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Cooperative integration of spatially resolved
multi-omics data with COSMOS

Yuansheng Zhou 1, Xue Xiao1, Lei Dong 1, Chen Tang 1,
Guanghua Xiao 1,2 & Lin Xu 1,3

Recent advancements in biological technologies have enabled the measure-
ment of spatially resolved multi-omics data, yet computational algorithms for
this purpose are scarce. Existing tools target either single omics or lack spatial
integration.Wegenerate a graphneural network algorithmnamedCOSMOS to
address this gap and demonstrated the superior performance of COSMOS in
domain segmentation, visualization, and spatiotemporal map for spatially
resolved multi-omics data integration tasks.

With the explosionof spatially resolved single-cell omicsdevelopment,
themeasurements of spatially resolvedmulti-omics on the same tissue
sections have recently been achieved1–9. However, the computational
algorithms that are designed to analyze such spatially resolved multi-
omics are lacking. Existing tools like SpaGCN10 and SpaceFlow11 focus
on spatially resolved single-omics data, while multi-omics integration
tools such as GLUE12, WNN13, MIRA14, totalVI15 perform integration
without using spatial information. Algorithms like Moscot16 handle co-
embedding for spatially resolved multi-omics data that do not share
the same spatial locations. To our knowledge, the only algorithms
designed specifically to integrate paired spatially resolvedmulti-omics
data are CellCharter17, SpaMultiVAE18 and SpatialGlue19. However,
CellCharter and SpaMultiVAE concatenate two omics into a single
matrix for integrated embedding, failing to extract and utilize the
complementary features and unique contributions of each omics.
SpatialGlue attempts to learn the contribution of each modality, but it
does not perform well on the predictive accuracy and computational
efficiency of segmentation analysis when applied to simulated and
actual experimental datasets. Here we design a graph neural network
algorithm to achieve COoperative integration of Spatially resolved
Multi-OmicS data (COSMOS) that extracts complementary features
from different modalities and gives an integrated embedding that
outperforms analysis on each modality and other competing integra-
tion methods. We apply COSMOS to two simulated and three real-
world spatially resolvedmulti-omics datasets from different platforms
and diverse tissue types, and demonstrate its performance in domain
segmentation, low-dimensional visualization, and spatiotemporalmap
generation.

Results
Introduction to COSMOS
The input of COSMOS is a spatially resolved multi-omics dataset con-
sisting of two sets of molecular omics data (e.g., transcriptomics and
epigenomics, or transcriptomics and proteomics) and a set of shared
spatial positions between two omics. The input multi-omics data were
encoded using two separate graph convolutional networks (GCN).
These representations were then integrated into a unified format with
modality weights determined by the Weighted Nearest Neighbor
(WNN) algorithm13. Following the strategy in the Deep Graph Infomax
(DGI) model20, we permuted the integrated layer to form a negative
representation and built a contrastive discriminator that contrasts
mutual information between local node representation hi and global
summary vector s in the original graph (Hint,A) and permuted graph
(eHint,A). A spatial regularization was added to the discriminator for
the training of the model (Fig. 1a). The output is an integrated
embedding that can be applied to downstream analyses including
domain segmentation, spatially consistent low-dimensional visualiza-
tion, pseudo-spatiotemporal map (pSM) generation and pSM gene
extraction (Fig. 1b).

Results on two simulated datasets
Due to the infancy stage of spatially resolved multi-omics technolo-
gies, experimental datasets based on these methods are rare. There-
fore, we first simulated a spatially resolved multi-omics dataset from
mouse visual cortex STARmap spatial transcriptomics data21, which
consists of 1207 cells annotated by six layer labels: L1, L2/3, L4, L5, L6,
and HPC/CC (Fig. 2a). We simulated two datasets (termed as “Omics-1”
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and “Omics-2” in the following content) by shuffling cells in L4/L5 and
L5/L6, respectively, and then added Gaussian noise to the expression
values (seeMethods). In this design, cells in L4/L5 cannot be separated
by Omics-1 alone, and cells in L5/L6 cannot be separated by Omics-2
alone. We applied five multi-omics integration algorithms (WNN,
SpatialGlue, CellCharter, SpaMultiVAE, COSMOS) and one single-
omics algorithm (SpaceFlow) to the simulated data to assess whe-
ther cells in L4/L5/L6 could be separated by integrating Omics-1 and
Omics-2. We evaluated the performance of these algorithms using the
Adjusted Rand Index (ARI), a common metric for validating clustering
results. A higher ARI value indicates greater alignment with curated
annotations. Our analysis revealed that COSMOS achieved the highest
ARI (0.84) in domain segmentation, outperforming all other algo-
rithms (with ARI values ≤0.66), as shown in Fig. 2a–b. In addition, the
modality weights distributions for each layer type in COSMOS dis-
played that L4 cells in Omics-1 and L6 cells in Omics-2 have smaller
modality weights (Fig. 2c). These distributions of weights were
expected because L4 cells cannot be separated from L5 inOmics-1 and
contributed less to the integrated embeddings, so are the L6 cells in
Omics-2. We further used UMAP to visualize the low-dimensional
representation of cells by SpatialGlue, SpaMultiVAE, andCOSMOS, and
found that L1-L6 layers were better separated in COSMOS than in
SpaMultiVAE (Fig. 2d). After plotting pseudo-Spatiotemporal map
(pSM) by running the diffusion pseudo-time11,22 using the low dimen-
sional embedding by SpatialGlue, SpaMultiVAE, and COSMOS, we
observed that the pSMofCOSMOS showedbetter consistencywith the
anatomical structure of mouse visual cortex sample than SpatialGlue
and SpaMultiVAE (Fig. 2e).

To demonstrate the general applicability of COSMOS on different
tissue types and experimental platforms, we used another mouse
olfactory bulb dataset generated by Stereo-Seq technology23 to create
the second simulated dataset, which consists of 18196 cells annotated
by six layer types: RMS, GCL/IPL, MCL, EPL, GL, and ONL (Fig. 2f).
Similarly, we shuffled the cells in EPL/MCL and EPL/GL separately and
added Gaussian noise to simulate two omics datasets (termed as
Omics-3 and Omics-4 below). We applied SpaceFlow, WNN, Spa-
tialGlue, CellCharter, and COSMOS to integrate these two datasets and
observed that COSMOS (ARI = 0.63) outperformed all other algo-
rithms (ARI ≤ 0.56, Fig. 2f–g). The MCL cells in Omics-3 and GL cells in
Omics-4 have smaller modality weights (Fig. 2h), which is consistent
with the simulation design. COSMOS helped to generate better clus-
tering results than SpatialGlue inUMAP visualization. For example, EPL
cells (blue) and GL cells (orange) were more separatable in COSMOS
than in SpatialGlue (Fig. 2i). COSMOS also generated more consistent
pSM results with the anatomical structure of mouse olfactory bulb
sample (Fig. 2j). The analyses on the two simulated spatially resolved
multi-omics data demonstrated that COSMOS outperforms other
competing algorithms in domain segmentation, cell type clustering,
and pseudo-spatiotemporal map generation.

Results on three real-world datasets
Next, we applied COSMOS to analyze a spatially resolved multi-omics
dataset based on real-world experiments instead of simulated data.
This experimental dataset contains P22 mouse brain coronal sections
with a joint profiling of spatial chromatin accessibility (ATAC) and
spatial transcriptome (RNA)7. By aligning the sample with the P56
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mouse brain coronal section fromAllenMouse Brain Atlas (Fig. 3a), we
made a manual annotation for the sample and highlighted several
regions of interest for analysis:ACB, CP, VL, L1-3, L4, L5, L6a/b, and ccg/
aco (Fig. 3b). We first applied SpaceFlow to each modality individually
and then used WNN, SpatialGlue, CellCharter, and COSMOS to inte-
grate the datasets with two omics. As shown in Fig. 3c, COSMOS
achieved the highest domain segmentation with an ARI of 0.63, out-
performing SpatialGlue (ARI = 0.43), CellCharter (ARI = 0.50), Space-
Flow on ATAC (ARI = 0.58), and SpaceFlow on RNA (ARI = 0.45).
Comparing the segmentation results of SpaceFlow to COSMOS, we
observed that ATAC modality contributed dominantly to the separa-
tion of L1-L6 layers, while RNA modality played an auxiliary role in
separating VL, CP and ccg/aco layers (Fig. 3c). We plotted themodality
weight distributions of COSMOS and found that the cells from ATAC

modality had larger overall weights than the cells from RNA modality,
but the distributions ofweights differed across various layers. TheRNA
modality has the smallest weights in L1-L6 layers but the largest
weights in VL, CP, ACB, and ccg/aco (Fig. 3d), which reflected distinct
contributions of bothmodalities to the clustering of different regions.
Next, we generated UMAP visualization and pSM from the low-
dimensional representation by SpatialGlue and COSMOS (Fig. 3e–f).
COSMOS presented the clusters in a more compact way (Fig. 3e) and
organized the clusters in thepSM that is consistentwith the anatomical
structure of themouse brain (Fig. 3f, Fig. S1). Basedon the pseudo-time
inferred from COSMOS representation, we selected 577 pseudo-time
associated genes and found that these genes are enriched in biological
processes related to brain development (e.g., Neurogenesis, Fig. 3g).
The pseudo-time associated genes were differentially expressed in

Annotation SpaceFlow (Omics-1)
ARI = 0.58

SpaceFlow (Omics-2)
ARI = 0.57

WNN
ARI = 0.28

SpatialGlue
ARI = 0.39

CellCharter
ARI = 0.66

SpaMultiVAE
ARI = 0.49

COSMOS
ARI = 0.84

M
od

al
ity

 w
ei

gh
ts Omics-1

Omics-2

Resolution (leiden)

AR
I

COSMOS
WNN
SpatialGlue
SpaceFlow (Omics-1)
SpaceFlow (Omics-2)
SpaMultiVAE

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

SpatialGlue COSMOSSpaMultiVAE pSM of COSMOS
1

0

pSM
 value

pSM of SpatialGlue pSM of SpaMultiVAE

Omics-1:
Shuffling 
L5/L4

Omics-2:
Shuffling 
L5/L6

Annotation SpaceFlow (Omics-1)
ARI = 0.40

SpaceFlow (Omics-2)
ARI = 0.48

WNN
ARI = 0.06

SpatialGlue
ARI = 0.56

CellCharter
ARI = 0.40

COSMOS
ARI = 0.63

a

Omics-3
Omics-4

Resolution (leiden)

AR
I

COSMOS
WNN
SpatialGlue
SpaceFlow (Omics-3)
SpaceFlow (Omics-4)

Omics-3: Shuffling EPL/MCL
Omics-4: Shuffling EPL/GL  

M
od

al
ity

 w
ei

gh
ts

MCL
RMS EPL

GCL/IPL
ONL GL

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

1

0

pSM
 value

SpatialGlue COSMOS

pSM of COSMOSpSM of SpatialGlue

b

c

d e

f

g h i

j
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generated by these three algorithms are illustrated. f–j Similar analyses were con-
ducted on a second simulated dataset, created by shuffling EPL/MCL and EPL/GL
regions of a spatially resolved Stereo-Seq mouse olfactory bulb dataset, with
Gaussian noise added to the expression values. SpaMultiVAE was excluded from
this comparisondue to its instability in analyzing the sparse Stereo-Seqdataset. The
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and olfactory nerve layer (ONL). Source data are provided as a Source Data file.
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different stages of the pseudo-time (Fig. 3h). From these we identified
six marker genes that well characterized the major anatomical regions
of the brain: Nexn (CP), Bcl11b (CP and ACB), Mbp (ccg and aco), Nfix
(L1-L6), Mef2c (L1-L4), and Cux2 (L1-L3) (Fig. 3i). These results demon-
strated that COSMOS integration of spatially resolved multi-omics
performs domain segmentation with a higher accuracy than that
obtained from singlemodality analysis or other competing integration
methods, and generates a pseudo-time that alignswellwith anatomical
structure and marker genes expression patterns in the tissue.

To demonstrate the applicability of COSMOS on different data
types, we applied COSMOS to a spatially resolved RNA-Protein multi-
omics dataset. This dataset contains 1789 spatially resolved cells from
E10 mouse embryo brain regions with a joint profiling of 22 proteins
and 254 genes with DBiT-seq1 (Fig. 4a). We applied six algorithms to
perform domain segmentation, identifying ten domains with each
method. We found that COSMOS produced a smoother mapping
compared to WNN, SpatialGlue, CellCharter, and SpaMultiVAE

(Fig. 4d–h).We alsonoticed that SpaceFlowonRNAexhibiteddifferent
clustering patterns from SpaceFlow on Protein. For example, C2
(green) cluster ismore clearly identified in SpaceFlowonRNA (Fig. 4b),
whileC1 (red) cluster ismorenarrowly defined inSpaceFlowonProtein
(Fig. 4c). The distinct clustering patterns in both modalities were well
preserved in COSMOS mapping (Fig. 4h). The narrower C1 cluster in
SpaceFlow on Protein corresponds to the brain region with high
expression of MAdCAM-11. This region was accurately captured by
COSMOS, but not by WNN, SpatialGlue, CellCharter and SpaMultiVAE,
which mixed this region with the neighboring regions (Fig. 4d–h). In
the modality weights distributions of COSMOS, we observed that cells
in C1 and C6 have larger weights on Protein modality, while cells in C2
and C8 have larger weights on RNA modality (Fig. 4i). This reflects
distinct contributions of both modalities to the clustering of different
regions. The regions identified by COSMOS correspond to differential
expression patterns from both modalities: C1, C6, and C5 correspond
to regions with high-expression of proteins MAdCAM-1, CD55, and
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Fig. 4 | COSMOS Analysis of Spatially Resolved DBiT-seq Mouse Embryo Brain
RNA-Protein Multi-Omics Data. a H&E-stained image of a mouse embryo brain
region. b–h Domain segmentation results from six algorithms, with ten domains
identified by each method. In the COSMOS mapping, six regions are highlighted
with dashed curves: C1, C2, C5, C6, C8, and C10. i Distribution of modality weights
for RNA and Protein omics in the COSMOS analysis. j Proteomic profiles of three

proteins—MAdCAM-1, CD55, and ESAM—with dashed curves indicating the
boundaries of regions C1, C6, and C5 identified by COSMOS. k Transcriptomic
profiles of three genes—Myh7,Msx1, and Hba-x—with dashed curves indicating the
boundaries of regions C2, C8, and C10 identified by COSMOS. Source data are
provided as a Source Data file.
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ESAM, respectively (Fig. 4j); C2, C8 andC10correspond to regionswith
high-expression of genesMyh7,Msx1 and Hba-x, respectively (Fig. 4k).
These results demonstrate that COSMOS can extract and preserve
informative features frombothmodalities and produces an integrated
embedding that achieves smoother and more accurate domain seg-
mentation than the embedding on singlemodality and the embedding
by other integration methods. In addition to DBiT-seq data, we also
applied COSMOS to RNA-Protein multi-omics data generated by
spatial-CITE-seq from human tonsil cells4. We observed that COSMOS
provided smoother domain segmentation (Fig. S2a) and more closely
matched protein and gene expression profiles compared to other
algorithms (Fig. S2b–c).

Discussion
We applied COSMOS to two simulated and three experimental spa-
tially resolved multi-omics datasets, demonstrating that COSMOS
outperformed other integration algorithms in domain segmentation,
low-dimensional visualization, spatiotemporal map generation, and
differentially expressed gene extraction.We alsowant to highlight that
COSMOS can be extended to analyze three or more spatially resolved
omics data when these data are available in the near future.

We applied COSMOS to analyze single-cell level omics data
throughout the manuscript, as most available spatially resolved multi-
omics datasets are at this resolution. Consequently, we did not apply
COSMOS to spot-level multi-omics data. However, we believe that
COSMOS could be adapted to process spot-level data when combined
with appropriate deconvolution methods.

COSMOS was designed to integrate spatially resolved multi-
omics datasets by extracting informative features from both omics.
It performs best when these two omics contain distinct features that
are complementary to each other, as showcased in the non-spatial
single-cell multi-omics integration by the WNN algorithm13. As a
GCN-based method, COSMOS constructs a graph based on the
spatial positions of cells and assumes local spatial dependency
among cells of the same type. This assumption is valid for the two
simulated datasets and three real datasets discussed in the manu-
script. However, in cases where cells of different types are spatially
mixed, such as cells in the Slide-Tag human melanoma RNA-ATAC
multi-omics data9, this spatial dependency assumption may not
hold. Consequently, COSMOS may not outperform non-spatial
integration algorithms like WNN in distinguishing cell types in
such scenarios (Fig. S3). Therefore, COSMOS is more advantageous
when applied to spatial profiling datasets with complementary omic
features and clear local spatial dependencies among cells. With the
rapid development of spatially resolved profiling technologies, we
anticipate that COSMOS will demonstrate its capabilities to their
fullest extent as increasingly diverse and informative multi-omics
datasets are generated in the future.

Methods
Data preprocessing
We used two simulated and four real-world experimental datasets
based on spatially resolved multi-omics technologies. For the mouse
visual cortex STARmap data21, we used the “scanpy” Python package to
normalize the unique molecular identifier (UMI) counts so that each
cell or spot has a total count equal to the median of total counts per
cell, then we transformed them to a natural log scale. For mouse
olfactory bulb Stereo-Seq data23, we first did the filtering by selecting
genes that are expressed in more than three cells and selecting cells
that contain more than 100 genes with non-zero expression, then we
did the normalization and log-transformation as we did for mouse
visual cortex data. For the ATAC-RNA-seq mouse brain multi-omics
data7 and slide-tags human melanoma RNA-ATAC multi-omics data9,
we followed the preprocessing protocols used by the original authors.
For the DBiT-seq mouse embryo brain RNA-Protein multi-omics data1

and spatial-CITE-seq human tonsil RNA-Protein multi-omics data4, we
followed the preprocessing in Tian et al.18.

Data annotations
The annotations for the first three datasets are generated by manually
marking the anatomical regions. The anatomical references of mouse
visual cortex STARmap data andmouse olfactory bulb Stereo-Seq data
are obtained from original papers. The reference of mouse brain
ATAC-RNA data is obtained from a P56 mouse brain coronal section
from AllenMouse Brain Atlas (Allen Institute for Brain Science: https://
mouse.brain-map.org/static/atlas). The annotations of these datasets
were provided in Supplementary Data 1-3. The full names of the
abbreviations of brain regions are: hippocampus (HPC), corpus callo-
sum (CC), layer 1 (L1), layer 2/3 (L2/3), layer 4 (L4), layer 5 (L5), and layer
6 (L6); nucleus accumbens (ACB), caudoputamen (CP), lateral ventricle
(VL), genu of corpus callosum (ccg), anterior commissure olfactory
limb (aco); rostral migratory stream (RMS), granule cell layer (GCL),
internal plexiform layer (IPL); mitral cell layer (MCL), external plexi-
form layer (EPL), glomerular layer (GL), olfactory nerve layer (ONL).

Simulated spatially resolved multi-omics data
Current simulation algorithms for spatially resolved data, such as
scDesign324 serve as powerful tools to simulate different kinds of
single-cell omics datasets that well preserve the characteristics of the
original test datasets. However, we found two challenges in applying
scDesign3 to achieve the goal of our simulation. First, scDesign3 has
been shown to effectively simulate both single-cell multi-omics and
spatially resolved transcriptomics datasets. However, whenwe applied
scDesign3 to simulate spatially resolved ATAC datasets and paired
spatial single-cell multi-omics datasets, such as spatial RNA and spatial
ATAC, which are the focus of our analysis in this manuscript, we found
that scDesign3 is not compatible with these types of datasets. Second,
scDesign3 was designed to preserve the gene and cell-specific char-
acteristics. However, the aim of our simulation is to generate a paired
multi-omics dataset in which the two omics have non-overlapping
features that are complementary to each other, allowing us to
demonstrate the unique strengths of COSMOS in ‘cooperative’ inte-
gration. We found that scDesign3 was not designed to simulate data
with such a specific feature. Thus, we generated simulated spatially
resolvedmulti-omics data from single transcriptomics. The simulation
contains two steps. First, we selected two different sets of regions with
some overlapping and shuffled the gene expressions of the cells in
each set of regions separately. In mouse visual cortex STARmap data,
we shuffled the gene expressions of cells in L4/L5 and L5/L6 separately.
In mouse olfactory bulb Stereo-Seq data, we shuffled the cells in MCL/
EPL and EPL/GL. This step is to simulate two complementary sets of
Omics that cannot separate certain regions on their own, but can
separate all these regions in the integration of the two omics by
extracting informative features from each of them. Second, we added
Gaussian noise to the expressions of each of the shuffled data. This
step is to simulate the noise in the two omics. The new expression
values X0

ij were generated by:

X0
ij = Xij � 1 + εð Þ, ε � N 0, 0:0025ð Þ ð1Þ

Where Xij is the gene expression of cell i and gene j in each omics after
shuffling, ε is a value denoting noise taken from the Gaussian dis-
tribution of N(0,0.0025).

There is a limitation in our simulationmethod as it relies solely on
gene expression profiles. Nonetheless, this approach effectively tests
COSMOS’s ability to perform cooperative integration by evaluating
how well it extracts and utilizes complementary features from two
omics datasets, thereby achieving better clustering results compared
to analyzing each omics dataset individually.
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COSMOS model
The general framework is a two-channel Deep Graph Infomax (DGI)
with a spatial regularization. The DGI model was first proposed to
perform unsupervised node classification for graph-structured data20.
When applied to spatially resolved transcriptomics data, DGI has the
advantages of capturing both the expression patterns and the neigh-
borhoodmicro-environment of cells, as well as global patterns such as
the pseudo-time. Specifically, the input data is an expressionmatrix of
cells X= ðx1, x2 , . . . , xN Þ and a spatial adjacency matrix A 2 RN ×N ,
whereN is the number of cells, xi is the expression vector of cell i,Aij is
equal to 1 if there is an edge between cell i and j and otherwise 0. The
adjacency matrix is calculated by k-nearest neighbor algorithm. A
graph can be constructed by treating the expression profiles of the
cells as nodes and the adjacency matrix as edges.

The DGI generates an encoder ε X,Að Þ=H= h1,h2 , ,hN

� �
which

represents node embeddings for the cells. The encoder reduces the
high dimensional input data to be a representation with fixed low
dimension (D = 50), enabling the integration of multi-omics data with
significant dimensional differences. A node embedding hi summarizes
a patch of graph that centers around a node which captures the
neighborhood information of the node. The encoder is learned by
maximizing the local mutual information, i.e. generating local node
representations that bestmaintain the global information of the entire
graph represented by a summary vector s. A discriminator is defined to
quantify the local mutual information:

D hi, s
� �

=Sigmoid hT
i Ms

� �
ð2Þ

Where M denotes learnable weights, s is a summary of all the node
embeddings obtained by a readout function s =RðHÞ. We simply
average all the node features to get s. A negative discriminator is
defined by paring the summary vector swith a corrupted graph ðeX, eAÞ
obtained by randomly permuting the nodes. In permutation, X is
shuffled while the adjacent matrix A remains the same: eA=A. Direct
shuffling for negative pairs generation offers simplicity and pre-
serves overall data characteristics, but it may be less effective for
highly structured data with clearly separated cell types. In our ana-
lysis, all five spatially resolved datasets displayed cell types in a
continuous manner with minimal separation (e.g., Figs. 2d, i; 3e),
making the current shuffling strategy effective for the DGI model. In
future work, we plan to explore more sophisticated sampling stra-
tegies to enhance COSMOS’s adaptability to diverse datasets, such as
adversarial approaches or cluster-based methods to generate
negative pairs.

DGI employs a contrastive strategy by maximizing the following
objective function:

LDGI =
1
2N

XN
i = 1

EðX,AÞ logDðhi, sÞ
� �

+
XN
j = 1

Eð~X ,AÞ log 1�Dð ~hJ , sÞ
� �h i !

ð3Þ

Where hi is the embedding node of the graph of input data, ~hJ is the
embedding node of the corrupted graph. This contrastive strategy
does not calculate the contrastive loss directly from pairs of positive
and negative samples. Instead, it pairs the embeddings of positive and
negative samples with a single global summary vector s. The summary
vector s is computed as sigmoid of the mean of all positive sample
embeddings. Consequently, the contrastive learning in DGI is much
less computationally intensive with a computational complexity of
O(N) rather than O(N2).

While GCNs in many other works primarily focus on local
neighborhood aggregation within the spatial graph, DGI goes a
step further by capturing global information using local node

representations. This approach enables the GCN encoder to inte-
grate globally relevant data across the entire tissue, resulting in
richer and more comprehensive node embeddings that reflect both
local and global graph structures. Consequently, DGI enhances the
overall performance and robustness of our model compared to tra-
ditional GCN methods.

Because the real-world spatially resolved multi-omics experi-
mental data we studied have been focusing on two paired omics that
could extract two sets of omics information from the same cells, we
adapted the traditional DGI model to a two-channel model, which
takes the input of two paired omics data with shared spatial positions
through two encoders ε1 X1,A

� �
and ε2 X2 ,A

� �
, where X1,X2 are the

expression profiles of two omics, A is the shared spatial adjacency
matrix. The node embeddings of the two graphs h1

i ,h
2
i are integrated

by the Weighted Nearest Neighbor (WNN) algorithm13:

hint
i =w1

ih
1
i +w

2
i h

2
i ð4Þ

Where w1
i , w

2
i represent WNN weights for each cell i in the two omics.

The WNN weights are calculated by applying WNN algorithm to node
embeddings of the two omics:

ðw1,w2Þ=WNN H1,H2
� �

=
er1, 2 ið Þ

er1, 2 ið Þ + er2, 1 ið Þ ,
er2, 1 ið Þ

er1, 2 ið Þ + er2, 1 ið Þ

� 	
ð5Þ

Where r1, 2ðiÞ is pairwise affinity ratio between omics 1 and 2 on cell i.
The pairwise affinity ratio is calculated by defining the within and
cross-modality affinities between within and cross-modality predi-
cated and actual embedding values for each node. See the details of
WNN weights calculation in Hao et al.13. The approach that uses a
weighted sum to achieve integration may exacerbate the noise effects
that exist in each modality. However, the modality weights used here
are determined by the WNN algorithm, which calculates the contribu-
tions of cells in each modality to the predictability of expression
profiles of the cells. Thus, the weights are related to the noise in the
modality. For example, if a group of cells has a high level of noise in
RNAmodality, the RNAmodality weights of these cells would be small,
and the RNA profiles of these cells would have limited contributions to
the integrated embedding. Therefore, the calculation of weights by
WNN helps to mitigate modality-specific noise during the integration
process. We plan to explore the incorporation of noise-robust fusion
methods, such as the Kalman Filter, to further enhance the integration
process of COSMOS in future work.

The integrated embedding nodes from corrupted graphs are
calculated with the same WNN weights:

ghint
i =w1

i
eh1
i +w

2
i
fh2
i

ð6Þ

Where eh1
i ,
fh2
i represent node embeddings of corrupted graphs for the

two omics. The same contrastive strategy in Eq. (3) is applied to the
integrated node embeddings which gives the objective function of the
two-channel DGI model:

Lint
DGI =

1
2N

XN
i = 1

EðX,AÞ logDðhint
i , sÞ

h i
+
XN
j = 1

Eð~X,AÞ log 1�Dð ~hint
j , sÞ

� �h i !
ð7Þ

Where hint
i is the integrated embedding node of the two graphs cal-

culated by Eq. (4),
~

hint
j is the integrated embedding node of the two

corrupted graphs calculated by Eq. (6). To enforce the spatial con-
sistency of the embeddings, we added a spatial regularization term to
the objective function to make the closeness of embedding points
similar as the spatial proximity of cells. The final objective function can
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be expressed as:

Ltotal =L
int
DGI +α �

XN
i = 1

XN
j = 1

Ds
i, jð1� De

i, jÞ
N2 ð8Þ

Where Ds
i, j is the spatial distance between cell i and j, De

i, j is the
embedding distance between cell i and j in the embedding space. α is
the parameter to control the spatial regularization strength.

COSMOS shares a similar structurewith SpatialGlue, but there are
two key differences in how the GCN model and omics integration are
implemented in these methods. First, when learning each omic, Spa-
tialGlue implemented a GCN-encoder for spatial adjacency graph and
feature graph separately to generate two node representations. The
feature graph was constructed by simply applying KNN (K = 20) on the
PCA embeddings which only involves local information. In contrast,
COSMOS used DGI to obtain node representations that capture the
global patterns in the whole graph. Thus, COSMOS ismore effective in
integrating global spatial information and better preserves the global
spatiotemporal patterns of the spatial omics data (Figs. 2e,j; 3f). Sec-
ond, SpatialGlue uses attention coefficients to weigh the two graph-
specific node representations before integrating them into a final node
representation. This approach introduces additional trainableweights,
increasing the complexity of the weight space and making the model
more susceptible to noise, as reflected in the noisy domain segmen-
tation results of SpatialGlue in Figs. 3c and 4e. In contrast, COSMOS
employs the widely used Weighted Nearest Neighbor (WNN) method
to calculate the weights of each omics. The WNN weight calculation is
independent of the DGI training, which simplifies the model and
enhances its stability.

Training of COSMOS
The WNN weights are computationally slow to calculate and are
independent of the parameters of the two-channel DGI model. For
stability and efficiency of the training, we did not calculate WNN
weights at every iteration, but fixed theWNNweights first and updated
them one time after a given number of iterations (“wnn_epoch”) or the
maximal number of patience (“max_patience_bef”) is reached. The
patience is defined as the accumulated number of iterations that have
larger loss than the most recent minimal loss. After the calculation of
WNN weights, we reset the patience to 0 and fixed WNN weights until
the number of iterations reaches “total_epoch” or the number of new
patience reaches “max_patience_aft”. The training procedures of
COSMOS are summarized below:
1. Setting all the WNN weights of both omics to be 0.5.
2. Training themodel bymaximizing the objective function in Eq. (8)

with fixed WNN weights which were set in step 1.
3. CalculatingWNNweights by Eq. (5) when the number of iterations

reaches “wnn_epoch” or the number of patience reaches “max_-
patience_bef”, then resetting the patience to be 0.

4. Training themodel bymaximizing the objective function in Eq. (8)
with fixed WNN weights which were updated in step 3, until the
number of iterations reaches “total_epoch” or the number of new
patience reaches “max_patience_aft”.

Parameters of COSMOS
One of the key parameters in COSMOS is the spatial regularization
strength α, which controls the alignment between embedding dis-
tances and spatial distances. This regularization helps preserve thefine
spatial structure of certain cell types. For instance, some cell types
cannot be effectively separated when α =0, such as RMS cells in the
simulated Stereo-Seq mouse olfactory bulb data (Fig. S4b), the C2
cluster in the DBiT-seq mouse embryo brain RNA-Protein data
(Fig. S5a), and the C6 cluster in the spatial-CITE-seq human tonsil RNA-
Protein data (Fig. S5b). However, excessive regularization can reduce
the effectiveness of omics expression profiles. For example, the

Adjusted Rand Index (ARI) significantly decreases when α exceeds 0.1
in the STARMap mouse visual cortex data (Fig. S4a), the simulated
Stereo-Seq mouse olfactory bulb data (Fig. S4b), and the ATAC-RNA-
seq mouse brain multi-omics data (Fig. S4c). Based on our analysis of
these five datasets, we recommend setting α within the range of [0,
0.1]. The specific α values used for generating the figures in these
datasets are listed in Supplementary Data 4.

Another parameter influencing the embedding result is ‘max_-
patience_bef’ (denoted as ‘P’ in the figures), which controls the
timing of performing WNN. If this parameter is too small, it may
result in insufficient training of the DGI model before performing
WNN. Conversely, if it is too large, it can lead to model overfitting
and sub-optimal results. As the number of iterations increases, the
modality weights for clusters from the two modalities converge to
stable values (Fig. S6d-f, j-l). We found that an intermediate value for
‘max_patience_bef’ (P = 10, Fig. S6b, h) provides better results com-
pared to both smaller (P = 1, Fig. S6a, g) and larger values (P = 50,
Fig. S6c, i). For example, with P = 50, more sub-clusters appear in the
CP and ACB regions in the ATAC-RNA-seq mouse brain multi-omics
data (Fig. S6c), and the C1 cluster (defined in Fig. 4h) cannot be
distinguished from neighboring regions in the DBiT-seq mouse
embryo brain RNA-Protein data (Fig. S6i). Based on the analysis of
five datasets, we recommend setting ‘max_patience_bef’ within the
range of [5, 30]. When we observed a slow decrease in loss during
initial iterations, as seen in the spatial-CITE-seq human tonsil RNA-
Protein and slide-tags human melanoma RNA-ATAC multi-omics
data, we set ‘max_patience_bef’ to be 20. The parameters used for
generating the figures in these datasets are listed in Supplemen-
tary Data 4.

Some other parameters were set to be the same throughout the
analyses: the optimizer for training the DGI is “Adam” with a default
learning rate set as lr = 0.001, themaximal number of iterations before
running WNN is set as wnn_epoch = 500, the maximal number of total
epochs is set as total_epoch = 1000. The early stopping strategy was
used to avoid overfitting. The minimal number of epochs before early
stopping is set as min_stop = 200, and the patience for the loss after
WNN is set as max_patience_aft = 30. We fixed the random seed to be
20 for reproducibility in the COSMOS results.

Computational cost of the model
The computational cost of the model consists of two parts: the two-
channel DGI training and the WNN computation. For the two-channel
DGI training, the contrastive strategy in DGI (Eq. (3)) has a computa-
tional complexity of OðNÞ, and the cost largely depends on the calcu-
lation of spatial regularization loss in Eq. (8). The pairwise embedding
distances calculation has a computational complexity of OðN2Þ, where
N is the number of cells.However, weonly computed the distances of a
random fixed number of cell pairs when N is larger than 5000, which
reduces the quadratic cost to constant. We fixed the number of cell
pairs at 1,000,000, which is significantly smaller than the full set of
edges for over 5000 cells. However, this number is sufficiently large to
approximate the results obtained with the full set, as demonstrated in
the ATAC-RNA-seq mouse brain multi-omics data with 9215 cells
(Fig. S7). For the WNN computation, the computational complexity is
OðN2Þ, but it’s a one-time calculation and thus feasible for large data-
sets. Thus, the total computational complexity of COSMOS for a large
dataset is Ο(N). The COSMOS training function, executed on the Tesla
V100-SXM2-32GB GPU equipped with 5120 CUDA cores and 32 GB of
memory, took 24 seconds for the mouse visual cortex dataset con-
taining 1207 cells and 230 seconds for the mouse olfactory bulb
dataset containing 18,196 cells.

Domain segmentation
After integration of the paired omics in each dataset, we performed
clustering for the integrated embeddings of ATAC-RNA-seq mouse

Article https://doi.org/10.1038/s41467-024-55204-y

Nature Communications |           (2025) 16:27 8

www.nature.com/naturecommunications


brain multi-omics data by “louvain” and all other data by “leiden” with
“scanpy” python package.

UMAP analysis
We performed umap analysis by using “umap-learn” python package.
Themetric is set as default, the min_dist is set as 0.3, the n_neighbor is
set as 30.

Pseudo-spatiotemporal map generation
The pseudo-spatiotemporal map (pSM) is generated by running
diffusion pseudotime (DPT) algorithm by “scanpy” python package
with default parameters. We manually set the root cell to be the
first cell of a given cell type. The cell type selected to define root is
“HPC” in STARmap Stereo-Seq mouse visual cortex data, “RMS” in
mouse olfactory bulb data, “CP2” in ATAC-RNA-seq P22 mouse
brain data.

Pseudo-time associated genes
For each gene, we calculated the Pearson correlation coefficient
between the gene expressions across cells and the pSM values (by
COSMOS) of the cells. The significantly correlated genes with P < 1e-10
were selected as pseudo-time-associated genes.

GOBP analysis for pseudo-time-associated genes
We used Gene Set Enrichment Analysis (GSEA) (https://www.gsea-
msigdb.org/gsea/index.jsp) to perform the Gene Oncology Biological
Process (GOBP) analysis for the pseudo-time associated genes. The
positively and negatively associated genes were analyzed separately.

Statistics & reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Algorithms availability
We used the default parameters in SpatialGlue, CellCharter and Spa-
MultiVAE from the original scripts. The parameters in SpaceFlow and
WNN can be found in Supplementary Data 4.

SpaceFlow: https://github.com/hongleir/SpaceFlow
WNN: https://github.com/dylkot/pyWNN
SpatialGlue: https://github.com/JinmiaoChenLab/SpatialGlue
CellCharter: https://github.com/CSOgroup/cellcharter
SpaMultiVAE: https://github.com/ttgump/spaVAE

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study can be obtained in raw
from the original publications. STARmap mouse visual cortex tran-
scriptomics data is available at the Dropbox (https://www.dropbox.
com/sh/f7ebheru1lbz91s/AADm6D54GSEFXB1feRy6OSASa/visual_
1020/20180505_BY3_1kgenes?dl=0&subfolder_nav_tracking=1).
Stereo-Seq mouse olfactory bulb transcriptomics is available at the
github page (https://github.com/JinmiaoChenLab/SEDR_analyses/
tree/master/data). The ATAC-RNA-seq mouse brain multi-omics data
is available at UCSC Cell Browser (https://brain-spatial-omics.cells.
ucsc.edu). The DBiT-seq mouse embryo brain RNA-Protein multi-
omics data is available at figshare database (https://figshare.com/
articles/dataset/Spatial_genomics_datasets/21623148/5). The Spatial-
CITE-seq human tonsil RNA-Protein multi-omics data is available at
figshare database (https://figshare.com/articles/dataset/Spatial_
genomics_datasets/21623148/5). The Slide-tags human melanoma

RNA-ATAC multi-omics data is available at Broad Institute Database
(https://singlecell.broadinstitute.org/single_cell/study/SCP2176/slide-
tags-multiomic-snrna-seq-snatac-seq-on-human-melanoma#/). The
processed data is available at Zenodo (https://zenodo.org/records/
13932144). Source data are provided with this paper.

Code availability
The tutorial for implementing COSMOS to analyze spatially resolved
paired multi-omics data is available at: https://github.com/Lin-Xu-lab/
COSMOS.git and https://cosmos-tutorials.readthedocs.io/en/latest/
index.html. It is also deposited at Zenodo dataset “14114770”. The
GitHub repository was linked to Zenodo with the https://doi.org/10.
5281/zenodo.1411477025.
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