Table 1 Projection measurements used for quantum state tomography

From: Quantum key distribution implemented with d-level time-bin entangled photons

\(|0\rangle\)

\(\frac{1}{2}\left(\left|0\right\rangle+\left|1\right\rangle+\left|2\right\rangle+{i|}3\rangle \right)\)

\(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle )\)

\(\frac{1}{2}\left(\left|0\right\rangle+i\left|1\right\rangle -i\left|2\right\rangle -|3\rangle \right)\)

\(\frac{1}{\sqrt{2}}(|2\rangle+|3\rangle )\)

\(\frac{1}{2}\left(i\left|0\right\rangle -i\left|1\right\rangle+\left|2\right\rangle -|3\rangle \right)\)

\(|3\rangle\)

\(\frac{1}{2}\left(-\left|0\right\rangle+\left|1\right\rangle -i\left|2\right\rangle+|3\rangle \right)\)

\(\frac{1}{\sqrt{2}}(|0\rangle -{i|}1\rangle )\)

\(\frac{1}{2}\left(-i\left|0\right\rangle+i\left|1\right\rangle -i\left|2\right\rangle -|3\rangle \right)\)

\(\frac{1}{\sqrt{2}}(|2\rangle+{i|}3\rangle )\)

\(\frac{1}{2}\left(\left|0\right\rangle -i\left|1\right\rangle+i\left|2\right\rangle+|3\rangle \right)\)

\(\frac{1}{2}\left(\left|0\right\rangle -\left|1\right\rangle+\left|2\right\rangle -|3\rangle \right)\)

\(\frac{1}{2}\left(\left|0\right\rangle -i\left|1\right\rangle -\left|2\right\rangle+{i|}3\rangle \right)\)

\(\frac{1}{2}\left(\left|0\right\rangle -i\left|1\right\rangle -\left|2\right\rangle -{i|}3\rangle \right)\)

\(\frac{1}{2}\left(\left|0\right\rangle+\left|1\right\rangle -i\left|2\right\rangle -{i|}3\rangle \right)\)

  1. Complete set of 16 single-photon projections used in our experiment to perform full QST without recurring to three-mode mixing.