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A Bayesian active learning platform for
scalable combination drug screens
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Large-scale combination drug screens are generally considered intractable
due to the immense number of possible combinations. Existing approaches
use ad hoc fixed experimental designs then train machine learning models to
impute unobserved combinations. Here we propose BATCHIE, an orthogonal
approach that conducts experiments dynamically in batches. BATCHIE uses
information theory and probabilistic modeling to design each batch to be
maximally informative based on the results of previous experiments. On ret-
rospective experiments from previous large-scale screens, BATCHIE designs
rapidly discover highly effective and synergistic combinations. In a pro-
spective combination screen of a library of 206 drugs on a collection of
pediatric cancer cell lines, the BATCHIE model accurately predicts unseen
combinations and detects synergies after exploring only 4% of the 1.4M pos-
sible experiments. Further, the model identifies a panel of top combinations
for Ewing sarcomas, which follow-up validation experiments confirm to be
effective, including the rational and translatable top hit of PARP plus topoi-
somerase I inhibition. These results demonstrate that adaptive experiments
can enable large-scale unbiased combination drug screens with a relatively
small number of experiments. BATCHIE is open source and publicly available
(https://github.com/tansey-lab/batchie).

Single-agent treatment interventions in cancers, viruses, and bacterial
infections impose evolutionary selective pressures that can lead to
therapeutic resistance and poor outcomes for patients. Combination
therapies have the ability to constrain multiple potential avenues of
evolutionary escape and thus reduce the likelihood of treatment
resistance. Consequently, rational combination therapies have long
formed the basis for rapidly evolving pathogens like HIV1 and are
increasingly seen as the future of antibiotics2 and cancer therapies3,4.

Screening for effective drug combinations presents the singular
challenge of scale. The number of possible experiments in a combi-
nation screen grows at a rate of n ×md × td for n conditions,m drugs, t
doses, and d-way combinations. For instance, a single-agent screen of
100 drugs and 50 cell lines at 5 doses would only comprise 25K

experiments whereas a pairwise drug screen on the same libraries
would require 6.2M experiments. Given the rapid growth of the
experimental design space, even the most efficient high-throughput
screening team would struggle to conduct an exhaustive pairwise
combination screen of a modest-sized drug library over a modest
number of doses and cell lines. Conducting such a screen is currently a
substantial undertaking requiring large funding, detailed planning,
advanced equipment, and several years of experiments. Thus, even the
largest published combination screens havebeen restricted to libraries
of less than 120 drugs5–7.

The intractability of combination drug screens has led to the
development of machine learning methods for predicting drug
combinations8–12. The goal of such modeling is to use the predictive
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model to simulate experiments in silico andfilter the list of combinations
down to a set of top hits to be validated in vitro. However, predictive
models are fundamentally limited by the data onwhich they are trained.
Small libraries, which allow for exhaustive enumeration of the combi-
nation landscape, are limited to discoveries involving those drugs in the
library. If the library is too small, it simply may not contain any useful
candidate combinations and thus machine learning models will extract
no meaningful signals (Fig. 1a). Larger libraries may contain useful
combinations, but if a screen is performed on a random or fixed-design
subset, then it is unlikely togenerate observations of themost surprising
and informative combinations. Models fit to pre-designed observations
are likely to then have poor accuracy and may be unable to confidently
pinpoint the maximally useful combinations (Fig. 1b). Thus, while a
number of sophisticated models have been proposed, their success as
discovery tools for rational combinations has been limited.

We sought to overcomeboth thewet lab scalability andpredictive
modeling challenges of combination screens by rethinking the
experimental design approach. Rather than performing a fixed-design
experiment and fitting a model post-hoc, we instead drew on the long
history of Bayesian optimal sequential experimental design13. In the
sequential setup, experiments are conducted in small batches where
each batch is designed adaptively based on the results of the previous
batches. When designs are driven by a machine learning model that
aims to acquire the most informative training data in each batch, the
sequential experimental design task is known as active learning14.
Active learning has experienced a recent burst in interest in the drug
discovery literature15–18 where the objective is to design de novo
molecules aimed at better docking on a target. We are aware of only
one recent method, RECOVER19, that has attempted to integrate
adaptive experimentation and combination screening. RECOVER uses
a multi-armed bandit algorithm to search for top synergistic hits for a
single cell line at each iteration. Unfortunately, the RECOVER bandit
approach provides no clear way to scale to large sample libraries,
provides no theoretical guarantees that designs are optimal, and can
only target single cell line synergywhich is generally rare6 and does not
typically characterize successful combination therapies in the
clinic20–23. Thus, while using active learning to identify usefulmolecules
has seen robust investigation, its application to discover rational
combinations from large libraries of existing drugs has not been
thoroughly explored.

We note that a natural alternative to active learning is Bayesian
optimization24,25, which also adaptively collects information while
taking into account an internal model’s uncertainty of possible
experiments. Unlike active learning, whose goal is to model the entire
experimental space (perhaps subject to some resolution), Bayesian
optimization seeks to find a single optimizer of some objective func-
tion, and it assumes the ability to observe evaluations of this function.
For the types of objectives considered in this work, such as the ther-
apeutic index, individual evaluations require experiments on drug
combinations that span several cell lines, which is potentially wasteful.
The active learning approach considered here, meanwhile, has the
ability to leverage all observed experiments, regardless of how many
cell lines an individual combination is observed on, and it has the
added benefit that the end product is a model that makes predictions
across the entire space, allowing us to identify many promising can-
didates instead of just one.

In this work, we introduce Bayesian Active Treatment Combina-
tion Hunting via Iterative Experimentation (BATCHIE) as a framework
for orchestrating large-scale combination drug screens through
sequential experimental design. BATCHIE uses a Bayesian active
learning26,27 strategy to design sequential experiments. These
sequential designs are theoretically near-optimal (see Supplementary
Information for theory and proofs) and guarantee that BATCHIE
designs are efficient. Pragmatically, BATCHIE enables sequential
experimental designs that will best improve any user-provided prob-
abilistic (Bayesian) model. Thus, while we implemented an initial
model for our experiments, BATCHIE can alternatively be paired with
any existing and future Bayesian machine learning method for com-
bination drug response. The end result of a BATCHIE screen is a
maximally informative dataset and an optimal predictive model that
enables the discovery of more effective combinations than in a fixed
design (Fig. 1c). We validate the empirical performance of BATCHIE
using retrospective simulations and through a prospective study. We
first use data from large-scale, pan-cancer combination screens5–7 to
retrospectively simulate adaptive screens. BATCHIE consistently out-
performs fixed designs in these simulations and better prioritizes
effective combinations as top hits. We then implement BATCHIE in a
drug screening facility and use it to conduct a combination drug
screen across a 206 drug library over 16 cancer cell lines, focusing
on pediatric sarcomas. The BATCHIE screen generates a model with
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Fig. 1 | Benefits of adaptive experimental design. a, b Traditional approaches to
combination studies entail exhaustive enumeration of a small library or random
subsampling of a large library. In either case, the resultingmodels generally are not
powerful enough to find clinically relevant discoveries. c Adaptive experimental

design allows exploration of a large library. By focusing on the most informative
experiments, one can create a powerful model that is capable of finding clinically
relevant discoveries. Created in BioRender. Tansey, W. (2024) BioRender.com/
k20w361.
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near-optimal predictive accuracy on random unseen combinations.
Further, we use the model to prioritize ten combinations to validate
experimentally for a panel of Ewing sarcoma lines; all ten combinations
achieve a high therapeutic index score. The top identified hit corre-
sponds to a PARP inhibitor (talazoparib) plus a topoisomerase I inhi-
bitor (topotecan), a biologically rational combination and the subject
of two of the five NCI-supported Phase II combination therapy clinical
trials for Ewing sarcoma currently underway. BATCHIE is readily
available as open source, along with accompanying tutorials.

Results
Adaptive experimental design for combination drug screens
BATCHIE uses an active learning algorithm to choose the most infor-
mative data to collect in each sequential batch of experiments (Fig. 2). In
the initial batch, BATCHIE uses a design of experiments approach28 to
cover the drug and cell line space efficiently (Fig. 2a). The initial batch is
then run (Fig. 2b) and used to train a Bayesian predictive model that
estimates a distribution over drug combination responses for each cell
line (Fig. 2c). For subsequent batches, BATCHIE uses the model’s pos-
terior distribution to simulate plausible outcomes of candidate combi-
nation experiments along with how they would change the model
(Fig. 2d). BATCHIE then measures how much each experiment is
expected to reduce the posterior uncertainty over the drug responses
(Fig. 2e) and uses a submodular approach to design a maximally infor-
mative batch (Fig. 2f). After designing an optimal batch, the batch is run,
themodel is updatedwith the new results, and the next optimal batch is
constructed. When the exploratory budget runs out or the model con-
verges to a concentrated posterior, the active learning loop ends. The
optimally trained model is then used to predict effective combinations
that are prioritized for experimental validation (Fig. 2g).

To design experiments, BATCHIE uses a modification of the
Diameter-based Active Learning criterion26,27, called Probabilistic

Diameter-based Active Learning (PDBAL), that is suitable for prob-
abilistic and noisy outcomes like those encountered in drug screening
(see “Methods”). The key idea behind PDBAL is to select experiments
which will minimize the expected distance between any two posterior
samples after observing the outcomes of the selected experiments.
PDBAL comes with theoretical guarantees ensuring that combination
screen designs will be near-optimal regardless of the drug library,
sample library, or combination search space (see Supplementary
Information for PDBAL theory). In addition to theoretical guarantees,
we benchmarked PDBAL across a wide array of different predictive
modeling scenarios and objectives (Supplementary Fig. 13). PDBAL
consistently performs as well or better than conventionalmethods like
expected information gain or posterior variance maximization.14

Given the strong empirical performance of PDBAL and its theoretical
guarantees, we used it as the foundation for the overall BATCHIE
algorithm.

BATCHIE is compatible with any Bayesian model capable of
modeling combination drug screen data. There have been many
models developed for modeling this type of data11,29–31. Integrating any
of these models into BATCHIE would be possible by reformulating
them as fully Bayesian models capable of quantifying posterior
uncertainty. In our implementation, we use a hierarchical Bayesian
tensor factorization model (Fig. 2c). The model contains embeddings
for each cell line and each drug-dose, as well as embeddings that
capture the effects of drug interactions. The BATCHIE model assumes
that the response of a combination of drugs on a cell line can be
decomposed into the individual effects of the drugs and an interaction
term. Specifically, the model posits an embedding uðkÞ 2 Rd for each
cell line k and embeddings vðiÞ1 , vðiÞ2 2 Rd for each drug-dose i, which
capture the individual and interaction effects of the drug-dose,
respectively. When drug-doses i and j are applied to cell line k, the
logit-transformed viability is assumed to be normally distributed with
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Fig. 2 | BATCHIEoverview. aTheBATCHIEworkflowbegins by specifying a cell line
library, a drug library, and an initial ‘seed batch’of plates to cover every cell line and
drug with at least one experiment. b Selected plates are assembled, run, measured,
and post-processed to obtain viability scores. Quality control (QC) checks filter out
problematicwells. cABayesian tensor factorizationmodel is fit to the current data.
Posterior samples are drawn via MCMC. d The joint distributions of candidate
experiments are estimated using the current set of posterior samples. e The active

learning criterion is applied to the joint distribution estimates to score the utility of
individual experiments. f The scores of individual experiments are aggregated to
define the most informative batch of experiments to run next, possibly subject to
design constraints. g After terminating the active learning loop, the most recently
fitted Bayesianmodel is used to predict top hits for individual combinations. These
top hits can then be validated in vitro and, potentially, in vivo. Created in BioR-
ender. Tansey, W. (2024) BioRender.com/t08h139.
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mean μijk satisfying

μijk =
Xd
t = 1

ðvðiÞ1, t + vðjÞ1, t + vðiÞ2, tvðjÞ2, tÞuðkÞ
t + vðiÞ0 + vðjÞ0 + uðkÞ

0 +α, ð1Þ

where vðiÞ0 2 R is a drug-dose specific offset, uðkÞ
0 2 R is a cell line

specific offset, and α 2 R is a global offset. The variance of the normal
distribution is assumed to be a global parameter. Hierarchical priors
are placed on top of the embeddings, offsets, and variance to
automatically adapt to the complexity of the data32. The priors are
chosen to be conditionally conjugate with the likelihoods, allowing the
entiremodel to sampled efficiently using blocked Gibbs sampling (see
“Methods” for modeling details).

To make BATCHIE practical to implement in a high-throughput
screening facility, we consider pools of experiments in the form of
microwell plates (Supplementary Fig. 3a). Each plate is formed by
combining a single cell linewith a rowplate and a columnplate. Here, a
row plate is an n ×m plate in which every well of a particular row
contains the samedrug at the samedose. Similarly, a columnplate is of
the same size, but constructed so that each column contains the same
drug at the same dose. When a row plate and a column plate are
overlaid, the resulting combination plate contains all possible combi-
nations of their constituent drug-doses. Row and column plates are
constructedwith high and low control wells so that all associated drug-
doses aremeasured singly and viabilities can be computed. In this way,
the number of plates that need to be stamped scales linearly with the
drug library size, as opposed toquadratically as thenumber of possible
combinations (see Methods).

Validation of BATCHIE on existing combination datasets
The core goal of BATCHIE is to reduce the number of experiments
needed tomake useful discoveries. To benchmark the effectiveness of
BATCHIE in pursuit of this goal, we conducted retrospective simula-
tions that compared the performance of a BATCHIE-trained model
after a small number (≤ 15) of rounds against (a) a model that was
trained on the entire dataset and (b) a model that was trained on a
random subset of the dataset matching the size and constraints of
BATCHIE’s.

We benchmarked BATCHIE using three large, publicly-available,
pan-cancer combination drug screen datasets: the NCI ALMANAC
study5 (ALMANAC), the Genomics of Drug Sensitivity in Cancer com-
bination screen6 (GDSC2), and Merck’s unbiased combination drug
screen7 (MERCK). The three datasets differed in cell line library size (60
for ALMANAC, 126 for GDSC2, 39 forMERCK) anddrug library size (104
for ALMANAC, 66 for GDSC2, 38 for MERCK). The ALMANAC screen
covered the NCI-60 panel of cell lines33, spanning leukemia, lung,
colon, central nervous system,melanoma, ovarian, renal, prostate, and
breast cancers. The GDSC2 screen covered breast, colon and pan-
creatic cancer cell lines. The MERCK screen covered a panel of lung,
ovarian, melanoma, colon, breast, and prostate cancer cell lines. All
three screens used fixed experimental designs but differed in the
subset of the combination space to explore. Consequently, the overall
sparsity pattern varies substantially between datasets (Fig. 3(b, c)).

To simulate the behavior of BATCHIE in a realistic adaptive data
collection screen, the existing datasets were divided into simulated
plates (Fig. 3a). Plates were designed to replicate the statistics of the
plates used in our prospective study (“Methods”). The data collection
processes (BATCHIE and Random) were given batch constraints that
approximately 10% of cell lines be selected at every round and three
combination plates be selected per chosen cell line. We stopped the
Random and BATCHIE screens after 15 batches, the same as in our
prospective study. We randomly held out 10% of all experiments as a
test set to evaluate predictive performance of the resulting models.
Model performance was compared relative to a model trained on the
full set of experiments conducted, not including the test set. We

repeated the simulations 25 times per dataset, with different
randomly-organized row and column plates for stamping.

At the end of 15 batches, the Random and BATCHIE models
observed 1.7–20.4% of the full training dataset (1.66–1.7% for ALMA-
NAC, 10.3–11.1% for GDSC2, and 19.3–20.4% for MERCK). Total
observed percentages varied due to the difference in the original
screen designs. Across the three datasets, BATCHIE produced models
with holdout R2 accuracy within 5–7% of the models that were fit using
all available training data and significantly outperformed the models
trained on data collected by the Random strategy with the same
number of rounds (Fig. 3d).

We also tracked the number of experiments that the Random
strategy would need to perform in order to achieve comparable per-
formance to BATCHIE. We observed that the number of experiments
saved grew as a function of the number of BATCHIE rounds, with the
number of experiments saved by round 15 numbering in the 10s of
thousands for the ALMANAC andMERCKdatasets to over 100K for the
GDSC2 dataset (Fig. 3e). When we looked at the excess number of
experiments needed to achieve a certain normalized accuracy,
BATCHIE shows an exponential speedup as the model accuracy
threshold increases (Supplementary Fig. 1c). When measured by the
number of batches needed for Random to achieve BATCHIE-level
performance, we again saw a similar exponential trend, but the scale is
more consistent across datasets (Supplementary Fig. 1b). Similar
trends were seen when measuring the number of excess batches
required for the Random model to reach the equivalent performance
of the BATCHIE model at each round (Supplementary Fig. 1d).

To test how well BATCHIE scales with the size of the experimental
landscape, we simulated smaller experimental spaces by restricting
each dataset to a random subsample of 20%, 40%, 60%, or 80% of cell
lines. For all datasets, we observed a strong positive correlation
(ρspear =0.38, 0.64, 0.48, maxðpÞ= 1:6× 10�5) between the size of the
experimental landscape and the improvement offered by BATCHIE over
Random (Fig. 3f). These results indicate that BATCHIE screens become
increasingly more efficient as the overall landscape becomes larger.

While these results confirm that BATCHIE produces accurate
models with few experiments, average predictive accuracy alone does
not ensure that the model will be able to identify highly effective
combinations. This is because desirable properties for treatments,
such as high therapeutic index (TI)22, often correspond to extremal
points, which are not average by definition. To evaluate the ability of
BATCHIE to discover effective combinations, we used the BATCHIE-
trained model to estimate the TI of all drug combinations using all
pairs of cell lines as targets and controls. We chose the top 20 pre-
dictions and calculated their average observed TI. For all of the data-
sets, the BATCHIE-trained model selections had significantly higher TI
(maxðpÞ=0:001) than those selected by the Random-trained model
(Supplementary Fig. 1e). We also observed that BATCHIE was better at
identifying high TI combos in terms of area under the curve (AUC) of
the receiver operating characteristic (ROC) curve (Supplemen-
tary Fig. 1f).

BATCHIE can be implemented with any active learning selection
criterion. We investigated the effect of interchanging the default
PDBAL strategywith the expected informationgain (EIG) andposterior
predictive variance maximization (Variance) strategies. We found that
BATCHIEwith PDBAL performed aswell or better than the other active
learning strategies across all three benchmark datasets (Supplemen-
tary Fig. 15a–c). We also investigated the effect of interchanging the
default PDBAL mean-squared distance (MSD) with a TI-aware distance
(TID) and found that there was no significant difference in perfor-
mance (SupplementaryFig. 15d–f). Given the comparable performance
between the twodistancemetrics, we chose the simplerMSD as it does
not rely on a specific choice of downstream objective and lends itself
naturally to the interpretation of constructing amaximally informative
dataset.
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To evaluate the robustness of BATCHIE to different goals than
therapeutic index, we implemented BATCHIE in the setting where the
goal is solely tomodel synergy or antagonism (Supplementary Fig. 2a).
We adapted our retrospective setup so that all single drug data was
made available to the models before data collection and predictions
were only over Bliss scores. We also implemented a synergy-only
Bayesianhierarchicalmodel,making this benchmarkanexampleof the
flexibility of BATCHIE to adapt to new designs and alternative models
(Methods). Synergy detection is a challenging task as synergies are
rare6. In the three benchmark datasets, only 0.12–1.19% of combina-
tions are synergistic and 0.09–0.82% are antagonistic (Supplementary
Fig. 2b). We again observed significant gains (maxðpÞ= 10�7) in pre-
dictive accuracy on held-out data when comparing BATCHIE to the
Random design baseline (Supplementary Fig. 2c). We also confirmed
that the BATCHIE-trainedmodel is better at detecting top synergy hits
and top antagonism hits (Supplementary Fig. 2d,e). Across all three
datasets, the BATCHIE model saves approximately 25K experiments
compared to the Random strategy by round 15 with similar upward
trends in each dataset (Supplementary Fig. 2f).

A prospective pediatric sarcoma study with BATCHIE
Current treatments for many pediatric sarcomas have unacceptably
high failure rates, particularly for metastatic and recurrent
presentations34. Ewing sarcoma35 (EWS), Rhabdomyosarcoma (RMS),
and osteosarcoma36 (OST) are amongst the most common pediatric
sarcomas in need of improved treatments. We conducted a large-scale
combination drug screen on pediatric cell lines, with a focus on
pediatric sarcomas. The study covered 16 cell lines: 5 Ewing sarcoma
lines (A673, MSKEWS-38338, MSKEWS-66647, SKNEP, TC-71), 5
osteosarcoma lines (MG-63, MSKOST-11890, SAOS-2, SJSA-1 U2OS), 1
rhabdomyosarcoma line (MSKRMS-12808), 3 other cancer cell lines
(Kelly, MDA-MB-231, Wit49), and 2 non-cancer lines (RPE, BJ)(Fig. 4a).
The non-cancer lines were included in the study to allow us to evaluate
meaningful notions of TI, as high activity in a target cell line alone does
not necessarily translate to clinical utility22.Mathematically, wedefined
therapeutic index to be the minimum viability of the control cell lines
(i.e., RPE and BJ)minus themedian viability of the target cell lines (e.g.,
all EWS lines). Thus, a high TI indicates a drug has high activity in the
target lines and not in the control lines.

Fig. 3 | Retrospective study design and results. a Retrospective studies are
conducted by processing an existing dataset into candidate row/column plates of
the kind considered in this work and simulating the choices made by both the
Random and BATCHIE data collection procedures. After data collection, the
models are trained on the data collected by each of the procedures and evaluated
for accuracy. Created in BioRender. Tansey, W. (2024) BioRender.com/i97p897.
b Statistics for the datasets used inour retrospective studies. Created in BioRender.
Tansey, W. (2024) BioRender.com/e57c809. c Heatmaps showing the fraction of
possible experiments observed for each drug combination. d BATCHIE outper-
forms Randomwhen both are evaluated after 15 rounds of data collection; p-values
derived from a two-sided Mann-Whitney U-Test with no adjustments made for

multiple comparisons. e The number of additional experiments needed for Ran-
dom to achieve comparable performance to BATCHIE grows with the number of
BATCHIE rounds across all datasets. Lines representmean values; error bars denote
standard deviations. f The number of additional batches needed for Random to
achieve comparable performance to BATCHIE grows with the size of the cell line
library;ρspear is Spearman’s rho fornonparametric rank correlationwith a two-sided
test for the p-value with no adjustments made for multiple comparisons. For
boxplots in (d, f), center lines denotemeans, box limits denote standard deviations,
and whiskers denote extremal values. d–f n = 25 replicates for all plots. Source data
are provided as a Source Data file.
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The drug library consisted of 206 drugs, both FDA-approved and
investigational. In order to ensure adequate coverage of complementary
mechanisms, the drug library was chosen to span a variety of targets
(Fig. 4b). We ensured that the library included inhibitors of the most
theoretically promising targets for Ewing sarcoma and osteosarcoma
such as PARP, CDK4/6, and CD9937,38 as well as commonly-used che-
motherapy drugs. Each drug was tested at two concentrations: 0.1μM
(the low dose) and 1μM (the high dose). All drugs on a single row or
columnplate were plated at the same concentration, allowing each drug
combination to occur at 4 dose combinations (low-low, low-high, high-
low, and high-high). Each active learning batch consisted of choosing 3
cell lines and3combinationplates for eachchosencell line, resulting in9
plates in total per batch. To control for potential artifacts from the plate
design, including plate edge and dosing effects, one could use state-of-
the-art compound transfer techniques39. Our approach, starting in Phase
II, was to use independent duplicates to filter out potential failed wells.
All BATCHIE-collected plates had Z’-factors greater than 0.5, indicating
reliable results across all experiments.

The screenwas divided into two phases (Supplementary Fig. 3b). In
phase I, we started with a focus on OST, using 4 OST lines and a single
line each of EWS and RMS. We also included three non-sarcoma cancer
cell lines and used a single control line (RPE). After 10 rounds of
BATCHIE, we observed the model was converging, as measured by a
diminishing improvement of cross-validation accuracy (Supplementary
Fig. 3d). We, therefore, paused the screen and assessed the model’s

predictionson the three sarcoma types.Weobservedover three timesas
many combinations predicted tohave high therapeutic index in the EWS
line compared to either the OST lines or the RMS line (Supplementary
Fig. 3f). As a preliminary test, we selected three drugs (Clofarabine,
Eltanexor, and Talazoparib) each of which was predicted to have high TI
on the EWS lines at the low concentration when paired with another of
the three at the low concentration.We experimentally validated that the
three hits had TI in the 90th percentile of all observed combinations
through round 10 (Supplementary Fig. 3g).

Since the phase I results suggested that our drug library may
contain effective combinations particularly for EWS, in phase II we
focused the screen on EWS.We added four EWS lines and removed the
other non-sarcoma cancer cell lines. We also added an additional
control line (BJ) to increase the robustness of our control set in TI
estimates; a fifth OST line (MG-63) was also added. After the single
initial seed batch for the newly added cell lines, the BATCHIE model
quickly learned that the EWS lines were highly related. Two of the four
EWS lines introduced in phase II had significant positive correlation
with the phase I EWS line and none of the other phase II lines (Sup-
plementary Fig. 3h). Phase II proceeded for five rounds of BATCHIE
until we again observed the model’s cross-validation accuracy con-
verging (Supplementary Fig. 3e). We then ended the adaptive portion
of the screen and moved to the validation phase.

In total, we ran BATCHIE for 15 rounds of data collection, gen-
erating approximately 54K unique cell line, drug-dose pair

Fig. 4 | Prospective study design and random validation results. a Prospective
study cell line library broken downby type.b Prospective studydrug library broken
down by mechanism of action. cOverview of prospective study: after 15 rounds of
BATCHIE data collection, approximately 4% of possible combinations were
observed. Created in BioRender. Tansey, W. (2024) BioRender.com/a40a996.
d Observation breakdown by cell line and drug mechanism of action; p-values
were computed using Pearson’s chi-square test where the null hypothesis is that
experiments were sampled uniformly at random. Colors in the left panelmatch the
corresponding type colors from (a). e Scatter plot of mean BATCHIE predictions
v.s. observed viabilities on randomvalidation data. Orange line indicates regression

of predictions onto observations, and black line denotes the identity line. f Pearson
correlation between predictions and observed viabilities, broken down by cell line,
observation status, concentration and cancer type. Maximum p-value satisfies
p < 10−15, with no corrections made for multiple comparisons. g ROC curve for
synergy identification on randomvalidation data. Synergy is defined here as having
an observed Bliss score larger than 0.25. p-value was computed using a one-sided
permutation test over 100K permutations. e, f ρ is Pearson’s ρ correlation coeffi-
cient, with p-values calculated under a two-sided alternative. Source data are pro-
vided as a Source Data file.
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combinations. As the full design space was approximately 1.4M pos-
sible experiments, BATCHIE explored approximately 4% of the total
landscape (Fig. 4c). This dataset exhibited significant variability
(p < 10−15) in the sampling frequencies with respect to both cell lines
and drug classes (Fig. 4d), indicating that certain cell lines and drugs
were more informative than others to the model. The correlations
among predictions made by the final model reveal that it clearly
learned to separate the EWS cell lines from the OST and control lines
(Supplementary Fig. 4f). The OST lines were less homogeneous in the
model predictions, as expected due to OST being a disease marked by
chromothripsis which leads to potentially hundreds of random chro-
mosomal translocations and thus high genomic heterogeneity com-
pared to relatively stable EWS cancers40.

At the drug level, the predictions of themodel correlated strongly
amongst drugs of similar mechanisms. Hierarchical clustering of pre-
dictions (Supplementary Fig. 4d) grouped targeted therapies (top left)
distinctly frommore broad-spectrum cytotoxic agents (bottom right).
Among the targeted therapies, the predictions clearly distinguished
androgen receptor inhibitors and MEK inhibitors. Within the broad-
spectrum cytotoxic agents, the predictions identify two clades. The
first of these contained taxanes and vinca alkaloids, drugs whose
mechanisms of action (MoAs) all target mitosis. The majority of
the drugs in the other clade, containing anthracycline topoisomerase
inhibitors, nucleoside metabolic inhibitors, selective inhibitors of
nuclear transport, and anthelmintics, were predominantly focused on
targeting DNA replication. Across both groups, we observed that the
finer-grained drug class structure was largely respected by the hier-
archical clustering. In an orthogonal analysis, we projected high dose
predictions to 2d using t-SNE and again observed drug clustering by
MoA with the dominant spatial axis corresponding to drug potency
(Supplementary Fig. 4e).

Validation of BATCHIE predictions on random unseen
combinations
To evaluate the accuracy of the BATCHIE-trained model, we con-
structed a test set of randomly selected combination plates from the
remaining unexplored experimental space. We randomly selected
from among the experimental plates that had no overlap in any cell
line, drug-dose pair combinations with the BATCHIE-collected data.
One plate was selected for every cell line that was under investigation
in phase II. One of the test plates (cell line MG-63) did not pass the
quality control checks and was excluded from performance
measurement.

The BATCHIE model predictions were highly accurate on the
unseen validation data (Fig. 4e, Pearson’s ρ =0.91, p < 10−15). The
accuracy of themodel was robust to stratification by cell line, previous
observation status, drug concentration, and cancer type (Fig. 4f).
Indeed, for 10 of the 11 cell lines, Pearson’s ρ was above 0.82 and was
above 0.91 for 9 of the 11. The previous observation status of the drug
on the cell line also appeared not to make a large difference, as the
correlation remained above 0.91 regardless of whether one, both, or
neither of the drugs had previously been observed on the chosen cell
lines. We observed that there was dip in performance to ρ =0.84 when
restricting to the low-low doses. This decrease in performance how-
ever is confounded since, by chance, half of the low-low validation set
was on the SJSA-1 cell line, the cell line on which BATCHIE performed
worst. SJSA-1 is an OST line that shares little predictive similarity to the
other OST lines (Supplementary Fig. 4f), whichmay explain its relative
difficulty in the test set.

Similar to previous combination cell line screens6,7, we found very
few synergistic combinations in the random validation set. Of the 3465
observed combinations, only 13 (0.004%) resulted in a Bliss score
larger than 0.25. Nevertheless, the BATCHIE model accurately identi-
fied these combinations (Fig. 4g), achieving an AUC of the ROC curve
of 0.846 (p = 10−5).

BATCHIE discovers rational drug combinations for Ewing
sarcoma
To validate BATCHIE’s ability to discover effective combinations, we
used the BATCHIE model to identify combinations with an high
expected therapeutic index. We ranked the drug combinations by
looking at their predicted viabilities at low concentrations and taking
the difference between the minimum predicted viability on the two
non-cancer lines and themedian viability on theOSTandEWS lines.We
found that no combinationswere predicted to be robust across all OST
lines such that the TI would be high. However, we did identify
several drug combinations that were predicted to have high TI across
a range of EWS lines. We selected 10 of the top-ranked candidates
and collected a fine-grained dose-response matrix spanning
0.006 nM–400 nM via four-fold dilution (“Methods”), which included
the low concentration combination (Fig. 5a). We also selected 13
negative control combinations that exhibited a large predicted dif-
ferential effect for at least two cell lines but were not predicted to have
a high TI over the five EWS lines.

The top hit selections for EWS had not been observed in the
training data at the low concentration for any cell line, and the general
observation pattern was sparse (Fig. 5b). Nevertheless, at the low
concentration there was a strong correlation (Pearson’s ρ =0.92,
p < 10−15) between the predicted viabilities and the observed viabilities
(Fig. 5c). This accuracy at the viability level translated to the observed
TIs being large, with the median TI score in the top hit predictions
being higher than the 98th percentile of observed TI scores in the 54K
training observations (Fig. 5d).

Although the top hits were chosen solely on the basis of their
predicted TI at a specific concentration, we found that they generally
exhibited high TI across a wide range of dose pairs. After computing
the TI for each entry of the dose-response matrix, we calculated the
area under the TI surface (2d curve) and observed that the top hits
exhibited significantly higher AUC values than the reference combi-
nations (p =0.002, Fig. 5e).

The selected combinations exhibit biologically plausible ratio-
nales in Ewing sarcomas. Ewing sarcomas frequently exhibit EWS-FLI1
genomic fusions, which tend to interact with the DNA repair protein
PARP-141. Talazoparib is a PARP inhibitor, and combining PARP inhibi-
tors with treatments that induce DNA damage has previously been
shown to lead to cytotoxicity in preclinical Ewing sarcoma studies42.
These observations have led to clinical trials combining PARP inhibi-
tors with irinotecan (a topoisomerase 1 inhibitor) and temozolomide
(an alkylating agent) for Ewing sarcoma and related cancers43–45.
Topotecan is a topoisomerase 1 inhibitor, mitomycin is an alkylating
agent that cross-links complementary DNA strands, and epirubicin is
an anthracycline thatblocks the action of topoisomerase 2. Thus, these
selected combinations with talazoparib may facilitate the utility of
PARP inhibition by accelerating DNA damage.

Of the remaining drugs, cytarabine and GSK1324726A may act by
reducing the overall abundance of the EWS-FLI1. This has been directly
shown for cytarabine in vitro46. On the other hand, GSK1324726A is a
BET bromadine inhibitor, and it has been shown that BET bromadine
proteins are required for EWS-FLI1 transcription47,48. Clofarabine and
cladribine are deamination-resistant analogs of deoxyadenosine, and
as such interfere with DNA synthesis through incorporation into
DNA49,50. Both drugs have been shown to inhibit Ewing sarcomagrowth
in vitro by binding to C99, which is overexpressed in Ewing sarcoma51.
EWS-FLI1 also suppresses SPRY1, a downstream feedback inhibitor of
certain Ras-activating receptors52. Tipifarnib is a farnesyltransferase
inhibitor that interferes with the Ras signaling pathway53. Combining
tipifarnib with drugs that induceDNA damage can be seen as targeting
two separate downstream effects of EWS-FLI1.

To evaluate whether the results from our screen on established
cell lines would potentially translate to the clinic, we tested six of the
combination hits in an ex vivo study on two EWS patient-derived
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samples. Each hit was evaluated across a fine-grained grid spanning
0.02 nM–1μM (Supplementary Fig. 5a). After linearly interpolating (in
log-space) to align with the concentration grid applied to the previous
EWS lines, we computed the TI scores for the individual ex vivo
models. We found a robust TI response on both models, particularly
for the top cell line hit topotecan and talazoparib (Supplementary
Fig. 5b). The TI AUC scores were broadly comparable with the median
EWS cell line TI AUC scores (Supplementary Fig. 5d). Similar to the
results on EWS cell lines, we found that the ex vivo single model TI
scores at the lowdosewere significantly higher than those found in the
training set (Supplementary Fig. 5c, p < 10−14). Moreover, the median
ex vivo TI score fell in the 96th percentile of TI scores in the
training set.

Finally, we hypothesized that higher-order combinations could be
discovered through analysis of the pairwise screens. To test this, we
ran a triplet screen on the drugs talazoparib, topotecan, and mito-
mycin over a fine-grained grid spanning 0.1 nM–400 nM (see “Meth-
ods”, Supplementary Fig. 6a). Each pairwise combination of the three
drugs appeared in our EWS top hits screen, suggesting that the triplet
combination of the three would enable additional efficacy. At the
single agent level, talazoparib was observed to have low activity with
an IC50 nearly 40x higher than topotecan and 4x higher than

mitomycin (Supplementary Fig. 6b). Pairwise combinations with tala-
zoparib yielded higher TI for both mitomycin and talazoparib. How-
ever, isotonic interpolation analysis revealed that for many choices of
cumulative concentration, the addition of mitomycin did not lead to
substantial improvements over the combination of talazoparib and
topotecan (Supplementary Fig. 6c). Instead, the optimal concentration
strategy allocates more towards talazoparib as the total concentration
increases but actually reduces the other two drugs (Supplementary
Fig. 6d-g). This further supports preclinical evidence that PARP inhi-
bitors sensitize EWS cells to DNA damage54,55, with less of the twoDNA-
damaging drugs needed as talazoparib dosing increases. Overall, the
inability of the triplet combination to meaningfully improve on the
pairwise score indicates that simple pairwise additivity is insufficient to
detect effective higher-order combinations.

BATCHIE discovers useful interactions between osteosarcomas
and Aurora A kinase inhibitors
We next investigated the ability of BATCHIE to identify high TI com-
binations for OST lines. The BATCHIE model did not predict any drug
pairs would have high TI values over a broad section of OST lines. This
is in line with the observation that OSTs are more genomically diverse
than EWS as OSTs often undergo chromothripsis leading to each

Fig. 5 | Prospective study validation of top hits. a Pipeline for top hit selection
and validation in the prospective study. Themodel fit on BATCHIE-collected data is
used to simulate outcomes for drug combinations at the low (0.1μM) concentra-
tion. Those simulated values are collected into confidence-rated predictions of TI
values. The top hits are then selected for further in vitro experimentation, col-
lecting observations over the full dose-response matrix. Created in BioRender.
Tansey, W. (2024) BioRender.com/l79r044. b Observation status of selected top
hits in BATCHIE-collected data. c Mean predictions and observed viabilities for

selected top hits at 0.1μM concentration. Pearson’s correlation ρ =0.92 with
p < 10−15 with a two-sided alternative. dHistogram of observed singlemodel EWS TI
values for combinations at 0.1μM concentration in BATCHIE-collected data (gray,
n = 659) and toppredicted hits (orange,n = 100). Percentiles are drawnwith respect
to BATCHIE-collected data. e Observed AUCs with respect to the TI dose-response
surface for selected top hits and not top hits. d, e p-values computed using a two-
sided Mann-Whitney U-Test. Source data are provided as a Source Data file.
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tumor having a unique set of rearrangements56,57. Instead of broadly
active pairs,weused theBATCHIEmodel to identify six drugs thatwere
predicted to have high TI values in some pairwise combination for at
least one OST line: eltanexor, talazoparib, cladribine, cytarabine, ali-
sertib, and trametinib.

We evaluated all ð6
2
Þ combinations at all four possible high/low

dose combinations across all five OST lines and our two control lines.
The SJSA-1 cell line failed our quality control checks and was removed
from our results. We observed a high concordance (Pearson’s ρ = 0.81,
p < 10−15) between the predicted viabilities and the observed viabilities
(Fig. 6a) on the remaining four lines and six drugs. We grouped each
observation by degree of sensitivity or resistance and noted a clear
separation between predicted sensitivity level and therapeutic
index (Fig. 6b).

For all pairwise combinations of alisertib, trametinib, and talazo-
parib, we observed high TI values on U2OS, and both alisertib/trame-
tinib and alisertib/talazoparib achieved substantial TI on both MG-63
and SAOS-2. Alisertib is an Aurora A kinase (AURKA) inhibitor. Using
data from DepMap58,59, we investigated the mechanistic rationale
behind alisertib as a component of an effective combination.We found
that the MG-63, SAOS-2, SJSA-1, and U2OS lines all have high RNA
expression levels of AURKA (Fig. 6c) and high sensitivity to CRISPR

knockout (Fig. 6d). Relatedworkhas foundAURKA inhibition generally
and alisertib in particular, has been shown to increase the BRCAness of
cells in vitro60, where BRCAness is defined by defects in the homo-
logous repair pathway that mimick the loss of BRCA1/261. BRCAness
has been shown to be correlatedwith increased sensitivity of OST lines
to PARP inhibitors in vitro62,63, making the combination of alisertib and
talazoparib particularly rational.

Trametinib is from the class of MEK inhibitors, which have been
shown to increase sensitivity to PARP inhibitors in RAS mutant cancer
lines64 and ovarian and pancreatic cancer models65. This increased
sensitivity to PARP inhibition is possibly due to the downregulation of
BRCA2 expression anddisruptionof the homologous repair pathway65,
similar to the effects of AURKA inhibition. While the MEK-PARP
approach has been investigated in these other cancers, we are not
aware of the combination of MEK-AURKA being investigated in OST.
Again using DepMap data, we observed that all lines in our panel are
sensitive to MAP2K1/2 knockout (Fig. 6d) and overexpress MAP2K1
and/or MAP2K2 (Fig. 6d).

Motivated by the pairwise results, we hypothesized that a triplet
combining alisertib and talazoparib with one of cladribine, topotecan,
and trametinib would be rational. We included cladribine and topo-
tecan as their mechanisms of DNA damage had been shown to lead to

Fig. 6 | Validation of top osteosarcoma hits. a Scatter plot of predicted viability
against observed viability on OST hit validation data, colored by cell line. ρ is
Pearson’s ρ correlation; p-value computed under two-sided alternative. bObserved
single cell line TI scores broken down by prediction status, where highly sensitive/
sensitive/resistant/highly resistant correspond to TI scores in the range (0.2,1.0]/
(0.1,0.2]/[0.2,−0.1)/[−1.0,−0.2), respectively (n = 61, 33, 32, 24); p-values were
computed using a two-sided Mann-Whitney U-Test with no adjustments made for
multiple comparisons. Box plot center lines denote means, box limits denote
standard deviations, and whiskers denote extremal values. c, d Z-scores of RNA

expression and CRISPR knockout scores from DepMap grouped by gene and
colored by cell line. e Observed single cell line TI scores; entries correspond to
largest mean observed TI score over 4 pairwise concentration combinations. Pre-
dicted effect designations are identical to those in (b). f Interpolated TI values for
the drug triplet alisertib, talazoparib, trametinib on SJSA-1 andU2OSwhen the total
concentration is held fixed at 1μM; optimal concentration is denoted by a star.
g Per-drug concentrations that optimize single cell line TI score as a function of
total concentration. TZP = talazoparib, TRM= trametinib, ALS = alisertib. Source
data are provided as a Source Data file.
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increased TI in EWS models in combination with talazoparib, and tra-
metinib was included due to its efficacy in the pairwise combination
screen. We evaluated each triplet over a fine-grained grid spanning
0.02 nM–1μM. Isotonic interpolation analysis revealed that in all tri-
plets, on all cell lines, and on most total concentrations, the con-
centration mixtures that achieved optimal TI scores were dominated
by alisertib (Supplementary Figs. 7, 8a). Indeed, only for the highest
total concentrations on MSKOST-11890 did we observe diminishing
returns for alisertib (Supplementary Fig. 8a). However, we did observe
that non-negligible proportions of talazoparib and trametinibmadeup
the optimal mixtures on SJSA-1 and U2OS (Fig. 6f, g). We also found
that the inclusion of higher concentrations of alisertib led to a more
robust TI score as evidenced by the increased TI AUC scores for all
combinations considered in conjunctionwith alisertib (Supplementary
Fig. 8b, Spearman’s ρ =0.3, p = 0.0036). Overall, the results provide
evidence for high doses of alisertib combined with low-to-moderate
doses of trametinib and talazoparib for a subset of OST patients.

Translation of alisertib-based therapy is challenging as it is cur-
rently discontinued due to failing its phase III trial. To evaluate the
translatability of the mechanistic combination, we replicated the
above triplet screen with LY329566, an investigational AURKA inhi-
bitor, in place of alisertib. The results of this screen were similar to
those with alisertib, with LY329566 generally dominating the optimal
concentrations (Supplementary Figs. 9, 10a) and leading to more
robust TI scores (Supplementary Fig. 10b). Also similar to the alisertib
results, we found that on U2OS, non-negligible mixtures of LY329566,
talazoparib, and trametinib led to improved TI scores (Supplementary
Figs. 9, 10a).

Discussion
We introduced BATCHIE, an active learning platform that enables
large-scale combinationdrug screens.Wederived theoryguaranteeing
that the batches designed by BATCHIE will always be relatively infor-
mative. Retrospective simulations on data from previous large-scale
combination screens confirmed strong empirical performance of
BATCHIE. A prospective study on pediatric cancer cell lines showed
BATCHIE screens can enable the rapid discovery of efficacious and
synergistic drug combinations within libraries of hundreds of drugs.

One natural question is whether large-scale adaptive combination
screens are even necessary. Ideally, biological knowledge of the dis-
ease of interest and the mechanisms of action of the individual drugs
would suffice to enable scientists to rationally design combination
agents. Unfortunately, most diseases are heterogeneous across
patients and most drugs have complicated mechanisms of action that
include off-target effects. For instance, we have found that drugs in
GDSC2 are twice as likely to correlate best with a drug outside their
mechanistic class, compared to a drug within their class (Supplemen-
tary Fig. 14a, b). Further, analysis of an expert-designed non-small cell
lung cancer (NSCLC) combination panel66,67 showed that in 9 out of 10
pairwise drug classes in the NCI ALMANAC, less than half of NSCLC
lines were optimally targeted by the expert-chosen combinations
(Supplementary Fig. 14c). The expert panel alsoperforms suboptimally
in other cancer cell lines: in 26 of 27 pairwise drug combination classes
in GDSC2, less than half of the cell lines were optimally targeted by the
expert panel drugs (Supplementary Fig. 14d). These results suggest
that picking the best drugs within a given class is challenging. Overall,
we see these results as motivating the need to conduct combination
screens to obtain empirical evidence that can be buttressed with
expert interpretation and clinical experience.

The probabilistic modeling required in BATCHIE is modular. Our
algorithm is able to take any Bayesian model and design optimal bat-
ches with respect to that model. We evaluated two different hier-
archical models, one focused on viability and another on synergy
prediction. BATCHIE showedperformancegainswithbothmodels, but
each could be improved with more sophisticated modeling, possibly

taking advantage of genomic and chemoinformatic features. Any
modeling improvements that lead to predictive performance gains
would be complementary to the efficiency gains from BATCHIE-
designed screens. Thus, as new predictive models continue to be
developed, they can be readily integrated into BATCHIE for improved
screening efficiency.

Both our retrospective and prospective experiments were con-
ductedoncancer cell lines. Immortalized 2d cell lines have anumberof
well-understood limitations, and better 3d models such as spheroids
and organoids are rapidly being developed to replace them in drug
screening68. BATCHIE screens transfer seamlessly to the 3d setting and
are arguably more useful here since 3d models tend to have longer
doubling times and require more expensive equipment and media,
exacerbating the need for efficient screens.

We have focused our implementation on pairwise drug viability
screens as they are the most common in the combination literature.
However, BATCHIE can be readily adapted to screen the drug inter-
actome for any measurable outcome where experiments are batched.
New technologies areemerging that enable awide rangeof phenotypic
measurements, such as proteome-wide drug effects69, but are cur-
rently limited to single-agent screens. Multiplexed CRISPR perturba-
tion screens70 enable combinatorial screens but require specifying a
small library of genes. BATCHIE could be used to design optimal
libraries in order to efficiently discover synthetic lethal combinations.

Drug combinations represent an increasingly important ther-
apeutic strategy in cancer and other diseases. We expect that
approaches such as BATCHIE will be critical to overcoming the com-
binatorial explosion in the experimental design space as preclinical
screens grow to larger libraries and higher-order combinations like
triplets and quadruplets. In doing so, these methods will play an
integral role in enabling the discovery new combination therapies.

Methods
Ethical statement
This study complies with all relevant ethical regulations. MSKCC
patients provided informed and signed consent and enrolled onto a
tumor profiling research study (Genomic profiling in cancer patients;
NCT01775072) approved by the MSKCC Institutional Review Board
under protocols #12-245, #06-107, and #17-387 to enable tumor cell
line generation. PDX tumormodelsweregenerated in compliancewith
MSKCC InstitutionalAnimal Care andUseCommittee protocol #16-08-
011, which requires that mice are euthanized before tumors reach
2000mm3 in volume or 2 cm in the largest linear dimension.

Bayesian tensor factorizationmodel for predicting combination
drug response
We use a hierarchical generative model that simultaneously models
both single and combination drug observations. We treat each drug
at each dose individually as a single drug-dose. Observations are
modeled as

yðnÞik � N μik , 1=τ
� � ð2Þ

yðnÞijk � N μik +μjk +Δijk , 1=τ
� �

ð3Þ

τ � Gamma ð1:1, 1:1Þ ð4Þ

μik =
Xd
t = 1

vðiÞ1, tu
ðkÞ
t + vðiÞ0 +uðkÞ

0 +α ð5Þ
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Δijk =
Xd
t = 1

vðiÞ2, tv
ðjÞ
2, tu

ðkÞ
t � uðkÞ

0 � α ð6Þ

where yðnÞik is the n-th logit-transformed viability measurement of
applying drug-dose i to cell line k. Similarly, yðnÞijk is the logit-
transformed viability measurement of applying the combination of
drug-doses i and j to cell line k. We also have that τ is the global
precision of the observations, μik is the mean response of applying i to
k,Δijk is the combination effect of i and j applied to k, andα is the global
mean of all the observations. uðkÞ 2 Rd is the embedding of cell line k
with the following generative process:

uðkÞ
t � N 0, 1=τt

� � ð7Þ

τt �
Yt
s = 1

γs ð8Þ

γs � Gamma ðas, 1Þ, ð9Þ

where τ 2 Rd is the vector of precisions for each cell line embedding
coordinate, and it follows aGammaprocess priorwith elements γs. The
hyper-parameters of theGammaprocess are chosen asa1 = 2 and as = 3
for s ≥ 2.

The vector vðiÞ‘ 2 Rd is the order ℓ (for ℓ ∈ {1, 2}) embedding of
drug-dose i with the following Horseshoe prior, also known as a local
shrinkage model71:

vðiÞ‘, t � N 0, λðiÞ‘, t
� �

ð10Þ

λðiÞ‘, t � Cauchy+ ð0, 1:1Þ ð11Þ

where λðiÞ‘, t encourages sparsity and Cauchy+ is the Cauchy distribution
truncated to the positive real numbers.

Also included in the model are offsets vðiÞ0 2 R (for drug-dose i)
and uðkÞ

0 2 R (for cell line k). These follow the generative process:

vðiÞ0 � N 0, λðiÞ0
� �

ð12Þ

λðiÞ0 � Cauchy+ ð0, 1:1Þ ð13Þ

uðkÞ
0 � N 0, 1=τ0

� � ð14Þ

τ0 � Gamma ð1:1, 1:1Þ, ð15Þ

where λðiÞ0 encourages sparsity and τ0 are precisions.
To fit this model, we utilize Gibbs sampling to sample from the

posterior distribution, since all of the relevant priors are conditionally
conjugate. For the prospective study, the Gibbs samplers were run for
20K steps. Our implementations were done in Python, making use of
the numpy72 and scipy73 packages.

Bayesian model for predicting combination drug synergy
For the pure synergy modeling setting, we use the following model.

sðnÞijk � N μijk , 1=τ
� �

ð16Þ

μijk =
Xd
t = 1

vðiÞt vðjÞt uðkÞ
t ð17Þ

τ � Gamma ð1:1, 1:1Þ ð18Þ

Here, sðnÞijk is the n-th synergy score between drug-doses i and j on cell
line k. It is calculated as sðnÞijk = �vik�vjk � vðnÞijk , where vðnÞijk is the n-th
observed viability of applying i and j to k, and �vik is the average
observed viability of applying i to k. When �vik is not available because
drug-dose i was not tested directly on k, then it is imputed by linear
interpolation (in log-concentration space) of neighboring concentra-
tions of the same drug.

μijk is themean synergy value of applying i and j to k and τ is global
observational precision, and uðkÞ 2 Rd is the embedding of cell line k
that follows the same prior as its counterpart in the previous model:

uðkÞ
t � N 0, 1=τt

� � ð19Þ

τt �
Yt
s = 1

γs ð20Þ

γs � Gamma ðas, 1Þ, ð21Þ

where τ 2 Rd is the vector of precisions for each cell line embedding
coordinate, and it follows aGammaprocess priorwith elements γs. The
hyper-parameters of theGammaprocess are chosen as a1 = 2 and as = 3
for s ≥ 2.

The drug-dose embeddings vðiÞ 2 Rd also follow the same prior as
the counterparts in the previous model:

vðiÞ‘, t � N 0, λðiÞ‘, t
� �

ð22Þ

λðiÞ‘, t � Cauchy+ ð0, 1Þ, ð23Þ

where λðiÞ‘ 2 Rd is a vector of scales for the embedding of drug-dose i.
This model is also fit via Gibbs sampling.

Active learning algorithm
Our active learning procedure is a generalization of an optimal active
learning procedure called Diameter-based Active Learning (DBAL)26,27.
Our approachapplies to general probabilisticmodels that consist of an
experimental spaceX , an outcome spaceY, and a set of parametersΘ.
We assume that the likelihoods factorize so that for a sequence
ðx1, y1Þ, . . . , ðxn, ynÞ 2 X ×Y and parameter θ ∈ Θ, we have

pθðy1, . . . , ynjx1, . . . , xnÞ=
Yn
i= 1

pθðyijxiÞ: ð24Þ

A plate of experiments is a sequence P = (x1, …, xb) of experiments
xi 2 X . For a corresponding set of outcomes (y1, …, yb), we use the
shorthand yP to denote the sequence and pθðyP jPÞ=

Qb
i= 1pθðyijxiÞ to

denote the likelihood of the outcome sequence for a given plate.
In the combination drug setting, the parameters θ include all of

the parameters from the tensor factorization model, i.e., the μijk’s, the
vðiÞ‘, t ’s, etc. The experiment spaceconsists of triples (i, j, k) andpairs (i, k)
where i and j are drug-doses and k is a cell line. Outcomes in this setting
are logit-transformed viabilities, and so the outcome space corre-
sponds to the reals, i.e., Y =R.

Given a prior distribution π over Θ and a set of observations
ðx1, y1Þ, . . . , ðxn, ynÞ 2 X ×Y, the posterior distribution over Θ is
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given by

πnðθÞ=
πðθÞQn

i = 1 pθðyijxiÞR
Θπðdθ

0ÞQn
i = 1pθ0 ðyijxiÞ

: ð25Þ

Let d( ⋅ , ⋅ ) be a bounded, non-negative, symmetric distance over
Θ. The goal of DBAL-style active learning procedures is to run batches
of experiments that will rapidly lead to a posterior πn with small
average diameter:

avg-diam ðπnÞ=Eθ, θ0�πn
dðθ, θ0Þ� �

: ð26Þ

Given a plate P and a current posterior distribution πn, our active
learning strategy assigns an ideal score to each plate:

snðPÞ=Eθ,θ0 ,θ?�πn
dðθ, θ0ÞLθ? ðθ, θ0;PÞe2Hθ? ðPÞ
� �

, ð27Þ

where

Lθ? ðθ, θ0;PÞ=EyP�pθ? ð�jPÞ dðθ, θ
0ÞpθðyP jPÞ

� �
ð28Þ

and Hθ(P) is the Shannon entropy of the plate P under θ, i.e.,

HθðPÞ=
X
xi2P

Eyi�pθð�jxiÞ log
1

pθðyijxiÞ

� 	
: ð29Þ

In the case of the normal likelihood (among others), one can explicitly
compute the functions Lθ? ðθ,θ0;PÞ and Hθ(P).

Since computing sn(P) requires integrating over the posterior, we
cannot hope to do so directly. Instead, we compute a Monte Carlo
approximation of sn(P) by sampling θ1, …θm ∼ πn and computing

bsnðPÞ= 1
m

3


 �X
i<j<k

dðθi, θjÞLθi
ðθj ,θk ;PÞe2Hθi

ðPÞ: ð30Þ

This sum can be further approximated by sub-sampling triples (i, j, k)
and computing theMonte Carlo average only over the selected triples.

Armed with the estimator bsnðPÞ, our active learning procedure is
to enumerate a set of candidate plates P1,…, PT and select the plate Pi?

with the lowest score bsnðPi? Þ. In the supplement, we show that this
strategy leads to provably near-optimal guarantees. Specifically, we
prove that the convergence rate of BATCHIE is upper-bounded by a
function of a problem-specific parameter, called the splitting index,
that determines the complexity of the learning problem in the sense
that any active learning strategy, regardless of computational power,
must have a convergence rate that is lower-bounded by this same
splitting index.

To select a batch of plates, we select sequentially. We first select
Pi?1

as the plate minimizing bsnðPi?1
Þ. Having selected plates Pi?1

, . . . , Pi?b
,

we select plate Pi?b + 1
as the plate minimizing bsnð½Pi?1

, . . . , Pi?b+ 1
�Þ, where

½Pi?1
, . . . ,Pi?b + 1

� is the plate formed by concatenating the constituent
plates Pi?1

, . . . ,Pi?b + 1
. Observe that this is equivalent to selecting Pi?b + 1

conditioned on having already selected Pi?1
, . . . ,Pi?b

. This iterative
strategy of optimization has been shown to enjoy strong theoretical
guarantees74,75.

Empirical evaluation of PDBAL
PDBAL was evaluated on several probabilistic regression settings in
which the model was parameterized by a coefficient vector θ 2 Rd .
The regression models include linear regression with homoscedastic
Gaussian noise, logistic regression, Poisson regression with the expo-
nential link function, and Beta regression under the mean

parameterization76:

Pθðy; xÞ= Beta ðyjϕμ,ϕð1� μÞÞ, ð31Þ

where μ= 1
1 + e�hx,θi, x 2 Rd is the feature vector, and ϕ > 0 is a fixed

constant. For all experiments, we used a normal prior distribution on
θ 2 Rd with identity covariance. For the linear regression setting, the
posterior was computed in closed form. The other models were
implemented in PyStan77, and posterior sampleswere generatedby the
No-U-Turn Sampler (NUTS)78.

We considered five objectives, specified by a given distance:
• First coordinate: dðθ,θ0Þ=1½ signðθ1Þ≠ sign ðθ1Þ�.
• Max coordinate: dðθ,θ0Þ=1½argmaxijθij≠ argmaxijθij�.
• Euclidean: dðθ,θ0Þ= k θ� θ0k2.
• Kendall’s tau: dðθ,θ0Þ= 1

2 ð1� τðjθj, jθ0jÞÞ, where τðjθj, jθ0jÞ is Ken-
dall’s tau correlation of the pairs ðjθ1j, jθ01jÞ, . . . , ðjθd j, jθ0d jÞ.

• Influence:
dðθ,θ0Þ= Prx sign ðhx1:d=2,θ1:d=2iÞ ≠ sign ðhx1:d=2,θ

0
1:d=2iÞ

� �
, where

x1:d/2 denotes restriction of the vector x to its first d/2 coordinates.

We compared against 3 baselines: Random, Var, and EIG. Random
chooses uniformly at random from the pool of available queries. Var
chooses queries based on maximizing the posterior predictive var-
iance:

vary�πnðxÞðyÞ=Ey�πnðxÞ½y
2� �Ey�πnðxÞ½y�

2: ð32Þ

EIG uses the BALD formulation79 to maximize expected mutual infor-
mation between the outcome and the parameter θ:

I ðy;θjx,πnÞ=Hπn
ðxÞ �Eθ�πn

½HθðxÞ�, ð33Þ

where Hπn
ðxÞ is entropy of the posterior predictive distribution at x.

For linear regression, this was computed in closed form, while for the
other settings, it was approximated numerically.

In all experiments, the ground truth θ⋆ was drawn uniformly from
vectors of length 2. Data points were drawn from a mixture distribu-
tion: with probability 1 − p, they were drawn uniformly from vectors of
length 1, and with probability p, each coordinate was set to 0 with
probability 1/d and the remaining coordinates drawn so the resulting
vector has length 1. For some objectives, this sparse distribution is
particularly informative. In all simulations, d = 10 and p = 1/10.

Retrospective simulations
Data retrieval and preparation. We downloaded the ALMANAC5,
GDSC26, and MERCK7 datasets from their respective sources (see Data
Availability). For the MERCK dataset, viabilities were provided. For the
ALMANAC dataset, PercentGrowth values were provided. We con-
verted these to viability scores using the formula

viability = PercentGrowth + 100
200 : ð34Þ

For the GDSC2 dataset, well intensity values were provided, along with
high control and low control intensities. These were converted to
viability scores using the same formula as in the prospective study. For
all studies, replicates were averaged to produce a single viability
measurement for all recorded cell line, drug-dose 1, drug-dose 2
triplets. Drug-doses thatwere not present in combination experiments
were dropped.

Plate and random holdout construction. From the viability mea-
surements, we constructed synthetic plates to closelymatch the plates
used in the prospective sarcoma study. Drug-doses were randomly
divided into groups of 20, and initial plates we constructed by con-
sidering each cell line c and each pair of groups g, g 0 and collecting all
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measurements satisfying that the cell line is in c, one of the drug-doses
is in g, and the other drug-dose is in g 0. Due to the biased sampling of
drug combinations in the three experimental designs, this resulted in
plates of unequal sizes. We corrected for this by greedily merging the
two smallest plates within a cell line until a minimum size threshold
was met. We then performed a single pass through the plates for each
cell line and merged the largest plate with the smallest plate. To align
the plate sizes, we selected a threshold and dropped all plates smaller
than the threshold and dropped observations from plates larger than
the threshold until they had the same number of observations. The
threshold was chosen to minimize the total number of observations
removed. In each simulation, a random holdout set was created by
subsampling 10% of the observations from every plate.

Experimental design. For a given dataset and plate construction, we
first created an initial covering plate by randomly selecting observa-
tions to greedily cover the cell lines and drug-doses. Given the same
dataset, set of plates, and initial covering plate, we ran both the Ran-
dom and BATCHIE methods. At each round of data collection, the
methods picked K cell lines and 3 plates per cell line. Kwas selected to
be 1/10th the number of cell lines in the dataset, rounded down (K = 6
for ALMANAC, K = 12 for GDSC2, and K = 3 for MERCK).

Posterior inference. At each round, before selecting plates, 200
MCMC samples were drawn from the current posterior using 5 parallel
chains, each with a burn-in period of 2000 steps and a thinning factor
of 40. These samples were then used to evaluate accuracy on the
holdout set and, for BATCHIE, used to select the next set of plates to
observe. For each dataset, we ran the plate construction and simula-
tion using 25 different random seeds.

Cell line restrictions. For the cell line restriction simulations, cell lines
were subsampled uniformly at random. The number of cell lines cho-
sen per round was adjusted accordingly (1/10th of the number of
selected cell lines). The number of plates per cell line in each round
remained 3.

Metrics. For each dataset construction, we trained a model using the
full training set, i.e., everything except for the holdout validation
set, by drawing 200 MCMC samples from the posterior using 5
parallel chains, each with a burn-in period of 2000 steps and a
thinning factor of 40. Given a holdout set of experiment/viability
pairs ðx1, y1Þ, . . . , ðxm, ymÞ 2 X × ½0, 1�, a fully trained predictor
f full : X ! ½0, 1�, and a candidate predictor f : X ! ½0, 1�, the normal-
ized accuracy is given by the ratio of R2 scores:

Normalized accuracyð f ; f fullÞ=
R2
nð f Þ

R2
nð f fullÞ

, ð35Þ

where

R2
nðf Þ= 1�

Pn
i= 1ðyi � f ðxiÞÞ2Pn
i= 1 ðyi � �yÞ2

ð36Þ

and �y = 1
n

Pn
i= 1 yi is the empirical mean of observed viabilities.

Efficiency gains/batches saved and experiments saved were
computed by calculating the holdout R2 of the BATCHIE-trainedmodel
(at round 15, unless otherwise specified) and then searching for the
earliest round at which a Random-trained model had comparable
performance. BATCHIE and Random models were only compared
within the same random seed, and therefore only on the same dataset
and plate set construction.

As none of the retrospective datasets have control/non-cancer
lines, we calculated TI values by taking all pairwise differences across
cell lines. To calculate the Average TI @ Top 20, we computed all TI

values from themodels’meanviability predictions, selected the top 20
predicted TI hits, and averaged the corresponding ground truth TI
values. To calculate the Tophit AUC,we computed theAUCof theROC
curve, where the ground truth labels correspond towhether or not the
TI value occurs in the top 99th percentile of TIs and the predicted
values are the predicted TIs formed from the models’ mean viability
predictions.

Baseline comparisons. In addition to the Random baseline, which
chooses plates uniformly at random subject to the experimental
design constraints, we also compared against strategies thatmaximize
the expected information gain (EIG) and posterior predictive variance
(Variance).We used the same formulations of these strategies as in the
regression comparison setting to calculate the scores of individual
wells and averaged across wells to score the corresponding plate.

PDBAL distances. The default distance we use for PDBAL with normal
likelihoods is the mean-squared distance over predicted mean viabil-
ities (MSD). Given two sequences ofmean viability predictions over the
same set of wells (y1, …, yn) and ðy01, . . . , y0nÞ, the MSD is calculated as

1
n

Xn
i= 1

ðyi � y0iÞ2: ð37Þ

For the retrospective datasets, the prediction set is the set of all cell
line, drug-dose 1, drug-dose 2 triplets covered in the dataset. For the
prospective study, the prediction set is the set of all possible triplets
spanned by the cell lines and drug-doses in the dataset.

For the TI-aware distance (TID), we transform mean viability
predictions to TI predictions by computing all pairwise differences
across cell lines. For two sets of TI predictions, (t1, …, tn) and
ðt01, . . . , t0nÞ, we select the top K indices from each to get (i1, …, iK) and
ði01, . . . , i0K Þ. The TID is then given by

max
1
K

XK
k = 1

tik � ti0k ,
1
K

XK
k = 1

t0i0k � t0ik

 !
ð38Þ

In our simulations, we chose K = 20.

Pediatric sarcoma combination screen
Study design. The prospective sarcoma study consisted of 15 rounds
of data collection. At each round, different subsets of cell lines were
available based on doubling time and the extent to which they had
been used in previous rounds (Supplementary Fig. 3c). Adaptive bat-
ches were constrained to 3 combination plates each for 3 available cell
lines. In the first round and the eleventh round, unseen cell lines were
introduced and theplateswere selected to greedily cover unseendrug-
doses and drug-dose combinations over the new cell lines. In the
remaining rounds, plates were selected using the BATCHIE active
learning procedure outlined above with the constraint that 3 separate
cell lines be chosen, leading to 9 selected plates in total.

In rounds 1–10, each plate was run singly. During the phase I
validation, we identified that BATCHIE was sensitive to undetectable
random well failures producing corrupted data. To address this, in
rounds 11–15, plates were run in duplicate and quality control checks
flagged wells whose duplicates differed by more than 0.5 in viability.

Combination plates. Supplementary Fig. 3a shows the general sche-
matic for our combination plate setup. Plates consisted of 384 wells
with 16 rows and 24 columns. For rowplates, 15 of the rows consist of a
single drug applied to each of the corresponding column wells at a
particular concentration, except two columns that corresponded to
high control and low control. The remaining row of the row plate was
filled with Dimethylsulfoxide (DMSO), also with two control columns.
For columnplates, 21 of the columns consist of a single drug applied to
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each of the corresponding rowwells at a particular concentration. The
remaining three columns are the high and low control columns
(aligned to spatiallymatch the corresponding high/low columns in the
row plate) and a column filled only with DMSO.

When a row and column plate are combined, the resulting com-
bination plate contains 15 × 21 = 315 wells that correspond to all com-
binations of the constituent drug-doses, 15 + 21 = 36 wells that
correspond to all single drug-doses, 15 high-control wells, and 15 low-
control wells.

Our drug library consisted of 206 drugs, with four of the drugs
duplicated to allow for the resulting 210 drugs to be evenly divided
over 14 row plates and 10 column plates. Each row and column plate
was constructedat 2different doses: 0.1μMand 1μM, leading to a total
of 28 row plate choices and 20 column plate choices.

Finally, a full plate consists of a cell line, a row plate, and a column
plate. Viabilities for a non-control well w are calculated as

viability ðwellwÞ= count ðwellwÞ � average low-control count
averagehigh-control count�average low-control count

ð39Þ

where count (well w) is the reading at well w and average high/low-
control counts are the averages of the readings at the corresponding
high/low-control wells.

Therapeutic index.Wedefine the in vitro therapeutic index (TI) to be a
differential score that compares two groups of viabilities: one for the
target set of cell lines and one for the control set. A high TI corre-
sponds to low viability for most target cells and high viability for all
control cells. To calculate TI, we take the difference between the
minimum viability on the control lines and the median viability on the
target lines:

TI ði, jÞ=minimumV ði, j;CÞ forC 2 Controls�medianV ði, j;TÞ forT 2 Target :

ð40Þ

where V(i, j; N) is the viability of drug-dose pair (i, j) on cell line N.

Model visualizations. To determine if BATCHIE discerned the relative
mechanistic similarities and differences of the drugs tested in an
unsupervised manner, we labeled each drug assessed with simplified
mechanisms of action (MoAs) and used low-rank approximation and
dimensionality reduction to visualize resulting clusters.We usedMoAs
from the Genomics of Drug Sensitivity in Cancer (GDSC) database80 to
annotate the 98 drugs assessed in both our study and the GDSC. For
the remaining 112 drugs in our library that were not in the GDSC, we
manually added MoAs that conformed to the GDSC categories.
Mechanisms were adjudicated according to drugs’ International Non-
proprietary Name (INN) suffixes, documented mechanisms in the lit-
erature, and U.S. Food and Drug Administration (FDA) package inserts
for approved molecules. All drugs were categorized as belonging to
one of nineteen MoA categories.

Predicted viabilities of the drugs administered as monotherapies
were logit-transformed and normalized to a zero-one range. Non-
negative matrix factorization (NMF) was performed using the Python
package scikit-learn’s NMF module at a random initialization81.
The decomposed featurematrix represented latent embeddings of the
drugs, where each dosage and drug combination was treated as a
unique entry, and the coefficient matrix represented latent embed-
dings of the cell lines tested. By assessing the mean squared error of
the resulting low-rank approximation, we determined 15 to be the
optimal number of latent components using the elbow method as
implemented in the kneed Python package82. For plotting purposes,
we reduced the dimensionality of the feature matrix using
t-distributed stochastic neighbor embedding (t-SNE) as implemented

in the scikit-learn t-SNE module81. Results from this analysis are shown
for high dose (1.0μM) drugs in Supplementary Fig. 4e.

To determine if BATCHIE also discerned more fine-grained drug
MoAs, we selected 8 more refined molecular mechanisms or phar-
maceutical classes thatwere recurrent among the drugs evaluated.We
then identified 2-3 drugs belonging to each such group. We calculated
the Pearson correlation coefficients between the BATCHIE-predicted
combination therapy viabilities for each drug at both doses assessed.
We plotted the resulting hierarchically clustered heatmap using the
Python package Seaborn’s clustermap function83. These results are
show in Supplementary Fig. 4d.

Ex vivo analysis. For six of the drug combinations from the top EWS
hits, we collected dose-response data on 2 additional patient-derived
cell lines. The drugs were tested on a regular grid spanning 0.02nM -
1000nM, and the plates were run in duplicates.

As the concentrations tested in this stage did not align with the
concentrations tested in the top hit validation, we performed linear
interpolation of the mean observed viabilities (in log10 concentration
space), in order to compute TI scores with respect to the control data
observed in the top hit validation analysis.

Triplet analysis. For our triplet studies, we collected dose-response
data along a regular grid (0.1 nM–400nM for the Ewing study and
0.02 nM–1μM for the osteosarcoma study). Plates were run in
duplicate.

For each cell line and triplet of drugs under consideration, we fit a
multi-dimensional isotonic regression to the observed viabilities,
restricting the regressed variables to monotonically decrease as a
function of dose. Mathematically, we solved

minimize
X

d12Dtzp

X
d22Dtop

X
d32Dmit

ðv̂d1 ,d2,d3
� vd1 ,d2,d3

Þ2

s.t. v̂d1 ,d2,d3
≥ v̂d0

1 ,d
0
2,d

0
3
for alld0

1 ≥ d1,d
0
2 ≥d2,d3 ≥d

0
3,

ð41Þ

whereDx is the set of concentrations used ondrug x, and vd1 ,d2,d3
is the

mean observed viability applying drug 1 at concentration d1, drug 2 at
concentration d2, and drug 3 at concentration d3. For any candidate set
of concentrations, we linearly (in log-concentration space) interpo-
lated its viability from the smoothed values v̂d1 ,d2,d3

.

Gene expression and CRISPR knockout analysis. Both the RNA
expression data and CRISPR knockout data were obtained from the
DepMap data portal84. The RNA expression data is represented as a
matrix X 2 RN ×G, where N is the number of DepMap cell lines,G is the
number of protein coding genes in the DepMap library, and
Xcg = log2ð1 + TPMc, g Þ, where TPMc,g is the transcripts per million
(TPM) for gene g in cell line c. Z-scores for the gene expression data
were computed by standardizing over cell lines, i.e.,

Zg =
�Xgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
c= 1ðXc, g � �Xg Þ

2
q , ð42Þ

where �Xg =
1
N

PN
c= 1Xc, g .

The CRISPR knockout data is represented as a matrix Y 2 RN ×G,
where Yc,g is a harmonized score representing the effect of knocking
out gene g in cell line c.

Rational combination analysis
All drug mechanism data was obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) portal80. Drugs that do not have GDSC
mechanism of action (MoA) annotations were not included in the
analysis.
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Mechanismof action analysis. Using theGDSC2 dataset, a singledose-
response curve for each drug was formed by considering each
observed dose and taking the 5th percentile of mean viabilities over
observed cell lines. For each drug, we computed its IC50 concentration
over its corresponding dose-response curve, discarding drugs for
which no concentrations had corresponding values below 0.5.

For each drug i, we considered all cell lines j and drugs k at con-
centrations c that co-occuredwith i on j in the dataset to form the tensor
V 2 Rndrug ×ncell ×ndrug ×nconc where Vijkc is the log-concentration inter-
polatedmean viability of combining drug i at its IC50 concentration with
drug k at concentration c on cell line j, wherever it is validly computable
from the data. For two drugs i, i0, their distance is computed as

dði, i0Þ= 1
n

X
j, k, c

jVijkc � Vi0 jkcj, ð43Þ

where the sum is taken over only those values for which both Vijkc and
Vi0 jkc are valid, and n is the total number of such valid values.

CROCS analysis. Combinations of drugs in which both members
belonged to the ‘clinically relevant oncology combination screen’
(CROCS) for non-small cell lung cancer (NSCLC)66 were classified as
CROCS combinations. All other combinations of drugs were identified
as non-CROCS combinations. For both the ALMANAC dataset and
GDSC2 dataset, wherever feasible, we computed an8 ×8 evenly-spaced
(in log10-concentration space) dose-response matrix by linearly inter-
polating mean observed viabilities. For every pair of drugs i and j and
every pair of cell lines c and t, we calculated the TI of i and j where c is
control and t as

TIði, j; c; tÞ= max
di ,dj

V c, i,di , j,dj
� Vt, i,di , j,dj

whereVc, i,di , j,dj
is the interpolated viability of cell line c under drug i at

dose di and drug j and dose dj and the maximum ranges over the dose
grids for drugs i and j, respectively. For ALMANAC, we only considered
those TI values forwhich the target cell linewasNSCLC and the control
cell line was not NSCLC, while for GDSC2 we considered all possible TI
values.

Data visualizations
All plots weremade in Python using the matplotlib85 and seaborn83

packages.

Statistical analyses
All Mann-Whitney U-tests, Spearman’s rho calculations, Pearson’s rho
calculations, Pearson’s chi-square calculations were computed using
Scipy’s73stats package, using the default settings. All p-values from
Mann-Whitney U-tests, Spearman’s rho tests, and Pearson’s rho tests
were computed using two-sided alternatives. The permutation test in
Fig. 4g was custom coded. Unless otherwise noted, all tests were
performed independently of each other.

Wetlab protocols
Cell lines. Established cell lines (SJSA-1, U2OS, SAOS-2, MG-63, A673,
SKNEP, MDA-MB-231, RPE and BJ) were obtained from the American
Type Culture Collection (ATCC). TC-71 was obtained from the Chil-
dren’s Oncology Group cell line repository. Wit49 was provided
courtesy of Dr. Herman Yeger (Toronto, Canada). Kelly was obtained
from the DSMZ-German Collection of Microorganisms and Cell Cul-
tures GmbH. MSKEWS-83311, MSKEWS-83033, MSKEWS-38338,
MSKEWS-66647, MSKOST-11890, and MSKRMS-12808 were generated
from patient-derived xenograft (PDX) tumor tissue established from
patient tumors treated at Memorial Sloan Kettering Cancer Center
(MSKCC). Tumor tissue was dissociated utilizing the Human Tumor

Dissociation Kit (Miltenyi Biotec) according to manufacturer’s
recommendations or using an in-house combination of Collagenase
Type II (Gibco), Dispase II (Millipore Sigma), Deoxyribonuclease I
(Millipore Sigma) in DMEM (Gibco) containing 10% fetal bovine serum
(Corning), followed by mechanical dissociation with Macs dissociator
(Miltenyi).MSKCCpatients provided informedand signed consent and
enrolled onto a tumor profiling research study (Genomic profiling in
cancer patients; NCT01775072) approved by the MSKCC Institutional
Review Board under protocol IRB#12-245, #06-107, and #17-387 to
enable tumor cell line generation. PDX tumor models were generated
under MSKCC Institutional Animal Care and Use Committee protocol
#16-08-011. All PDX-derived samples utilized NGS mice (NOD.Cg-
Prkdcscid Il2rgtm1Wjl/SzJ, Jackson Labs Strain #005557), aged
between 5 and 8 weeks. Mouse sex was not recorded. Additional cell
line information and culture conditions are detailed in Supplementary
Data 1. Media was supplemented with 1% Anti-Anti (Gibco) at the time
of drug screening. Authentication of established cell lines by short
tandem repeat (STR) was performed. Validation and authentication of
PDX-derived cell lines were accomplished by next-generation targeted
sequencing using MSK-IMPACT86 and matched with source patient
tumor. Optimal seeding densities for drug screens were empirically
determined for each cell line.

Sex information of the cell lines is shown in Supplementary Data 1.
Sex information for publicly available cell lines was taken from Cello-
saurus. Sex information for PDX-derived cell lines was self-reported.
Sex was not considered in the study design. Samples were grouped
together based on cancer subtype, with insufficient sample sizes to
distinguish differences between female- andmale-derived samples due
to the unique functional profile of each cell line and ex vivo sample.

Drugs. The studies were comprised of 206 drugs obtained from mul-
tiple sources including Selleckchem, MedChemExpress, Sigma-
Aldrich, Tocris, LKT laboratories Inc., Xcess Biosciences, and the
National Cancer Institute (NCI) Division of Cancer Treatment and
Diagnosis. A list of all screened chemicals and sources are provided in
Supplementary Data 2.

BATCHIE plates. All assay plates contained baseline viability (high
control) and complete cell killing controls (low control) consisting of
1%DMSO (v/v) and 1μM “killermix”, a proprietarymixture of cytotoxic
drugs at 1% DMSO (v/v), respectively. Phase I and phase II drugs were
prepared in 100% DMSO (v/v) and added onto 384-well microplates to
generate the “200X source plates” with drugs at a concentration of
either 200μMor 20μM. To facilitate combination testing, drugs were
arrayed in a “row”or “column” formatwith “rowplates” consisting of 15
drugs arrayed in rows per plate and “column plates” consisting of 21
drugs arrayed in columns per plate with the same drug concentration
for eachdrug inboth plate configurations.Drugswere combined using
theApricot Designs Personal Pipettor (SPT Labtech)whichmixes a row
plate with a column plate and water into a new 384-well plate to gen-
erate a “10X intermediate plate” of 10μM or 1μM in 10% DMSO (v/v).
Subsequently, the 10X intermediate plates are stamped into “assay
plates” to be combinedwith cells generating the final 1X concentration
of 1μM or 0.1μM in 1% DMSO (v/v) (Supplementary Figs. 11, 12a).

For validation studies, 2-drug combinations were evaluated for
random unseen combinations in five osteosarcoma, five Ewing sar-
coma, and two non-cancer cell lines; high predicted therapeutic index
(TI) in five Ewing sarcoma and two non-cancer cell lines; and Ewing
sarcoma ex vivo in two Ewing sarcomas (Supplementary Fig. 11).
7-doses (Plate 1) and 9-doses (Plate 2) 4-fold serial dilutions were
prepared into 96-well plates to generate 20X source plates at 8μM or
20μM in 10% DMSO (v/v) as the highest concentrations. The plates
were further consolidated and combined into 384-well 10X inter-
mediate plates at 4μM or 10μM in 10% DMSO (v/v). The 10X inter-
mediate plates were then transferred into assay plates along with cells
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to produce a 1X concentration of 0.4μM or 1μM in 1% DMSO (v/v)
(Supplementary Fig. 12b).

Higherorder validationplates for Ewing sarcomaandosteosarcoma
studies (Supplementary Fig. 11) were performed by first generating
7-doses (Drug 1), 5-doses (Drug 2) and 5-doses (Drug 3) 4-fold serial
dilutions, obtaining 30X source plates at 12μM or 30μM in 10% DMSO
(v/v) as the highest concentrations. The three 30X source plates were
combined to create the 10X intermediate plates with maximum con-
centrations of 4μM or 10μM in 10% DMSO (v/v) and stamped to com-
binewith cells to yield 1X assayplates of0.4μMor 1μMin 1%DMSO (v/v)
(Supplementary Fig. 12c). Five Ewing sarcoma and two non-cancer cell
lines were used for the Ewing sarcoma validation studies and five
osteosarcoma lines for the osteosarcoma studies.

For osteosarcoma studies validating agents with high predicted
therapeutic indices (TI), drugs were plated in 384-well 20X source
microplates using the row and column format described above for
phase I and phase II (Supplementary Fig. 11) at 20μM or 2μM in 10%
DMSO (v/v). The sources plates were combined into 10X intermediate
plates yielding 10μM or 1μM in 10% DMSO (v/v). Assay plates were
stamped from the 10X intermediateplate and combinedwith cells for a
final drug concentration of 1μM (high concentration) or 0.1μM (low
concentration) in 1% DMSO (v/v). All possible two drug combinations
were obtained—high/high, high/low, low/high and low/low. Five
osteosarcoma and two non-cancer cell lines were used.

Cytotoxicity assay. Cells were plated at their optimized seeding
densities and in their corresponding media (Supplementary Data 1)
into 384-well clear-bottom black assay plates (BATCHIE plates) using
the MultiDrop® 384 dispenser (Thermo Fisher Scientific). After incu-
bating cells in drug for 72 h at 37 ∘C and 5% CO2 in a Heracell™ 240i
incubator (Thermo Fisher Scientific), Alamar Blue (Sigma-Aldrich) is
added using the MultiDrop™ Combi 384 dispenser (Thermo Fisher
Scientific) and incubated for another 24 h. Fluorescence signal readout
was acquired using a Cytation™ 5 multimode reader (Agilent Biotek)
using the monochromator with an excitation of 555/20 nm and emis-
sion of 596/20 nm. A summary of the screening protocol is available in
Supplementary Data 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Original ALMANAC data is
publicly available at https://wiki.nci.nih.gov/download/attachments/
338237347/ComboDrugGrowth_Nov2017.zip. Original GDSC2 data is
publicly available at Figshare [https://doi.org/10.6084/m9.figshare.
19141916.v1, https://doi.org/10.6084/m9.figshare.19141922.v1]. Original
MERCK data is publicly available at Figshare [https://doi.org/10.1158/
1535-7163.22503133.v1, https://doi.org/10.1158/1535-7163.22503133.v1].
Our postprocessed form of the these publicly available data is available
at Zenodo [https://zenodo.org/records/12764821]. The prospective data
generated in this study are available at Zenodo [https://doi.org/10.5281/
zenodo.13871987]. Sequencing data collected on PDX-derived cell lines
is not available, as the IRBdid not consent patients to release identifiable
health information. Source data are provided with this paper.

Code availability
BATCHIE code is open source under an MIT license and publicly
available at https://github.com/tansey-lab/batchie, and also at
Zenodo87.
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