Table 1 Calculated properties related to carrier-phonon coupling in CuSbSe2 along different principal axes

From: Structural and electronic features enabling delocalized charge-carriers in CuSbSe2

 

a

b

c

Averagea

\({a}_{{{\rm{o}}}}\,({{\text{\AA }}})\)

6.457

4.034

14.929

 

\({E}_{{{\rm{d}}}}^{{{\rm{VBM}}}}\)(eV)

1.16

1.93

2.11

1.73

\({E}_{{{\rm{d}}}}^{{{\rm{CBM}}}}\) (eV)

6.60

6.32

6.62

6.51

\({C}_{{{\rm{iii}}}}\,({GPa})\)

75.5

81.7

60.4

41.6

\({g}_{{{\rm{ac}}}}^{{{\rm{VBM}}}}\)

1 × 10−3

3 × 10−3

3 × 10−3

2 × 10−3

\({g}_{{{\rm{ac}}}}^{{{\rm{CBM}}}}\)

7 × 10−3

1.0 × 10−2

1.0 × 10−2

9 × 10−3

\({\epsilon }_{\infty }\)

10.1

12.5

11.4

11.3

\({\epsilon }_{{{\rm{stat}}}}\)

12.0

40.4

16.5

23.0

\({m}_{{{\rm{h}}}}^{*}\)

1.44

1.30

2.38

1.60

\({m}_{{{\rm{e}}}}^{*}\)

0.29

0.41

0.94

0.43

\({\alpha }_{{{\rm{h}}}}\)

0.55

1.77

1.17

1.59

\({\alpha }_{{{\rm{e}}}}\)

0.25

0.99

0.73

0.82

\({E}_{{{\rm{b}}}}\) (meV)

22.3

2.6

33.6

8.7

  1. aFor details on how averaging for each quantity was carried out, see Supplementary Note 8.
  2. ao: lattice parameter; \({E}_{{{\rm{d}}}}^{{{\rm{VBM}}}}\): acoustic deformation potential of the valence band maximum; \({E}_{{{\rm{d}}}}^{{{\rm{CBM}}}}\): acoustic deformation potential of the conduction band minimum; \({g}_{{{\rm{ac}}}}\): acoustic coupling constant; \({C}_{{{\rm{iii}}}}\): Diagonal component of the elastic tensor \({\epsilon }_{\infty }\): dielectric constant at high frequency; \({\epsilon }_{{{\rm{stat}}}}\): static dielectric constant; \({m}_{{{\rm{h}}}}^{*}\): effective mass of holes (related to electronic conductivity); \({m}_{{{\rm{e}}}}^{*}\): effective mass of electrons (related to electronic conductivity); \({\alpha }_{{{\rm{h}}}}\): Fröhlich coupling constant of holes; \({\alpha }_{{{\rm{e}}}}\): Fröhlich coupling constant of electrons. \({E}_{{{\rm{b}}}}\): Wannier-Mott binding energies.