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Multi-channel learning for integrating
structural hierarchies into context-
dependent molecular representation

YueWan1, JialuWu2, Tingjun Hou 2 , Chang-Yu Hsieh 2 & Xiaowei Jia 1

Reliable molecular property prediction is essential for various scientific
endeavors and industrial applications, such as drug discovery. However, the
data scarcity, combined with the highly non-linear causal relationships
between physicochemical and biological properties and conventional mole-
cular featurization schemes, complicates the development of robust mole-
cular machine learning models. Self-supervised learning (SSL) has emerged as
a popular solution, utilizing large-scale, unannotatedmolecular data to learn a
foundational representation of chemical space thatmight be advantageous for
downstream tasks. Yet, existing molecular SSL methods largely overlook
chemical knowledge, including molecular structure similarity, scaffold com-
position, and the context-dependent aspects of molecular properties when
operating over the chemical space. They also struggle to learn the subtle
variations in structure-activity relationship. This paper introduces a multi-
channel pre-training framework that learns robust and generalizable chemical
knowledge. It leverages the structural hierarchy within the molecule, embeds
them through distinct pre-training tasks across channels, and aggregates
channel information in a task-specific manner during fine-tuning. Our
approach demonstrates competitive performance across various molecular
property benchmarks and offers strong advantages in particularly challenging
yet ubiquitous scenarios like activity cliffs.

Empowered by the advancement of machine learning techniques,
molecular machine learning has shown its great potential in compu-
tational chemistry and drug discovery1,2. The data-driven protocol
allows the model to infer biochemical behaviors from simple repre-
sentations like SMILES sequence3 and molecular graph, enabling fast
identification of drug candidates via rapid screening of vast chemical
spaces4, as well as prediction of binding affinity, toxicity, and other
pharmacological properties5,6. These advancements significantly
accelerate thedrugdiscovery procedures, saving timeandefforts from
the traditional wet-lab experiments7,8. However, it is fundamentally
challenging to learn an effective and robust molecular representation

via machine learning, limited by the expensive gathering of precise
biochemical labels and the complexity underlying the structure-
property relationships (SPR). With data scarcity, models may
become overly adapted to specific structural patterns within the
trainingmolecules,making it fail to generalize to the broader chemical
space. In addition, the challenge of “activity cliffs”9 in drug discovery,
where minor changes in molecular structure significantly alter the
biological activity, further impose obstacles in developing accurate
Quantitative SPR (QSPR) models6,10–12. Activity cliffs refer to the con-
cept where structurally similar molecules may exhibit significantly
different biological activities. Understanding activity cliffs is crucial for
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drug discovery, as it enables more efficient lead optimization and
enhances predictive modeling with better identification and develop-
ment of potential drug candidates13,14.

Inspired by the success of the pretrain-finetune workflow in
computer vision15 and natural language processing16,17, various meth-
ods inmolecule self-supervised learning (SSL)18–25 have emerged. In the
self-supervised setting, machine learning models are pre-trained to
learn generic molecular representations by optimizing the perfor-
mance on pre-defined tasks on large-scale unannotatedmolecule data.
These tasks are designed in a way such that solving them requires
identification of important structural patterns and understanding of
rudimentary chemical knowledge. Existing molecule SSL methods can
be mainly classified into two categories: predictive and contrastive.
Predictive learning18–20,26–28 aims to predict structural components
given contexts at different levels, which mainly focuses on intra-data
relationship. These methods often follow the conventional pipeline of
reconstructing the molecular information from masked inputs. Con-
trastive learning20,22,23,29–32, initially proposed in computer vision33, aims
to learn the inter-data relationship by pulling semantic-similar data
samples closer and pushing semantic-dissimilar samples apart in the
representation space. Note that this idea aligns well with common
heuristics in chemistry, where structurally similar molecules are likely
to exhibit similar physicochemical and biological properties. Most
works attempt to generalize the same SSL methods across multiple
domains (e.g., social networks and molecular graphs), whereas it is
unsure whether the same learning schemes are compatible to all set-
tings. Recently, several studies have pointed out that existing SSL
methods may fail to learn effective molecular representation. RePRA34

was proposed to measure the representations’ potential in solving
activity cliffs and scaffold hopping35. These are challenging yet ubi-
quitous tasks in drug discovery that requires the model to understand
subtle chemical knowledge behind SPR. Experiments showed that
most pre-trained representations perform worse than molecular fin-
gerprints. The work in36 explored various molecular SSL methods and
observed that some pre-training strategies can only bring marginal
improvement, while some may induce negative transfer. Meanwhile,
studies have also highlighted the incompetence of several pre-trained
representations in predicting binding potency under activity cliffs6,12,37.

This work aims to enhancemolecular representation learning that
encodes robust and generalizable chemical knowledge. We start by
identifying the two major drawbacks in existing methods: Firstly, in
contrastive learning, the conventional formulations of the semantic-
similar/dissimilar (i.e., positive/negative) samples are not well-tailored
for molecular graphs. Most graph contrastive methods generate
positive samples via graph perturbation, such as node/edge addition/
deletion20,21,21–23. However, when applied on molecular graphs, chemi-
cal validitymay be easily challenged. Moleculesmay also lose essential
characteristics by perturbing important motifs (e.g., breaking an aro-
matic ring), shifting the “semantics” distant away. The negative sam-
ples (i.e., different molecules) are often treated equally, which
essentially neglects the molecule structural relationship and the pre-
sence of specific molecular components; Second, almost all existing
works attempt to learn a context-independent molecular representa-
tion space, aiming to generalize to various applications. However, this
contradicts the fact that molecular properties are often context-
dependent, from both the physical (e.g., surrounding environments)
and biological (e.g., interaction with proteins) perspectives. In other
words, it remains uncertain whether the same SSL tasks could align
well with diverse downstream tasks of distinct properties in fine-tun-
ing, thereby leading to the learning gap.

To approach the aforementioned challenges, we introduce a
prompt-guided multi-channel learning framework for molecular
representation learning. Each of the k channels, guided by a specific
prompt token, is responsible for learning one dedicated SSL task.
Essentially, the pre-trained model is able to learn k distinct

representation spaces. During fine-tuning, a prompt selection module
aggregates k representations into a composite representation anduses
it for the downstream molecular property predictions. This involves
determiningwhich information channel ismost relevant to the current
application, thereby making the representation context-dependent.
We later show how this composite formulation is more resilient to
label overfitting and manifests better robustness. In addition, we
design the pre-train tasks to form an interpolation from a global view
to a local view of the molecular structures. Besides leveraging the
globalmolecule contrastive learning and the local context prediction19,
we introduce the task of scaffold contrastive distancing, highlighting
the fundamental role of scaffolds in affectingmolecular characteristics
and behaviors. Since scaffolds are often treated as starting points for
new compound design, scaffold distancing aims to map molecules
with similar scaffolds (generated via scaffold-invariant perturbations)
closer in the representation space. Additionally, it pushes molecules
with different scaffolds apart, where the distance margin is computed
adaptively based on structure composition difference. Note that
scaffold distancing tackles the partial but core view of the molecules.
The overall framework is pre-trained using ZINC1538, and evaluated on
7 molecular property prediction tasks in MoleculeNet5 and 30 binding
potency prediction tasks in MoleculeACE6. Learning to leverage
information from different channels for different applications, our
method surpasses various representation learning baselines in both
benchmarks. More importantly, our method is shown to handle the
challenge of activity cliffs more effectively, whereas competing
approaches are more susceptible to the negative transfer, leading to a
substantial performance decline. This suggests that these methods
may rely more on surface-level patterns even after pre-training or are
more susceptible to knowledge forgetting during fine-tuning, causing
them to struggle with challenging problems that require a nuanced
understanding of chemical knowledge. On the contrary, our learned
representation demonstrates enhanced ability in preserving pre-
trained knowledge during fine-tuning, offering improved transfer-
ability and robustness compared to other baselines. Case study shows
that our method has the potential to identify crucial patterns that
contribute to activity cliffs, even when relying solely on topological
information.

Results
The proposed framework (Fig. 1) comprises three major components
that differ from the conventional pretrain-finetune paradigm on
molecules: (1) The prompt-guided multi-channel learning, (2) con-
trastive learning with adaptive margin, and (3) scaffold-invariant
molecule perturbation. It demonstrates effectiveness on both the
molecular property prediction5 and binding potency prediction6

benchmarks, offering enhanced robustness and interpretability.

Prompt-guided multi-channel learning
We introduce a prompt-guided multi-channel learning framework for
molecular representation learning, as shown in Fig. 1a. Essentially, the
molecular graphs will first go through a unified encoder module, and
then diverge into k different channels, each of which is responsible for
learning distinct SSL tasks. For each channel, a prompt token pi is uti-
lized to distinguish levels ofmolecule representation. This is realized via
a prompt-guided readout operation39, which aggregates atom repre-
sentations conditionally intomolecule representation given the prompt
token (Fig. 1e). Our experiment involves three learning channels, which
are molecule distancing, scaffold distancing, and context prediction.
Each channel focuses on a unique aspect of the molecular structure,
enabling molecular representation learning from a set of hierarchical
viewpoints, from a global view (i.e., entire molecule), a partial view (i.e.,
core structure), and down to a local view (i.e., functional groups).

We nowbriefly introduce the three learning channels. (i)Molecule
distancing (Fig. 1b) is achieved using a variant of triplet contrastive
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loss40. It considers triplet of molecule samples {anchor, positive,
negative}, where negative (i.e., dissimilar) samples are pushed apart
against the anchor and positive (i.e., similar) samples by amarginα. On
top of this, we propose the adaptive margin α( ⋅ ), as detailed below. It
introduces another level of distancing constraints based on the
structural similarity of molecule composition. We follow the work of
Molecular Contrastive Learning of Representations (MolCLR)21 and
generate positive samples viamolecule subgraphmasking. (ii) Scaffold
distancing (Fig. 1c) is a contrastive learning task that focuses on scaf-
fold differences. Molecule scaffolds are viewed as the foundation for a
range of biologically active molecules. They play a crucial role in drug
discovery and medicinal chemistry by providing a starting point for

compound designs with desired pharmacological properties. In other
words, molecules with similar scaffolds are more likely to possess
similar physical (e.g., solubility, lipophilicity) and biological (e.g.,
conformational property when interacting with a protein) character-
istics, and thereby sharing similar semantics. Scaffold distancing con-
trasts the scaffold-invariant molecule perturbations, as detailed below,
against molecules with different scaffolds using the adaptive margin
loss. (iii) Context prediction (Fig. 1d) involves masked subgraph pre-
diction andmotif prediction, which are also adopted in GROVER19. For
each molecular graph, a random subgraph (i.e., a center atom and its
one-hop neighbors) is masked out, and the model aims to reconstruct
the subgraph based on its surrounding structures. Motif prediction

Fig. 1 | Framework overview. a The prompt guided pretrain-finetune framework.
For each downstream task, the model is optimized additionally on the prompt
weight selection, locating the best pre-trained channel compatible with the current
application. bMolecule contrastive learning (MCD), where the positive samples G0

i

from subgraph masking is contrasted against negative samples Gj by an adaptive
margin. c Scaffold contrastive distancing (SCD),where thepositive samplesG0

i from

scaffold-invariant perturbation is contrasted by against negative samples Gj by an
adaptive margin. d Context prediction (CP) channel consists of masked subgraph
prediction andmotif prediction tasks. e Prompt-guidedaggregationmodule,which
conditionally aggregates atom representations into molecule representation by
prompt token. It is realized via a multi-head attention with prompt embedding hp
being the query.
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aims to predict the existence of functional groupswithin themolecule.
This learning channel mainly focuses on the local view of themolecule
by identifying the existence of substructure and functional groups,
while molecule distancing and scaffold distancing focus more on the
global view and partial view, respectively. Each channel has its own
readout layer, termed prompt-guided node aggregation (Fig. 1e).
Presumably, the distribution of atom importance should be different
across channels (Supplementary Figs. 7–9 and SupplementaryNote 6).
The learned channel-wise representations exhibit a high correspon-
dence to the associated structural features (Supplementary Fig. 1 and
Supplementary Note 1) and support hierarchical iterative clustering of
the chemical space (Supplementary Fig. 2 and Supplementary Note 2).
To further improve the robustness of the learned knowledge under
this framework, we incorporate two regularization tricks on the intra-
channel node aggregation and the inter-channel alignment. For the
molecule and scaffold channels, the aggregation attentions are more
encouraged to span across all atoms and scaffold atoms, respectively.
Meanwhile, a small set of supervised tasks is utilized to regularize the
composite representation under three prompt weight presets, hence
improving the channel alignment. A comprehensive ablation study is
provided in Supplementary Fig. 10 and Supplementary Note 7.1.

In the fine-tuning stage, the model is initialized with the same
molecule encoder and prompt-guided aggregation modules, along
with the learned parameters from pre-training. The parameters in the
aggregationmodules are fixed during fine-tuning as we aim to use it as
a pooling layer independent of the downstream applications. In addi-
tion, a prompt-tuning module τθ( ⋅ ) is introduced to determine which
channel ismost relevant to the current application. It essentially learns
a task-specific prompt distribution. The prompt weights are utilized to
linearly combine the channel-wise information into a composite
molecule representation, which is then used for the task-specific pre-
diction. We discover that this approach is more effective than simply
concatenating the representations (Supplementary Fig. 11 and Sup-
plementaryNote 7.2).We initialize thepromptweights by choosing the
candidate which leads to the smoothest quantitative structure-
property landscape (i.e., lowest roughness index)41 of the composite
representation. More details are provided in the Method section.

Contrastive learning with adaptive margin
We further introduce the adaptive margin loss, a variant of the triplet
loss40, that supports the contrastive learning in the first two channels
(molecule distancing and scaffold distancing). In the conventional
triplet loss, the representation distance between the anchor Gi and
negative (i.e., semantic-dissimilar) sample Gj needs to be at least by
margin α larger than the distance between the anchor Gi and positive
(i.e., semantic similar) sample G0

i. Note that this margin remains the
same for any triplet considered. However, when applied to molecule
triplets, it neglects the known structural relationship between mole-
cules (e.g., co-existence of functional groups). To learn a more fine-
grained molecule representation space, we propose to adaptively
compute themolecule tripletmargin based on the Tanimoto similarity
between molecule fingerprints. As shown in Fig. 1b and c, the adaptive
margin αMCD(.) considers themolecule structural similarity betweenGi

and Gj, while αSCD(.) considers the scaffold structural similarity
between s(Gi) and s(Gj). Another issuewith the conventional triplet loss
is that it imposes noconstraint on the representation spacebeyond the
margin. It means that the actual representation distances are not
necessarily to bewell correlatedwith the computedmargin, even if the
margin constraints are fully satisfied. This is further elaborated the
example in Supplementary Fig. 3. Therefore, we include a secondary
term into the adaptive margin loss by considering the structural rela-
tionship among the anchor and different negative samples. Detailed
formulation of the adaptivemargin loss is included inMethod section.
With careful consideration of existing structural similarity, the learned
representation space would better capturemolecule relationships in a

fine-grained representation space. A performance drop is observed
when the adaptive margin loss is replaced with the conventional
margin loss (Supplementary Fig. 10 and Supplementary Note 7.1).

Scaffold-invariant molecule perturbation
To generate semantic-similar samples (i.e., positive) for scaffold con-
trastive distancing, we propose to perturb only the terminal side
chains of themolecule. In other words, themolecule scaffold (i.e., core
structure) is preserved. This is done by first identifying the side chains
and then performing fragment replacement based on a candidate
fragment pool. To avoid significant alterations in molecule character-
istics, we restrict the amount of changes to be fewer than five atoms.
For simplicity reason, we consider the Bemis-Murcko framework as the
scaffold. Figure 1c shows a sample perturbation with scaffolds high-
lighted in blue. In this example, the benzene ring is the identified
scaffold, and either the carboxylic ester group or the carbonyl group is
perturbed by another functional groups. Note that such perturbation
is not limited to atom-level or bond-level editing, but also motif-level.

Molecular property prediction
To demonstrate the effectiveness of our approach, we first evaluate it
on seven challenging classification datasets fromMoleculeNet5, which
is a large-scale curated benchmark that covers multiple molecular
property domains (e.g., physiology, biophysics). The scaffold splits
scheme18 is applied. The performance is evaluated using the ROC-AUC
value. Each experimental result is averaged over three different runs
following the prior works19,21,25. To demonstrate the effectiveness of
our framework across differentmodel architectures, we pre-train both
a graph neural network GIN42 and a graph transformer GPS43, termed
OursGIN and OursGPS, respectively. We compare our methods with
twelve competitivemolecular representation learning baselines, which
cover a wide variety of pre-train SSL techniques, model architectures,
and input representations (i.e., sequence, graph, geometry). Specifi-
cally, we first consider four contrastive baselines, including
GraphLoG22, D-SLA23, MolCLR21, andKANO24. Thesemethods also share
the commonality of using GNNs to encode molecular graphs. Besides,
we include six predictive baselines, including Hu et al.18, GROVER19,
MoLFormer28, KPGT44, GEM25, and Uni-Mol27. MoLFormer serves as a
strong baseline for sequence-based models, while GEM and Uni-Mol
are strong baselines for 3D geometry models. We further incorporate
GraphMVP45 and ImageMol46 as two multi-task learning baselines
whose pre-training tasks cover both contrastive and predictive learn-
ing. Last but not least, we train the GIN and GPS models from scratch.
Table 1 shows the performance comparison results. Our methods
improve over the no-pretrain setting (i.e., GIN and GPS) by 12.6% and
8% ROC-AUC in average, respectively. When compared to the other
SSL methods, our approach reaches state-of-the-art performances on
BBBP, Clintox, BACE and SIDER datasets, while remaining highly
competitive in the rest of the tasks. Our overall ROC-AUC score is 0.8%
higher than the second best method (Uni-Mol). Notably, Uni-Mol
leverages 3D geometric information and is an order of magnitude
larger (in term of model parameters) than both OursGIN and OursGPS.

Binding potency prediction
We consider MoleculeACE6 as the second evaluation benchmark. It
consists of 30datasets retrieved fromChEMBL47. Eachdataset contains
binding potency measures (e.g., Ki value) of molecules against a mac-
romolecular target. These datasets mainly focus on the structure-
property relationships (SPR), where the phenomenon of activity cliffs
is amplified. Activity cliffs refer to the cases where small changes in
molecular structure significantly alters its biological activity, and
understanding them is crucial for optimizing lead compounds and
designing new molecules with desired activities. The phenomenon is
also counter-intuitive in machine learning, as the machine learning
model tends to make similar predictions given similar inputs. We take
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R-squared as the evaluation metric since relative binding potency
ranking ismore important than absolute prediction errors (e.g., RMSE)
in the real world.

Figure 2a shows the performance of thirteen methods on the
MoleculeACE benchmark under stratified splits6 (Supplementary
Table 2). The multi-layer perceptron (MLP) is trained using the ECFP4
fingerprint. We also compare the average performance with respect to
the model sizes (i.e., number of parameters) in Fig. 2b, as indicated by
its x-axis and the size of the dots, and types of input representations
(blue = 1D sequence, red = 2D topological graph, and yellow = 3D
geometry). In general, OursGPS ranks in the second place, but with a
significantly smaller model size than KPGT. Besides, almost all meth-
ods fail to surpass MLP with fingerprints. MolCLR and GraphLoG also
show negative transfer compared to the GIN model. It demonstrates
the incompetence of existing methods in learning the nuances of
chemical knowledge behind the structural-property relationship,
regardlessof the input representations, pre-training strategies, and the
model sizes6,12. One of the reasons behind KPGT’s strong performance
could be attributed to the fact that the molecule fingerprint and
descriptors are heavily embedded within themodel. In addition, KPGT
is pre-trained using the ChEMBL database47, such that over 99% of the
testing molecules in MoleculeACE are already exposed to the model
during the pre-training stage. In contrast, our models only have seen
less than 5% of the testingmolecules during the pre-training stage. The
plot also suggests that there are no clear advantages of molecular
representation learning using either 1D sequence or 3D geometry,
especially when comparing the performance with Uni-Mol and
MoLFormer.

We further study the model performance in relation to the pre-
sence of activity cliffs in each dataset, which is measured by the
roughness index (ROGI)41 with respect to the ECFP4 fingerprints and
potency labels. A smaller ROGI value indicates a smoother structure-
property landscape, hence less activity cliffs. Since ROGI is a quanti-
tative SPR (QSPR) metric that analyzes the overall chemical space, it
does not account for any distribution shift between chemical spaces.
Hence, its correlation with model performance would be easily
obscured by any distribution shift among training, validation, and
testing sets (Supplementary Fig. 14). For this reason, all experiments in
this work that involves QSPR analysis are performed using random

splits, following the work in41. As shown in Fig. 2c and Supplementary
Table 3, the model performance is negatively correlated with land-
scape roughness for all methods, which is consistent with the results
in41. Compared to the MLP with fingerprint and KPGT, our method is
shown to be more robust against tasks with rough structure-property
landscapes. In addition, the plot also indicates that our method per-
forms better under data scarcity, where the size of dots represents the
size of datasets.

Representation robustness
To study the robustness of the learned molecular representation, we
propose to probe the fine-tuning process and evaluate the shift in the
representation space. Essentially, the shift captures how much pre-
trained chemical knowledge is distorted during fine-tuning. We
examine the representation space of both the training and validation
molecule set at five training timestamps. To clarify, the term “learned
representation” refers to the numerical embedding used for the final
prediction layer.We choose CHEMBL237_Ki, one of the largest binding
potency prediction dataset in MoleculeACE, for the downstream tar-
get. For fair comparison, this analysis is performed among OursGIN,
GraphLoG, and MolCLR, as these methods only differ by the SSL
strategies for pre-training, while using the samepre-train dataset, GNN
architecture and hyperparameters. In Fig. 3, each column represents a
training timestamp, and each row pair represents the visualization of
representation space in training and validation sets. The coloring
represents the normalized potency labels for illustrative purposes. We
also report four additional metrics that capture the representation
characteristics along the training process: 1. Roughness Index (i.e.,
ROGI)41 captures the landscape roughness ofmolecular property given
a representation. 2. Rand Index48 measures the proximity between
fingerprint (ECFP4) clustering and representation clustering, serving
as a proxy for the amount of structural information encodedwithin the
current representation space. A higher Rand Index indicates a greater
amount of structural knowledge being captured by the representation.
3. Cliff-noncliff Distance Ratio indicates the generalizability of the
representation towards the activity cliffs. In short, cliff matched
molecule pairs (MMPs) (i.e., similar molecules with different labels)
should be more distant away compared to the non-cliff MMPs (i.e.,
similar molecules with similar labels). It is calculated as the ratio of the

Table 1 | Fine-tuning results on 7 classification tasks in MoleculeNet using the scaffold splits

Methods BBBP Clintox MUV HIV BACE Tox21 SIDER Avg.
#task 1 2 17 1 1 12 27

GIN42 65.8 ± 4.5 58.0 ± 4.4 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4 74.0 ±0.8 57.3 ± 1.6 67.5

GPS43 64.8 ± 3.0 87.2 ± 0.9 69.8 ± 3.8 73.1 ± 3.3 78.0 ± 3.0 74.5 ± 0.6 60.8± 0.6 72.6

Hu et al.18 70.8 ± 1.5 72.6 ± 1.5 81.3 ± 2.1 79.9 ± 0.7 84.5± 0.7 78.7 ± 0.4 62.7 ± 0.8 75.8

GraphLoG22 72.3 ± 0.9 74.7 ± 2.2 74.2 ± 1.8 75.4 ± 0.6 82.2 ± 0.9 75.1 ± 0.7 61.2 ± 1.1 73.6

D-SLA23 72.6 ± 0.8 80.2± 1.5 76.6 ± 0.9 78.6± 0.4 83.8 ± 1.0 76.8 ± 0.5 60.2 ± 1.1 75.5

MolCLR21 73.5 ± 0.4 90.4± 1.7 75.5 ± 1.8 77.6± 3.2 83.5 ± 1.8 76.7 ± 2.1 60.7 ± 5.7 76.8

GraphMVP45 72.4 ± 1.6 79.1 ± 2.8 77.7 ± 0.6 77.0± 1.2 81.2 ± 0.9 75.9 ± 0.5 63.9± 1.2 75.3

GROVER19 69.5 ± 0.1 76.2 ± 3.7 67.3± 1.8 68.2 ± 1.1 81.0 ± 1.4 73.5 ± 0.1 65.4 ± 0.1 71.6

GEM25 71.8 ± 0.6 89.7 ± 2.0 77.0± 1.5 78.0± 1.4 84.9± 1.1 78.2 ± 0.3 67.2 ± 0.6 78.1

ImageMol46 73.9 ± 0.2 85.1 ± 1.4 82.5± 0.8 79.7 ± 0.2 83.9± 0.5 77.3 ± 0.1 66.0±0.1 78.3

KANO24 69.9± 1.9 90.7 ± 2.2 74.7 ± 2.0 75.7 ± 0.3 82.7 ± 0.9 75.8 ± 0.5 60.2 ± 1.4 75.7

KPGT44 71.4 ± 0.7 88.8 ± 2.9 75.7 ± 1.4 77.9± 1.2 81.8 ± 2.7 78.5 ± 0.5 64.7 ± 1.0 77.0

MoLFormer28 70.9± 1.0 91.1 ± 0.9 80.5 ± 1.5 76.7 ± 0.4 83.6± 1.1 77.3 ± 0.4 64.9± 0.7 77.8

Uni-Mol27 72.9 ± 0.6 91.9 ± 1.8 82.1 ± 1.3 80.8± 0.3 85.7 ± 0.2 79.6±0.5 65.9 ± 1.3 79.8

OursGIN 74.1 ± 0.6 95.7 ± 1.2 81.2 ± 0.5 79.8± 0.3 85.0 ± 1.1 77.5 ± 0.3 66.7 ± 0.8 80.1

OursGPS 73.6 ± 0.7 95.1 ± 0.5 81.5 ± 0.8 80.2 ± 0.5 86.1 ± 1.3 79.0 ±0.6 68.7 ±0.2 80.6

AverageReceiverOperatingCharacteristicAreaUnder theCurve (ROC-AUC) value is reported, alongwith the score standard deviation (shownby ± ) from three independent runs. Thefirst two rows
of GIN and GPS showcase the performance of the backbone models without pre-training. Best performance is shown in bold.
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averagedistancebetween cliffMMPs to that of non-cliffMMPs.Wealso
show three molecules on the plot for illustrative purposes, with one
cliff MMP (indicated by the red arrow) and one non-cliff MMP (indi-
cated by the blue arrow). 4. At last, we report the validation R-squared
as the performance measure. Here are the three main takeaways
from Fig. 3:

• Our composed representation yields the lowest ROGI value to
start with. In other words, our pre-trained knowledge is more
transferable to the target application. This is also shown by our
rapid convergence rate in the validation set, reaching a validation
R-squared of 0.676 at epoch 10 (Supplementary Fig. 5 and
Supplementary Note 4).

• Our representation preserves the chemical knowledge learned
from pre-training better than others, leading to less overfitting
and better robustness. Since representations are optimized
towards the property labels, the Rand index drops continuously
for all methods. It means that the encoded information gradually
shifts from being structure-oriented to label-oriented. However,
ourmethodhas the lowest drop inRand indexof0.072, compared
to the drop of 0.09 by GraphLoG and 0.181 by MolCLR. The
visualization also shows that the representations ofMolCLR begin
to overfit to the labels starting from epoch 10, resulting in the loss
of substantial structural relationships between molecules. This
explains its low ROGI value and validation R-squared along the
training process.

• Our representation seems to exhibit a better understanding of the
nuances of chemical knowledge in activity cliffs. Our average cliff-
noncliff distance ratio in the validation set is always aboveone and
larger than that of GraphLoG and MolCLR. As illustrated by the
triplet samples, the red arrow is longer than the blue arrow across
fine-tuning epochs, while the closeness of cliff and non-cliff pairs
in space (i.e., structurally similar) is maintained. ForMolCLR, even
though the red arrow can be much longer than the blue one, the
molecules are distant away. It means that MolCLR fails to capture
the structural similarity aspect of the activity cliffs. A detailed
examination of the distance histogram is visualized in Supple-
mentary Fig. 13.

To further understand why our composed representation is
more resilient to the representation shift and can better preserve
pre-trained knowledge, we present more analysis on three diverse
datasets, along with the individual channel-wise representation
behavior during fine-tuning. We choose CHEMBL237_Ki and
CHEMBL262_Ki as the representative regression-based datasets of
different scales, and BBBP as the typical classification-based dataset.
The Rand index of representation clustering difference between the
initial and the current timestamp is computed as a proxy (slightly
different than before) for the representation shift. A smaller Rand
index indicates a larger shift. As illustrated in Fig. 4, channels with the

Fig. 2 | Binding potency prediction. a The violin plot illustrates model perfor-
mance across 30 binding potency prediction tasks in MoleculeACE6. Performance
on each dataset is averaged across three independent runs using stratified splits.
The asterisk (*) indicates that the model is trained from scratch (no pre-train). The
ordering of the methods from left to right is sorted by the average performance.
The width of each violin represents the density of data points, with wider sections
indicating a higher concentration of values. The minima andmaxima are displayed
by the lower andupper ends of the violin. Themiddle solidwhite line represents the
median value.bAveragemodel performance across 30binding potency prediction

taskswith respect tomodel sizes (also indicatedby the sizeof the dots). Thedashed
line follows the performance of the multi-layer perceptron (MLP), which serves as
the baseline comparison between traditional fingerprints and deep molecular
representations. c Relationship between model performance and the presence of
activity cliffs in each dataset measured by the roughness of molecular property
landscape. Performanceon each dataset is averaged across three independent runs
using random splits. The size of the datasets is indicated by the size of the dots. The
slope of the fitted line of each method indicates the correlation. OursGPS is used in
this analysis.
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highest prompt weights often exhibit the largest shift, and vice versa.
This is reasonable because these channels contribute more to the
optimization against the labels. Conversely, even though low-
weighted channels contribute less to the optimization, they are
more likely to preserve the pre-trained knowledge. As a result, the
composed representation derived from channel aggregation exhibits
a certain level of resilience to representation shifts, making it
potentially more robust than other methods. The probing analysis
under the few-shot learning settings also reveals similar patterns
(Supplementary Fig. 6 and Supplementary Note 5).

Activity cliffs analysis
We present a deeper analysis into the potential of our method in
understanding the activity cliffs. To be more specific, we evaluate the
relationship between the model explanations generated by the
GNNExplainer49 and the predicted binding mode between the ligands
and the protein pockets by AutoDock Vina50. Note that this analysis
merely serves as a proof of concept, such that our representation has
the potential of capturing influential and well-established factors in
binding affinities. However, the fundamental limitation of utilizing

topological information only is unavoidable, which we will discuss in
Conclusion.

As shown in Fig. 5, visualized by PyMOL51, two series of compounds
sharing the same scaffolds are potential inhibitors of glycogen synthase
kinase-3 beta (GSK3β). The molecule activity cliff pairs, determined by
the formulation in6, are compounds < a1, a2 > , < a1, a3 > , < b1, b2 > ,
and < b1, b3 > . The explanations of both our and MolCLR’s predictions
are compared. In Fig. 5a, the potential intra-molecular halogen-bonding
contact between the chlorine atom and hydrazone in compound a1, as
indicated by the green dashed line, is disfavored for the inter-molecular
hydrogen-bonding contact between the backbone carbonyl of the active
site VAL-135 and hydrazone of the compound52. As shown by our model
explanation, compared to the compound a2 and a3, the chlorine atom
of compound a1, along with its associated benzene ring, contribute less
to the overall binding affinity prediction. It aligns well with the predicted
binding mode.

The predicted binding mode in Fig. 5b shows that the orientation
of the substituent (i.e., the alkoxy group in compound b1 at the 6
position of pyrazolo[1,5-b]pyridazine) will cause steric clash with PHE-
67 in the G-rich loop of GSK3β, thereby leading to a loss of potency53,54.

Fig. 3 | Representation space probing. The dynamics of molecule representation
space of three methods at five finetune timestamps on dataset CHEMBL237_Ki
(n = 2602). For each row pair, a 2D view of the representation space of both the
training (top) and validation set (bottom) are visualized. The color map represents
the normalized binding potency of each data point from lowest to highest within

thedataset. Rand index and roughness index (ROGI) are reported for training,while
R-squared value and cliff-noncliff distance ratio are reported for validation. The
gray circles correspond to the clustering assignment using ECFP4 fingerprint. The
red arrow indicates the distance of a cliff molecule pair, while the blue arrow
indicates that of a non-cliff molecule pair.
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In contrast, the alkoxy groups at the 3’ and 5’ positions have no clear
contact with the protein pocket. Remarkably, using only the topolo-
gical information, our model can capture the importance of the
influential alkoxy group at 6 position. In addition, the absence of the
alkoxy group at 5’ position (from compound b2 to b3) does not affect
the overall atoms’ contribution to the predicted potency. MolCLR
performs equally good in terms of compound b2 and b3, but it fails to
capture the influential alkoxy group in compound b1.

Discussion
In this work, we propose a multi-channel learning framework for
molecular representation learning, which aims to encode and utilize
robust chemical knowledge that is generalizable to diverse down-
stream applications. Each channel is dedicated to learning unique self-
supervised tasks, focusing on distinct yet correlated global and local
aspects of the molecule. Specifically, MCD captures the molecule’s
global similarity, SCDhighlights the fundamental role of the scaffold in
affecting molecular characteristics, and CP targets the composition of
functional groups. During fine-tuning, the model is able to identify
which channel-wise representation is most relevant to the current
application, thereby making the composite representation context-
dependent.

One limitation of this framework is the need for a more effective
prompt weight optimization mechanism. The initialization of prompt
weights using roughness index can lead to sub-optimal performance.
Since roughness index is a global QSPR metric that targets the overall
chemical space, it does not account for any distribution shift between
training and testing sets. This is the same for the other QSPRmeasures
as well (e.g., SALI55, SARI56). As a result, the final representation per-
formancemay be less correlatedwith the initial roughness value under
designated splits. This also explains the performance gap between
Fig. 2a, b.

There are several interesting directions for future research. One
promising direction is to incorporate different input representations
into the framework. By merely leveraging topological molecular
structure, the model is unable to differentiate molecular components
with different conformations (e.g., functional groups’ orientation or
atom’s chirality), which could significantly alter biochemical behaviors

(see Supplementary Note 9 for further discussion). Besides, there exist
other advanced data-driven techniques for studying the structural-
activity relationship (SAR) that might be compatible with our frame-
work. For example, Molecular Anatomy57 argues that the network
clustering from scaffold fragmentation and abstraction allows high
quality SAR analysis. Such investigations aim to transfer knowledge
from cheminformatics to machine learning models, potentially
improving both model interpretability and robustness. More impor-
tantly, while our method has immediate implications for drug dis-
covery, its molecular representation robustness further shed lights on
its promising potential in other sub-fields of chemistry, such as
materials science and environmental chemistry.

Methods
Graph neural networks (GNNs)
A graph G = (V, E) is defined by a set of nodes V and edges E. In the
molecular graph, each node denotes an atom, and the edge denotes
the chemical bond. Let hv be the representation of node v, and hG be
the representation of the graph G. Modern GNNs follow the message-
passing framework, such that node representations are updated
iteratively via neighborhood aggregation:

hk
v =UPDATE hk�1

v , AGGREGATE hk�1
v ,hk�1

u , euv
n o

: 8u 2 NðvÞ
� �� �

,

ð1Þ

whereN(v) is the neighborhood of node v, k denotes the layer index in a
multi-layer GNN structure, and euv denotes the edge connecting two
nodes u and v. The initialization of h0

v comes from the predefined node
features xv. The aggregate function integrates neighborhood informa-
tion into the current node representation. The update function takes the
updated node representation and the node representation from the
previous k − 1 layer and performs operations like concatenation or
summation. After the iterative updates, a permutation-invariant pooling
operation is performed to get the representation for the entire graph G:
hg =READOUTðhk

v jv 2 V Þ. There are various number of options for the
readout operation, including simple operations of mean and max, and
advanced differentiable approaches like DiffPool58 and GMT59.

Fig. 4 | Representation shift decomposition. Detailed analysis of the repre-
sentation shift during fine-tuning across three datasets. The dashed lines (top row)
correspond to the representation shift (approximated by the Rand index) for each

individual channel, while the solid lines represent the overall method. The bottom
row displays the optimized prompt weights distributed over channels.
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Roughness index
To analyze the structure-property relationship (SPR) within a chemical
space, various quantitative metrics are proposed (e.g., SALI55, SARI56,
ROGI41). Even though the formulations are different, they all aim to
capture the relationship between the representation difference and
the property difference, which is also knownas themolecular property
landscapes. In this work, we mainly rely on ROGI value for both model
training and experimental analysis. It is computed by first clustering
the chemical spacewith different distance threshold t. For each cluster
assignment, the weighted standard deviation σt is calculated over the
property labels of each cluster prototype. As the distance threshold
increases, σt will decrease monotonically from its initial value to zero
(i.e., single cluster). If there are more similar molecules with similar
labels, σt will decrease slowly, and vice versa. Eventually, roughness
index is formulated as below:

ROGI =
Z 1

0
2ðσ0 � σtÞdt ð2Þ

The ROGI value has been shown to be strongly correlated with other
metrics (e.g., SARI), as well as the representation performance on the
given dataset41. One of themain advantages of using ROGI is that it is a
generalized QSPR metric applicable to a wide range of molecular
representations, including both fingerprints and neural representa-
tions, while other metrics like SARI are tailored only for molecular

fingerprints. This allows us to compute landscape roughness on pre-
trained molecular representations (Supplementary Fig. 4 and Supple-
mentary Note 3) and perform deeper QSPR analysis.

Prompt-guided aggregation
Instead of using the same readout operations as the conventional
GNNs, we adopt the prompt-guided aggregation, which is achieved
using the multi-head attention. As shown in Fig. 1e, the embedding of
the prompt token hp is treated as the attention query, while the
representations hx of nodes/atoms x, are viewed as the keys and
values. The resulted prompt-aware graph representation
hp
g =

P
xαxvx , where the attention weight for each node x is com-

puted as αx = softmax ðfq � kx=
ffiffiffiffiffiffi
dk

p
gxÞ, and q = Wqhp, kx = Wkhx, and

vx = Wvhx. Here {Wq, Wk, Wv} represent parameters in the linear
transformations, and

ffiffiffiffiffiffi
dk

p
is the scaling factor. Essentially, the

prompt-aware hp
g is aggregated from the weighted average of linear

projection of hx.

Adaptive margin contrastive loss
Contrastive learning is a technique widely used in self-supervised
learning, which aims to group semantic similar samples closer while
pushing dissimilar samples distant apart in the latent representation
space. In this work, we adopt the triplet loss40 to formulate the con-
trastive learning. It considers triplets of data samples: the anchor Gi,
the positive (i.e., semantic-similar) sample G0

i, and the negative (i.e.,

Fig. 5 | Activity cliffs analysis. Evaluate the bioactivity bindingmode and the atom
importance captured by our model on a (a) 5-phenyl-4-phenyldiazenyl-1,2-dihy-
dropyrazol-3-one series and a (b) N-phenyl-4-pyrazolo[1,5-b]pyridazin-3-ylpyr-
imidin-2-amine series. The bindingmodes of compound a1 and compound b1 in the
active sites of GSK3β, with Protein Data Bank (PDB) ID: 3L1S, are predicted by

AutoDock Vina50 and visualized by PyMOL51. The key hydrogen bonds between
compounds and the active sites are highlighted by yellow dash lines, while the
green dash line refers to the intra-molecular halogen bond. The color intensity on
each atom indicates its respective contribution to the prediction of our method,
computed from a GNNExplainer49.
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semantic-dissimilar) sample Gj. Its formulation is shown below.

‘i, jð≠iÞ = max 0,α +d hgi
,h0

gi

� �
� dðhgi

,hgj
Þ

� �
, ð3Þ

where hgi
denotes the latent representation for sample Gi, and h0

gi

being the representation for its augmentation. The function d( ⋅ , ⋅ )
measures the L2 distance between two vectors. In general, this
objective enforces the pair-wise distancing difference between
<Gi,G

0
i> and < Gi, Gj > to be at least αmargin. However, as we discuss

before, this formulation can only lead to a coarse-grained representa-
tion space, while neglecting the existing structural relationship among
molecules (e.g., shared rings or functional groups). Also, this
formulation does not pose any constraints on the representation
space beyond the margin (Supplementary Fig. 3). Therefore, we
propose to add an additional contrastive formulation with adaptive
margin among negative samples and the anchor.

‘i, jð≠iÞ, kð≠j≠iÞ = max 0,α1ðGi,GjÞ+d hgi
,h0

gi

� �
� dðhgi

,hgj
Þ

� �

+ max 0,α1ðGi,GkÞ+dðhgi
,h0

gi
Þ � d hgi

,hgk

� �� �

+ max 0,α2ðGi,Gj ,GkÞ+d hgi
,hgj

� �
� dðhgi

,hgk
Þ

� �
,

ð4Þ

where α1( ⋅ ) and α2( ⋅ ) are the adaptive margin functions. Let zgi

be the conventional structural features of the sample Gi.
We use the ECFP4 fingerprint60, which hashes circular atom
neighborhoods into fixed-length binary strings, to represent
the structural features. In molecule contrastive distancing, the
adaptive function α1ðGi,GjÞ=αoffset × ð1� sim ðzgi

, zgj
ÞÞ, and

α2ðGi,Gj,GkÞ=αoffset × ð sim ðzgi
, zgj

Þ � sim ðzgi
, zgk

ÞÞ, where sim( ⋅ , ⋅ )
denotes the Tanimoto similarity. The scaffold contrastive distancing
has the same formulation, except that the molecule sample G is
replaced by its scaffold s(G). Note that the formulation now
considers quadruplet of data samples <Gi,G

0
i,Gjð≠iÞ,Gkð≠j≠iÞ>. Even

though the theoretical complexity is increased from O(N2K) to O(N3),
we can perform fixed-size random sampling with respect to the
computed similarity differences in α2( ⋅ ). Quadruplets are also
dropped if the computed values are negative. Eventually, the
optimization goal is to minimize the loss summation
as minLadaptive = min

P
i, j, k ‘i, jð≠iÞ, kð≠j≠iÞ.

Regularization
To further improve the robustness of the pre-trained model, we
incorporate two regularization schemes for the intra-channel node
aggregation and the inter-channel alignment. The former strategy aims
to ensure that all atoms contribute to MCD, while only the scaffold
atoms contribute to SCD. This is accomplished by a smooth L1 loss
between the attention score and the atom importance matrix. We
realize that without any regularization, the aggregation module may
rely on specific structural patterns to perform the SSL tasks, causing
the attention distribution to skew towards certain substructures. This
is also known as the shortcut learning61 in deep learning models. As a
result, it is possible to feed an incomplete view of the molecule to the
property prediction layer (i.e., atoms that receive low attention across
all channels) without the attention regularization. The latter regular-
ization encourages better alignment of representation spaces. Since
the three channels are learned separately via different tasks, the
numeric values of representations at a given position may not be
aligned. Itmeans that the linear combination of representations before
any fine-tuning may not be meaningful. To encourage the composite
representation space to be better defined (e.g., subtracting h½MCD�

g with
h½SCD�
g could represent the fragments beyond scaffold), we use a set of

supervised tasks (e.g., predicting molecular weight and logP), along
with the corresponding prompt weight presets, to regularize the

channel alignment. These tasks mainly predict the molecule/scaffold
descriptors using the composite representation. For example, the
prompt weight preset for predicting the molecular weight would be
[0.45, 0.1, 0.45], while the preset for predicting the weight of the
scaffold would be [0.1, 0.45, 0.45]. We multiply all the regularization
losses by a factor of 0.1 to prevent the regularization from dominating
the learned representation.

Prompt-guided multi-channel learning
The overall multi-channel learning framework is inspired by the work
in62. At the pre-train stage, the MCD and SCD channels perform the
contrastive learning using the adaptivemargin loss. Subgraphmasking
is used to generate positive samples forMCD. A subgraph is defined by
a central atom along with its one-hop neighbors. The masking is per-
formed at the attribute level, ensuring that the topological structure is
retained. Meanwhile, the CP channel learns masked subgraph predic-
tion as a multi-label classification task and motif prediction as a
regression task: LCP =LCE +Lf g

SmoothL1, where CE stands for cross-
entropy loss, SmoothL1 for smooth L1 loss, and fg for normalized
functional group descriptors. Overall, the framework is optimized
using the three channel losses along with the regularization losses:

Loverall =LMCD
adaptive +LSCD

adaptive +LCP +0:1 ×Lregu ð5Þ

At the finetune stage, the pre-trained model parameter are used to
initialize the model. Besides, we introduce an additional prompt
selection module to combine representations from different channels
into the task-specific (i.e., context-dependent) composite representa-
tion. Essentially, it learns the relevance between different pre-trained
molecular knowledge and thedownstreamapplication, hence bridging
the gap between pre-training and fine-tuning objectives. To incorpo-
rate task-specific SPR information into the model at an early stage of
fine-tuning, we propose to initialize the prompt weights from
computing the roughness index (ROGI)41. In short, the initial prompt
weights should lead to a composite representation with the lowest
ROGI value (i.e., smoothest quantitative structure-property landscape)
with respect to the current application. A low ROGI value indicates
smoother landscape, hence better modellability. We use a simple
Bayesian optimization pipeline to find the best initialization with the
lowest ROGI value on the training set. Essentially, the input parameters
of the Bayesian optimization are k − 1 learnable scalers, where k is the
number of channels. The black-box utility function first computes the
distribution over k values by treating the input scalars as logits, and
calculates the composite representation as well as its corresponding
roughness index. We utilize the Quasi MC-based batch Expected
Improvement as the acquisition function. After the initialization, the
entire model except for the prompt-guided aggregation module is
optimized towards the molecular property labels. The parameters in
the aggregation modules are fixed during fine-tuning as we aim to use
it as a pooling layer independent of the downstream applications. As
shown in Supplementary Figs. 7–9, the node attention scores within
the aggregation module reflect the expected atom importance. For
example, the SCD’s aggregation attention capturesmostly the scaffold
atoms. We further discover that the learned prompt weights exhibit
patterns that are well-aligned with the necessary chemical knowledge
for solving the downstream tasks (Supplementary Fig. 12, Supplemen-
tary Table 1, and Supplementary Note 8).

Experimental setup
We pre-train our framework using themolecules from ZINC1538, which
is an open-sourced database that contains 2 million unlabeled drug-
like compounds. We use CReM63, an open-sourced molecule mutation
framework, for the scaffold-invariant molecule perturbation. To be
more specific, we first use RDKit64 to identify the Bemis-Murcko scaf-
fold of molecules, as well as the connection sites (i.e., atom indices)
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between the scaffold and the side chains. The CReM algorithm then
takes these indices and performs fragment replacement using an
external fragment pool. Perturbation results are further filtered by
chemical validity and the maximum number of changed atoms
allowed. At last, we are able to successfully compute perturbations for
1,882,537 out of 2 million molecules. These molecules form our final
pre-train database. In the contrastive-based pre-training, we consider
fivepositive samples for each anchormolecule. Inmolecule distancing,
we randomly apply subgraph masking five times on the original
molecule. In scaffold distancing, we randomly sample five scaffold-
invariant perturbations. In terms of the model architecture, we follow
the samearchitecture setup as the graphneural network in18,21–23, which
is a 5-layerGraph IsomorphismNetwork (GIN)42with hiddendimension
size equals to 300. In addition, we also pre-train a GPS Graph Trans-
former model43 with the same number of layer and hidden dimension
size.Weuse the samemolecule feature sets asworks in19,24. Duringfine-
tuning, we utilize the scaffold splits method18 for MoleculeNet5, with a
train, validation, and test ratio of 8:1:1. On the other hand, we apply the
stratified splits for MoleculeACE6, as proposed by itself, with a train,
validation, and test ratio of 8:1:1.

Baselines
We consider twelve baseline pre-trainingmethods in our experiments. 1.
GraphLoG22 achieves a hierarchical prototypical embedding space with
the conventional graph perturbation techniques; 2. D-SLA23 proposes
the discrepancy learning to refine the embedding space with the con-
ventional graph perturbation techniques; 3. MolCLR21 utilizes the NT-
Xent33 contrastive loss withmolecule perturbation techniques, including
atom/bond editing and subgraph masking; 4. KANO24 introduces the
knowledge graph prompting techniques to augment molecular graph,
while the augmentations are also learned in the contrastive manner. 5.
MoLFormer28 performs large scale of masked language modeling on
SMILES sequence using a linear attention Transformer. 6. Hu et al.18

adoptsmasked attribute prediction andmolecular subgraph prediction;
7. KPGT44 proposes the Line Graph Transformer on molecular graphs
and performs knowledge prediction. It takes amaskedmolecular graph,
molecule fingerprint, and molecule descriptors as input, and aims to
reconstruct the molecule fingerprint and descriptors during pre-
training. 8. GROVER19 proposes the GTransformer architecture and
applies context prediction learning on molecular graphs; 9. GEM25

encodes the 3D geometric information of molecules and predicts the
bond angle and atom distance. 10. Uni-Mol27 also incorporates 3D
information of the molecule and pre-trains a SE(3) Transformer65 using
3D position recovery and masked atom prediction. We further include
11. GraphMVP45, which performs both contrastive and predictive learn-
ing between 2D toplogical and 3D geometric information of the mole-
cule. 12. ImageMol46, which leverages visual information of molecule
images for molecular property prediction. We also train the GIN42 and
GPS43 models from scratch for comparison. We reproduce the perfor-
mance of MolCLR, GROVER, GEM, KPGT, MoLFormer, and KANO on the
MoleculeNet benchmark using their provided checkpoints and code
repositories. Note that the reported results of GROVER, KPGT, MoL-
Former and KANO in their original papers are evaluated under the
balanced scaffold splits, which is different than the deterministic scaf-
fold splits used in this work and the rest of the baseline methods. Both
splits aim to hold out a set of molecules with scaffolds that are not seen
during training. The deterministic scaffold splits prioritizes the satis-
faction of the specified split ratio, while the balanced scaffold splits
prioritizes the balance of scaffold frequency across the training, vali-
dation, and test sets. We use the deterministic scaffold splits in our
experiments primarily because most of the baselines also employ it. All
other aspects, including hyperparameter choices for both the models
and the training setup, remain consistentwith the default configurations
of these baseline methods for replicating the results. For the Molecu-
leACE benchmark, we leverage their corresponding repositories, default

configurations, and the provided model checkpoints of these baseline
methods and fine-tune each task using either MoleculeACE’s stratified
splits or random splits.

Representation space probing
We propose to analyze the dynamics of representation space during
fine-tuning to evaluate the representation robustness and general-
izability. To be more specific, we probe the mapping of the repre-
sentation space at five different training timestamps (epoch 0, epoch
10, epoch20, epoch 50, epoch 100). The 2D view is constructed via the
T-SNE66 dimension reduction technique. Besides the visualization, we
also report four additional metrics that capture the representation
characteristics. We report the ROGI value and Rand index in the
training set, plus the R-squared value and cliff-noncliff distance ratio in
the validation set. The Rand index is calculated from two clustering
assignments. The first clustering is formed using k-means clustering
with themolecule ECFP4 fingerprint (radius=2, nBits=512). The second
clustering is formed using k-means clustering with the representation
at the current timestamp.We set the samenumber of clusters for these
two clusterings. In terms of the cliff-noncliff distance ratio, we first
identify the cliff and the noncliff molecule pairs using the same prin-
ciple in MoleculeACE6. Then, we compute and average the repre-
sentation distance of each pair. At last, the cliff-noncliff ratio is formed
by normalizing their average distance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are publicly
available. All datasets utilized in this paper can be found at https://
github.com/yuewan2/MolMCLor the Zenodo repository at https://doi.
org/10.5281/zenodo.1401043667. This includes the processed pre-train
dataset of ZINC15, the MoleculeNet benchmark (originally from
https://github.com/deepchem/deepchem) and the MoleculeACE
benchmark (originally fromhttps://github.com/molML/MoleculeACE).
The reference protein structure for 3L1S used in this study is available
in the Protein Data Bank under accession code 3L1S. Source data are
provided with this paper.

Code availability
The sourcecodeof thisworkcanbe accessed via theGitHub repository
at https://github.com/yuewan2/MolMCLor the Zenodo repository at
https://doi.org/10.5281/zenodo.1401043667.
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