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Liver cancer multiomics reveals diverse
protein kinase A disruptions convergently
produce fibrolamellar hepatocellular
carcinoma

David Requena 1, Jack A. Medico 1, Luis F. Soto-Ugaldi 1, Mahsa Shirani1,
James A. Saltsman III1, Michael S. Torbenson2, Philip Coffino1 &
Sanford M. Simon 1

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer char-
acterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the cata-
lytic subunit of protein kinase A (PKA). A few FLC-like tumors have been
reported showing other alterations involving PKA. To better understand FLC
pathogenesis and the relationships among FLC, FLC-like, and other liver
tumors, we performed a massive multi-omics analysis. RNA-seq data of 1412
liver tumors from FLC, hepatocellular carcinoma, hepatoblastoma and intra-
hepatic cholangiocarcinoma are analyzed, obtaining transcriptomic sig-
natures unrestricted by experimental processing methods. These signatures
reveal which dysregulations are unique to specific tumors and which are
common to all liver cancers. Moreover, the transcriptomic FLC signature
identifies a unifying phenotype for all FLC tumors regardless of how PKA was
activated. We study this signature at multi-omics and single-cell levels in the
first spatial transcriptomic characterization of FLC, identifying the contribu-
tion of tumor, normal, stromal, and infiltrating immune cells. Additionally, we
study FLC metastases, finding small differences from the primary tumors.

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver
cancer1,2 that occurs in patients without a history of viral hepatitis,
cirrhosis, or other known risk factors3–5. FLC presents with non-
specific and vague symptoms2,6–8, and there are no serum bio-
markers. The diagnosis of FLC, even from pathology slides, can be
problematic9, contributing to misdiagnosis and underdiagnosis10,11.
Thus, FLC has frequently metastasized by the time of diagnosis,
which is lethal7,12,13. FLC is classified as a subtype of Hepatocellular
Carcinoma (HCC)14. However, the transcriptome and proteome of
FLC tumors are distinct from those of adjacent non-transformed
(called “normal”) tissue and of HCC15,16. Characterizing the mole-
cular changes occurring in FLC tumors and the different cell types

included in surgical samples could provide markers for diagnosis,
prognosis, and therapeutic interventions10.

In FLC17, a heterozygous deletion of ~ 400Kb in chromosome
19p13.12 connects exon 1 of DNAJB1 with the exons 2–10 of PRKACA
(the catalytic subunit of Protein Kinase A)18,19. Producing this
deletion20,21, or just expression of the DNAJB1::PRKACA transcript20, is
sufficient to create the tumor in mouse liver or human hepatocytes,
and elimination of the fusion transcript is sufficient to kill the
tumor22,23. No other recurrent mutations have been observed in FLC17.
These results demonstrate that FLC is the result of a somaticmutation.
It is not genetically inherited, and FLC is both triggered by and driven
by the DNAJB1::PRKACA fusion.
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There arenumerous unresolvedquestions:What are the pathways
of pathogenesis; what is the relation between primary and metastatic
tumors; what are the contributions of DNAmethylation; how similar or
different is FLC from other liver tumors, especially those considered
FLC-like? Interestingly, tumors with FLC-like histopathology have been
reported in patients missing expression of PRKAR1A (an inhibitory
regulatory subunit of PKA)24, or with alternate fusions between ATP1B1
and a catalytic subunit of PKA25. Moreover, fibrotic tumors with his-
tological features of bothHCC and FLC have been observed in patients
withmutations inactivating BAP1, with a chromosomal gain of PRKACA
or loss of PRKAR2A (another inhibitory regulatory subunit)26.

The clean genetic background of FLC facilitates addressing these
questions. Determining a transcriptomic signature for a disease has
been useful for its diagnosis prognosis, gaining mechanistic insights
for understanding pathogenesis or developing new treatments, clas-
sifying tumors and identifying cancer subtypes27, studying tumor
evolution andmetastasis, and validating biological diseasemodels28–30.
Previous RNA-seq studies of FLC15,26,31–33 analyzed small datasets, had
multiple limitations, and yielded inconclusive characterization of FLC
tumors.

Here, we sequenced the whole transcriptome of 127 FLC and 2
FLC-like frozen tissue samples and reprocessed 73 FLC and 18 FLC-like
samples from external datasets26,31–35, making a total of 220 samples.
We generated a transcriptomic FLC signature and studied it through
multiomics. We distinguished which dysregulations are present in
tumor, stromal, immune infiltrating cells, or normalhepatocytes, using
single-cell spatial transcriptomics. The signature helped elucidate FLC
pathogenesis and demonstrated that FLC and FLC-like tumors with
diverse dysregulations of PKA are a single disease with a common

transcriptome, rather than a collection of diverse diseases with similar
pathologic features. Moreover, primary tumors and metastases were
found to be highly similar, with differential expression of only 0.6% of
transcripts. This opens directions for understanding tumor prolifera-
tion, maintenance, and immune evasion. The transcriptomic signature
is valuable for interrogating and classifying potential FLC samples
fromdifferent experiments and laboratories, and for validating in vitro
(organoids29) and in vivo (PDX30) models. In addition, through analysis
of 1192 tumor and normal samples of HCC, hepatoblastoma (HBL), and
intrahepatic cholangiocarcinoma (iCCA), we determined their tran-
scriptomic signatures and studied the commonalities and differences
between these and FLC (Fig. 1).

Results
Finding the transcriptomic signature of FLC
We analyzed 73 samples from 7 independent studies15,26,31–35 (Sup-
plementary Data 1) and found little overlap among them in the
differentially expressed genes in FLC tumors compared to paired
normal samples (Supplementary Fig. 1). This low consistency may
be the result of FLC being a mixture of different diseases, the con-
sequence of analytical problems, or ambiguity in determining what
is FLC. The initial studies relied on histopathology to diagnose FLC,
which has low reproducibility9. Since FLC is rare, some studies were
limited to small datasets without paired tumors and normal or used
surrogate normal samples36. In addition, some studies used older
methods and software for quantifying gene expression, which can
distort or even reverse dysregulation trends37, or inappropriate
integration of different batches, which may lead to underpowered
and biased results38.

Fig. 1 | Schematic representation of the samples studied. This includes 1412
RNA-seq samples (FLC: 220, iCCA: 139, HBL: 148, HCC: 905. Some of these FLC
samples were also studied through whole-genome and whole-exome sequencing
(n = 39), targeted bisulfite methylation sequencing (n = 31), proteome sequencing

(n = 15), and spatial single-cell transcriptomics (n = 6). We also developed FLC
models, including 15 different PDX, 18 genetically engineered mice, 27 organoids,
and primary human hepatocytes expressing the chimeras DNAJB1::PRKACA and
ATP1B1∷PRKACA.
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To address these issues, we restricted our focus to samples that
were validated to be FLC with a molecular test, then did RNA-seq with
state-of-the-art analysis tools to generate an “FLC signature”. This
signature was next refined on independent libraries, and then tested
on the samples from the external independent studies.

We performed RNA-seq of 6 libraries, comprising 127 patient
samples of freshly frozen FLC tumors and normal tissue samples from
the Fibrolamellar Tissue Repository at Rockefeller University (Sup-
plementary Data 2). To confirm that the samples were FLC, we tested
for reads mapping to both the first exon of DNAJB1 and the second
exon of PRKACA, demonstrative of the DNAJB1::PRKACA fusion. Of
these 127 FLC samples, we selected 81 matched tumor and normal
samples from 5 libraries to calculate a transcriptomic FLC signature.
These libraries were distributed into exploration and refinement
datasets (see details in the “Methods”). For exploration, we selected
the three largest libraries (RU-A, -B, and -C, with 67 matched tumor-
normal samples). Unsupervised clustering showed a separation
between tumor and normal samples but a strong batch effect among
libraries (Supplementary Fig. 2). Batch effects can result from many
factors, including different RNA extraction, library preparation or
ribosomal depletion methods, or sequencing machines38. The batch
effect in libraries RU-A, -B, and -C was not fully mitigated by adding a
variable representing the experimental processing group or using
batch effect removal tools39,40. Therefore, each library was analyzed
independently, obtaining genes differentially expressed between FLC
tumors versus normal tissue (Fig. 2A). Their intersection was filtered
following detectability, consistency, and refinement filters (using 14
matched tumor and normal samples from libraries RU-D and -E). This
resulted in a collection of 287 up- and 406 down-regulated genes,
which we named the “transcriptomic FLC signature” (Fig. 2B and
Supplementary Data 3).

As a validation test, we checked the dysregulation trend of each of
these 693 genes in the FLC signature against FLC transcriptomes from
independent external studies. The sampleswere processed aswere the
samples we sequenced, excluding samples with reads that bridged the
fusion ofDNAJB1::PRKACA in the “normal” samples, or thatdid nothave
such reads in the “tumor”. We selected 3 studies with 28 matching
tumor and normal samples32,33,35. Remarkably, all the dysregulation
trends observed in the FLC signature were confirmed in these external
samples (Fig. 2C). Further, with the transcriptomic FLC signature,
unsupervised clustering cleanly distinguished tumor and normal
(Fig. 3B, UMAP with HDBSCAN), with no signs of the batch effect
observed with the whole transcriptome (Fig. 3A). All the validated
DNAJB1::PRKACA FLC tumors, from different sequencing libraries and
laboratories, clustered together. A similar result is observed in a
heatmap (Supplementary Fig. 3). This consistency affirms the impor-
tance of using only samples validated by a molecular test and of
remapping all the data using a consistent set of modern tools. Further,
the result provides a tool that can give important insights into FLC.

The FLC signature is a useful diagnostic tool
One illustrative example of the utility of the signature is from the
analysis of a pair of tissue blocks from a patient which the surgery
hospital categorized as an FLC tumor and its adjacent normal sample.
However, RNA-seq of the normal, sequenced in library F (which was
not used to generate the FLC signature), clusteredwith the FLC tumors
(Fig. 3B, light blue square with a black arrowhead). We extracted RNA
of this presumptively normal sample and, with RT-PCR detected the
chimeric DNAJB1::PRKACA. In parallel, the sample was analyzed as part
of a deidentified collection of 300 histopathology slides by a board-
certified pathologist (MST). The presumptive “normal” was deter-
mined to have not only normal regions (Fig. 3C) but also other regions
(Fig. 3D) that were indistinguishable from the FLC tumor (Fig. 3E).
Thus, the transcriptomic signature detected a mixed tumor-normal
sample wrongly curated as normal.

FLC is a single disease
There are tumors that do not express the DNAJB1::PRKACA but are
considered “FLC-like”, due to their histopathology. These are positive
for arginase, CK7, and CD-68 and display large eosinophilic cells with
abundant cytoplasm and prominent nucleoli, pale bodies in the cyto-
sol, and lamellar bands of fibrosis traversing the tumor3. As the histo-
pathological diagnosis of FLC has previously proven problematic9

(e.g., fibrous bands could be the consequence of inflammation of the
liver41), we used the FLC signature to examine the extent to which they
are “FLC-like” at the transcriptomic level.

One such tumor lacks detectable transcript and protein of the R1
regulatory subunit of PKA (PRKAR1A)24. The absence of R1 removes a
constraint on PKA activity. Using the transcriptomic FLC signature, we
found this sample clusters with the rest of the FLC tumors (in cyan,
Fig. 3 and Supplementary Fig. 3).

A second set of FLC-like tumors has been found in the ductal cells
of the liver and pancreas. These express either DNAJB1::PRKACA,
ATP1B1::PRKACA, or ATP1B1::PRKACB. When we analyzed a tumor
expressing ATP1B1::PRKACA25 in the cholangiocytes using the tran-
scriptomic FLC signature, it clustered with the FLC tumors (hepato-
cytes with DNAJB1::PRKACA) (in navy blue in Fig. 3 and Supplementary
Fig. 3). The ATP1B1::PRKACA and DNAJB1::PRKACA tumors have two
different driver mutations and occur in two different cell types, yet
share an increase of the catalytic subunit of protein kinase A, and
display a common transcription profile.

A third set of FLC-like liver tumors have mutations in the deubi-
quitinating enzyme BRCA1 Associated Protein 1 (BAP1) and increased
PKA activation26. However, the transcriptome of these does not cluster
with the FLC tumors (Fig. 3B). A few factors may contribute to these
differences. These patients are older (27–54 years old) than FLC
patients (11–30 years old). Alternatively, thismay be a different class of
tumor, because these samples have genomic alterations additional to
themutations affecting PKA subunits. Inactivation of BAP1 is present in
all these samples. This tumor suppressor gene42–44 has numerous
effects on the development of stem cell pluripotency and controls the
stability of different proteins45,46.

Small differences between the metastases and primary
tumors of FLC
Of the 54,289 transcripts assessed, 6.5% (n = 3506) had a statistically
significant (FDR <0.05) and detectable alteration in primary tumors
compared topaired normal adjacent tissue (1758over- and 1748under-
expressed genes). In contrast, only 0.6% (n = 310) present alterations
between metastases and primary tumors: 76 over and 113 under-
expressed (Supplementary Data 4). Progressive dysregulation trends
were observed comparing normal liver tissue (N) to primary (P) and
metastatic (M) tumors. Some genes showed increasing expression
(N < P <M, n = 14), while others showed the opposite pattern (N> P >
M, n = 54) (Fig. 4A). Three of these genesweredownregulated, not only
on average but in every patient studied: CYP3A4, APOF, and APOM.
Additionally, there were genes without statistically significant change
betweennormal andprimary tumors but showing a significant increase
(n = 52) or decrease (n = 45) in the metastases (Fig. 4B).

The transcriptomic FLC signature through different omics
The changes in the transcriptomic FLC signature were mostly
reflected at the protein level (R2 = 0.8, see Fig. 5A). We explored
upstream events (somatic genomic mutations or methylation
events) that could lead to the dysregulations apparent in the FLC
signature. Differential methylation analysis between 19 matching
tumor and normal samples resulted in 1607 CpG sites altered in 979
genes (diff: 15%, FDR < 0.05), including only 41 genes of the FLC
signature (see Fig. 5B and Supplemental Data 5). Notably, we found
hypermethylation of 22 genes of the Protocadherin family cluster
(PCDHGA1 to 8, PCDHGB1 to 5, PCDHA1 to 9). They are associated
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Fig. 2 | Finding the transcriptomic signature of FLC. A Differentially expressed
genes obtained by the library (FDR<0.05 and |log2(FC)| > 1). In (B) filters were
applied to the intersection of the exploration datasets to obtain the transcriptomic
FLC signature (287 up- and 406 down-regulated genes), as detailed in theMethods.
CValidationusing three external datasets. In these,we calculated the dysregulation
trendsof the FLC signaturegenes. In all cases, we confirmed that theymatchedwith
the trends obtained in panel (B). The libraries used correspond to the human tissue
samples sequenced in RU-A: Simon et al.15, RU-B and RU-C: this study, RU-D: Lalazar

et al.30, RU-E: Narayan et al.29. We used as validation three external datasets of
patients’ samples: Sorenson et al.32, Francisco et al.33 and the TCGA-LIHC study35. In
these datasets, we calculated the dysregulation trend of each of the genes in the
FLC signature. For all genes, we confirmed that these trends matched those
obtained in panel (B). The raw reads and normalized read counts for this figure are
deposited in their corresponding dbGAP, GEO, and EGA repositories, as detailed in
the data availability section. Access can be requested directly to these repositories
under their privacy and confidentiality terms.
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with cell adhesion and epigenetic silencing and have been pre-
viously reported in different cancers47,48. In addition, a few genomic
alterations in genes of the FLC signature were found, although they
have a low frequency among patients (see Fig. 5C).

We explored the association between PKA and transcription
factors (TFs) in the hTFtarget49 database on liver ChIP-seq data. We
found 445 genes of the transcriptomic FLC signature associated
with 59 TFs (see Supplementary Fig. 4A). No family was found pre-
dominant among these TFs, and no recurrent missense mutations
were identified in their DNA-binding domain or effector domains.
Some of them are related to many genes in the transcriptomic FLC
signature (CTCF: 273 genes, CREB1: 253, FOXA2: 246, GABPA: 226,
MAZ: 219, FOXA1: 193). After normalizing by each TF’s overall
number of targets and adjusting for multiple-hypothesis testing, we
found that seven TFs (NFIC, CEBPB, ARID3A, ZEB1, TCF12, HNF4G,
TEAD4) preferentially target the FLC signature (FDR < 0.05). In the
BioGrid50 data-base of protein-protein interactions, PRKACA is not
reported to interact directly with any of these TFs. However, two
were one interaction away: TEAD4 through RELA, and CEBPB
through HDAC1 (Supplementary Fig. 4B, C). Interestingly, HDAC1
exhibited the highest connectivity between the TFs and PRKACA.

Notably, a recent in vitro and in vivomassive drug screening showed
that HDAC inhibitors are among the most effective drugs against
FLC30. We also identified FOXA1 and FOXA2, which are down-
regulated in FLC and have been previously associated with migra-
tion and proliferation of HepG2 cells and HCC51,52.

Studying the cellular contribution to the transcriptomic FLC
signature
The FLC signature was derived from tumor resections, which are
composed of tumor cells, non-transformed hepatocytes, stellate cells,
reticular-endothelial cells, and immune cells. We used standard single-
cell and single-cell spatial transcriptomics to characterize the con-
tributions of thesedifferent cells to the FLC signature. Standard single-
cell transcriptomics, which requires treatment to dissociate single-cell
populations from tumor samples, showed a weak correlation (Pear-
son’s R = 0.18) with bulk transcriptomics. This could be the con-
sequence of the adverse effects of digesting the tissue or the loss of
specific cell populations depleted by sorting (see Fig. 6A). Therefore,
we turned to single-cell spatial transcriptomics, designing a panel
containing 56 over- and 56 under-expressed genes in FLC (see
“Methods”). The total gene counts from the single-cell spatial

Fig. 3 | Studying FLC-like samples using the FLC signature. Panels (A, B) Unsu-
pervised clustering using UMAP with HDBSCAN of FLC and FLC-like samples. We
analyzed the samples of Requena et al. (this study), and the samples deposited in
public databases from the studies of Francisco et al.33, Xu et al.31, Robinson et al.34,
Sorenson et al.32, Simon et al.15, Hirsch et al.26, and the TCGA-LIHC study35

(N = 185 samples). In the legend (upper right) the symbol “-” indicates that the
corresponding dataset does not have normal samples. A Plot using all the genes,
showing a strong batch effect. B Plot using only the genes of the FLC signature,
showing no batch effect. All the FLC tumors included have the fusion transcript
DNAJB1::PRKACA, but the FLC-like samples do not. Instead, they either have the
chimera ATP1B1::PRKACA, mutations in BAP1, or missing R1A activity (ΔR1A). Panels
(C–E) Histopathological assessment of a pair of samples from a patient, classified

by the hospital as a tumor and a normal sample. Surprisingly, the normal sample
clustered with the FLC tumors (in B, a light blue square with a black arrowhead
pointing to it). Blind pathological assessment with 300 additional de-identified
slides resulted in the identification of normal regions (panel C), but also other
regions with large eosinophilic cells and fibrous bands (panel D), characteristic of
FLC tumors. These regions look histologically like the paired tumor piece (panel E).
The scale bar for panels (C–E) is 100μM. The specific sample IDs are detailed in the
tables in SupplementaryData 1 and2.The raw reads andnormalized readcounts for
thisfigure are deposited in their corresponding dbGAP, GEO, and EGA repositories,
detailed in the data availability section. Access can be requested directly to these
repositories under their privacy and confidentiality terms.
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Fig. 4 | Transcriptomic alteration in FLC metastases. The transcriptome of
51 samples from 13 patients with concurrent resections of at least one Normal (N),
one Primary (P), and one metastatic (M) tumor samples were compared.
A Differentially expressed genes with progressive dysregulation (N< P <M: n = 14,
N > P >M, n = 54) from normal samples (N) to primary tumors (P) and metastases
(M) of FLC patient samples. B Box-scatter-violin plots of the normalized counts (in
log2 scale) of the top 39 genes with differential expression in metastases. The box
plot spans the Q1, Q2 (median, red line), and Q3 quartiles, with the whiskers

extending to 1.5 in the interquartile range. Theheatmap andviolin-box-scatter plots
were generated using all the FLC patients with triplets of Normal-Primary-
Metastastic samples. The specific sample IDs are detailed in the Supplementary
Data 2. The raw reads and normalized read counts for the samples in these figures
are deposited in their corresponding dbGAP, GEO, and EGA repositories (details in
the data availability section). Access can be requested directly to these repositories
under their privacy and confidentiality terms.
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transcriptomics of FLC tumors showed a much better correlation with
the quantification obtained by bulk RNA-seq (Pearson’s R = 0.86) than
the standard single-cell transcriptomics (Fig. 6A).

As spatial transcriptomics preserves histological features
(Fig. 6B, E), this allowedus tomap the signal to tumor, normal, stromal,
and immune cells. We thus identified a distinctive expression pattern
among these cell types, serving as cell type classifiers (Fig. 6C, D). This

led to two important observations. First, the transcriptional profile was
different in each of the cell types (Fig. 6C, F). Second, from patient to
patient and even in different samples of the same patient, there were
different proportions of each of these cell types (Fig. 6G). Thus, the
overall transcriptional profile will vary not only among patients but
betweendifferent samples of the samepatient and is dependent on the
relative distribution of cell types in the sample.
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Almost all the genes follow the same trend, comparing tumors to
normal tissue, in bulk RNA-seq and single cell spatial transcriptomics.
COL1A1 and COL11A1 deviated from this pattern. In bulk tran-
scriptomics, they were higher in tumors than normal, consistent with
the observation of high levels of collagen that form the fibrolamellar
bands. In contrast, in single-cell spatial transcriptomics, they were
higher in normal than tumor cells. However, they were many times
higher in the stromal cells of the tumor tissue (Col1A1 20x; Col11A1, 4x,
see Fig. 6D). Therefore, these two genes are upregulated at the bulk
tumor tissue level, because of the stromal cell content of the tumor
blocks.

In the panel for spatial transcriptomics, we included markers of T
cells (CD27,CD4,CD8A), B cells (CD19,CD40LG,TNFRSF8), stromal cells
(ICAM1, MCAM, VAM1, ACTA2), macrophages (CD1D, CD14, CD163),
neutrophils (ITGAM), and immune checkpoint blockade immunother-
apy PD-1/PD-L1 (PDCD1 and CD274) and CTLA4 (CTLA4 and CD86). We
observed a variable signal fromB-cell, T-CD8+, and neutrophilmarkers
among FLC tumors. However, there was a recurrent lower signal of
monocytes,macrophages, and T-CD4 + cells in FLC tumors. Consistent
with the low signal from immune cells in the tumors, the signal from
immunotherapy markers was overall low. However, CTLA4 had a
higher signal in tumors compared to normal samples. These observa-
tions agree with our bulk RNA-seq transcriptomics screening (Sup-
plementary Fig. 5).Moreover, the low immunogenicity observed inFLC
could explain the lack of success of immune checkpoint inhibitors53.

Using the transcriptomic signature to validate FLC models
The FLC transcriptomic signature was used to assess patient-derived
xenografts (PDX) that were made directly from surgical resections
without passage in plastic54. Using the transcriptomic FLC signature,
the PDX segregate close to their originating tumor samples, away from
the cluster of normal cells (Fig. 7A, B).

Moreover, we obtained a strong correlation (R2 = 0.95) between
the expression change (in log2 scale) of patient tumors relative to
normal tissue and the expression change in PDX relative to normal
tissue (Fig. 7C). This suggests that these PDX reflect characteristics of
their originating tumor, which is also supported by their histology and
drug profile54.

Revisiting the stemness of FLC
Many cancers have been proposed to have an origin in stem cells55.
Oikawa et al.54 reported eight stem/progenitor markers detected by
immunohistochemistry in FLC tumors, biliary tree cells, and in a tumor
line generated from ascites of an FLC patient passaged in plastic. The
authors screened for and did not detect six of these genes in normal
tissue (SOX9, SOX17, PDX1, POU5F1, SALL4, and SHH), concluding
thereby a stem cell origin of FLC, which they associated with biliary
tree cells by comparing their transcriptomes54. We analyzed 143 FLC
patient tumors and normal tissue samples fromdifferent studies along
with the RNA-seq samples from Oikawa et al.54 (4 tumor lines and 3
biliary tree stem cell samples). We observed in the patient tumor,
relative to normal, an increase in only 2 of 8 genes: POU5F1 and PDX1.
We found no change in 3 of 8 genes, SOX17, BMI, and SLC5A5 in the

patient tumor and a decrease of SOX9, SALL4, and SHH. Moreover, in a
previous mass spectrometric analysis, we found no statistical differ-
ence in the levels of these eight proteins in FLC tumors compared to
normal, as quantified by TMT and LFQ proteomics16. To determine
whether the discrepancy was the result of the specific biological
sample used by Oikawa, or instead by how we processed these sam-
ples, we inspected the expression of these 8 genes in the RNA-seq data
of Oikawa’s samples54. We found the reported increase in only three of
the eight genes: POU5F1, PDX1, and SOX9 (which is not increased in
patient samples). However, we found a substantial decrease of SOX17
and SALL4 and no change in SHH, SLC5A5, or BMI1 (Fig. 7D). We broa-
dened our examination for stemness signal using Gene Set Enrichment
Analysis (GSEA), screening gene sets of the Molecular Signatures
Database (MSigDB). The FLC whole transcriptome showed no statis-
tically significant enrichment in the gene sets “Stemness up”
(MSigDB: M9473, 189 genes)56, “Curated Stemness Markers”
(MSigDB: M30411, 21 genes)57, the “Liver Cancer Stem Cell Up”
(MSigDB: M16956, 47 genes)58, and the “Liver Development Up”
(MSigDB:M17163, 166 genes)59. Thus, evenwith a broader set of genes,
there was no sign of a “stemness” signature for FLC (see Supplemen-
tary Fig. S9 and Supplementary Data 8).

An increased expression of the aryl hydrocarbon receptor (AHR)
was also reported54, and the authors hypothesized a potential impact
of environmental factors from the plastic industries. However, we
found AHR to be decreased in FLC patient tumor samples relative to
normal in the transcriptome and unaltered in the proteome, indicating
that this is not a recurrent feature of FLC. The reported increased
expression in their tumor line may be a consequence of an adaptation
to grow in plastic. Moreover, when we analyzed Oikawa's data, we
could not observe the reported increase in AHR (Fig. 7D).

The transcriptomic signature of other liver cancers
We collected and reprocessed RNA-seq data of 1192 tumor and
normal samples of HCC, hepatoblastoma (HBL), and intrahepatic
cholangiocarcinoma (iCCA), from which we selected 858 matching
tumor and normal samples (Supplementary Data 6). Unsupervised
clustering using the whole transcriptome showed batch effect
(Supplementary Fig. 6). With application of the transcriptomic FLC
signature, a clear discrimination was observed between FLC and the
different liver tumors (see heatmap in Fig. 8 and Supplementary
Fig. 7). Some genes of the transcriptomic FLC signature are dysre-
gulated in the same direction (up or down) in other liver cancers,
whereas some other genes present a unique distinctive pattern
exclusive to FLC (Fig. 8).

We determined the transcriptomic signatures of HCC, iCCA, and
HBL (Supplementary Data 3, 7). Comparing them with FLC, we iden-
tified genes dysregulated in common in these four cancers: 1 up
(CDCA7) and 18downregulated. Also, therewere 198up- and 103down-
regulated genes exclusive to FLC (see Supplementary Fig. 8). Through
gene set enrichment analysis, we identified pathways enriched in these
four liver cancers (see Supplementary Fig. 9). Pathways enriched
across FLC, HCC, and iCCA sets included mitotic spindle assembly
hallmarks. HCC and iCCA showed enrichment in E2F targets and G2M

Fig. 5 | Multiomics of the FLC signature. A Fold Change (in log2 scale) of the genes
in the transcriptomic FLC signature and the differentially regulated proteins in
tumors versus normal samples16 (N= 238 genes). A positive correlation is observed
(R=0.73). B Differentially methylated genes in tumor versus normal samples in the
transcriptomic FLC signature (N=41 genes). Red: overexpressed, Blue: under-
expressed. In (A,B), the gray-shaded region indicates the range of possible values for
the linear regression fit with 95% confidence. C Circos plot representing the genes of
the transcriptomic FLC signature at different omic levels, from external to internal
circle: chromosome, transcriptome, proteome,methylome, and genome/exome. The
Log2(Fold Change) of FLC tumor versus normal samples at transcriptional level is
shown in a red (overexpressed) white (no change), and blue scale (underexpressed).

The log2(Fold Change) at the proteome level is presented in a yellow (down) to blue
(up) scale. The percentage of differentially hyper- and hypo-methylation in FLC
tumors versus normal samples in a yellow (down) to blue (up) scale. For the pro-
teome and methylome, white = undetected. The genomic variants detected in the
WGS/WES data of FLC tumors versus normal samples are represented as bars, where
the height represents the number of tumors mutated (from 0 to 10), and the
grayscale intensity represents the number of mutations. The raw reads and nor-
malized read counts of the transcriptome are deposited in dbGAP phs003643.
Access can be requested directly from dbGAP under their privacy and confidentiality
terms. The methylation data is provided in the Supplementary Data 5 in the present
article. The proteome data is from Supplementary Table 1, 2 of Levin et al.16.
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transcriptomics and bulk RNA-seq. B Tissue section imaged using MERFISH.
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RU26). D Top 3 differentially expressed genes among the 3 clusters identified in (C)
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Fig. 7 | Using the transcriptomic FLC signature to evaluate in vivo models
of FLC. UMAP plots of the PDX and the normal and tumor patient samples (N = 25)
presented by Lalazar et al.30, using (A) all the genes and (B) using only the genes of
the transcriptomic FLC signature. Each color represents a different patient, and the
shape indicates if the sample is normal (circle), patient tumor (square), or tumor
PDX (rhombus) tissue sample. The letter inside the square indicates if the sample is
a primary (P), recurrence (R), or metastatic (M) tumor. The number inside the
rhombus indicates the PDX passage number. C Comparison of the log2(fold
change) in FLC PDX relative to normal samples from patients (y-axis) and the
log2(fold change) in patient tumors relative to normal samples (x-axis), using only
the differentially expressed genes (FDR <0.05) in the FLC signature, obtaining a
high correlation (R2 = 0.95). D Revisiting the stemness of FLC. Violin plots (in yel-
low) of the log2 normalized gene counts of AHR and the stem/progenitor markers
screened byOikawa et al.54We analyzed RNA-seqdata of 143 FLC patient tumor and
normal tissue samples from different FLC studies15,26,31–35 (in variations of

green) and the tumor line and the biliary tree stem cells studied by Oikawa
(magenta). The color of the significance bar represents the variation of each of the
groups in theX-axis compared topatient normal samples (red:overexpressed, blue:
underexpressed), and the symbols on top represent if that variation was significant
(*: 0.01 < FDR ≤0.05, **: 0.001 < FDR ≤0.01, ***: 0.0001 < FDR ≤0.001, ****: FDR ≤

0.0001) or not (n.s.) in the Wald two-sided test performed by DESeq2. The box
plots (vertical rectangles in gray) span the Q1, Q2 (median, black line), and Q3
quartiles, with the whiskers extending to 1.5 in the interquartile range. We used all
the FLC RNA-seq data available: Requena et al. (this study), and the samples
deposited in public databases from the studies of Francisco et al.33, Xu et al.31,
Robinson et al.34, Sorenson et al.32, Simon et al.15, Hirsch et al.26 and the TCGA-LIHC
study. We included the tumor model data of Oikawa et al.54. Their accession
numbers are provided in the Data Availability section. Access can be requested
directly to dbGAP, GEO and EGA under their privacy and confidentiality terms.
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checkpoints. Significant enrichment of stemness-related markers was
found in HCC and iCCA, but not in FLC and HBL. We also identified
pathways enriched only in FLC but not in HBL, iCCA, or HCC. They
include positive enrichment in the proton-transporting ATPase com-
plex and GalNAc transferase activity, while negative enrichment in
fibroblast growth factor signaling (via PI-3K activated by FGFR4), pro-
tein acetylation and demethylation, RNA processing, cellular contact,

nuclear receptor binding (thyroid hormone) and lamin binding (Sup-
plementary Data 8).

Discussion
FLC is a powerful system for studying oncogenesis: It is driven by a
single genetic event, exhibits no other recurrent genomic
alterations17,18, and has a low mutational burden with a highly

Lnc−PLA2G4A−4
SNORA80B
SNORA26
RAMACL
ENSG00000279099
Lnc−STXBP6−2
ENSG00000278893
HAPLN1
ABCA12
NLGN1
PRAMEF14
KCNH5
ENSG00000249763
INSL4
PRAMEF8
DNAAF1
ARPP21
EYS
SCAT8
CYP19A1
UNC5D
LPAR3
C10orf90
LINC02398
NKX1−2
Lnc−LIFR−1
Lnc−BRD1−29
HAVCR1
PCDHGB2
PCDHGA8
PCDHGB1
FZD10
LOC100507403
DDIT4L
GAPLINC
EBF3
HOXD8
TRPC6
DGKI
PLPPR4
SCG2
ST6GALNAC5
CORIN
EDA2R
DKK2
IQCA1
NME5
ULBP3
MBOAT4
Lnc−IDNK−10
PHEX
FAM81A
RGS17
KCNQ3
FBXL21P
SLCO5A1
SLC26A7
LOC283194
FBXO39
Lnc−IDI2−4
STXBP5−AS1
SLC25A48
LINC00535
LINC02732
DYDC2
Lnc−RDH10−1
EGF
HHIPL2
ENSG00000277247
C1QTNF1−AS1
LINC01235
KCNJ6
Lnc−MRPL19−1
ARHGAP36
HCN1
GRM7
NEXMIF
CCDC169
ENSG00000287051
BDNF
SLCO1C1
Lnc−ARHGAP18−1
TARID
GOLGA2P11
GALNTL6
DLGAP1−AS3
FDCSP
LCAL1
CHRNA5
RMST
PART1
ERVMER34−1
Lnc−MMRN1−12
SPINK5
KCNK9
ENSG00000250612
REG1B
SMIM31
LINC02188
FAM83A
SLC26A9

KCNH7
LINC02840
Lnc−KCNMB4−1
MTUS2
Lnc−ATP6V1D−8
KCTD9P4
FGF14−IT1
COX6B1P4
ENSG00000254704
Lnc−COL4A1−2
SLITRK3
Lnc−HLX−5
LOC105369668
Lnc−PHF14−14
Lnc−RND3−4
CCDC196
LINC01625
Lnc−KY−8
NDST3
AMD1P4
Lnc−SCARB2−1
CAPN6
SLC5A1
SERTM2
Lnc−KRBOX1−1
GOLGA6A
Lnc−ID2−2
TPRG1−AS1
LINC02637
LOC124903387
ZYG11A
ENSG00000279026
ENSG00000280099
Lnc−SCN2A−6
CCDC158
ALMS1P1
JDP2−AS1
LOC100289495
KCNN2
IDO2
FCAMR
TCP10L
LINC01702
C3orf85
Lnc−GNAT3−1
CCND2P1
NBPF13P
GPM6A
COL25A1
NCKAP5
TMEM26
RNF165
MRO
ADRA1B
TPRG1
LRRC31
CNKSR2
LINC01428
PRR18
Lnc−LDAH−6
RNU1−70P
AADACP1

THY1
PODXL
PLVAP
CD34
ACKR3
PDGFA
COL15A1
TESC
SDCBP2
DCDC2
NEB
NT5C3A
MCU
BAG2
AGA
BBS2
SPIRE1
TC2N
PDE4D
PDE3A
PBX1
TNRC6C
GPRIN3
MECOM
GALNT7
STXBP4
USP54
OPHN1
SRGAP1
ETV1
ITGA2
GRAMD1B
KIF21B
ANKRD29
PLEKHH1
RHOF
CASTOR3
ZSCAN9
FBXL18
GJC1
PLXDC1
DIPK2B
OLFML2A
SLCO2A1
TMEM273
NQO1
IQGAP3
AURKA
ECT2
GOLGA2P7
IQCE
AACS
SPATS2
B3GNT5
PLEKHA8
GPD1L
OSBPL3
FLVCR1
LAMA3
SLC6A8
ITGA7
ZNF703

Lnc−NES−2
TRIM31
GNAZ
Lnc−EGLN1−1
LPL
DNAJC6
CDH13
EBF1
KIF26B
ADAM12
MN1
CASC15
TNFSF4
ZNF382
SLC35G2
CCDC113
TMEM144
RPGRIP1L
AP1S3
PPP1R3D
MKLN1−AS
VLDLR
PGAP4
KIAA1549
GNAL
GNG4
DKK4
KCNU1
CPLX2
TGM3
MRAP2
LNCAROD
GUCY2C
Lnc−PLA2G4A−19
H2BC11
H2AC11
ZNF385D
SPX
PDE7B−AS1
COCH
IGF2BP3
CDCA7
PBK
UBE2T
CENPL
PARPBP
STRIP2
CENPI
ORC1
KIF24
UCHL1
COL11A1
NTM
NRXN3
ARHGAP11B
ZFP69B
Lnc−ZFP69B−1
ELL3
OTUD7A
ESYT3
IL17D
LINC01426
BCYRN1
HACD1
PDGFRL
FHDC1
NOX4
CRACDL
DUXAP9
FLVCR1−DT
LINC00857
PKD1L2
PURPL

PAEP
CALCA
DIO2
PAK3
PCSK1
DNER
TMEM163
PDE1C
NOVA1
FAM167A
LSAMP
FA2H
CATSPERB
Lnc−TC2N−1
CDH17
VSIG1
SLC16A14
PDE10A
IRF4
CA12
LYPD1
CREB3L1
DUSP4
BDKRB2
MCTP2
GULP1
ARG2
FOXQ1
MUC13
AGR2
MUC5B

CFB
SELENOP
CP
C1R
C1S
APOA1
TTR
AHSG
C4BPA
ITIH3
GATM
MAT1A
ALDH2
ACSL1
HRG
SERPINF2
ITIH1
F2
PLG
KNG1
SERPINC1

CYP3A5
PLIN2
CYB5A
UGP2
SCP2
CAT
ST6GAL1
GLUD1
HABP2
CLDN1
A1CF
LPIN2
MYO1B
LINC00261
ADH6
SORD
ABAT
SERPINA6
ALAS1
ACAA1
PCK2
CD81
PTMS
SERPINA5
RARRES2
CYP27A1
H19
IGF2

DGAT2
KHK
SEC14L2
SARDH
HAAO
CYP2D6
A1BG
SLC38A3
SERPINA4
APOM
CYP3A7
SERPINA7
SERPINA11
PGLYRP2
CYP4A22
UPB1
SLC22A7
CYP3A4
ADH4
CYP2C8
ADH1C
FABP1
SULT2A1
SERPIND1
SLC2A2
AFM
F9
UGT2B10
UGT2B7
BHMT
CYP4A11
C8B
CFHR2
FMO3
C6
ALDH1L1
HPR
PIPOX
ACSM2B
ACSM2A

FCN2
CLEC4G
BMP10
CLEC1B
GDF2
BBOX1
GNAO1
LINC02428
ANGPTL6
PLGLA
LINC00844
ZG16
FOLH1B
LINC02754
CYP3A43
DSG1
CCL14
OIT3
DNASE1L3
CFP
VIPR1
PTH1R
MARCO
FCN3
CRHBP
COLEC10
CNDP1
TTC36
LINC01093
FAM99A
THRSP
MOGAT2
AVPR1A
ESR1
ADRA1A
KCND3
BCO2
SLC22A10
CYP39A1
SRD5A2
IYD
TRPM8
SLC28A1
LINC01018
DAO
GBP7

C1orf226
NT5DC3
CNTLN
LARGE1
BEND7
PRLR
PAQR9
TMPRSS2
GATA4
PROSER2
NTN4
GJB2
BLNK
PRRG4
FMO4
ABHD15
FGFR2
PHLPP1
RAD54L2
CROCCP2
PPFIBP2
NSUN6
GPC6
INSIG2
PID1
C19orf12
SOCS6
KLF11
MS4A6A
PLSCR4
RASGEF1B
ARHGEF26
ST3GAL6
N4BP2L1
MFAP3L
ABCG2
CPED1
CPEB3
ADAMTSL3
MAGI2−AS3
FCGR2B
LILRB5
MAN1C1
ECM1
ADAMTS13
SLC19A3
FAM149A
IDNK
FXN
AADAT
GIPC2
EFHD1
DTX1
SHBG
SULT1A2
PROZ
APOC1P1
MPPED1
LINC01767
NUGGC
PFKFB1
AZGP1P1
XPNPEP2
NR0B2
NAT8
SLC22A9
SLC15A1
CES3
LRRC3
MIR1915HG
GSTM1
NTN1
SEC14L4
SHROOM2
GRHL1
NIPAL1
CNGA1
ADGRV1
ENSG00000273259
PLEK2
TUSC1
Lnc−STMND1−4
ZFAND4
ELAC1
TRAM2−AS1
PTPRD
SAMD5
PIK3C2G
SOX5
SCN9A
VNN3
CECR2

CYP2A6
C3P1
SLC22A1
HSD11B1
CYP2B6
RDH16
CYP8B1
LPA
HAO2
GBA3
AKR1D1
APOF
HSD17B13
GYS2
SLC10A1
GLYAT
CYP1A2
SPP2
SLC25A47
UROC1
CYP2D7
PPP1R1A
FXYD1
FETUB
GNMT
ANO1
GPLD1
XDH
ABCB11
CFHR5
DIO1
SLC51A
NR1I3
CCL16
SORD2P
CFHR4
AGXT2
ACOT12
MBL2
PLGLB1
ABCA6
GHR
KLKB1
BCHE
GPD1
ACSM5
CYP4F2
VNN1
CFHR3
IL17RB
PHGDH
LCAT
ELOVL6
FUOM
PEMT
DHRS1
ECHDC3
SPTBN2
SLCO1B3
HLF
LIPC
CYP2J2
AGMO
LEAP2
INHBC
SLC17A2
HS3ST3B1
AGTR1
SLC16A2
ENPEP
DMD
GCKR
DHODH

TPST2
SFXN5
TSPAN9
PDIA5
LRRFIP2
HOMER2
CAPN5
SLC16A1
PIK3AP1
FERMT2
EHBP1
TJP2
HNMT
IL1RAP
CDH2
NR5A2
CXADR
LY6E
SLC37A4
OAF
NDRG2
SUN2
FCGRT
ORMDL3
COMT
LSR
ARHGEF10L
PYGL
TCEA3
MPDZ
ACAD11
GNE
ALDH5A1
PECR
ACACB
ADGRA3
SULT1A1
STEAP3
RCAN1
GPAM
COBLL1
ITPR2
APOL6
CYP4V2
PLPP3

GOLM1
CYSTM1
SPTSSA
CPE
LDHB
TGFBR1
PTPRM
LPCAT1
GNA12
ZC3HAV1
ERMP1
ARL2BP
TPM4
COL4A1
ERBB2
GSN
VCAN
OAT
AKAP12

Sample Type
Cancer Type

Cancer Type
FLC
HBL
iCCA
HCC
BAP1
ΔR1A
ATP1B1::PRKACA

Sample Type
Normal
U. tumor
Primary
Recurrence
Metastasis

V
ar

ia
n

ce
 S

ta
b

ili
ze

d
 D

at
a

5

10

15

20

NORMAL SAMPLES OTHER LIVER TUMORS FLC TUMORS

Article https://doi.org/10.1038/s41467-024-55238-2

Nature Communications |        (2024) 15:10887 11

www.nature.com/naturecommunications


consistent transcriptome and proteome15,16,60. This provides a favor-
able scenario for multiomics exploration. Other cancers usually pre-
sent with many mutations, which complicates molecular-level
understanding. The study of FLC could, therefore, elucidate general
mechanisms of oncogenesis.

FLC has been considered a subtype of HCC, despite its different
age of incidence, histology, and transcriptomic and proteomic
profiles10,61. This misclassification results in some patients receiving
drug therapy standard for HCC, which has proven ineffective against
FLC10. Defining the molecular identity of a cancer is critical for devel-
oping and administering proper drug treatment. Current RNA-seq
studies of FLC15,26,31–33 had limited agreement in their differentially
expressed genes. This lack of congruency is likely the result of diverse
limitations. These include:

Tumors are categorized only by histopathology, which can be
inconsistent among pathologists9. Some transcriptomic studies even
had 30% of their samples mistakenly deemed to be FLC. Here we
started by studying FLC tumors having DNAJB1::PRKACA, which
allowed selecting a reliable group.

Small datasets using unpaired tumors and surrogate normal sam-
ples, some with samples from other tumor types as “surrogate normal
control” or mostly unpaired tumors (Supplementary Data 1). A high
proportion of unpaired tumors (> 10%) in the analysis can result in an
incorrect estimation of the expression change36. Here, we sequenced
127 frozen FLC and 2 FLC-like patient samples, which included 98
matching FLC tumors and adjacent normal samples. This was com-
plemented with 73 FLC and 18 FLC-like samples (30 FLC matching
tumor and normal) from other studies26,31–35.

Gene expression estimated with older software, like ht-seq62 (also
included in STAR63), featureCounts64, or equivalent, which count reads
aligned to features (i.e., transcripts or genes). When a read matches
with multiple features, it is either not counted; or counted multiple
times in all matching features, distorting the biology37. We used
Salmon65, which avoids this problemby assigning fractions of a read to
the multiple features it matches based on a probability distribution
that depends on factors like the abundance, start position, length, and
orientation of the fragment.

Inappropriate integration of datasets. Combining RNA-seq data-
sets usually results in batch effects, introduced by the use of different
RNA extraction, library preparation or ribosomal depletion methods,
sequencing platforms, and sample ascertainment differences, among
other unknown sources of variability38. It has been shown that adding
variables accounting for processing groups or dates might not be
sufficient to address batch effects, which can lead to mistaken, even
opposite conclusions38. We utilized different datasets and performed
unsupervised clustering, revealing batch-driven clusters. ComBat39

and RUV40, popular approximations for compensating batch effect,
were used, although ineffectively. We opted to perform differential
expression analysis in each dataset individually, and then intersect the
significantly dysregulated genes obtained.

By collecting a large dataset and devising a methodology includ-
ing exploration, refinement, and subsequent external validation, we
found a distinct and reproducible transcriptomic FLC signature. This

captures dysregulations characteristic of all FLC tumors, primary,
recurrences, or metastases, independent of the laboratory, collection,
or experimental processing methods. This FLC transcriptomic sig-
nature is thus inherent to FLC tumors and reflects a very specific driver
program.

The transcriptomic FLC signature has shown to be useful for
validating animal and cellular models of FLC, which is critical for the
study of a very rare cancer with scarce patient experimentation
material. The FLC signature allowed the inclusion of new samples from
different experiments and laboratories, regardless of having a paired
normal or not. Thus, it could be used to add future FLC tumor samples
and to interrogate samples under suspicion of being FLC. Further
studying the transcriptomic FLC signature may advance the knowl-
edge of the biology of FLC and, more broadly, other cancers.

The transcriptional signature revealed that some diverse mole-
cular changes in liver tumors converge on a common disease, FLC.
Several FLC-like tumors do not have the DNAJB1::PRKACA fusion in
hepatocytes. One set of tumors has no fusion to the PKA catalytic
subunit; instead, it lacks activity of the regulatory subunit R1A. The
transcriptome of these tumors clusters with the DNAJB1::PRKACA
tumors. Seemingly related tumors, found in the ductal cells of the liver
or pancreas, express a chimeric formof the catalytic subunit of protein
kinase A in the fusions DNAJB1::PRKACA, ATP1B1::PRKACA or
ATP1B1::PRKACB. When present in the ductal cells of the liver, these
fusions produce a cholangiocarcinoma, and the ductal cells of the
pancreas produce an intraductal oncolytic pancreatic neoplasm
(IOPN). Application of the transcriptomic FLC signature to these FLC-
like samples demonstrates that they cluster together with FLC samples
with the canonical DNAJB1::PRKACA fusion. These common tran-
scriptomes suggest a common pathogenesis, whether expressed in
hepatocytes or the ductal cells of the liver or pancreas. This is con-
sistent with the demonstration that the drug-response profile of cho-
langiocarcinoma from patients expressing ATP1B1::PRKACA in
cholangiocytes is indistinguishable from the response profile of FLC
tumors expressing DNAJB1::PRKACA in hepatocytes66.

They all share an increase in the amount of catalytic subunit to the
regulatory subunit of PKA, whether the consequence of increased
expression of the catalytic subunit of protein kinase A from a fusion of
DNAJB1::PRKACA, ATP1B1::PRKACA or ATP1B1::PRKACB or due to R1A
deficiency. These conclusions are consistent with the observation that
primary human hepatocytes experimentally manipulated to express
DNAJB1::PRKACA or ATP1B1::PRKACA produce similar transcriptomes,
and these share the top altered transcripts with patient FLC tumors66.
The transcriptomic FLC signature, by capturing dysregulations inde-
pendent of the experimental processing and characteristic of FLC
tumors, empowers identifying which FLC-like tumors cluster with
DNAJB1::PRKACA and which, such as the BAP1-driven tumors, do not.
This is important for determiningwhat is exclusive and distinct among
FLC and other FLC-like tumors. We have found that the FLC-like
tumors that either overexpress the catalytic subunit (as a consequence
of being expressed as a fusion protein) or are missing the regulatory
subunit have a common transcriptome (this publication),
histopathology24, and drug response profile66. Further, the

Fig. 8 | The FLC signature distinguishes FLC from other liver tumors. Paired
tumor-normal samples from hepatocellular carcinoma (HCC)35,83–89, hepato-
blastoma (HBL)76–78, intrahepatic cholangiocarcinoma (iCCA)79–82, fibrolamellar
carcinoma (FLC)15,26,31–35 and FLC-like tumors with the chimera ATP1B1::PRKACA,
mutations in BAP1, or missing R1A activity (ΔR1A) are represented in the columns
(N = 986). They are categorized by sample type in: Normal sample, Primary tumor,
Recurrence, Metastasis, or Uncategorized tumor. Using only genes of the FLC
signature, hierarchical clustering separated the normal samples apart from the
tumors, and FLC tumors in its own branch. The rows represent the genes of the
transcriptomic FLC signature, whichwerehierarchically clustered in a dendrogram.

It shows branches with expression patterns exclusive of FLC, distinct from other
liver tumors. We used all the paired FLC tumor and normal samples with RNA-seq
data available: Requena et al. (this study), and the samples deposited in public
databases from the studies of Francisco et al.33, Xu et al.31, Robinson et al.34, Sor-
enson et al.32, Simon et al.15, Hirsch et al.26, and the TCGA-LIHC study. Also, the FLC-
like samples with R1A and ATP1B1::PRKACA mutations from Requena et al. (this
study) and the BAP-1 FLC-like samples fromHirsch et al.26. Their accession numbers
are provided in the Data Availability section. Access can be requested directly to
dbGAP, GEO and EGA under their privacy and confidentiality terms.
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transcriptome of FLC patients can be recapitulated just by increasing
the ratio of catalytic to regulatory subunits in primary human hepa-
tocytes. These data are consistent with PKA activation as the unifying
causalmechanism of FLC. Thus, we suggest FLC be considered a single
disease, rather than a mix of different pathologies with a similar
phenotype24,66,67.

We studied which elements of the transcriptomic FLC signature
were exclusive to FLC or shared with the transcriptomic signatures of
other liver cancers (HBL, iCCA, and HCC) by analyzing 1412 bulk RNA-
seq samples. We found only 1 upregulated and 18 downregulated
genes in common. In FLC, we found 198 upregulated and 103 down-
regulated genes that were not in the others. Studying these genes will
promote a better understanding of the biology of FLC, and, in the
broader context of liver tumors, evaluating what is common and what
is unique. To explore potential clinical uses, we selected a reduced list
of 35 genes with the strongest upregulation and abundance (Supple-
mentary Data 9).

Liver cancers shared common enrichment in pathways like mito-
tic spindle assembly and E2F targets in FLC, HCC, and iCCA, high-
lighting the role of cell cycle control dysregulation in liver
oncogenesis. Despite originating from the same organ, they exhibit
distinct activated pathways, suggesting exclusive oncogenic mechan-
isms not shared with other liver cancers. Evidence suggests that PKA-
mediated phosphorylation regulates proton-transporting ATPase
complex elements68, which we found enriched in FLC.

Cancers are frequently thought to have an origin in stem cells55.
Such a claim has been made for FLC in a study that characterized the
ascites tumor of a single patient, which was first passaged for weeks on
plastic in a medium selective for endodermal stem cells and progeni-
tors and then implanted in mice for four serial transplantations54. In
that study its transcriptome was then compared to that of stem cells,
but not to the adjacent normal or to the original patient tumor sample.
In contrast, we found most of these same stem-cell markers54 to be
decreased or unaltered in FLC patient tumors compared to paired
normal samples at the transcriptional and proteomic level, even in
those authors’ original publications. We expanded our analysis to four
sets of stemness markers of the MSigDB, finding no enrichment in the
transcriptome of FLC. This challenges the hypothesis of stem cell-
driven oncogenesis for FLC. The stem hypothesis is further challenged
by the recent demonstration that transducing primary human hepa-
tocytes with the fusion oncotranscript is sufficient to recapitulate the
transcriptome of FLC patients66. Further experiments are required to
definitively test the stem cell hypothesis.

Genomic screening fromvarious cancershas led to the conclusion
that metastases are different from primary tumors69. Two previous
studies32,70 compared the transcriptome of FLC metastases to paired
primary tumors, but neither reported nor discussed the differentially
expressed genes. We showed that the metastases differ in 0.6% of the
transcriptome from primary FLC tumors, consistent with a low muta-
tion rate of FLC17,53. Small differences betweenmetastases and primary
tumors have been reported in other cancers71. We identified a set of
genes consistently dysregulated, related to tumor proliferation,
maintenance, and immune evasion, like COLEC10 and COLEC11. It has
been found that decreased expression of COLEC10 is prognostic of
poor overall survival in patients with HCC72. COLEC11 participates in
apoptosis, binding the DNA at the surface of apoptotic cells and acti-
vating the complement in response73. Also, it has been found that
people affected by the 3MC syndrome (characterized by facial dys-
morphic traits and other developmental problems) present genetic
loss-of-function mutations in COLEC1174. Zebrafish morphants of
COLEC11 exhibited dose-dependent pigmentary defects and cranial
abnormalities74. In addition, CL-K1 (the protein encoded by COLEC11)
acts during embryonic development as a guidance cue to the migra-
tionofneural crest cells. Therefore,COLEC10andCOLEC11 couldplaya
role in the metastatic migration of FLC. It will require further

experimental studies to understand better the role of these genes and
the other candidates in the development and maintenance of the
metastases of FLC.

The FLC signature also served as a tool to validate in vivo (PDX30)
and in-vitro (organoids29) experimental models for FLC, by assessing
how closely they reflect the transcriptional changes observed in
patient tumors. Differences between the originating tumor and the
modelsmay arise for several reasons: the original tumor is amixture of
many cell types, whereas the model contains predominantly tumor
cells. The tumor cells may evolve in adapting to the new environment.
The present findings augment our confidence in these models, which
had previously been verified by histopathology, proteomics, and drug
susceptibility.

A surgical tumor sample of an FLC patient is usually composed of
different cell types: FLC tumor cells, stromal cells (stellate cells, reti-
cular endothelial cells), normal hepatocytes, and infiltrating immune
cells (macrophages, T-cells, B-cells, myeloid-derived suppressor cells).
With spatial transcriptomics, we identified differential expression
patterns that distinguish these cell types. The different relative levels
of these cell types in each tumor sample likely account for some var-
iations in transcriptome and proteome observed across samples and
models. Spatial single-cell transcriptomics also revealed that some of
the phenotypic characteristics of FLC, such as the collagen in the
fibrous bands, reflect contributions of stromal rather than tumor cells.

Integration of multiomic data layers may help to elucidate the
biology of FLC. Thus, we identified transcription factors that could
be involved in regulating the transcriptomic FLC signature. To facil-
itate further exploration, we developed an interactive web portal
(Shiny app) aggregating all the data processed in this study. It can
generate plots not requiring programming knowledge, integrating the
genomic, proteomic, methylomic, and transcriptomic data from FLC
and other liver cancers.

The transcriptional signature for FLC is useful for addressing
problemsof general interest suchas: resolving ambiguousdiagnoses, a
task that challenges histopathology for FLC9; assessing the mechan-
istic basis of tumorigenesis, which requires not merely identifying
tumor drivers but understanding also their diverse or uniform down-
stream consequences; improving the accuracy of classifying diverse
tumors, for which the transcriptome provides an informative bench-
mark; determining the extent of deviation of metastases from primary
tumors, to resolve the sources of tumor progression and dispersion,
and to guide therapeutic investigation; testing the validity of biologic
cancer models, an important investigational resource, but one that
must adequately reflect the properties of its source; and determining
the cells of origin of the tumors. Our work in defining the transcrip-
tional signature presents amethodologywith state-of-the-art tools and
filters that we have extended to other liver cancers and which can be
more broadly applied to oncogenesis.

Methods
A schematic representation of the methods described below is pre-
sented in Supplementary Fig. 10.

Ethics statement and demographics
Under the supervision of our Institutional Review Board approval
(Rockefeller IRB #SSI 0797, SSI 0798) consent was obtained from
patients scheduled for tumor resection. Since this is a rare disease, we
accepted samples from all patients, without regard to age or sex. For
patients not of the ageof consent, we consented tobothparents and, if
the patient was older than 7, assented the patient. For each patient, the
diagnosis of FLC was confirmed both by histopathology, demonstra-
tion of theDNAJB1::PRKACA fusion transcript by RT-PCR, and presence
of the DNAJB1::PRKACA fusion protein by western blot18. This is a rare
disease which means that inclusion of almost any data can be used to
identify the patients. We have recently published an aggregated
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analysis of the age, sex, and outcomes of our patients75. All studies of
the transcriptomes of patient-derived xenograftswere frompreviously
publishedmouse studies20,30, whichwere performedwith the approval
of the Institutional Animal Care and Use Committee at Rockefeller
University (protocol 23011-H). For those studies, animals were mon-
itored three times aweek for changes in activity orweight loss. Tumors
were not allowed to grow beyond 2 cm.

Statistics and reproducibility
This study was devised as an exploratory analysis of a very rare cancer.
Therefore, no statistical method was used to predetermine sample
size. From our cohort, we only used tumor samples validated as FLC as
described above. From external cohorts, we only used samples in
which we verified the presence of reads spanning the DNAJB1::PRKACA
fusion transcript. In both cases, we verified the absence of the chimera
in the normal samples. The experiments were not randomized, we
used all the samples available in each comparison. All the statistical
methods used are described in their corresponding sections belowand
were performed in R v4.3.3 and RStudio 2023.12.1 + 402.

Whole RNA extraction and sequencing
A total of 127 FLC and 2 FLC-like patient samples, collected by the
Simon Laboratory at Rockefeller University, were sequenced from
2010 to 2023 in six different libraries (named RU-A to RU-F), repre-
senting the dataset of Requena et al. (this study). Libraries A, D, and E
contain the human tissue samples studied in Simon et al.15, Lalazar
et al.30, and Narayan et al.29, respectively. These 129 samples were
processed using different combinations of library preparation and
ribosomal depletion methods (details in Supplementary Data 1). After
the RNA extraction, aliquots were used to assess the 260/280 ratio and
RNA concentration using a Nanodrop 2000c (Thermo Fisher), and the
RNA quality by estimating the RNA integrity number (Agilent BioAna-
lyzer and TapeStation). All samples had at least a concentration of
100ng/µl and RIN≥ 7. RNA-seq was performed at an average of 60
million raw reads per sample with Q30 > 90%.

Collection of external datasets
Bulk RNA-seq data from every transcriptomic study, including FLC
patients and available metadata was collected and reprocessed. This
comprised 73 FLC and 18 FLC-like samples from the studies of Xu
et al.31, Robinson et al.34, Sorenson et al.32, the TCGA-LIHC study35,
Hirsch et al.26, and Francisco et al.33 (see Supplementary Table 2).

In addition, 1192 bulk RNA-seq samples from other liver can-
cers were collected and reprocessed. This includes 148 HBL sam-
ples from the studies of Carrillo-Reixach et al.76, Hooks et al.77, and
Wagner et al.78; 139 iCCA samples from the studies of Ahn et al.79,
Gao et al.80, Sia et al.81, and the TCGA-CHOL study82; and 905 HCC
samples from the studies of Long et al.83, Liu et al.84, Huang et al.85,
Jin et al.86, Wang et al.87, Yoo et al.88, Yang et al.89, and the TCGA-
LIHC study35.

RNA-seq mapping and quantification
Sambamba90 v1.0.0 and bamToFastq (part of bedtools91 v2.27.1) were
used to covert.bam to.fastq files. Subsequently, quality control was
performed using FastQC v0.11.9 and MultiQC92 v1.15, followed by
adapter trimming by BBDuk (included in BBMap v39.01). The trimmed
reads were mapped to the annotated Human Genome GRCh38.103
using STAR63 v2.7.10b, generating.bam files, which were indexed using
SAMtools v1.10 in.bai files. These files were loaded into IGV v2.16.0. to
visualize alterations in PKA subunits in Sashimi plots. The presence of
reads in the junction of the chimeraDNAJB1::PRKACA in all FLC tumors
and its absence in all the normal samples was confirmed in all the
samples from FLC patients used in this study. Expression by transcript
was quantified using Salmon65 v1.10.0 with a gentrome generated
connecting the human genome hg38 and its annotation GRCh38.103.

Dimensionality reduction and Unsupervised clustering
The samples fromall the studieswere inspected through unsupervised
clustering to explore batch effect and covariables using four different
approaches. These included dimensionality reduction by PCA93,
t-Distributed Stochastic Neighbor Embedding (tSNE)94, and the Uni-
form Manifold Approximation and Projection (UMAP)95, followed by
density-based hierarchical clustering using HDBSCAN96. Different
random seeds and perplexity values (number of neighbors) were
explored in tSNE and UMAP for robustness. And we used heatmaps
with dendrograms of hierarchical clustering, using the Ward297

agglomerative clustering method. These methods are implemented in
the R libraries OmicsKit v1.0.0 (PCA, tSNE, and UMAPwith HDBSCAN),
tsne v0.1-3.1 (tSNE), umap v0.2.10.0 (UMAP), dbscan v1.1.12
(HDBSCAN), pheatmap v1.0.12 (heatmap), and stats 4.3.3 (functions
prcomp for PCA and hclust for Ward.D2 clustering).

Differential expression analysis
In each library, differential expression analysis was conducted using R
v4.3.3 and RStudio 2023.12.1 + 402. We used the gene counts by tran-
script quantified by Salmon65, which were condensed by gene using
tximport98 v1.30.0. These counts were analyzed in DESeq299 v1.42.1,
performing the variance stabilizing transformation and fitting the data
to a generalized linear model. Only those genes with |log2(Fold
Change)| > 1 and FDR <0.05 were considered differentially expressed.
We developed an R library with the functions we developed for data
manipulation and visualization of multi-omics data and differential
expression analysis. It is available on GitHub (https://github.com/
BigMindLab/OmicsKit) and can be installed by executing the following
line of code: remotes::install_github(repo = ‘BigMindLab/OmicsKit’).

Calculating the transcriptomic signature of FLC tumors
Matching tumor and normal samples of five RNA-seq libraries
sequenced at Rockefeller University were selected for the determina-
tion of the transcriptomic FLC signature. Of these, three libraries (RU-
A, RU-B, and RU-C) were used for exploration. Libraries RU-D and RU-E
were used to refine the results obtained in the first three. These two
libraries were not used for exploration because they were smaller and
had fewer tumor-normal pairs than the first three. The data of patient
R17 in library RU-C was omitted in this analysis to prevent over-
representation, because samples of this patient are already included in
library RU-B. Library F was not used to determine the FLC signature
because it has mostly unpaired samples.

Differential expression analysis was performed independently in
each library, filtering by significance and fold-change as described in
the “Differential expression analysis” section. The sets of differentially
expressed genes obtained by the library were further reduced using
the following filters:

Detectability. This consists of first discarding the genes with base-
Mean < 50. The baseMean of a gene (generated by DESeq2) represents
the mean of its normalized gene counts across all the samples in the
library. Of the remaining genes, we selected those with at least 50
normalized gene counts in the highest experimental condition. This
means, for upregulatedgenes, themeannormalizedgene counts in the
tumor samples should be greater than 50. And for downregulated
genes, themean normalized gene counts in the normal samples should
be greater than 50.

Trend consistency. This filter consists of verifying in every patient if
the dysregulation trend observed (up- or down-regulation) is the same
dysregulation trend obtained in the differential expression analysis of
all tumors relative to their corresponding matching normal samples
(called “group level”). With this filter, we only keep genes in which the
group level trend is also observed in the tumor versus normal samples
of every patient. The “trend consistency” filter was applied as follows:
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First, for eachpatient in a library, we calculated the average expression
by gene in the tumors (�XT ) and in the normal samples (�XN). Then, for
every gene upregulated at the group level, the genewas discarded if at
least one patient in the library shows signal in the opposite direction
(�XN=

�XT>1:1). And, for everygenedownregulated at the group level, the
genewas discarded if at least onepatient in the library showed signal in
the opposite direction (�XT=

�XN>1:1).
These two filters were applied in all the libraries used for

exploration and refinement, as follows:

Exploration. The differentially expressed genes obtained in each of
the libraries for exploration (RU-A, RU-B, and RU-C) were intersected.
We reduced the intersection by applying the filters of detectability and
consistency. Thus, we selected a set of detectable genes with a con-
sistent dysregulation trend.

Refinement. Libraries RU-D and RU-E were filtered by detectability.
The resulting genes in each of these libraries were used to verify the
trend consistency in the genes obtained in the exploration step, dis-
carding thosewhodonot pass thisfilter.Wenamed the resulting genes
the “transcriptomic FLC signature” (see Fig. 2).

Validating the FLC signature
Three of the six external RNA-seq studies selected FLC for validation
(Francisco et al.33, Sorenson et al.32, and the TCGA-LIHC study35)
because they studied at least 3 patients and contained at least one
tumor-normal pair by the patient. These datasets were re-analyzed as
described in the RNA-seq mapping, quantification, and differential
expression analysis sections, using only patients verified asFLC tumors
and normal samples. The results were filtered by detectability as
described above.

As a validation test, for each gene, we evaluated if the dysregu-
lation trend obtained in the transcriptomic FLC signature was
observed as well in each of the validation datasets. The agreement
between the FLC signature and an external dataset was calculated as
the percentage of genes in the FLC signature that agree in the dysre-
gulation trend obtained in the external dataset.

Metastasis compared to primary tumors
Metastases with matching primary tumors and normal samples from
libraries RU-A, RU-B and RU-C were analyzed adjusting by library.
Pairwise differential expression comparisons by sample type (metas-
tasis, primary tumor, or normal) were performed, filtering by detect-
ability and ranking by trend consistency.

DNA extraction, quantification, and quality control
DNA was extracted from OCT-embedded frozen tissue, using 10 curls
(10mm each) by patient sample. They were dissolved in 1mL PBS, and
the DNA was isolated using the DNeasy Blood & Tissue Kit (QIAGEN
catalog N° 69504), according to themanufacturer’s protocol modified
by replacing AW2 buffer with 80% ethanol. DNAwas eluted in 50–55 µL
0.5X Buffer AE heated to 55 °C. DNA concentration was quantified by
PicoGreen (ThermoFisher catalog N° P7589), and quality control was
assessed in an Agilent BioAnalyzer.

Exome sequencing
Sequencing libraries were prepared using 100–113 ng of DNA and the
KAPA Hyper Prep Kit (Kapa Biosystems N° KK8504), with 8 cycles of
PCR amplification. After sample barcoding, 100 ng of the library were
captured by hybridization using the xGen Exome Research Panel v2.0
(IDT) according to the manufacturer’s protocol, followed by 12 cycles
of PCR amplification. Samples were sequenced in a PE150 run on a
NovaSeq 6000 using S4 Reagent Kit (Illumina) for 300 Cycles,
obtaining an average coverage of 124X.

Mapping and variant calling
All samples were processed following the GATK Best Practices100.
Reads from WGS and WES were mapped to the Human Genome
GRCh38 using BWA-MEM v0.7.17101. The resulting.bam files were tag-
ged for readduplication, sorted, and calibrated using GATK v4.2102 and
Picard v2.26 (https://broadinstitute.github.io/picard). Somatic variant
calling in matching tumor and normal samples was performed with
Mutect2 (GATK), Strelka2 v2.9.10103, and Lancet v1.1104. From the WES
data, variants within regions of the xGen Exome Research Panel v2.0
(IDT) panel were called, keeping only those tagged with “PASS”. To
capturemore potential variants, the.vcf files from the same tumor and
normal comparison but generated by different software were merged
using bcftools (SAMTools)105. The resulting non-redundant variants
were annotated using the Ensembl Variant Effect Predictor
(VEP)106 v103.

Targeted bisulfite methylation sequencing
Approximately 500 ng of genomic DNA by sample were sheared
using a LE220-plus Focused-ultrasonicator (Covaris catalog N°
500569). Sequencing libraries were prepared using the KAPA Hyper
Prep Kit (Kapa Biosystems N° KK8504) without PCR amplification.
Post-ligation cleanup proceeded with 110 µL of the Sample Pur-
ification Mix from the TruSeq Methyl Capture EPIC LT Library Prep
Kit (Illumina catalog N° FC-151-1002) according to the manu-
facturer’s instructions. After purification, 2–3 samples were pooled
to capture the methylome regions using EPIC oligos, which were
bisulfite-converted and amplified in 12 PCR cycles. Then, sequenced
on a NovaSeq 6000 in a PE100 or PE150 run, using NovaSeq 6000 S1
or S4 Reagent Kit (200/300 Cycles) (Illumina), obtaining an average
of 88 million read pairs per sample.

Methylation mapping and variant calling
The targeted bisulfite sequencing data was processed with the
methylseq v2.3.0 pipeline of nf-core v1.6.1 (https://nf-co.re/
methylseq)107, using Docker v20.10.12, Nextflow v22.10.4.5836,
python v3.10.6, yaml v6.0, fastqc v0.11.9, preseq v3.1.1, qualimap
v2.2.2, cutadapt v3.4, Trim Galore! v0.6.7, and Bismarck v0.24.0.
Briefly, quality control of the raw reads was performed using FastQC,
and the adapters trimmed using Trim Galore! Next, Bismark108 was
used for indexing the reference genome and read alignment. Dupli-
cates were marked with Picard. Then, the methylation events were
quantified.

Differential methylation analysis
The tableswithmethylation eventswere analyzed in R using the library
MethylKit109 v1.22.0 and the human genome GRCh38 as a reference.
CpG sites with a minimum coverage of 10, bases above the 99.9th
percentile of coverage in each sample, and standard deviations larger
than 2% were selected for further analysis. PCA, dendrograms, and
correlation plots were used to explore the data. Differentially methy-
lated sites in with aa percentual methylation difference of at least 15%
between tumors and normal samples, and a q-value less than 0.05,
were selected. These sites were annotated using the human genome
annotation GRCh38.103 and visualized in a Volcano plot.

Gene set enrichment analysis
We selected 18 of the liver cancer datasets collected containing
matching tumor-normal samples and at least 5 normal samples: 2
FLC, 3 HBL, 4 iCCA, and 9 HCC (see Supplementary Fig. 9). We tested
the enrichment and statistical significance of different gene sets in
tumors compared to normal samples. All the gene sets in seven
collections from the MSigDB110 database v2023.2 were tested: Hall-
marks (H: 50 gene sets), Curated Gene Sets (C2-CGP: 3438 gene sets,
C2-CP: 619 gene sets of KEGG_MEDICUS and 1692 gene sets of
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REACTOME), Curated Cancer Cell Atlas (C4-3CA: 149 gene sets),
Ontology gene sets (C5-GOBP: 7647 gene sets, C5-GOCC: 1015 gene
sets, C5-GOMF: 1799 gene sets, C5-HPO: 5,547 gene sets), Oncogenic
Signatures (C6: 189 gene sets), Immunologic signature gene sets (C7-
ImmuneSigDB: 4872 gene sets), and Cell type signatures (C8: 830
gene sets). Collection C8 was supplemented with 42 gene sets from
the scientific literature, containing markers of different liver
cells57,111–120. In each liver cancer dataset, we tested each collection
independently, performing Gene Set Enrichment Analysis using the
software GSEA121 v4.3.2. It was run using the parameters: permuta-
tion = phenotype, statistic = weighted enrichment, metric = signal-to-
noise, and permutations = 10,000 with a statistically significance cut-
off of FDR < 0.25. The resulting gene sets were compared to find
pathways shared and distinctive among liver cancers. These were
visualized in balloon plots generated using the R package ggplot2
v3.4.3 (see Supplementary Fig. 9).

Multiomic assessment of the FLC signature
Multiomic comparisons were performed in R. Pearson correlations
between transcriptome, proteome16, and methylome scores were
performed using ggplot2 3.4.3. Standard error and regression lines for
eachplot were obtained using ‘lm’ as smoothingmethod. A Circos plot
of the 693 genes of the FLC signaturewas generated using the package
circlize 0.4.15. Each track was generated using the circos.rect function.
The chromosome trackwas adjusted to represent the number of genes
rather than the chromosome size.

Analysis of transcription factors
We searched for liver ChIP-seq data of transcription factors (TFs)
associated with the genes of the transcriptomic FLC signature in the
hTFtarget49 database. TFs were reported for 445 of the 693 genes,
making a total of 59 TFs.

These 59 TFs were categorized according to their DNA-binding
domain families using the Human TFs database122. We also annotated
the DNA-binding and Effector domains of the TFs based on their
canonical isoforms using the CIS-BP123 v2.0 and TFRegDB124 databases,
respectively. The protein level of each TF was obtained from LFQ and
TMT proteome screenings of FLC tumors16, which have com-
plementary detection ranges. In the cases where the protein was
detected in both the LFQ and TMT experiments, the value obtained in
the LFQ experiment was used.

To identify TFs associated to genes in the transcriptomic FLC
signature in an increased ratio than to any other set of genes of the
same size, we generated a probability distribution as follows: First, the
genes associated with least one TF in the hTFtarget database were
collected. Excluding those in the FLC signature, we obtained 27,790
genes. Second, we generated 10,000 random samples of 445 genes
from these 27,790 genes. Third, for each of the 59 TFs, we calculated
the number of genes a TF targets in each of the 10,000 random sets,
generating a probability distribution with these numbers. Fourth, for
the same TF, we calculated the number of genes it regulates in the
transcriptomic FLC signature. By locating this number in the dis-
tribution previously generated, we calculated the Z-score and p-value
of enrichment (one-sided Z-test). Fifth, these p-values were adjusted
for multiple-hypothesis testing using the Benjamini-Hochberg125 cor-
rection, calculating the q-values.

Having identified these TFs increasingly associated with FLC, we
studied their interactions to explore associations with PRKACA. We
retrieved evidence of their Protein-Protein Interactions (PPI) from the
BioGrid50 database and selected only those with at least 2 sources of
physical evidence between human proteins (ID: 9606). Then, from the
list of proteins interacting with PRKACA and the TFs, we selected those
connections with amaximumof two intermediaries (PRKACA-Protein1-
Protein2-TF). This network was plotted using CytoScape126 v2.0 (Sup-
plementary Fig. 4).

Spatial single-cell RNA sequencing
A personalized library of 140 probes was designed for MERFISH
single-cell spatial transcriptomics in 16-bit encoding. For this
library, we selected the genes with: |Log2FC | > 2 in bulk RNA-seq of
tumor versus normal, average normalized read counts of at least
100, a transcript length of 1,500nt or more (because the probes are
30nt long, and approx. 50 per transcript are needed), and similar
FPKM (because the protocol requires that the sum of the FPKMs of
the genes in the library must be less than 8000). Thus, the following
140 genes were selected: 112 genes of the transcriptomics FLC sig-
nature (56 up- and 56 down-regulated); 10 of the least variable genes
in FLC tumors versus normal samples obtained from the analysis of
libraries RU-A, RU-B and RU-C (KMT2C, SEC23A, COPB1, HNRNPL,
SUN1, SNX6, THUMPD1, TM9SF4, PIGN and RTF1); 4 targets of
immunotherapy (CD86, CTLA4, PDCD1 and CD274); 3 B-cell markers
(CD40LG, CD19 and TNFRSF8); 3 T-cell markers (CD4, CD8A and
CD27); 4 markers of Stromal cells (MCAM, VCAM1, ICAM1 and
ACTA2); 3 markers of monocytes and macrophages (CD1D, CD163
and CD14); and a marker of neutrophils (ITGAM).

For three different patients, we selected a slice of the tumor block
presenting a mixture of tumor, normal, and stromal regions (Fig. 6G)
and processed it along with a corresponding slice of a normal tissue
block from the same patient resection. These samples were prepared
for MERFISH spatial transcriptomics following Vizgen’s protocol for
frozen liver tissue samples127. Briefly, it consists of 16 cycles of
sequential hybridization, imaging, and photobleaching. The signal
intensity of each probe was quantified and used as a proxy of gene
expression, obtaining gene expression values with spatial coordinates.
This was followed by co-staining with DAPI, polyA RNA, and the Vizgen
Cell boundary Staining Kit (Cat. no.: 10400009) as recommended for
MERFISH128. Cell segmentation was performed using the deep-
learning-based Cellpose algorithm129. Samples were visualized in Viz-
gen’s MERSCOPE Visualizer software v2.1.2589.1.

The signal from the single cellswas analyzed in Python3.12.3 using
scanpy v1.9.2. Gene expression counts were filtered by a minimum
barcode count of 20 and cell volume between 100 and 2500. These
counts were normalized by cell volume and total counts across all
genes. Then, they were log-transformed and normalized to mean = 0
and variance = 1. We explored the presence of clusters in the data
through UMAPs applying the Leiden algorithm (package leidenalg
v0.8.10), exploring resolution values between 0.01 and 0.15, and
identifying the main clusters in each sample. The differentially
expressedgenes among clusterswere calculated and the top 3 genes in
each cluster, along with the histological features, were used to identify
the cell type corresponding to each cluster.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data (RNA-seq, WGS, bisulfite methylation sequencing, and
spatial transcriptomics) of the FLC samples sequenced in this
study has been deposited in dbGAP (phs000709 [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000709.v1.
p1], phs002435 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs002435.v1.p1], phs002439 [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002439.v1.
p1], and phs003643 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs003643.v1.p1]). This data corresponds to
FLC human subjects from a very rare cancer, including some underage
patients. Therefore, we chose this NIH-controlled repository in com-
pliance with our IRB protocols to protect the patient’s privacy. Access
can be requested directly from dbGAP under their privacy and con-
fidentiality terms.We have no input into the process of granting access.
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However, deidentified grouped visualizations can be obtained fromour
Shiny app: https://simonlab.shinyapps.io/FLCdb/. The data accessed
from other studies are under the following GEO accession codes.
From HBL: GSE133039 (Carrillo-Reixach et al.76), GSE104766 (Hooks
et al.77), GSE151347 (Wagner et al.78). From iCCA: GSE107943 (Ahn
et al.79), GSE119336 (Gao et al.80), GSE63420 (Sia et al.81). From HCC:
GSE214846 (Long et al.83), GSE77314 (Liu et al.84), GSE105130 (Jin
et al.86), GSE207435 (Wang et al.87), GSE94660 (Yoo et al.88),
GSE77276 (Yang et al.89). From FLC: GSE181922 (Francisco et al.33),
GSE63018 (Sorenson et al.32). The rest of FLC samples were collected
from the European Genome Phenome Archive EGAD00001005308
(Hirsch et al.26) and dbGAP codes phs000828 [https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000828.v1.p1]
(Xu et al.31) and phs000673 [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000673.v5.p1] (Robinson et al.34).
The datasets LIHC (containing HCC and FLC samples) and CHOL
(containing iCCA samples) of the TCGA study35 are available under
dbGAP code phs000178 [https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8]. Oikawa et al.54

tumor cell line is under GEO code GSE73114. The raw reads and
normalized read counts for Figs. 3, 4, 7A, B, D, and 8 are deposited in
their corresponding dbGAP, GEO, and EGA repositories, as detailed
above. For Supplementary Fig. 2, UMAP plots of libraries RU-A, -B,
and -C, are from dbGAP: phs000709 and phs003643 using all the
genes. For Supplementary Fig. 3, all of the data are in dbGAP
(phs000709, phs002435, phs002439, phs003643, phs000828,
phs000673, phs000178), GEO (GSE181922 and GSE63018) and EGA
(EGAD00001005308). For Supplementary Fig. 5 the data is in
Requena, this study (dbGAP: phs003643), and the samples deposited
in public databases from the studies Francisco et al.33 (GEO:
GSE181922), Xu et al.31 (dbGAP: phs000828), Robinson et al.34

(dbGAP: phs000673), Sorenson et al.32 (GEO: GSE63018), Simon
et al.15 (dbGAP: phs000709), Hirsch et al.26 (EGA:
EGAD00001005308), and the TCGA-LIHC study (dbGAP:
phs000178). For Supplementary Fig. 6 UMAP plots of samples from
15 RNA-seq studies: intrahepatic cholangiocarcinoma (iCCA)79–82

(GEO: GSE107943, GSE119336, GSE63420), hepatoblastoma (HBL)76–78

(GEO: GSE133039, GSE104766, GSE151347), and hepatocellular car-
cinoma (HCC)35,83–89 samples (GEO: GSE214846, GSE77314,
GSE105130, GSE207435, GSE94660, GSE77276; and dbGAP:
phs000178). For Supplementary Fig. 7 UMAP plots of tumor-normal
paired samples of cholangiocarcinoma (iCCA)79–82 (GEO: GSE107943,
GSE119336, GSE63420), hepatoblastoma (HBL)76–78 (GEO: GSE133039,
GSE104766, GSE151347), and hepatocellular carcinoma (HCC)35,83–89

(GEO: GSE214846, GSE77314, GSE105130, GSE207435, GSE94660,
GSE77276; and dbGAP: phs000178). The remaining data are available
within the Article, Supplementary Information, or Source Data file.
Source data are provided in this paper.

Code availability
The functions developed for manipulation and visualization of multi-
omics data have been packaged into an R library, available on GitHub
(https://github.com/BigMindLab/OmicsKit).
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