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Superior energy storagecapacityofpolymer-
based bilayer composites by introducing 2D
ferroelectric micro-sheets

Zhenhao Fan 1, Jian Dai1, Yuyan Huang2, Hang Xie1, Yitao Jiao3, Wenfeng Yue1,
Fu Huang1, Yuqun Deng1, Dawei Wang 1,4 , Qingfeng Zhang 2 &
Yunfei Chang 1,4

Dielectric polymer capacitors suffer from low discharged energy density and
efficiency due to their low breakdown strength, small dielectric constant and
large electric hysteresis. Herein, a synergistic enhancement strategy is pro-
posed to significantly increase both breakdown strength and dielectric con-
stant while suppressing hysteresis, through introducing 2-dimensional
bismuth layer-structured Na0.5Bi4.5Ti4O15 micro-sheets and designing a unique
bilayer structure. Excitingly, an ultra-high discharged energy density of
25.0 J cm−3 and a large efficiency of 81.2% are achieved in Na0.5Bi4.5Ti4O15-
poly(vinylidene fluoride-co-hexafluoropropylene)/Na0.5Bi4.5Ti4O15-poly-
etherimide bilayer composites under a dramatically enhanced breakdown
strength of 8283 kV cm−1. Finite element simulations along with experimental
test results demonstrate that greatly improvedbreakdown strength is ascribed
to uniform and horizontal alignments of Na0.5Bi4.5Ti4O15 sheets (~1–2μm) in
the matrix and interface effect of adjacent layers with large dielectric differ-
ences, which effectively inhibit electrical tree evolution and conduction loss.
This work provides a strong foundation for developing high-performance
polymer-based energy storage devices.

In recent years, dielectric capacitors have played a critical role in
advanced electronic power systems and energy storage devices,
owing to their rapid charge-discharge characteristics and
remarkable power density1–5. Polymer-based dielectric capacitors
are highly attractive to researchers because of their high Eb, low
mass, stable structure, and good flexibility. However, low
energy storage density compared with batteries and super
capacitors limits their broad use in the energy storage device
market. To improve their discharged energy density (Udis), it is
essential to improve the breakdown strength (Eb) and dielectric
constant (εr) of their dielectric components according to the

follow equation6,7:

Udis =
1
2
ε0εrEb

2 ð1Þ

where ε0 is the permittivity of vacuum (8.85 × 10−12 Fm−1)2. In this
context, filling 2D dielectric materials including boron nitride
nanosheets (BNNS)8, Ca2Nb3O10

9, Mxene10 and montmorillonite
(MMT)11 into the polymer matrix is a valid method to enhance the
tortuosity of conductive pathways at large electric fields, thereby
improving the Eb of the composites. For instance, Li et al.8 reported
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that adding 12 vol% BNNS to poly(vinylidene fluoride-tri-
fluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymers
greatly improved the Eb from 4000 to 6500 kV cm−1. Bao et al.9,12

obtained a significantly enhanced Eb of 7920 kV cm−1 in PVDF-based
nanocomposite capacitors by adding negatively charged Ca2Nb3O10

nanosheets. Unfortunately, the εr of commonly used 2D materials,
such as BNNS (~3–4)8, is relatively low, which is not helpful for
improving the εr of composites, resulting in a relatively low Udis.
Moreover, the widely used PVDF-based composites possess a low
energy storage efficiency (η) of ~60%,whichmeans thatmuchenergy is
lost and converted into heat, being harmful for long-term operation.
Therefore, developing dielectric energy storage materials with
simultaneously high Udis and η remains a challenge.

After comprehensive consideration, a type of bismuth layer-
structured ferroelectric material (Na0.5Bi4.5Ti4O15, NBT) with simulta-
neously high εr and low dielectric loss (tan δ) has attracted our
attention13–17, and more importantly, the charge distribution within 2D
layers of Na0.5Bi4.5Ti4O15 is more uniform than that in other bismuth
layer-structured materials (e.g., Bi4Ti3O12 and SrBi2Ta2O9), facilitating
the achievement of large Eb18,19. Uniform and flat micro-sized NBT
sheets prepared via the molten salt method have been proved to be a
potential 2D functional material20. Interestingly, by optimizing the
molten salt method process, a specific, dimensionally homogeneous
2D NBT ferroelectric with a size of ~1–2μm can be achieved, which
could be suitable as a filler with the large faces aligned perpendicular
to the direction of the applied electric field, thus forming a barrier to
block the passage of electrons to increase the Eb21. Finite element
simulations (Supplementary Fig. 1) demonstrate the advantages of the
NBT sheets (1–2μm) in increasing the Eb of polyetherimides (PEI)
polymers relative to BNNS nanosheets (~100 nm) and NBT sheets with
a size of ~20μm. Owing to small size, BNNS are prone to irregular
motion due to Brownian motion, leading to a chaotic distribution in
the polymer matrix22. In contrast, the NBT sheets with sizes of 1–2μm
and ~20μmcanbe alignedwith the biggest faces parallel to each other
in the matrix. Consequently, the BNNS exhibit the slight blocking
effect on electrical tree evolution, and the NBT sheets with the large
size (~20μm) are directly penetrated by the electrical tree. Excitingly,
the 2DNBT sheetswith the size of 1–2μmeffectively serve barriers that
impede the direct penetration of electrical trees, making it a very
promising candidate for improving Eb.

In addition,multilayer composites, consistingof highEb and large-
εr layers have demonstrated the ability to integrate the merits of each
functional layer effectively. The interface effect, including the
Maxwell–Wagner–Sillars (MWS) effect, appears in heterogeneous
systems and is favored when the electrical characteristics (e.g., εr,
electron affinity, and band gap) of the constituent phases significantly
vary23–28. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-
HFP)) is a potential candidate for capacitor applications due to its high
εr (~9)

29. However, P(VDF-HFP)-based composites usually exhibit low η
(<60%)when applied in high electric fields. In contrast, linear dielectric
PEI exhibits a high Eb (~5000 kV cm−1), an extremely low residual
polarization (Dr) and a high η (>90%), but a low εr (~3)

30–32. Therefore,
constructing multilayer structure may be a valid method to enhance
the capacitive performance.

Herein, we propose a synergistic enhancement strategy to obtain
large energy density and efficiency in the NBT-PEI/NBT-P(VDF-HFP)
bilayer-structured composite film through incorporation of 2D bis-
muth layer-structured NBT ferroelectric micro-sheets, as shown in
Fig. 1. Interestingly, by combining the electric barrier effect of 2D NBT
sheets and the interface effect of the bilayer structure (Fig. 1a, d), an
ultra-high Udis of 25.0 J cm−3, accompanied by a large η of 81.2% is
achieved at anultra-high Eb of 8283 kV cm−1, which far exceeds those of
most reported energy storage materials. In addition, the composite
film has excellent actual charge-discharge capacity, exhibiting an
extremely fast discharge time of 46.6 ns and an ultra-high-power

density of 62.2MVcm−3, making it a potential material for utilization in
high-power devices.

Results and discussion
NBT sheets and bilayer-structured composite films quality
Figure 2a indicates that the X-ray diffraction (XRD) pattern of the
NBT sheets matches that of the standard Na0.5Bi4.5Ti4O15 (PDF#74-
1316), which proves that these sheets have a bismuth layered struc-
ture. Figure 2b, c presents scanning electron microscopy (SEM) and
energy-dispersive spectroscopy (EDS) mapping images of a 2D NBT
sheet. Owing to its bismuth layered structure, it has a platelet shape
with the size around 1–2 μm and the Bi, Na, Ti, and O constituents are
uniformly distributed overall. The thickness of an NBT sheet is
approximately 257 nm, as shown in Fig. 2d. Its high-aspect-ratio
platelike shape is beneficial for parallel alignment and uniform dis-
persion in the polymer matrix, which can be observed from the
surface SEM images of the bilayer-structured NBT-PEI/NBT-P(VDF-
HFP) composite film (Fig. 2e) and the NBT-PEI and NBT-P(VDF-HFP)
composite films with various NBT filler contents (Supplementary
Figs. 2 and 3). Obviously, the NBT sheets are uniformly distributed in
the polymer matrix without aggregation at low filler contents
(<0.75wt.%), which is helpful for forming a barrier to prevent elec-
trons from passing through when applied in a high electric field.
However, the aggregation appears when the filler content exceeds
0.75 wt.%, which can easily lead to local electric field distortion,
decreasing Eb of the composite films. Figure 2f shows a macroscopic
digital photograph of the NBT-PEI/NBT-P(VDF-HFP) bilayer compo-
site film. The film demonstrates good flexibility, curves in its natural
state and is ideal for deformation as conditions change. Figure 2g
shows the focused ion beam (FIB)-SEM image of the cross-section
of the NBT-PEI/NBT-P(VDF-HFP) composite film. There is a clear
demarcation between layers, and the composite films have an overall
thickness of 7.7μm. In addition, in order to distinguish the compo-
sites of the different layers, EDSmapping images of the PVDF-specific
element F and the PEI-specific element O are shown in Fig. 2h, i. F and
O are uniformly dispersed in the top and bottom layers, respectively,
suggesting the good homogeneity of the bilayer-structured compo-
site films.

Energy storage performance optimization of composite films
The dependence of the εr of the 2D NBT sheets on the frequency at
room temperature shows that the sheets have a high εr of 119.0 at 1 kHz
(Supplementary Fig. 4). The dielectric and capacitive performances of
the NBT-PEI and NBT-P(VDF-HFP) composites with various contents of
NBT fillers (Supplementary Figs 5 and 6 and Supplementary
Tables 1 and 2) show that the εr values of the NBT-PEI and NBT-P(VDF-
HFP) composites notably increase with increasing content of the NBT
filler because of its higher εr relative to those of PEI and P(VDF-HFP)
while the tan δ values of the composites are low. Additionally, the εr of
the NBT-P(VDF-HFP) composite films reduces with increasing fre-
quency because the polar groups in P(VDF-HFP) cannot keep up with
the movement at high frequencies. When the NBT filler content is
0.75 wt.%, the NBT-PEI composite film displays the largest Eb of
7484 kV cm−1 and the largestDmax-Dr value of 4.53μC cm−2, resulting in
a maximum Udis of 16.7 J cm−3, accompanied by a high η of 92.3%.
Compared with that of pristine PEI (Udis = 8.2 J cm−3), the Udis of the
NBT-PEI composite film is enhanced by 104%. Moreover, for the NBT-
P(VDF-HFP) composite film, at a 0.75wt.% NBT sheet filler content, it
presents the largest Eb of 6084 kV cm−1 and the largestDmax-Dr value of
6.30μC cm−2, possessing a maximum Udis of 15.5 J cm

−3, accompanied
by a η of 62.4%. Compared with that of pristine P(VDF-HFP)
(Udis = 9.8 J cm-3), the Udis of the NBT-P(VDF-HFP) composite film is
improved by 58%. The resistivities and hopping conduction models of
NBT-PEI and NBT-P(VDF-HFP) composite films (Supplementary
Figs. 7 and 8 and Supplementary Note 1) show that the resistivities of
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the NBT-PEI and NBT-P(VDF-HFP) slowly reduce with enhancing elec-
tric field compared to those of pristine PEI and P(VDF-HFP), and the
charge hopping distances are reduced from0.46nm for PEI to0.32 nm
for NBT-PEI and from 0.48 nm for P(VDF-HFP) to 0.40nm for NBT-
P(VDF-HFP). These indicate that the additions of the 2DNBT sheets are
of important value for causing the increase of the Eb in theNBT-PEI and
NBT-P(VDF-HFP) composite films.

After the aforementioned optimization of theNBT filler content in
the NBT-PEI and NBT-P(VDF-HFP) composite films, the bilayer-
structured NBT-PEI/NBT- P(VDF-HFP) composite films are further
designed and fabricatedwith three different structures: 3-7, 5-5 and 7-3
type composites, according to the thickness ratio of the NBT-PEI and
NBT-P(VDF-HFP) layers. The optimized dielectric and capacitive
properties are achieved in the 7-3 type composite film with an ultra-
high Eb of 8283 kV cm−1 (Supplementary Fig. 9, Supplementary Table 3
and Supplementary Note 2). Finite element simulations are used to
study the electric potential and electric field distributions of the three
different types of bilayer-structured composites at 6000 kV cm−1

(Supplementary Fig. 10). The distributions of the electric potential and
electric field tend to become more uniformly as the NBT-PEI layer
content increases, which is beneficial for avoiding localized areas of
high potential and reducing the risk of localized dielectric breakdown.
Figure 3 shows the summarized dielectric and capacitive performance
parameters of above optimized composites. As shown in Fig. 3a, the
NBT-PEI/NBT-P(VDF-HFP) composite film has a medium εr of 5.0 and a
low tan δ of 0.02 at 1 kHz. In addition, the εr decreases little at high

frequencies, which is attributed to the introduction of PEI with a rigid
molecular structure. Figure 3b shows the Eb of different kinds of
composites obtained via the followingWeibull distribution functions33:

Xi = lnðEiÞ ð2Þ

Y i = lnð�lnð1� i=ðn + 1ÞÞÞ ð3Þ

In this context, n and i represent the total number of samples and
the index of each individual sample, respectively, whereas Ei denotes
the breakdown electric field for each sample. The slope of the fitted
linear relationship between Xi and Yi, known as the shape parameter
(β), serves as an indicator of the reliability of the breakdown electric
field (Eb) measurements. A higher β corresponds to greater reliability
of the experimental data. The Eb is determined as the intersection of
the linear fit with Yi = 0. Notably, the minimum β for the NBT-PEI
composite film is 16.4, underscoring the high quality and consistency
of these composite films. The Eb massively increases from
4986 kV cm−1 for pristine P(VDF-HFP) to 6084kV cm−1 for NBT-P(VDF-
HFP) composite film when the 2D NBT sheets are introduced. More-
over, the Eb further enhances to 8283 kV cm−1 by designing the bilayer
structure. Compared with those of pristine P(VDF-HFP), the D-E loops
of the NBT-PEI/NBT-P(VDF-HFP) composite film are slimmer owing to
the NBT-PEI layer with low Dr, as shown in Fig. 3c. Therefore, the NBT-
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PEI/NBT-P(VDF-HFP) composite film exhibits the highest Udis of
25.0 J cm−3, accompanied by a high η of 81.2%, as plotted in Fig. 3d. To
demonstrate the merits of this composite for dielectric capacitor
applications, we summarize capacitive performances of the previously
reported advanced composites8,29,34–46 in Fig. 3e (Supplementary
Table 4). As observed, it is challenging to achieve large Ue and η in a
kind of composite. For example, the BaTiO3-PVDF/PEI has a relatively
high η of 84.5%, but theUdis of 8.0 J cm−3 is low36. The BaTiO3/PVDF has
a highUdis of 19.1 J cm

−3, but the η of 68.6% is low37. Interestingly, in this
study, by introducing 2D bismuth layer-structured NBT micro-sheets
and designing the unique bilayer structure, a large Udis of 25.0 J cm−3

and a high η of 81.2% are simultaneously achieved in the NBT-PEI/NBT-
P(VDF-HFP) composite film.

Interface effect
The substantial enhancement in Eb can be partially attributed to
the interface effect, which typically occurs in heterogeneous
systems and is particularly pronounced if the constituent phases
exhibit obviously different properties (e.g., εr, electron affinity,
and band gap)47. To elucidate the interface effect between the
NBT micro-sheets and the surrounding polymers, energy band

diagrams at the PEI/NBT and P(VDF-HFP)/NBT interfaces
(Fig. 4a, b) were constructed based on the ultraviolet photo-
electron spectroscopy (Supplementary Figs. 11–13 and Supplemen-
tary Notes 3 and 4) and UV-Vis spectroscopy (Supplementary
Figs. 14 and 15) results. As plotted in Fig. 4a, b, the NBT micro-
sheets possess much higher electron affinity (EANBT, e.g., 6.2 eV)
than both PEI (EA1, e.g., 2.8 eV) and P(VDF-HFP) (EA2, e.g., 2.4 eV),
which causes the formation of deep trap energy levels
(Φe1 = EANBT - EA1, e.g., 3.4 eV, and Φe2 = EANBT-EA2, e.g., 3.8 eV) to
capture injected and excited electrons through strong electro-
static attraction. As a result, Eb is effectively enhanced. Further-
more, to further study the interface effect between NBT-PEI and
NBT-P(VDF-HFP), the space charge development in the NBT-PEI/
NBT-P(VDF-HFP) composite film were measured via the pulsed-
electro- acoustic (PEA) test (Fig. 4c, d). By integrating the inter-
face space charge peak, the obtained interface charge density at
300 kV cm−1 is 1.13 × 10−3C m−3 (Fig. 4d and Supplementary
Note 5), which is much higher than the MWS theoretical value
(3.29 × 10-5Cm−2, Supplementary Note 5). As we know, MWS effect
is only part of the interface effect. The higher interface charge
density may suggest that a large amount of deep traps form in the
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interface region of the bilayer-structured composite film, which
also leads to a large accumulation of space charges47. Such unique
structure of the interface is believed to play an important role in
enhancing the Eb. In addition, the resistivities and hopping con-
duction models of the NBT-PEI, NBT-P(VDF-HFP) and NBT-PEI/
NBT-P(VDF-HFP) composite films (Fig. 4e,f) show that the resis-
tivity of NBT-PEI/NBT-P(VDF-HFP) decrease slowly with increasing
the electric field, and the charge hopping distance is decreased
from 0.40 nm for NBT-P(VDF-HFP) composite film and 0.32 nm
for NBT-PEI composite film to 0.30 nm for NBT-PEI/NBT-P(VDF-
HFP) composite film. All above these results demonstrate that the

bilayer-structured NBT-PEI/NBT-P(VDF-HFP) composite film has
significantly enhanced electrical breakdown resistance owing to
the interface effect.

Finite element simulation of the real-time evolution of the
electric potential and electric field distribution
To further investigate the enhancement mechanism for Eb, the real-
time distribution evolving of the electric potential and electric field in
the pristine PEI, NBT-PEI, and NBT-PEI/NBT-P(VDF-HFP) composite
films were simulated at 7000 kVcm−1 via COMSOL Multiphysics and
MATLAB (Fig. 5, Supplementary, Fig. 16 and Supplementary Note 6).
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As shown in Fig. 5a, because pristine PEI has a monolithic structure, it
has no difference in the overall electric field distribution, which leads
to the preferential growth pathway of electric dendrites along the
direction of the applied electricfield. Consequently, the electrical trees
show few branches and little energy loss during the evolution process,
which leads to quick growth of electrical trees to the top boundary. In
contrast, as shown in Fig. 5b, the introduction of 2D NBT sheets
changes the distributions of the electric field in the NBT-PEI composite
film. To be specific, a localized high electric field region is formed
around the 2D NBT sheets, and the differences of the electric field
between the tips of the electrical trees and the NBT is small. Therefore,

the electrical trees tend to produce more branches toward the sur-
rounding low electric field regions. Consequently, the tortuous growth
path of electrical trees and the appearance of many electrical tree
branches lead to a large energy loss during their evolution process.
Furthermore, as shown in Fig. 5c, the electric field distribution is dra-
matically changed via designing the bilayer structure with a clear
demarcation formed at the interface. When electrical trees pass
through the interface, the appearance of much lower electric field
regions near such interface makes the electrical trees prone to pro-
duce more branches. Therefore, more energy loss occurs during the
evolution process. All these effects slow down the development of
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electrical trees at the upper boundary, leading to a substantial
enhancement in the Eb.

Charge-discharge capacity
Compared with energy storage properties, the practical charge-
discharge characteristics for dielectric capacitors are also critical for
the application purpose. Hence, the underdamped and overdamped
discharge properties of the NBT-PEI/NBT-(PVDF-HFP) composite film
are tested through a discharge resistance, inductance, and capacitance
load (RLC) circuit48–50. Underdamped pulsed discharge current, the
maximumcurrent (Imax) and current density (CD = Imax/S, where S is the
electrode area) of the NBT-PEI/NBT-(PVDF-HFP) composite film at
various electric fields are shown in Figure 6a, b. As presented, the
composite film possesses an Imax of 51.5 A and an ultra-high CD of
102.5 A cm−2 at 3000 kV cm−1. Figure 6c, d shows the discharge energy
density (Wd) at different electric fields, which is calculated by the fol-
lowing equation48–50:

Wd =
R
R
IðtÞ2dt
V

ð4Þ

Where V, I, and R are the sample volume, the discharge current
acquired by overdamped charge-discharge tests, and the load resistor
(R = 300Ω), respectively. Typically, the parameter t0.9, which means
the time required for releasing 90% of the Wd, can characterize the
discharged rate of amaterial. TheNBT-PEI/NBT-(PVDF-HFP) composite
film presents a rapid discharge rate of 46.6 ns, a large Wd of 2.9 J cm−3

and an ultra-high power density (PD, PD =Wd/t0.9) of 62.2MWcm−3 at
3000 kV cm−1. Figure 6e displays the Wd of NBT-PEI/NBT-(PVDF-HFP)
composite film at 3000 kVcm−1 when the cycle number is
increased from 1 to 103. As shown, Wd varies in the range of 2.74 to
3.01 J cm−3, indicating good fatigue resistance. Encouragingly, as
illustrated in Fig. 6f, compared with previously reported advanced
composites34,35,39,40,51–54, our bilayer-structured composite film has both
a much higher power density and a faster discharge rate, demonstrat-
ing very promising application potential in high pulsed power devices.

In summary, we have successfully prepared an attractive NBT-PEI/
NBT-P(VDF-HFP) composite film by integrating 2D ferroelectric NBT

micro-sheets and bilayer structure, which can significantly increase the
Eb of the composite films. Specifically, adding 0.75wt.% NBT filler
increases the Eb from 5467 kV cm−1 for pristine PEI to 7484 kV cm−1 for
the NBT-PEI composite film. The designed bilayer structure further
proves positive effect in boosting the Eb of composite films. The large
interface charge density of 1.13 × 10−2Cm−2 obtained from the PEA test
indicates that the further improvement in the Eb is due to the interface
effect. Moreover, optimizing the thickness ratio of NBT-PEI to NBT-
P(VDF-HFP), the NBT-PEI/NBT-P(VDF-HFP) bilayer-structured compo-
site film exhibits an ultra-high Eb of 8283 kV cm−1, resulting in an ultra-
highUdis of 25.0 J cm−3 and large ηof 81.2%. Besides, the composite film
possesses an ultra-high power density of 62.2MVcm−3 and a fast dis-
charge rate of 46.6 ns. Compared with previously reported advanced
composites, both high energy storage density and efficiency are rea-
lized in our bilayer-structured composite film. This study provides a
novel strategy for developing high-performance polymer-based
energy storage materials.

Methods
Preparation of 2D bismuth layer-structured NBT sheets
Na0.5Bi4.5Ti4O15 sheets were prepared via amolten salt growthmethod.
Na2CO3 (99.5%, Aladdin, Shanghai, China), Bi2O3(≥99.9%, Aladdin), and
TiO2 (≥99.0%, Aladdin) were used as raw materials, NaCl (≥99.5%,
Aladdin, Shanghai, China) was used as molten salt. All materials were
weighed based on the weight ratio of raw material:molten salt = 1:15
and mixed via ball-milling in ethanol for 24 h. The mixtures were cal-
cined at 850 °C for 1 h to fabricate fine-grain matrix, and the excess
impurities were washed away. Finally, 2D NBT sheets with the size of
approximately 1–2 µm were obtained after drying.

Fabrication of NBT-P(VDF-HFP) and NBT-PEI composites
NBT-PEI composites were fabricated by a casting method, PEI (PolyK,
USA) pellets were introduced into N-methyl pyrrolidone (NMP)
(Macklin, 99.5%) solvent by stirring for 4 h to obtain transparent PEI
solution. At the same time, the 2D NBT sheets were also distributed in
NMP solvent by ultrasonically stirring for 20min. Then, the above two
solutions were mixed together and stirred for 12 h at room tempera-
ture to achieve uniform dispersion of NBT sheets. The solution was
then cast onto a glass substrate by casting machine and dried at 70 °C
for 12 h in vacuumoven to volatilize the NMP. TheNBT-PEI composites
with a thickness of approximately 7–10μm were stripped from the
glass substrate, and covered with Au electrodes with the diameter of
2mm. Similar to the fabrication of NBT-PEI composites, the NBT-
P(VDF-HFP) composites were successfully obtained and covered with
Au electrodes with a diameter of 2mm for the measurement of elec-
trical performances.

Fabrication of bilayer-structured NBT-PEI/NBT-P(VDF-HFP)
composite films
The NBT-PEI/NBT-P(VDF-HFP) composite film was fabricated by layer-
by-layer casting from the prepared NBT-PEI and NBT-P(VDF-HFP)
solutions. First, the NBT-PEI solution was cast on a glass substrate and
dried at 70 °C for 12 h in vacuum as the bottom film. The NBT-P(VDF-
HFP) solution was subsequently cast on the NBT-PEI film at 70 °C for
12 h in vacuum as the top film, because the PEI matrix is a thermoset-
ting polymer and not dissolvable in the NBT-P(VDF-HFP) solution.
Finally, three different types of NBT-PEI/NBT-P(VDF-HFP) composite
films with different thickness ratios of the two layers, i.e., 0.7NBT-PEI/
0.3NBT-P(VDF-HFP) (7-3 type), 0.5NBT-PEI/0.5NBT-P(VDF-HFP) (5-5
type) and 0.3NBT-PEI-0.7NBT-P(VDF-HFP) (3-7 type) composite films,
were successfully prepared.

Characterization
X-raydiffraction (XRD, D/max 2400, Rigaku, Tokyo, Japan)was used to
determine the phase structure. The microstructure and chemical
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composition were determined via field-emission scanning electron
microscopy (FE-SEM, Merlin Compact, Germany) equipped with
energy-dispersive spectroscopy (EDS). Cross-sectional images were
measured via focused ion beam scanning electron microscopy (FIB-
SEM, ZEISS Crossbeam 540, Helios G4 PFIB Hxe, Helios 600i). The
thicknesses of the 2D sheets were measured via atomic force micro-
scopy (AFM, Dimension Fastscan, Bruker, Germany). The dependences
of thedielectric constant and loss on the frequencywere obtainedwith
a TH 2827 A precision LCRmeter (Tonghui Electronic Co., Ltd., China).
The Eb was achieved by the NJC5010 withstand voltage tester (Gogo
Instruments Technology, China). The D-E loops, leakage currents, and
resistivities at different electricfieldswere acquiredwith a Precision LC
II ferroelectric testing system (Radiant Technologies Inc., USA). The

energy levels were tested by ultraviolet photoelectron spectroscopy
(UPS, Thermo Fisher Scientific Nexsa G2, USA). The band gaps were
determined via UV-Vis spectroscopy (Hitachi UH4150, Japan). The
space charge distributions were tested by the pulsed-electro-acoustic
(PEA, HY-PEA-DPT01, China) method. Discharge resistance, induc-
tance, and capacitance (RLC) load circuit (CFD-003, Gogo Instruments
Technology, China) were used to analyze the charge-discharge
performance.

Data availability
All data supporting this study and its findings are available within the
article and its Supplementary Information. The data corresponding to
this study are available from the corresponding authors upon request.
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