucleotideMatrix, estimateSignatures, and extractSignatures were
used to detect signature profiles. Subsequently, Catalog of Somatic
Mutations in Cancer (COSMIC) database was adopted as reference to
define mutation patterns97. Cosine similarity (ranging from 0 to 1) was
utilized for matching.

Copy number variation analysis
To identify copy number states fromWES data, Sequenza (v.3.0.0) was
used for read count normalization and segmentation to identify
genomic regions with potential CNVs98.

Clone architecture analysis
Clone numbers were calculated based on variant allele frequency
(VAFs) of somatic mutations employing PyClone-VI (v.0.1.1), and the
parameters -c 40 -d beta-binomial -r 10 were used99. The input
included read count of somatic mutation, copy numbers, and cellu-
larity estimated from tumor and paired normal WES data using
Sequenza (v.3.0.0).

HRD quantification
ScarHRD (v.0.1.1) was adopted to detect the HRD level fromWES data
using CNV as input100. HRD score was calculated via summarization of
large-scale transitions (LST), telomeric allelic imbalance (TAI), and loss
of heterozygosity (LOH).

Library preparation for transcriptome sequencing and data
processing
RNA was extracted from FF tissues using AllPrep DNA/RNA Mini Kit
following the manufacturer’s protocol. The quantity and quality of the
extracted RNAwere determined byQubit® RNA Assay Kit in Qubit® 2.0
Fluorometer (Life Technologies, CA, USA), 1% agarose gels, and Bioa-
nalyzer 2100 system. The RNA sample preparations employed a total
amount of 2μg RNA per sample as input material. Following the
manufacturer’s recommendations, sequencing libraries were created
using the NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB,
USA), when index codes were added to assign sequences to each
sample. The libraries were then sequenced on the Illumina Novaseq
technology, yielding 150bp paired-end reads. Illumina short reads
were aligned with BWA (v.0.7.17).

Quantification of gene expression level
Fastp (v.0.23.4) was used for quality control of the raw sequencing
reads with default parameters. RSEM (v.1.2.28) was utilized for gene-
level quantification, using the GENCODE GRCh38.p13 genome assem-
bly and GENCODE (v.42) annotation. Then we filtered genes with low
expression levels (fragments per kilobase of transcript per million
fragments mapped, FPKM< 1) in all groups.

Definition of DEGs
TheRpackageDESeq2 (v.1.38.3)was applied fordifferential expression
analysis based on the gene count matrix from RSEM quantification.
DEGs were identified using thresholds of adjusted P-value (padj) <0.05
and absolute log2 fold change (|log2FC|) > 1.

Gene set enrichment analysis
In pathway enrichment analysis, with 0.05 as a cutoff for FDR value,
hallmark gene sets from Molecular Signatures Database of R package
msigdbr (v.7.5.1) were evaluated by ssGSEA using the R package
“GSVA” (v.1.46.0). Each enrichment score represented the degree of
which the genes in a particular gene set were coordinately up- or
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down-regulated within a sample. Gene Ontology (GO) enrichment
analyses were performed using the R package clusterProfiler (v.4.6.2).

Library preparation for nanopore sequencing and data
processing
For nanopore sequencing, the genomic DNA was extracted using
QIAGEN Genomic-tip 100/G (QIAGEN, Germany) according to the
manufacturer’s instructions. The quality of the DNA was assessed by
monitoring DNA degradation and RNA contamination through pulsed
field gel electrophoresis. DNA concentration and purity were analyzed
by Qubit® DNA Assay Kit in Qubit® 4.0 Fluorometer (Invitrogen, USA)
and Nanodrop 2000 (Thermo, USA), respectively.

For library preparation, a total amount of 8μg DNA per sample
was used as input. The 1D library was generated using SQK-LSK109
(Oxford Nanopore Technologies, UK) following manufacturer’s
recommendations. Briefly, the genomic DNA was fragmented to 30 kb
by sonication and purified by AMPure XP beads (Oxford Nanopore
Technologies, UK). The DNA fragments were then subjected to end
polishing, A-tailing, and ligation with sequencing adapters and motor
proteins via NEBNext Quick T4 DNA Ligase (NEB, USA) for nanopore
sequencing. Nanopore libraries were loaded onto the flow cell with
sequencing buffer and loading beads, subsequently undergoing
sequencing on the PromethION platform. Nanopore sequencing data
were processed by NanoFilt with default parameters (v.2.5.0). Read
alignments were performed against the latest human genome refer-
ence (hg38) using minimap2 (v.2.1.7)101.

DNA methylation analyses
To call methylation on nanopore sequencing data, we used the nano-
polish call-methylation module102. Nanopolish was used to preprocess
result from the nanopore sequencer, and minimap2 aligned nanopore
data to the referencegenome to enablemethylomecharacterization101.
The output contained information including the genomic location of
CG dinucleotides, supporting read IDs, and log likelihood ratios
comparing the probability of methylation versus non-methylation at
each CpG site. Positive log likelihood ratios provided evidence for
methylation. We calculated per-site methylation frequencies across all
samples at all covered CG sites in the genome and filtered out low
coverage sites (depth 5x). Then differential analysis was conducted
between tumor and normal groups using DMLtest from the DSS
package, subsetting sites with absolute methylation differences > 0.1
between tumors and normals as tumor-specific. DMLtest and callDMR
were utilized to identify DMRs in Rec tumors compared with NonRec
tumors in LUAD and LUSC. Finally, we performed gene set enrichment
analysis (GSEA) on the DMRs using clusterProfiler and org.Hs.eg.db to
uncover pathways associated with methylation changes in Rec group.
The representative sequence statistics of the long reads have been
presented in Supplementary Data 4.

Methylation driver genes and associated transcription factors
We found DMRs linked to hypomethylated genes with higher expres-
sion in the Rec group. Using HOMER103, we predicted transcription
factors for these DMRs. Activity plots showed a correlation between
motif hypermethylation and downregulated gene expression, defining
motifs with stronger downregulation as having higher “inactivation
strength”.

Further, we leveraged HOMER “find motifs” function to map
transcription factor binding motifs to specific genomic regions cor-
responding to the repertoire of identified DMRs in promoter region.
This enabled us to link motifs of interest to putative methylation-
driven target genes. Then,wefilteredmotifs to those corresponding to
protein-coding transcription factor genes. Specifically, we required
Pearson correlation coefficients below −0.3 between transcription
factor binding motif methylation and target gene expression across
our sample cohort. To ensure a robust dataset, we filtered out

duplicate and low-scoringmotifs, keeping the top 5motifs by score for
each target gene.

SV analyses based on long-read data
To explore somatic SVs from long readWGS data, the sequences were
mapped to GRCh38 and detected via SAVANA (v.1.0.4). Then, AnnotSV
(v.3.3.8) was used to annotate the SVs104.

Single-cell library preparation and sequencing
Single-cell suspensions were converted to barcoded scRNA-seq
libraries by using the Chromium Single Cell 3’ Library, Gel Bead &
Multiplex Kit, and Chip Kit (10x Genomics). The libraries were
designed to have approximately 7,000 cells per library. Samples were
processed using kits pertaining to either the V2 or V3 barcoding
chemistry of 10x Genomics. Libraries were sequenced on an Illumina
NovaSeq 6000.

Processing scRNA-seq raw data
Single cell RNA-seq reads were processed using the 10x Genomics Cell
Ranger pipeline (v.7.1.0)with default parameters.Wedeployed theCell
Ranger “mkgtf” to filter genes and “mkref” to construct the reference
genome alignment indexwith the reference genomeGRCh38.p13 from
Gencode (v.42)105. Quantification analysis of each sample was per-
formed with “count” utility. To remove doublets, the DoubletFinder
(v.2.0.3)was employed106. Specifically, cells with less than 10 expressed
genes and cells with fewer than 200 detected genes were excluded.
Subsequently, for each sample, a Seurat object (v.4) was created,
predicted doublets were filtered out, and the objects were merged.
Cells whose mitochondrial gene expression exceeded 10% of total
expression were filtered out based on the aggregated data from all
samples. Cells with fewer than 200 or more than 7500 detected genes
were also filtered out. The Harmony algorithm (v.0.1.1) was then uti-
lized for batch integration, dimensionality reduction, and unsu-
pervised clustering of the integrated dataset107.

Clustering and cell type annotation
To reduce dimensionality, the differentially expressed genes were
calculated via principle component analysis (PCA), and tSNE was fur-
ther usedwithdefault settings. Using thefirst 20principal components
and a resolution value of 0.3, we applied the FindClusters function to
generate distinct cell clusters. We identified the gene expression
markers for each cluster using FindAllMarkers function with the Wil-
coxon Rank Sum test. We focused on genes detected in at least 10%
cells in either group with an average log (fold change) of at least 0.25
between the two groups. Cell clusters were annotated as known cell
types utilizing canonical marker genes.

Cell-type composition analysis
To investigate potential differences in cell-type compositions between
Rec and NonRec groups, we calculated the percentages of cell types in
each sample, which subsequently were visualized as boxplots by
scRNAtoolVis R package.

Pseudotime analysis
To speculate the pseudotime trajectory of cells, we applied Monocle
(v.2.26.0)108. Firstly, newCellDataSet was used to create an object with
the parameter negbinomial size and gene-cell matrix of UMI counts.
Next, DDRTreewas used for reducing dimensionality and constructing
tree-like trajectories. Finally, we visualized the cell density along the
pseudotime by R packages ggplot2 and ggridges.

InferCNV analysis
InferCNV package (v.1.14.2) was utilized to infer CNVs in AT2 cells to
explore the malignant degree of each subcluster. The cells from
adjacent normal sample were considered as reference, and genes with
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average read counts less than 0.1 were filtered out. Further, the signal
was also denoised.

Cell–cell interaction
Cell–cell interactions of cell types were estimated through Cell-
PhoneDB (v.4.0.0) with default parameters, which inferred
potential interactions between two cell types according to the
gene expression of receptor-ligand pairs. Subsequently, the
adjacency matrices were created for cell–cell interactions and
visualized via heatmaps. After excluding interactions among
identical cellular lineages, the receptor-ligand pairs within dif-
ferent cell types were visualized. Interactions with P-value < 0.05
were considered statistically significant.

Survival analysis
Survival analyses were performed using the R package “survminer”
(v.0.4.9). Recurrence-free survival (RFS) and overall survival (OS) rate
were estimated with Kaplan-Meier method using the survfit function.

Specifically, we obtained the top 50 highly expressed genes
representing each cell subgroup based on scRNA-seq data. Subse-
quently, the ssGSEA algorithm from the GSVA R package was utilized
to compute ssGSEA scores for each sample using the TCGA RNA-seq
gene expression data. Samples were divided into high and low groups
based on the median ssGSEA score. Finally, survival analysis was con-
ducted between the high and low scoring groups.

Multi-omics data integration
In order to further elucidate the clinical relevance of genes identified
throughmulti-omics analyses in sample classification, an unsupervised
machine learning approach was employed using NMF based onmRNA
TPM expression from FF samples. The implementation of this algo-
rithmwasachieved through theRpackageNMF(v.0.26). Different rank
values from 2-8were tested, with 100 random runs for each rank value.
The optimal rank of 4was selected for further analysis based onmodel
performance. Heatmaps were generated to visualize the classification
of samples by NMF-derived clusters. Then, the data from genomic,
epigenomic, and transcriptomic analyses were integrated in each
subcluster. The ssGSEA scoreswereused to evaluate the enrichment of
pathways among clusters, and RFS was estimated with Kaplan-Meier
for every NMF-based subgroup.

Mice
Mice were kept in a specific pathogen-free animal facility at
Sichuan University with autoclaved food, water, and bedding. All
mouse experiments were approved by the Animal Care and Use
Committee of Sichuan University and were performed in com-
pliance with the Guide for the Care and Use of Laboratory Ani-
mals of Sichuan University. BALB/c-nu mice (male, 8 weeks old,
approximately 20 g weight) used in the experiments were pur-
chased from Jiangsu Gempharmatech Co. Ltd. In the mouse
experiments, the tumor volumes did not exceed the maximal
permitted tumor volume of 1,000 mm3.

Cell culture
Human lung carcinoma (A549, PC9, and H1299) cells were purchased
from the American Type Culture Collection (ATCC) and were cultured
in medium containing 10% (vol/vol) fetal bovine serum and penicillin
(100Uml−1)/streptomycin (0.1mgml−1), placed at 37 °C, 5% CO2 cell
incubator.

Gene editing and efficiency testing
Gene-specific sgRNA oligos targeting PRAME were cloned into the
lentiviral vector V2TC, which bicistronically expresses sgRNAs and
mCherry. We designed sgRNAs (Supplementary Data 5) with the
CRISPR Design Tool (http://crispr.mit.edu/). The V2TC-sgRNA

plasmids were transfected into HEK293T cells (ATCC, Cat# CRL-1573)
along with the helper plasmids psPAX2 (RRID: Addgene_12260) and
pMD2.G (RRID: Addgene_12259) using the calcium phosphate trans-
fection method. The lentivirus-containing supernatant was harvested
36 and 48 h after transfection and used for infection experiments.
Genomic DNA was isolated from infected cells, and mutation valida-
tion was performed by the T7E1 (Vazyme, Cat# EN303-01) assay.

Western blotting
Cell lysates were extracted in RIPA buffer (Beyotime, Cat# P0013)
supplemented with protease inhibitors (Beyotime, Cat# P1045). Pro-
tein concentration was determined using Bicinchoninic Acid Assay
(ThermoScientific, 23227). SDS–PAGE gel electrophoresis and blotting
onto PVDF membranes were performed. The following antibodies
were used: Anti-PRAME (Abcam, Ab219650), GAPDH (CST, 2118), Rap1
(CST,2399 s), mTOR (CST,2983T), and PCNA (CST, 13110 s). Images
were developed by NcmECL Ultra Reagent (NCM biotech).

RNA extraction and RT–qPCR
Total RNA was extracted from cells using TRIzol (Applied Biosystems,
15596026). RT SuperMix (TSINGKE, TSK314S) was used for reverse
transcription according to the manufacturer’s protocol. Quantitative
PCR was performed in triplicate on CFX96 Touch Real-Time PCR
Detection System (Bio-Rad) with ArtiCanCEO SYBR qPCR Mix
(TSINGKE, TSE401). GAPDH was used as normalization control. The
relative expression of genes was calculated using the 2-ΔΔCt method.
Primer sequences are reported in Supplementary Data 6.

Wound healing assay
Cell migration ability was determined using wound healing assay. PC9,
A549 and H1299 cells were seeded into 24 well plates. Cells grew until
90% confluency. The cell layer was then gently scratched through the
central axis using a P200 pipette tip. Floating cells were washed away.
Images were captured at the same position at 0, 24, and 48 h. Cell
migration was analyzed using imageJ software.

Mouse tail vein injection and lung metastasis
A total of ten BALB/c-nu mice (male, approximately 20 g weight) at
8-week of age were randomly separated into two groups (sgPRAME
group and sgScr group). For tail vein injection, each mouse was
injected with 2 × 106 cells in a 100 µL volume within 10 s. 24 days later,
mice were sacrificed, and metastatic lesions of fresh lungs were
detected with fluorescence stereo microscopy. Further, lungs were
fixed in 4% paraformaldehyde, and H&E staining was performed
according to the standard protocol.

Statistical analyses
No statistical method was used to predetermine sample size. Standard
statistical tests were utilized to depict data distribution. For ordered
categorical and continuous variables, Student’s t-test, ANOVA, and
Wilcoxon ranked-sum test were used. Pearson’s correlation coeffi-
cients were used to describe linear dependence. In addition, survival
analyseswereperformedusingKaplan-Meier curves (log rank test). For
in vitro experiments,woundhealing assay, westernblot, qPCR, and cell
proliferation assay were repeated three times independently. For
in vivo experiment, the measurements of tumor lesion number were
performed blindly. The numbers of independent experiments, sam-
ples, or events were indicated in the figure legends. Data were pre-
sented as mean± SD, mean ± SEM or otherwise illustrated in figure
legends. R package and GraphPad Prism were used for statistical ana-
lyses. P <0.05 indicated statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The raw sequence data in this study have been deposited to Genome
Sequence Archive (GSA) in BIG Data Center, Beijing Institute of Geno-
mics (BIG) with accession numbers of HRA003362 for WES, nanopore
sequencing, bulk RNA-seq data [https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA003362] and HRA007834 for scRNA-seq data [https://
ngdc.cncb.ac.cn/gsa-human/browse/HRA007834]. The sequencing
data are available under restricted access which could be provided for
scientific research complying with the provisions of law due to con-
cerns about patient privacy. Readers could make an access request
through GSA for Human and send email to corresponding author with
a detailed proposal. Once access is granted, the data will be available
within 4 weeks. Source data are provided with this paper.

References
1. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates

of incidence and mortality worldwide for 36 cancers in 185
countries. CA Cancer J. Clin. 74, 229–263 (2024).

2. Herbst, R. S., Morgensztern, D. & Boshoff, C. The biology and
management of non-small cell lung cancer. Nature 553,
446–454 (2018).

3. Riely, G. J. et al. Non-small cell lung cancer, version 4.2024, NCCN
clinical practice guidelines in oncology. J. Natl Compr. CancNetw.
22, 249–274 (2024).

4. Altorki, N. et al. Lobar or sublobar resection for peripheral stage IA
non-small-cell lung cancer.N. Engl. J. Med. 388, 489–498 (2023).

5. Mahvi, D. A., Liu, R., Grinstaff, M. W., Colson, Y. L. & Raut, C. P.
Local cancer recurrence: the realities, challenges, and opportu-
nities for new therapies. CA Cancer J. Clin. 68, 488–505 (2018).

6. Chen, K. et al. Spatiotemporal genomic analysis reveals distinct
molecular features in recurrent stage I non-small cell lung can-
cers. Cell Rep. 40, 111047 (2022).

7. Jones, G. D. et al. A genomic-pathologic annotated risk model to
predict recurrence in early-stage lung adenocarcinoma. JAMA
Surg. 156, e205601 (2021).

8. Wang, C., Wu, Y., Shao, J., Liu, D. & Li, W. Clinicopathological
variables influencing overall survival, recurrence and post-
recurrence survival in resected stage I non-small-cell lung cancer.
BMC Cancer 20, 150 (2020).

9. Ginsburg, O., Ashton-Prolla, P., Cantor, A., Mariosa, D. & Brennan,
P. The role of genomics in global cancer prevention.Nat. Rev. Clin.
Oncol. 18, 116–128 (2021).

10. Phan, T. G. &Croucher, P. I. Thedormant cancer cell life cycle.Nat.
Rev. Cancer 20, 398–411 (2020).

11. Martínez-Ruiz, C. et al. Genomic–transcriptomic evolution in lung
cancer and metastasis. Nature 616, 543–552 (2023).

12. Al Bakir, M. et al. The evolution of non-small cell lung cancer
metastases in TRACERx. Nature 616, 534–542 (2023).

13. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell
lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

14. Wang, X. et al. Genetic intratumor heterogeneity remodels the
immune microenvironment and induces immune evasion in brain
metastasis of lung cancer. J. Thorac. Oncol. 19, 252–272 (2024).

15. Brock, M. V. et al. DNA methylation markers and early recurrence
in stage I lung cancer. N. Engl. J. Med. 358, 1118–1128 (2008).

16. Kaiser, A. M. et al. p53 governs an AT1 differentiation programme
in lung cancer suppression. Nature 619, 851–859 (2023).

17. Sorin, M. et al. Single-cell spatial landscapes of the lung tumour
immune microenvironment. Nature 614, 548–554 (2023).

18. Zhang, Q. et al. The spatial transcriptomic landscape of non-small
cell lung cancer brain metastasis. Nat. Commun. 13, 5983 (2022).

19. Maynard, A. et al. Therapy-induced evolution of human lung
cancer revealed by single-cell RNA sequencing. Cell 182,
1232–1251.e22 (2020).

20. The Cancer Genome Atlas Research Network. Comprehensive
genomic characterization of squamous cell lung cancers. Nature
489, 519–525 (2012).

21. The Cancer Genome Atlas Research Network. Comprehensive
molecular profiling of lung adenocarcinoma. Nature 511,
543–550 (2014).

22. Moreira, A. L. et al. A grading system for invasive pulmonary
adenocarcinoma: aproposal from the International Association for
the Study of Lung Cancer pathology committee. J. Thorac. Oncol.
15, 1599–1610 (2020).

23. Boettcher, S. et al. A dominant-negative effect drives selection of
TP53 missense mutations in myeloid malignancies. Science 365,
599–604 (2019).

24. Alexandrov, L. B. et al. The repertoire of mutational signatures in
human cancer. Nature 578, 94–101 (2020).

25. Beyter, D. et al. Long-read sequencing of 3,622 Icelanders pro-
vides insight into the role of structural variants in human diseases
and other traits. Nat. Genet. 53, 779–786 (2021).

26. Sakamoto, Y. et al. Phasing analysis of lung cancer genomes using
a long read sequencer. Nat. Commun. 13, 3464 (2022).

27. Haga, Y. et al. Whole-genome sequencing reveals the molecular
implications of the stepwise progression of lung adenocarcinoma.
Nat. Commun. 14, 8375 (2023).

28. Davalos, V. & Esteller, M. Cancer epigenetics in clinical practice.
CA Cancer J. Clin. 73, 376–424 (2023).

29. Haerinck, J., Goossens, S. & Berx, G. The epithelial-mesenchymal
plasticity landscape: principles of design and mechanisms of
regulation. Nat. Rev. Genet. 24, 590–609 (2023).

30. Teixeira, V. H. et al. Deciphering the genomic, epigenomic, and
transcriptomic landscapes of pre-invasive lung cancer lesions.
Nat. Med 25, 517–525 (2019).

31. Yin, Y. et al. Impact of cytosine methylation on DNA binding spe-
cificities of human transcription factors. Science 356,
eaaj2239 (2017).

32. Dey, A., Varelas, X. & Guan, K. L. Targeting the Hippo pathway in
cancer, fibrosis, wound healing and regenerative medicine. Nat.
Rev. Drug Discov. 19, 480–494 (2020).

33. Wu, B. K.,Mei, S. C., Chen, E.H., Zheng, Y. &Pan, D. YAP induces an
oncogenic transcriptional program through TET1-mediated epi-
genetic remodeling in liver growth and tumorigenesis. Nat. Genet
54, 1202–1213 (2022).

34. Pearson, J. D. et al. Binary pan-cancer classes with distinct vul-
nerabilities defined by pro- or anti-cancer YAP/TEAD activity.
Cancer Cell 39, 1115–1134.e12 (2021).

35. Li, S., Jia, H., Zhang, Z. &Wu, D. DRAIC promotes growth of breast
cancer by spongingmiR-432-5p to upregulate SLBP.Cancer Gene
Ther. 29, 951–960 (2022).

36. Lian, Y. et al. DUXAP8, a pseudogene derived lncRNA, promotes
growth of pancreatic carcinoma cells by epigenetically silencing
CDKN1A and KLF2. Cancer Commun. (Lond.) 38, 64 (2018).

37. Chow, A. et al. Tim-4(+) cavity-resident macrophages impair anti-
tumor CD8(+) T cell immunity.Cancer Cell 39, 973–988.e9 (2021).

38. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016.
Cell 166, 21–45 (2016).

39. Altorki, N. K. et al. The lung microenvironment: an important
regulator of tumour growth and metastasis. Nat. Rev. Cancer 19,
9–31 (2019).

40. Dongre, A. &Weinberg, R. A. New insights into themechanisms of
epithelial-mesenchymal transition and implications for cancer.
Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

41. Aman, J. &Margadant, C. Integrin-dependent cell-matrix adhesion
in endothelial health and disease. Circ. Res 132, 355–378 (2023).

42. Pujol, J. L. et al. Safety and immunogenicity of the PRAME cancer
immunotherapeutic in patients with resected non-small cell lung

Article https://doi.org/10.1038/s41467-024-55068-2

Nature Communications |         (2025) 16:1477 17

https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003362
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003362
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA007834
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA007834
www.nature.com/naturecommunications


cancer: a phase I dose escalation study. J. Thorac. Oncol. 11,
2208–2217 (2016).

43. Mainardi, S. et al. Identification of cancer initiating cells in K-Ras
driven lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111,
255–260 (2014).

44. Travaglini, K. J. et al. Amolecular cell atlas of the human lung from
single-cell RNA sequencing. Nature 587, 619–625 (2020).

45. Han, G. et al. An atlas of epithelial cell states and plasticity in lung
adenocarcinoma. Nature 627, 656–663 (2024).

46. Wang, Z. et al. Deciphering cell lineage specification of human
lung adenocarcinoma with single-cell RNA sequencing. Nat.
Commun. 12, 6500 (2021).

47. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasti-
city, andpaths of tumor evolution.Cell 185, 1905–1923.e25 (2022).

48. Barry, S. T., Gabrilovich, D. I., Sansom, O. J., Campbell, A. D. &
Morton, J. P. Therapeutic targeting of tumour myeloid cells. Nat.
Rev. Cancer 23, 216–237 (2023).

49. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of
tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

50. Casanova-Acebes, M. et al. Tissue-resident macrophages provide
a pro-tumorigenic niche to early NSCLC cells. Nature 595,
578–584 (2021).

51. Pérez-Gutiérrez, L. & Ferrara, N. Biology and therapeutic targeting
of vascular endothelial growth factorA.Nat.Rev.Mol. Cell Biol.24,
816–834 (2023).

52. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Decipher-
ing cell–cell interactions and communication from gene expres-
sion. Nat. Rev. Genet. 22, 71–88 (2021).

53. Liu, Z. L., Chen, H. H., Zheng, L. L., Sun, L. P. & Shi, L. Angiogenic
signaling pathways and anti-angiogenic therapy for cancer.Signal
Transduct. Target Ther. 8, 198 (2023).

54. Chen, Y. et al. Spatiotemporal single-cell analysis decodes cel-
lular dynamics underlying different responses to immunotherapy
in colorectal cancer. Cancer Cell 42, 1268–1285.e7 (2024).

55. Wang, M., Herbst, R. S. & Boshoff, C. Toward personalized treat-
ment approaches for non-small-cell lung cancer. Nat. Med 27,
1345–1356 (2021).

56. Stewart, E. et al. Identification of therapeutic targets in rhabdo-
myosarcoma through integrated genomic, epigenomic, and pro-
teomic analyses. Cancer Cell 34, 411–426.e19 (2018).

57. Dauch,D. et al. AMYC-aurora kinaseAprotein complex represents
an actionable drug target in p53-altered liver cancer.Nat. Med 22,
744–753 (2016).

58. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next
generation. Cell 144, 646–674 (2011).

59. Marusyk, A., Janiszewska, M. & Polyak, K. Intratumor hetero-
geneity: the Rosetta Stone of therapy resistance. Cancer Cell 37,
471–484 (2020).

60. Zhang, J., Späth, S. S., Marjani, S. L., Zhang, W. & Pan, X. Char-
acterization of cancer genomic heterogeneity by next-generation
sequencing advances precision medicine in cancer treatment.
Precis Clin. Med. 1, 29–48 (2018).

61. Wang, L., Jia, Q., Chu, Q. & Zhu, B. Targeting tumor micro-
environment for non-small cell lung cancer immunotherapy.Chin.
Med J. Pulm. Crit. Care Med. 1, 18–29 (2023).

62. McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor
evolution: past, present, and the future. Cell 168, 613–628 (2017).

63. Al-Rawi, D. H., Lettera, E., Li, J., DiBona, M. & Bakhoum, S. F. Tar-
geting chromosomal instability in patients with cancer. Nat. Rev.
Clin. Oncol. 21, 645–659 (2024).

64. George, J. et al. Evolutionary trajectories of small cell lung cancer
under therapy. Nature 627, 880–889 (2024).

65. Yang, F. et al. Chemotherapy and mismatch repair deficiency
cooperate to fuel TP53mutagenesis and ALL relapse. Nat. Cancer
2, 819–834 (2021).

66. Karasaki, T. et al. Evolutionary characterization of lung adeno-
carcinomamorphology in TRACERx.Nat.Med 29, 833–845 (2023).

67. Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of
persistent cancer cells. Nature 620, 393–401 (2023).

68. Supek, F. & Lehner, B. Differential DNA mismatch repair underlies
mutation rate variation across the human genome. Nature 521,
81–84 (2015).

69. Lengel, H. B. et al. Genomicmapping ofmetastatic organotropism
in lung adenocarcinoma. Cancer Cell 41, 970–985.e3 (2023).

70. Guo, H. et al. DNA hypomethylation silences anti-tumor immune
genes in early prostate cancer and CTCs. Cell 186,
2765–2782.e28 (2023).

71. Gkountela, S. et al. Circulating tumor cell clustering shapes DNA
methylation to enable metastasis seeding. Cell 176,
98–112.e14 (2019).

72. Na, F. et al. KMT2C deficiency promotes small cell lung cancer
metastasis through DNMT3A-mediated epigenetic reprogram-
ming. Nat. Cancer 3, 753–767 (2022).

73. Kim, J. et al. XPO1-dependent nuclear export is a druggable vul-
nerability in KRAS-mutant lung cancer.Nature 538, 114–117 (2016).

74. Tang, Y. et al. Selective inhibition of STRN3-containing PP2A
phosphatase restores Hippo tumor-suppressor activity in gastric
cancer. Cancer Cell 38, 115–128.e9 (2020).

75. Park, H. W. et al. AlternativeWnt signaling activates YAP/TAZ.Cell
162, 780–794 (2015).

76. Murciano-Goroff, Y. R., Suehnholz, S. P., Drilon, A. & Chakravarty,
D. Precision oncology: 2023 in review. Cancer Discov. 13,
2525–2531 (2023).

77. Pradat, Y. et al. Integrative pan-cancer genomic and tran-
scriptomic analyses of refractory metastatic cancer. Cancer Dis-
cov. 13, 1116–1143 (2023).

78. Wadelin, F. et al. Leucine-rich repeat protein PRAME: expression,
potential functions and clinical implications for leukaemia. Mol.
Cancer 9, 226 (2010).

79. Epping,M. T. et al. The human tumor antigen PRAME is a dominant
repressor of retinoic acid receptor signaling. Cell 122,
835–847 (2005).

80. Orlando, D. et al. Adoptive immunotherapy using PRAME-specific
T cells in medulloblastoma. Cancer Res 78, 3337–3349 (2018).

81. Mumme, H. et al. Single-cell analysis reveals altered tumor
microenvironments of relapse- and remission-associated pedia-
tric acute myeloid leukemia. Nat. Commun. 14, 6209 (2023).

82. Naik, S. et al. Donor-derived multiple leukemia antigen-specific T-
cell therapy to prevent relapse after transplant in patients with
ALL. Blood 139, 2706–2711 (2022).

83. Wen, L. et al. Single-cell technologies: from research to applica-
tion. Innovation 3, 100342 (2022).

84. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. &
Desai, T. J. Single-cell Wnt signaling niches maintain stemness of
alveolar type 2 cells. Science 359, 1118–1123 (2018).

85. Gardner, E. E. et al. Lineage-specific intolerance to oncogenic
drivers restricts histological transformation. Science 383,
eadj1415 (2024).

86. Ren, X. et al. Single-cell transcriptomic analysis highlights origin
and pathological process of human endometrioid endometrial
carcinoma. Nat. Commun. 13, 6300 (2022).

87. Cerezo-Wallis, D. et al. Midkine rewires the melanoma micro-
environment toward a tolerogenic and immune-resistant state.
Nat. Med. 26, 1865–1877 (2020).

88. Sun, Y. et al. Single-cell landscape of the ecosystem in early-
relapse hepatocellular carcinoma. Cell 184, 404–421.e16 (2021).

89. Sikkema, L. et al. An integrated cell atlas of the lung in health and
disease. Nat. Med. 29, 1563–1577 (2023).

90. Liu, Y. et al. Immune phenotypic linkage between colorectal
cancer and liver metastasis. Cancer Cell 40, 424–437.e5 (2022).

Article https://doi.org/10.1038/s41467-024-55068-2

Nature Communications |         (2025) 16:1477 18

www.nature.com/naturecommunications


91. Kortlever, R. M. et al. Myc cooperates with Ras by programming
inflammation and immune suppression. Cell 171,
1301–1315.e14 (2017).

92. Zhang, S. et al. Single cell transcriptomic analyses implicate an
immunosuppressive tumor microenvironment in pancreatic can-
cer liver metastasis. Nat. Commun. 14, 5123 (2023).

93. Kuo, H. Y., Khan, K. A. & Kerbel, R. S. Antiangiogenic-immune-
checkpoint inhibitor combinations: lessons from phase III clinical
trials. Nat. Rev. Clin. Oncol. 21, 468–482 (2024).

94. Liu, Q. et al. Proteogenomic characterization of small cell lung
cancer identifies biological insights and subtype-specific ther-
apeutic strategies. Cell 187, 184–203.e28 (2024).

95. Rami-Porta, R. et al. The International Association for the Study of
LungCancer lung cancer stagingproject: proposals for revision of
the TNM stage groups in the forthcoming (ninth) edition of the
TNM classification for lung cancer. J. Thorac. Oncol. 19,
1007–1027 (2024).

96. Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sam-
bamba: fast processing of NGS alignment formats. Bioinformatics
31, 2032–2034 (2015).

97. Alexandrov, L. B. et al. Signatures of mutational processes in
human cancer. Nature 500, 415–421 (2013).

98. Favero, F. et al. Sequenza: allele-specific copy number and
mutation profiles from tumor sequencing data. Ann. Oncol. 26,
64–70 (2015).

99. Roth, A. et al. PyClone: statistical inference of clonal population
structure in cancer. Nat. Methods 11, 396–398 (2014).

100. Sztupinszki, Z. et al. Migrating the SNP array-based homologous
recombination deficiency measures to next generation sequen-
cing data of breast cancer. npj Breast Cancer 4, 16 (2018).

101. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

102. Simpson, J. T. et al. Detecting DNA cytosine methylation using
nanopore sequencing. Nat. Methods 14, 407–410 (2017).

103. Heinz, S. et al. Simple combinations of lineage-determining tran-
scription factors prime cis-regulatory elements required for
macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

104. Geoffroy, V. et al. AnnotSV: an integrated tool for structural var-
iations annotation. Bioinformatics 34, 3572–3574 (2018).

105. Harrow, J. et al. GENCODE: the reference human genome anno-
tation for The ENCODEProject.GenomeRes.22, 1760–1774 (2012).

106. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder:
doublet detection in single-cell RNA sequencing data using arti-
ficial nearest neighbors. Cell Syst. 8, 329–337.e4 (2019).

107. Korsunsky, I. et al. Fast, sensitive and accurate integration of
single-cell datawithHarmony.Nat.Methods 16, 1289–1296 (2019).

108. Trapnell, C. et al. The dynamics and regulators of cell fate deci-
sions are revealed by pseudotemporal ordering of single cells.
Nat. Biotechnol. 32, 381–386 (2014).

Acknowledgements
We are thankful to all the patients for their voluntary participation in the
study. This work was supported by grants from the National Natural
Science Foundation of China (82470109, 92159302, 32170592), the
Science and Technology Project of Sichuan (2022ZDZX0018), the

Science and Technology Project of Chengdu (2023-YF09-00007-SN),
the 1.3.5 Project of State Key Laboratory of Respiratory Health and
Multimorbidity (RHM24208), the 1.3.5 Project of Disciplines Excellence
(ZYYC23027), the 1·3·5 project of Artificial Intelligence (ZYAI24016),
West China Hospital, Sichuan University, and Postdoctoral Program of
West China Hospital, Sichuan University (2020HXBH084).

Author contributions
W.L., C.W., and L.Z. conceived and designed the study. C.W., J.L., J.C.,
and Z.W. performed the experiments and analyzed the data. L.S. and
X.C. contributed reagents, materials, and analysis tools. G.Z., J.W., C.L.,
and R.Q. assisted with methodology. C.W., J.L., J.C., and Z.W. wrote the
original draft. All authors reviewed and edited the manuscript. W.L.,
C.W., and L.Z. supervised the study and acquired funding.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55068-2.

Correspondence and requests for materials should be addressed to
Chengdi Wang, Li Zhang or Weimin Li.

Peer review informationNature Communications thanks Yutaka Suzuki,
and the other, anonymous, reviewers for their contribution to the peer
review of this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

1Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan
University, Chengdu, Sichuan, China. 2Laboratory of Precision Therapeutics, Targeted Tracer Research and Development Laboratory, Frontiers Science
Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China. 3Department of Respiratory and Critical
Care Medicine, Suining Central Hospital, Suining, China. 4State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu,
Sichuan, China. 5These authors contributed equally: Chengdi Wang, Jingwei Li, Jingyao Chen, Zhoufeng Wang. e-mail: chengdi_wang@scu.edu.cn;
zhangli7375@scu.edu.cn; weimi003@scu.edu.cn

Article https://doi.org/10.1038/s41467-024-55068-2

Nature Communications |         (2025) 16:1477 19

https://doi.org/10.1038/s41467-024-55068-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chengdi_wang@scu.edu.cn
mailto:zhangli7375@scu.edu.cn
mailto:weimi003@scu.edu.cn
www.nature.com/naturecommunications

	Multi-omics analyses reveal biological and clinical insights in recurrent stage I non-small cell lung cancer
	Results
	Overview of the stage I NSCLC cohort
	Primary NSCLC tumors from patients who develop recurrence exhibit distinct genomic features
	DNA methylation associated with post-operative recurrence
	Transcriptomic signatures related to stage I NSCLC recurrence after surgery
	PRAME as a critical gene for stage I LUAD recurrence after surgery
	Loss of AT2 features and gain of malignancy are related to LUAD recurrence after surgery
	Transcriptional reprogramming of immunocytes towards a recurrent microenvironment in LUAD
	Multi-omics integration yields insights into the recurrence-risk stratification and precise therapy of NSCLC

	Discussion
	Methods
	Patients and ethics statement
	Sample collection and preparation
	Library preparation for whole exome sequencing and data preprocessing
	Somatic variant calling
	Mutation signature analysis
	Copy number variation analysis
	Clone architecture analysis
	HRD quantification
	Library preparation for transcriptome sequencing and data processing
	Quantification of gene expression level
	Definition of DEGs
	Gene set enrichment analysis
	Library preparation for nanopore sequencing and data processing
	DNA methylation analyses
	Methylation driver genes and associated transcription factors
	SV analyses based on long-read data
	Single-cell library preparation and sequencing
	Processing scRNA-seq raw data
	Clustering and cell type annotation
	Cell-type composition analysis
	Pseudotime analysis
	InferCNV analysis
	Cell–cell interaction
	Survival analysis
	Multi-omics data integration
	Mice
	Cell culture
	Gene editing and efficiency testing
	Western blotting
	RNA extraction and RT–qPCR
	Wound healing assay
	Mouse tail vein injection and lung metastasis
	Statistical analyses
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




