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A data-driven group retrosynthesis planning
model inspired by neurosymbolic
programming

Xuefeng Zhang1, Haowei Lin1, Muhan Zhang1, Yuan Zhou 2,3,4 &
Jianzhu Ma 5,6

Deepgenerativemodels have garnered significant attention for their efficiency
in drug discovery, yet the synthesis of proposed molecules remains a chal-
lenge. Retrosynthetic planning, a part of computer-assisted synthesis plan-
ning, addresses this challenge by recursively decomposing molecules using
symbolic rules and machine-trained scoring functions. However, current
methods often treat eachmolecule independently, missing the opportunity to
utilize shared synthesis patterns and repeat pathways, which may contribute
from known synthesis routes to newly emerging, similar molecules, a notable
challenge with AI-generated small molecules. Our investigation reveals reu-
sable synthesis patterns that augment the reaction template library, resulting
in progressively decreasing marginal inference time as the algorithm pro-
cesses more molecules. Nevertheless, expanding the library enlarges the
search space, necessitating investigation into methods for effectively predic-
tion of reactions in retrosynthesis search. Inspired by human learning, our
algorithm, akin to neurosymbolic programming, builds upon commonly used
multi-step concepts such as cascade and complementary reactions and can
evolve from practical experiences, enhancing the prediction model for fun-
damental and compositional reaction templates. The evolutionary process
involves wake, abstraction, and dreaming phases, alternatively extending the
reaction template library and refiningmodels formore efficient retrosynthesis.
Our algorithm outperforms existing methods, discovers chemistry patterns,
and significantly reduces inference time in retrosynthetic planning for a group
of similar molecules, showcasing its potential in validating results from gen-
erative models.

Deep generative models have recently gained great attention for their
efficient and promising performance in the central task of designing
molecules with desired properties in drug discovery1–5. However,
molecules proposed by generative models may be challenging or

infeasible to synthesize1,6. To address this synthesizability problem,
retrosynthetic planning, one of the computer-assisted synthesis plan-
ning (CASP) methodologies, has been extensively explored7,8. Retro-
synthetic planning could be described as a process that recursively
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analyzes molecules and transforms them into simpler precursors until
a set of commercially available molecules is obtained.

Recent advancements in retrosynthetic planning have been pro-
pelled by the development of modern machine learning-based search
algorithms. Segler et al.9 introduced an integration of symbolic rules
and deep neural networks to perform synthesis planning, laying the
foundation for the widespread adoption of the neurosymbolic fra-
mework. Building on this approach, Kishimoto et al.10 introduced the
AND-OR structure to enhance the illustration of the relationship
between reactions and molecules. Chen et al.11 further contributed by
introducing a method to perform A* search under the guidance of a
neural model estimating the cost of reactions and molecules. Sub-
sequent research efforts have explored various aspects of retro-
synthetic planning. Some have focused on improving the
representation of molecular structures and the prediction of reactants
for a target product in single-step transformations12–14, while others
have concentrated on refining models to select the most promising
synthesis routes within the planning process15–18.

Existing methods primarily concentrate on synthesizing indivi-
dual molecules. There is no mechanism in literature to explicitly
abstract common patterns arising from known molecular synthesis
routes and reuse them for the inference of new and similar molecules.
This challenge becomes particularly notable in the context of AI-
generated small molecules since a large number of similar molecules
are generated from a distribution learned from data. Intuitively,
molecules with similar structures may have common intermediate
molecules in their synthesis routes. For instance, both amiloride and
cephalosporin-class antibiotics contain amide groups, and the synth-
esis of amides is a recurring step in the production of these two types
of compounds. Incorporating the amide synthesis process from the
first molecule’s synthesis route into the reaction template library, we
can significantly expedite the search for the synthesis route of the
second molecule. In addition to shared intermediate molecules, there
are cases where similar molecules follow similar synthesis routes but
do not have identical steps in common. For instance, Acetylsalicylic
acid, also known as Aspirin, is a widely used medication. It can be
synthesized by acetic anhydride and salicylic acid, which can be further
synthesized from phenol. As the isomer of acetylsalicylic acid,
3-acetylsalicylic acid can be synthesized by acetic anhydride and
3-hydroxybenzoic acid, which is the isomer of salicylic acid. This isomer
can also be further synthesized using phenol. These isomers typically
adhere to common synthesis rules, specifically a series of reactions
without regard to their reactants or products. Such a sequence of
reactions can be directly applied to another isomer to expedite the
retrosynthesis process. Based on these observations, we propose that
extracting and incorporating these reusable patterns into the reaction
template library could significantly improve the efficiency of retro-
synthetic planning. In contrast, existing techniques in the literature
mostly focus on effectively predicting a single reaction in a retro-
synthetic process.

Our proposal calls for the development of new machine learning
methodologies for abstracting common and useful multi-step reaction
processes, as well as mastering and leveraging this growing library to
enhance retrosynthetic efficiency and discover new reaction patterns.
This parallels human learning, where knowledge is communicated and
expanded with documentation, and internalization of knowledge leads
to the development of new concepts that facilitate better and faster
learning in the next step. To create machines that emulate human
learning and evolve knowledge, Ellis et al.19 formulate learning as pro-
gram induction and introduce DreamCoder, a neuro-symbolic frame-
work that builds expertize by alternately extending the language for
expressing domain concepts and training the neural network to guide
the search for programs within these languages, taking a step closer to
human learning abilities— to efficiently discover interpretable, reusable,
and generalizable knowledge across a broad range of domains.

Motivated by the success of DreamCoder, our exploration delves
into the potential of incorporating neurosymbolic programming into
retrosynthetic planning. Just as quickly migrating and accomplishing
functions can be achieved through encapsulating multiple program
statements into functions, some challenging fragments in molecules
that are the cumulative result ofmulti-step reactions of different types
can be seen as products of abstract reactions. Being aware of these
frequently used multi-step reaction processes is valuable for experts
when they are working on retrosynthesizing complex molecules. This
strategic integration aims not only to expedite retrosynthetic planning
but also to unravel the constraints and repeat routes inherent in the
synthesis of similar molecules.

Here, we have drawn upon two common and significant con-
cepts in multi-step reaction processes, applying them to the retro-
synthesis search process: (1) cascade reactions, which are sequences
of chemical transformations that happen consecutively, and (2)
complementary reactions, which means that there is a com-
plementarity between these reactions, where one reaction may serve
as a precursor to another or interact with the product of another
reaction. This informs the design of a retrosynthetic system that
learns and evolves from practical experiences, aiming to enhance the
utilization of fundamental reaction templates. Through the analysis
of successes and failures, we derive strategies for more efficient
retrosynthesis, facilitating the discovery of optimal synthesis routes.
The entire evolutionary process is divided into three continuously
alternating phases as shown in Fig. 1: (1) the wake phase, where
attempts are made to solve retrosynthetic planning tasks, and the
process is recorded for subsequent abstraction and dreaming pha-
ses; (2) the abstraction phase, an effort is made to extract strategies
suitable for solving retrosynthesis problems, involving the previously
mentioned cascade reactions and complementary reactions; (3) the
dreaming phase, where numerous fantasies are generated based on
replay of the wake phase, upon which built-in neural models prac-
tices with the strategies introduced in the abstraction phase and
learns how to better apply them in the subsequent process.

To evaluate the performance of our algorithm, we conduct a
comparative analysis by benchmarking our model against other state-
of-the-art approaches. We evaluate success rates, search efficiency,
and various commonly used metrics for single-target retrosynthetic
planning following previous works11,16. As part of our validation pro-
cess, we examine the utility of patterns automatically extracted by the
system during the abstraction phase, along with the corresponding
refinement operations applied to the models during the dreaming
phase.Most importantly, to evaluate theperformanceof our algorithm
in retrosynthetic planning for a group of similar small molecules, we
introduce an experimental setting designed to demonstrate the com-
parative advantages of different methods in this context. Compre-
hensive validation tests and analyses consistently demonstrate that
our algorithm outperforms existing methods, reaffirming its effec-
tiveness. Furthermore, our algorithm also demonstrates the capability
to identify commonly used chemical patterns. Remarkably, in the
experiment of retrosynthetic planning for groups of similarmolecules,
our algorithm substantially cuts down the inference time, showcasing
the algorithm’s potential to address the issue of validating proposed
results generated by generative models.

Results
Overview of our system
Our system can be divided into three phases that alternate con-
tinuously. In the wake phase (Fig. 1a), an AND-OR search graph is
constructed in the process of retrosynthetic planning. Starting from
the target molecule, two neural network models are adopted to guide
the planning process to approach the purchasable molecule set more
rapidly; one model helps choose where to expand the graph, and the
other model guides how to expand the graph at a specified point.
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When the search terminates, we gather successfully solved synthesis
routes and failedmolecules for which no synthesis routewas found for
later use in the other twophases. The abstractionphase (Fig. 1b)mainly
focuses onhow to expand a node, and the goal is to gobeyond existing
fundamental rules anddiscover compositional strategies that aremore
suitable for retrosynthesis in the future. Here, we introduce two types
of structures in the search graph that represent multi-step reaction
processes: “cascade chains” for cascade reactions and “com-
plementary chains” for complementary reactions. The most useful
strategies are filtered out, defined as abstract reaction templates, and

then added to the library. Apparently, a diverse set of strategies can
enhance the performance to address various retrosynthesis problems
effectively. However, the increase in the library also brings aboutmore
branches, thereby complicating the selection difficulty during expan-
sion. Therefore, the dreaming phase (Fig. 1c)mainly focuses on how to
refine the neural models. In this phase, we generate a substantial
amount of retrosynthetic data, called fantasies, by simulating retro-
synthesis experiences from both bottom-up and top-down approa-
ches, to address the data-hungry problem of the machine learning
model. We then refine the two models mentioned before using both
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Fig. 1 | Overview of the approach. The learning process is divided into three
phases that alternate continuously: (1) the wake phase, (2) the abstraction phase,
and (3) the dreaming phase. a The wake phase searches for synthesis routes from a
set of purchasable molecules to synthesize the target product. The search process
is guided by neural models that select the most promising molecules and rank
candidate templates based on the given intermediate molecule. b The abstraction
phase grows the library of reaction templates by extracting frequently used reac-
tion chains from molecule synthesis routes. In this work, we mainly focus on two

types of reaction chains: (1) cascade reactions, which we defined as “cascade
chains” and (2) complementary reactions, which we defined as “complementary
chains'', and abstracting out these reaction chains into a new reaction template.
c The dreaming phase augments the training dataset by simulating retrosynthetic
experiences through bottom-up and top-down approaches, termed “fantasies''.
Then, the neural models are refined on replayed experiences from the wake phase
and fantasies for future use.
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replayed experiences and fantasies to improve their performance in
the subsequent wake phase.

Performance of retrosynthetic planning for single molecule
To evaluate the planning efficiency of the proposed method, we
compare the success rate under the same limit of planning cycles. A
planning cycle involves evaluating candidate reactions suggested by
the Neural Network, expanding the search space, and updating the
search status. It is precisely defined as an iteration of the while loop at
line 3 of Algorithm 1. We also refer to such a planning cycle as an
iteration.

We first compare ourmethodwith the baselines on the Retro*-190
dataset (Fig. 2a–f). Under the iteration limit of 500, our method

demonstrates superior performance over all the other approaches
with respect to both the success rate and the time used to find the first
synthesis route on the Retro*-190 dataset, as evidenced by the average
results from 10 independent experiments. (Fig. 2a, c). In particular, our
method achieves an average 98.42% success rate by on average solving
threemore retrosynthetic tasks thanEG-MCTS and 2.9more tasks than
PDVN (Fig. 2a). This dataset is small and easy, so the performances of
our model, EG-MCTS, and PDVN are comparable. However, it can be
observed that we have a substantial advantage in terms of search
efficiency, with an average of 21.95 fewer iterations than EG-MCTS and
18.31 fewer iterations than PDVN, which saves almost half of the run-
ning time (Fig. 2c). Another observation is that the maximum search
time of our method is significantly shorter than EG-MCTS and PDVN
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Fig. 2 | Performance of retrosynthetic planning of a single molecule. a The
comparison of the success rate between our method, greedy Depth First Search
(Greedy DFS), DFPN-E10, MCTS-rollout9, Retro*11, Retro*+15, EG-MCTS16 and PDVN40

on the Retro*-190 dataset. The success rate is defined as the ratio of the number of
molecules for which a synthesis route is successfully found to the size of the
dataset. Experiments are run over 10 random seeds, and the average results are
reported; the same applies to other panels in this figure. The iteration limit is set to
500; the lower and upper whiskers represent the minimum and maximum of the
ten data points, respectively; the same applies to Panels (d–f). b The comparison of
the average success rate under different search iteration limits. The shaded area
represents the range between the maximum and minimum values. c The compar-
isonof the timeused to solve 190 retrosyntheticplanning tasks acrossmethodsand

under different iteration limits. The box plots show the medians as center lines,
interquartiles as hinges, and up to 1.5 times the interquartile ranges as whiskers
(outliers are not shown). d The average number of molecule nodes, when planning
terminates, was compared between ourmethod and other baselines. e The average
number of reaction nodes, when planning terminates, was compared between the
methods. f The comparison of the average number of shortest routes found by our
method and baselines. Shorter synthesis routes usuallymean lower cost and higher
validity. g The comparison of the average success rate on the larger and more
challenging dataset (20,000 molecules) was plotted in the same way as Panel (b).
h The comparison of the time used to solve all tasks between our method and
baselines on the larger dataset; plotted in the sameway asPanel (c). Source data are
provided as a Source Data file.
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(Fig. 2c). We also note that increasing the iteration limit from 500 to
1000 does not much improve the success rate for our method and the
most competitive baselines (Fig. 2b). In addition, while PDVN can
achieve an average success rate comparable to our method when the
iteration limit exceeds 700, its performance exhibits higher variation
across multiple experiments (Fig. 2b). The efficiency of the search is
often reflected in the number of nodes on the tree or graph after the
search isfinished. Fewer expansion steps usually lead to shorter search
times. In this regard, we count the number of molecular nodes and
reaction nodes after finding synthetic routes using severalmethods, as
shown in Fig. 2d, e. Our method demonstrates a significant advantage
in terms of the number of expanded nodes, reducing the number of
expansions by approximately half compared to EG-MCTS and PDVN.
This corresponds to roughly a 50% reduction in search time as well.
Typically, molecules with longer synthesis paths require longer search
times. However, by extracting common chain reactions during the
abstraction phase, our method effectively shortens the search graph’s
synthesis paths, thereby accelerating the search process for such
molecules. In addition, the length of the synthesis route is also a critical
factor to consider. This is because chemical reactions typically have
certain reaction efficiencies, and the length of the synthesis route
directly affects the amount of starting materials required. If the
synthesis route is too long, it necessitates the preparation of a larger
quantity of initial rawmaterials, which can lead to increased costs and
added complexity in the synthesis process. Therefore, apart from
assessing the feasibility of finding a synthesis route and the efficiency
of the search, we also evaluate the length of the discovered synthesis
routes. In Fig. 2f, we present the comparison of the average number of
the shortest synthesis routes found by our method and three com-
petitive baselines. While our algorithm outperforms EG-MCTS by
finding an average of 7 shorter paths, it does not outperform PDVN.
This may be attributed to the multi-step reaction patterns extracted
during our abstraction phase. On one hand, these patterns are applied
as a single reaction in the search process, helping to enhance the
search efficiency. On the other hand, this strategy may focus less on
the number of reaction steps, leading to longer routes in many cases.

We then compare our method and the two most competitive
baselines, EG-MCTS and PDVN, on the larger and more challenging
dataset consisting of 20,000 molecules. Our approach consistently
outperforms EG-MCTS and PDVN under different search iteration
limits (Fig. 2g). Our method also uses significantly less time to com-
plete the search compared to EG-MCTS and PDVN under higher
iteration limits (Fig. 2h).

Performance of group retrosynthetic planning
Previous results prove that our methodology is more effective than
using a search tree for the retrosynthetic planning of a singlemolecule.
Then a reasonable assumption is that our method will have greater
advantages when synthesizing multiple molecules simultaneously.
There can be intermediate molecules that occur in the planning pro-
cesswhich are the same, leading to redundancy in the tree. In addition,
when doingmulti-target planning, there may also bemany repeat sub-
paths. Naturally, one might hypothesize that molecules with higher
similarity are prone to having more redundancy. To test this hypoth-
esis,wefirst identify a groupofmolecules in theRetro-190datasetwith
the highest similarity and can be successfully solved using several
methods. Here, we use the Tanimoto distance over the embeddings of
twomolecules to define the pairwisemolecular similarity. This process
yields a group of 20molecules, allowing us to compare the number of
iterations required by these methods during the planning. We use two
different settings of our method to compare with other baselines: (1)
separately searching each molecule using an individual search graph
and (2) collectively searching all molecules using a shared search
graph. Remarkably, when individual graph searches for each molecule
reduce the number of iterations by approximately 44.15% compared to

EG-MCTS, the utilization of a shared graph search further amplifies this
reduction by 20.85%, bringing greater search efficiency advantages
(Fig. 3a). In order to better investigate the impact of similarity on the
efficiency of group retrosynthetic planning, we conduct experiments
usingmultiple sets ofmoleculeswith varying levels of similarity andwe
compare the benefits of reducing the number of nodes when planning
on separated graphs and the shared search graph. From the results
shown in Fig. 3b, we have the following findings: (1) For the single-
target retrosynthetic planning, utilizing the search graph can effec-
tively eliminate redundancy and reduce the number of added nodes in
the search process by about 45%. The reduction ratio can also serve as
an indicator of the amount of redundancy present in the search tree.
(2)With the shared searchgraph, thehigher the similarity of the group,
the higher the reduction ratio we can achieve, and the shared search
graph always performs better than the separated search graphs. Thus
the shared graph is well-suited for retrosynthetic planning of a group
of similar molecules. In addition, it is intuitive to assume that a larger
group size should reduce the differences between samples. This could
prove advantageous in minimizing redundancy when incorporating
new molecules. Consequently, we carried out comparative studies
involving different group sizes. As shown in Fig. 3c, with the increase in
group size, the reduction ratio indeed grows until saturated. However,
there is a noteworthy point that a large gap exists between the simi-
larity of 85% and 80%. As shown from the pattern of molecules with
different similarity (Fig. 3d), we can see that the slight decrease in
similarity is usually reflected in changes to some peripheral functional
groups, but molecules with 75% similarity have undergone alterations
in the ring structures, which leads to a significant change in the
synthesis route. In Fig. 3e, weprovide anexample of groupplanning on
a shared search graph. These three similar target products share a
common intermediate molecule after one or two retrosynthetic steps,
which exemplifies the validity and correctness of our underlying
motivation.

Analyzing the evolution of thewake-abstraction-dreaming cycle
We evaluate the performance of each functionalmodule of our system
in every wake-abstraction-dream cycle. One of the most important
modules is to predict the best template in the library based on the
currently given molecules. As shown in Fig. 4a, our single-step retro-
synthesis prediction model achieves a better performance than other
baseline approaches. To validate the effectiveness of our wake-
abstraction-dreaming framework, we conduct a comprehensive
investigation into how the system’s library evolves and its performance
changes in both single-step and multi-step retrosynthesis tasks as the
number of cycles increases. Firstly, we aim to understand the fre-
quency and variety of patterns automatically extracted by the system
during the abstraction phase. Our algorithm extracts patterns occur-
ring more frequently than ζ = 1/20, 000, where the thresholding
parameter ζ is chosen to achieve a good balance between search effi-
ciency (average number of iterations) and the success rate, as
observed on both datasets (Fig. 4g, h). Figure 4b displays the number
of patterns extracted in each cycle, along with the distribution of
patterns across different frequency ranges, shedding light on their
prevalence. While the number of extracted patterns may seem rela-
tively modest, it is crucial to note that these patterns represent com-
monly observed motifs. In comparison, a single cycle yields
approximately 20, 000patterns in total,with eachpattern occurring at
an average frequency of around 1/40, 000. As the library size grows,
the complexity of the search space increases. This is consistent with
our ablation study where performance degradation is observed when
adding only the abstraction phase to the wake module (Fig. 4e, f).
However, our dreaming module is able to refine the neural model via
repeated fantasies, taking advantage of the expanded library to
enhance the performance of the single-stepmodel (Fig. 4c). This is the
underlying reason for the significant improvement of our complete
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algorithm when adding both the abstraction and the dreaming mod-
ules (Fig. 4e, f). With the generated data and refinement during the
dreaming phase, we observe continuous improvement in the accuracy
of the single-step model in each cycle ultimately achieving a high level
of performance. Notably, the top 1 accuracy, reflecting the model’s
ability to correctly identify the most suitable template as its first
choice, significantly increases. This suggests our augmented data
enhances the model’s precision in mapping molecules to optimal
templates. We expect improvements in the single-step model’s per-
formance should, in principle, result in an overall increase in the ret-
rosynthesis success rate. Figure 4d confirms our expectations,
showing a continuous enhancement in the system’s retrosynthetic
success rate with an increasing number of cycles. Moreover, when
examining the distribution of step numbers in successfully solved
synthesis routes, we notice that the initial improvement primarily
addresses challenges related to longer routes. The continuous selec-
tion or prediction of multiple steps often makes many methods less
effective in the final stages. However, our extracted patterns, tailored
formulti-step reactions, allow us to indirectly shorten synthesis routes
and impose constraints on certain routes, reducing the occurrence of
such issues. Subsequent improvements mainly focus on resolving

molecules with relatively shorter but crucial synthesis routes. In these
routes, a wrong step can lead to failure, and this improvement is
attributed to the enhanced accuracy of the single-step model.

Next, we illustrate how the two strategies, “complementary chain”
and “cascade chain”, are extracted and utilized. As shown in Fig. 5a, the
“complementary chain” resides within the middlebox. We can observe
that the first and last reactions involve the addition and elimination of
t-Butyloxy carbonyl (BOC), respectively, making them complementary
operations. In the abstraction phase, our system extracts the com-
plementary chain from the synthesis route presented in the box above;
then, our system uses it later in a new retrosynthetic task, as shown in
the bottom box. In Fig. 5b, we show a “cascade chain” found in the
abstraction phase, which is a very common synthesis route involving
Amidation. Amidation and Amination often appear together in a
common synthesis route. Our abstractionmethod combines these two
steps into a composite reaction (in the black box on the right). We
provide the route where our system identifies the cascade chain in the
left black box and showcases two instances of its application in the
wake phase, denoted by the red and blue arrows. In Fig. 5c, the upper
route is selected from the dataset, while the lower one is generated by
our approach. Remarkably, the upper route comprises a combination
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Fig. 3 | Analyses of using the search graph to perform retrosynthetic planning
of a groupofmolecules. aThe comparisonof the iterations for the groupplanning
of 20 similar molecules between different methods. The baselines used here are
Retro*11 and EG-MCTS16. “Ours-Graph” and “Ours-Shared Graph” indicate the plan-
ning of each molecule using a separate search graph or solving a group of mole-
cules together using a shared search graph. Experiments are run over 10 random
seeds, and the average results are reported; the same applies to Panels (b, c). The
lower and upper whiskers represent the minimum and maximum of the ten data
points, respectively. b The comparison between the planning based on graph and
the shared graph for a group of molecules with different similarity levels, in terms
of the benefits gained from reducing the number of nodes compared to tree-
structured retrosynthetic planning. The similarity is defined by the Tanimoto dis-
tance between twomolecules. Experiments are run across 200 groups. The shaded

area indicates the 95% confidence intervals around the mean. c The comparison of
different group sizes and varying levels of similarity on the benefits of shared graph
search. The shaded area represents the rangebetween themaximumandminimum
values.dThe illustration ofmoleculeswith different similarities (the differences are
highlighted). The changes in peripheral groups have a minor impact on overall
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similarity. e An example of group retrosynthetic planning for three similar mole-
cules that employs a shared intermediate molecule (indicated by the black box)
based on the shared search graph. This helps to save the number of search itera-
tions. Arrows and boxes of different colors are used to distinguish the synthesis
pathways of the three molecules. Source data are provided as a Source Data file.
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of the complementary chain displayed in Fig. 5a and another cascade
chain, which is similar to the one displayed in Fig. 5b, enclosed within
the red dashed box. These steps are further distilled into a new reac-
tion template (more specifically, a newcascade chain),which is applied
as indicated by the green arrow, effectively shortening the length of
the synthesis route and thereby enhancing planning efficiency. To
demonstrate our method’s ability to find high-quality routes, we
illustrate two solution routes in Fig. 5d, where the top route is given by
the dataset and the bottom route is found by our proposed method.
These two routes share the same first reaction. Our approach then
leaves out an extra step, selecting the better decomposition template

in the second step with a better andmore accurate template selection.
More illustrations about how the two strategies are used in practice
can be found in More illustration of retrosynthetic routes, Supple-
mentary Figs. 5, 6.

Discussion
In this work, we perform group retrosynthetic planning as neuro-
symbolic programming for efficiently finding high-quality routes and
learning to master synthesis strategies as experts. Our system levera-
ges expertise from practical experiences and continues to improve
through alternative three phases: wake, abstraction, and dreaming
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Fig. 4 | Analyses of the evolution of wake-abstraction-dreaming cycles. a The
comparison of the exact match accuracy between our single-step model and other
baselines (G2Gs38, GraphRetro39, Retrosim33, Transformer36, Megan37, Neuralsym34,
and GLN35) when making template selection. The exact match accuracy is deter-
mined by whether the set of reactants given in canonical SMILES matches exactly
with the ground truth reactants. The top-K accuracy refers to the number of correct
predictions among the model’s top K predictions. Experiments are run over 10
random seeds, and the average results are reported; the same applies to other
panels in this figure. The shaded area represents the range between the maximum
andminimum values; the same applies to Panel (c).b The number of increments of
the library size in the abstraction phase within the evolution cycles, with growth

patterns shown in different colors based on occurrence frequency. The lower and
upper whiskers represent the minimum and maximum of the ten data points,
respectively; the same applies to Panels (d–h). c The accuracy of our single-step
model within the evolution cycles. d The successfully solved retrosynthetic tasks
within the evolution cycles are plotted based on the distribution of synthesis route
lengths. e, f Ablation study conducted on the Retro-190 and the larger and more
challenging dataset, respectively, including (1) wakemodule only (W), (2) wake and
abstraction modules (WA), (3) wake and dreaming modules (WD), and (4) all
modules (WAD). g, h The performance of the abstraction module at different fre-
quency thresholds (ζ) on the Retro-190 and the larger and more challenging
datasets, respectively. Source data are provided as a Source Data file.
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phases. The wake phase involves a search process on the AND-OR
search graph guided by a template selection model and the most
promising molecule selection model, while the abstraction phase
extracts strategies for retrosynthesismainly focusing on the two types
of reactions: cascade reactions and complementary reactions. Besides,
for better use of reaction templates and these extracted strategies, we
propose two data augmentation approaches in the dreaming phase to

generate representative fantasies based on a replay of experience. Our
algorithm outperforms existing methods in planning efficiency on a
real-world benchmark dataset and shows great performance in the
experiment of retrosynthesis of a group of similar molecules gener-
ated by a generative model, which demonstrates the potential to
address challenges in synthesizing molecules designed during the
actual molecular design process, thus validating them.

Route we find

New template

Route from the Retro*-190 dataset

Route from the Retro*-190 dataset

Route we find

a b

c

d

Fig. 5 | Strategies and solution examples given by our system. a A “com-
plementary chain” (middle) is extracted from a synthesis route (top) and subse-
quently employed in a retrosynthesis task (bottom). This “complementary chain”
involves the addition and elimination of BOC. The dashed arrow represents internal
reactions between two complementary reactions. b A “cascade chain” (middle on
the right), is extracted from the synthesis route (left). Two examples utilizing the

“cascade chain” are indicated by the red and blue arrows, respectively. c An
example of how a strategy expedites retrosynthetic planning. The top synthesis
route is from the dataset, while the bottom is the route we find. Several steps
highlighted by red dashed boxes are extracted as a new template, which is then
used as indicated by the green arrow below. d Our method finds a shorter path
because of a better selection in an intermediate step.
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Through analyzing experimental results, we find that summariz-
ing synthesis routes enables the extraction of common patterns, sig-
nificantly enhancing the efficiency of solving retrosynthesis problems.
These patterns provide valuable guidance for searching multi-step
synthetic reactions, incorporating constraints and priors from reac-
tions along the routes, leading to an improved success rate in retro-
synthetic problem-solving. However, relying solely on these insights is
inadequate. The expansive search space demands the development of
enhanced representations for molecules, chemical reactions, and
more sophisticated filtering networks. Thus, the data augmentation
strategies we devised, grounded in considerations of synthetic routes,
aredeemed indispensable. During the experimental process, analyzing
multiple synthesis routes and unsuccessful cases uncovered recurring
challenges, such as template extraction and representation for reac-
tions of the same family. For example, both chlorination and bromi-
nation reactions can be categorized as halogenation reactions. This
prompts consideration of whether incorrect in choosing between
these reactions should be disregarded. Besides, for reactions present
in the dataset, can we infer that reactions involving similar atomic
families will follow the same reaction rules, thereby significantly
expanding our repository of known reaction rules? Therefore, we aim
to delve deeper into reaction representation, employing robust sum-
marizationmethodologies to derivemore general reaction rules in the
future, simulating the human ability to draw analogies and
connections.

Methods
We now describe the specifics of our system, beginning with the
definition and preliminaries of the retrosynthetic planning problem,
and then turning to the molecule encoder that we utilized to assist in
the application of neural models, finally introducing the details of its
three phases.

Preliminaries of retrosynthetic planning
Let M denote the space of all molecules, and let I denote the col-
lections of availablemolecules, I �M. We have a target product to be
synthesized, which is denoted as t 2M. The goal is to synthesize twith
the ingredients in I . Instead of finding a forward route that starts from
I to t, themost commonmethod is to perform backward searching by
decomposing the target molecule to its reactants recursively using
one-step retrosynthesis prediction until all the reactants required are
from I . Such a method is called retrosynthetic planning in chemistry.

Following is the definition of the retrosynthetic planning process.
Given any molecule m 2M, we might have n ways to synthesize it:

RðmÞ= fR1ðmÞ,R2ðmÞ, :::,RnðmÞg, ð1Þ

where each Ri(⋅) is a reaction template, and Ri(m) is a reaction instan-
tiated by the template to produce the molecule m, denoted by the
triplet ðm,RiðmÞ, ciðmÞÞ. Here,RiðmÞ �M denotes the reactants set of
Ri(m) and ciðmÞ 2 R+ is the cost of the reaction. If ∃ Ri(m) ∈ R(m)
satisfies that 8m0 2 RiðmÞ,m0 2 I , then we find a successful route to
synthesize m. If not, we need to choose a reaction Ri(m) and further
synthesize all the reactants m00 2 RiðmÞnI . If the elements in RiðmÞnI
canbe synthesized usingmolecules inI throughoneormultiple steps,
we can find a successful synthesis route as well.

In practical retrosynthetic planning, it’s time-consuming to gather
all possible synthetic reactions for a molecule as the search space is
vast. Instead of using brute force enumeration, a commonly used
method is to utilize a neuralmodel tomap frommolecules to the top-K
potential reactions and do a beam search; thereby, the complexity can
be limited. we define this model as B with parameters θb,

Bð�; θbÞ : m 7! fRiðmÞ= ðm,RiðmÞ, ciðmÞÞgKi= 1, ð2Þ

which generates at most K reactions for a given molecule m. B can be
learned from a dataset of chemical reactions Dtrain = fðm,RðmÞÞg. Here,
sincemost datasets do not provide the actual price of a reaction Ri(m),
most works simply use the negative log-likelihood of the reaction
under model B as the cost ci(m). Given the above definitions, there are
two critical components that significantly limit the performance of
retrosynthesis: mapping m to fRiðmÞgKi= 1 and selecting the most
promising Ri(m). These are the aspects that most work typically
focuses on.

Molecule encoder
To enable machine learning algorithms to understand and utilize
molecules, molecule representation learning (MRL) proposes to con-
vert molecules into dense vectors andmap them to a low-dimensional
real space. A simplifiedmolecular-input line-entry system (SMILES) is a
line notation used to represent the structure of chemical species in
computers using short ASCII strings. There are many SMILES-based
methods that take SMILES strings as input and utilize natural language
models such as BERT20 or Transformers21 to get the embeddings of
molecules22,23. However, SMILES representation assumes a sequential
order between the atoms in a molecule, which cannot effectively
reflect the complex relationships between atoms in a molecule. As a
result, these SMILES-based approaches fail to capture the rich chemi-
cal contexts and their interplays of molecules, resulting in unsatisfac-
tory predictive performance24. Here, we choose graph neural network
(GNN)25 as our base model instead for its high performance in cap-
turing structural information and graph representation capability,
which utilizes molecule structure and atom features to learn a repre-
sentation vector for each atom and the entire molecule.

More specifically, we represent a molecule by a graph defined as
G = (V, E), where V = {a1, a2, …} is the set of non-hydrogen atoms and
E = {b1, b2,…} is the set of bonds. We use a feature vector xi to encode
the properties of the atom ai. Here, the following types of atom
properties are used: element type, total degree, formal charge, the
number of hydrogen atoms, hybridization type, and whether the atom
is an aromatic ring. Each type of atom c is represented as a one-hot
vector. Besides, we use a multi-hot vector to represent whether c is
included in a certain size of ring or not because we think ring struc-
tures are important for reactions. All feature vectors are concatenated
into a single vector as the initial feature of c. Typical GNNs follow a
neighborhood aggregation strategy, which iteratively updates the
representation of an atom by aggregating representations of its
neighbors and itself. Formally, the n-th layer of a GNN is:

hn
i =AGGREGATEðfhn�1

j gj2N ð1Þ∪ figÞ,n= 1, . . . ,N, ð3Þ

where hn
i is atom ai’s representation vector at the n-th layer (h0

i is
initialized as the initial feature xi), N ð1Þ is the set of atoms directly
connected to ai, and N is the number of GNN layers. Finally, a readout
function is used to aggregate all node representations output by the
last GNN layer to obtain the entire molecule’s representation hG:

hG =READOUTðfhN
i gai2V Þ: ð4Þ

In a chemical reaction, the system is usually closed, and various
physical quantities of the system, such as mass, energy, and charge,
remain constant before and after the reaction. This creates an
equivalence between the reactants and products in the chemical
reaction space that we want to maintain in the molecule embedding
space:

X
r2R

hr =
X
p2P

hp, ð5Þ
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whereR is reactant set, P is product set. As a result, a straightforward
loss function for the proposed method is ‘= 1

jDj
P
ðRi ,PiÞ2D k

P
r2Ri

hr�P
p2Pi

hpk2, where ðRi,PiÞ represents the i-th chemical reaction in a
batch of training data D. However, simply minimizing the above loss
does not work, since the model will degenerate by outputting all-zero
embeddings for all molecules. Here, we follow the method used in
Wang et al.26 and use a minibatch-based contrastive learning frame-
work similar to Radford et al.27; we first use the GNN encoder to
process all reactants Ri and products Pi in this batch and get their
embeddings. The matched reactant-product pairs ðRi,PiÞ are treated
as positive pairs, whose embedding discrepancy will be minimized,
while the unmatched reactant-product pairs ðRi,PjÞði≠jÞ are treated as
negative pairs, whose embedding discrepancy will be maximized. The
final loss function is

‘=
1
jDj

X
ðRi ,PiÞ2D

l
X
r2Ri

hr �
X
p2Pi

hp

�����
�����

�����
�����
2

+
1

jDjðjDj � 1Þ
X
i≠j

maxðγ � l
X
r2Ri

hr �
X
p2Pj

hp

������
������

������
������
2

, 0Þ,
ð6Þ

where γ >0 is a margin hyper-parameter.

Wake phase (Neuro guided retrosynthetic planning)
The goal of the wake phase is to search for a synthesis route that leads
from available molecules set to the target product. More specifically,
we devise a retrosynthetic planning algorithm that works on the so-
called AND-OR searchgraph. Below,wefirst introduce the definitionof
theAND-OR searchgraph and then dive into the details of the planning
procedure.

AND-OR search graph. We define the AND-OR search graph as fol-
lows. A search graphG= ðV, EÞ, consists of a finite setV of vertices, a set
E � V ×V of edges.G is a directed graph because there is a strict order
between reactants and products in the synthesis process. As for the
retrosynthetic search graph, the direction always goes from products
to reactants and there are two types of nodes on the graphG: molecule
and reaction. Let Vm and Vr denote the collections of molecule nodes
and reaction nodes. It can be guaranteed that Vm ] Vr =V. Besides,
molecule nodes only connect to reaction nodes, and vice versa. For a
reaction RiðmÞ= ðm,RiðmÞ, ciðmÞÞ mentioned before, it can be repre-
sented in the graph: (1) m, a molecule node, is the predecessor of the
reaction node Ri; (2) molecule nodes inRiðmÞ are the successors of Ri
and belong to Vm. Here, we define molecule nodes as the ‘OR’ nodes
and reaction nodes as the ‘AND’ nodes because a molecule m can be
synthesized using any one of its successor reactions (or relation), and
each reaction can work only when all of its successor reactants to be
ready (and-relation). Mathematically, we define the Boolean function
avail(v)↦ {true, false} that evaluates the success state of each node v,
more specifically, whether the molecule can be synthesized or the
reaction is ready to be executed. We further define prðvÞ7!V to get the
predecessor of node v. Then we have,

availðvÞ=
V

prðviÞ= vfavailðviÞg v 2 VrW
prðviÞ= vfavailðviÞg _ fv 2 Ig v 2 Vm

(
, ð7Þ

where ∨ , ∧ denote logical AND, OR operations, respectively. Speci-
fically, (1) a reaction node is in true status if all its successors are in true
status; (2) amolecule node v is in true status if one of the following two
constraints is satisfied: (a) the molecule v is in the set I ; (b) it has at
least one successor whose status is true.

An example of the searchgraph is shown in Fig. 6, where the prefix
M or R indicates molecule nodes or reaction nodes, respectively.M1 is

the target product and the building blocks M5,M7 2 I . M1 can be
synthesized using reaction R1 or R2, so avail(M1) = avail(R1)∨ avail(R2).
It is apparent thatR1 is a uni-molecular reactionbecause it hasonly one
reactant, M2 and R2 is a bi-molecular reaction because it connects to
M3 and M4. As a result, avail(R1) = avail(M2), and avail(R2) =
avail(M3) ∧ avail(M4).

Compared with the AND-OR search tree used in Retro*11, the
search graph merges the search nodes for identical intermediate
molecules to reduce redundancy. Specifically, there are two types of
redundancy in AND-OR trees. First, in typical single-target synthesis
scenarios, the search tree for a target moleculemight featuremultiple
identical sub-trees due to similar reactions yielding the same inter-
mediatemolecules (e.g., the nodeM6 in Fig. 6). Second, inmulti-target
synthesis tasks, different targets are often treated independently,
overlooking the potential sharing of common intermediate molecules
post-several reactions–a commonphenomenon in synthetic chemistry
(an example is illustrated in Fig. 3e). In both scenarios, search graphs
wouldnaturallymerge these common intermediatemolecules to avoid
redundant search nodes, reducing the total number of search nodes
and enhancing efficiency. Furthermore, if multiple molecules share a
search graph, we refer to the search graph as a shared search graph.

AND-OR graph-based planning. Our planning algorithm is a best-first
search algorithm that continuously explores and expands on the AND-
OR search graph. In the searchprocess, theVm is split into two subsets:
the open molecule nodes Vmo

and closed molecule nodes Vmc
. A

molecule node v 2 Vmc
, only if themolecule is in an available set I or it

has been visited; otherwise, the node belongs to Vmo
. For example, in

Fig. 6, M4,M6 2 Vmo
and other molecules are closed. Initially, the

graph G contains only onemolecule node, that is, the target product t.
Then we do planning on G. Each planning step can be divided into
three steps,
1. Select:We selectoneopenmolecule nodemwhichhasnever been

visited before, andm is themost promisingmoleculeproposedby
the value model of molecules as shown in line 4 of Algorithm 1. A
proper design of the value of molecules would improve search
efficiency, andmeet some user-defined requirements, such as the
length of the route, the cost of ingredients, and so on. We will
introduce the details of the cost function in the Value model.

2. Expand: After selecting the node m with minimum cost estima-
tion, we will expand the search graph with K proposals from
single-step retrosynthesis model B(m; θb). Specifically, we first
extract the molecule features and then feed them into the target
template proposing model and get K proposals. For each
proposed retrosynthesis reaction ðm,RiðmÞ, ciðmÞÞ, we create a
reaction node R = Ri under node m, and for each molecule
m0 2 RiðmÞ, we create amolecule node under the reaction nodeR.
If m0 has already appeared in the graph, the node will be
automaticallymerged, and the value of that node will be updated.
This step is shown in lines 5–9 of Algorithm 1. The details ofmodel
B(m; θb) and how to get K proposals are shown in Single-step
retrosynthesis prediction.

3. Update: After expanding, we need to update the status (e.g.,
success state, historical cost) of all nodes as lines 12 to 17 of
Algorithm 1. Here we use a bottom-up strategy and only update
the affected nodes to save search time.

We repeat these three steps until the termination condition is
satisfied:finding a route for the target, using up the iterationbudget (L,
given as input), or having no nodes to expand. It is clear that the
algorithm guarantees to terminate. If the hyper-parameter K is large
enough so that all possible expansions can be made, our algorithm
guarantees tofinda synthesis route as long as there exists one (since all
possible synthesis pathswill be examined until a solution is found). For
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a smallerK, successful planning of our algorithm relies on the accuracy
of the K reactions proposed by the model B(⋅ ; θb).

If a synthetic route is found, we can apply a depth-first search
(DFS) strategy to extract the synthetic route as a tree from the search
graph as the “best route” shown in Fig. 6. Molecule nodes and reaction
nodes occur alternatively on the tree; the molecule node is the parent
of the best synthesis reaction, and all reactants are the children of the
reaction node. The tree-like synthesis route is easily understood by
humans.

Algorithm 1. Retrosynthetic planning on AND-OR search graph(t, L)
input :target molecule t, iteration limit L
output :if find the synthesis route of t, a synthesis graph G / ∗
topo_dist(m1, m2) = n if m1 is the nth-level predecessor molecule
node of m2

1 Initialize G= ðV, EÞ with V  ftg, E  ;;
2 n ← 0;
3 while avail(t) is not true and n ≤ L and Vmo

is not empty do
4 mnext argminm2Vmo

costðmÞ;
5 fRi = fmnext,Ri, ciggKi= 1  BðmnextÞ;
6 for i ← 1 to K do
7 Add a reaction node Ri toG under themolecule nodemnext;
8 for j ← 1 to jRij do
9 Add Rij to G under Ri with an initial value ValueðRijÞ;
10 costðRiÞ  ci ×

P
m2Ri

costðmÞ;
11 availðRiÞ 

V
m2Ri
favailðmÞg;

12 availðmnextÞ 
W

R2fRigKi= 1 favailðRÞg;
13 M  all predecessor molecule nodes of mnext;
14 sortM based on topo_dist(; , mnext);
15 for i ← 1 to jMj do
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Fig. 6 | The search procedure based on the AND-OR search graph. In retro-
synthetic planning,webeginwith the SMILES expressionof a targetmolecule. Here,
we use a graphical representation to enhance our understanding of the molecule’s
properties, and then two neural networks basedon that representationwill be used
to guide the planning process. Before planning, we create a template library filled
with a variety of reaction templates, represented by molecular expressions. These
templates assist in identifying reactants that correspond to a particular product.
The planning process is divided into three main iterative stages: selection, expan-
sion, and update. In the selection stage, we choose the most promising molecule,

like M4 in the diagram, for further expansion. This expansion relies on chosen
reaction templates, such as R5 and R6, to perform single-step retrosynthesis,
resulting in reactants like M8 and M9, which are then added to the graph. The
update stage involves revising the graph to reflect new information about the
synthesizability and synthesis costs of the nodes. Ultimately, this process culmi-
nates in the determination of the optimal synthesis route for the target molecule.
Furthermore, a reaction template tree containing only reaction nodes can be
extracted for the following analysis.
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16 Update the cost of Mi;
17 Update the success state of Mi;
18 n ← n + 1;
19 return avail(t), G;

Value model. To parameterize the cost of synthesizing any molecule
m which is used to guide the selection of the next node to expand in
the select step of AND-OR graph-based planning, we first compute its
embedding by the molecule graph encoder mentioned before, then
feed it into a single-layer fully connected neural network of hidden
dimension 128, which then outputs a scalar representing Vm.

Specifically, we construct retrosynthesis routes for feasible mole-
cules in Dtrain, where the available set of molecule M is also given
beforehand. The resulting dataset will be rttrain = frti = mi,Ri,Ci, fRgK

�
g,

where each tuple rti contains the target molecule mi, the total cost of
the best route Ci, the single-step retrosynthesis candidates {R}K, which
also contains the true single-step retrosynthesis reaction Ri used in the
planning solution. The learning of Vm consists of two parts, namely the
value fittingwhich is a regression loss ‘regressionðrtiÞ= ðVmi

� CiÞ2 and the
consistency learning which maintains the partial order relationship
between the best single-step solution Ri and other solutions
Rj = ðmi,Rj, cjÞ 2 fRgK , here we use the N-pair loss proposed by Sohn
et al.28:

‘consistencyðrti, fRjgK�1j = 1
Þ= logð1 +

XK�1
j = 1

expðCi + ϵ� cj �
X
m02Rj

Vm0 ÞÞ, ð8Þ

where ϵ is a positive constant margin to ensure Ri has higher priority
for expansion than its alternatives even if the value estimates have
tolerable noise.

Single-step retrosynthesis prediction. The single-step retrosynthesis
predictionmodel is used in the expansion stepofAND-ORgraph-based
planning to generate K proposals. Here, we use a template-based
model to predict the target reaction template and corresponding
reactants. Our single-step prediction method consists of two steps: (1)
predict the target reaction template, and (2) apply the template to the
product and get corresponding reactants.

To begin with, we employ the molecule graph encoder to gen-
erate template fingerprints as yfp. In addition, drawing inspiration from
how reactions are defined and classified in chemistry, we construct a
table comprising commonly utilized functional groups and identify all
functional groups present in the templates, utilizing the open-source
RDKit package. We then leverage the presence of all predefined
functional groups to categorize the templates using adaptive cluster-
ing techniques and calculate the one-hot encoding yclass. As a result,
the concatenation of yfp and yclass is used as the embedding of tem-
plates, and we store them in the cache as set T .

Subsequently, a Multi-Layer Perceptron (MLP) is employed to
predict the target template class and its corresponding template
embedding as z. Here, we use a loss function consisting of two
components:
1. To minimize the difference between the predicted embeddings

and the target embeddings, we use the cosine similarity loss
‘similarðz, yÞ= 1� z�y

kzkkyk, where z is the predicted embedding and y is
the target embedding.

2. Tooptimize the class predictionperformance,weuse the InfoNCE
loss29,

‘ðz, T Þ= � log
expðz � x + =τÞP
x2T expðz � x=τÞ , ð9Þ

where x+ is a positive embedding of the same class as z in T , and
τ is a hyper-parameter ("temperature”) that controls how

concentrated the features are in the embedding space. Lower
temperaturemeans the faraway points would not affect the loss
as much.

Once the target template class is determined, we employ Face-
book AI Similarity Search (FAISS) to quickly search for K-nearest
neighbors (K-NN) within such a cluster. The K-NN search is based on
the cosine similarity between the query vector and the embeddings
stored in T . Consequently, we obtain the top-K template proposals.
Then we use RDKit to apply these templates to get corresponding
reactants.

Abstraction phase (Extract cascade reactions and com-
plementary reactions as experts)
During the abstraction phase, the system grows its library of reaction
templates with the goal of discovering specialized abstractions that
allow it to express solutions to the retrosynthesis tasks easily. Intui-
tively, given a collection of synthesis trees extracted from the search
graphs during the wake phase (as explained in AND-OR graph-based
planning), we can identify and compress common sub-tree fragments
as abstractions to reduce their depth. Therefore, we introduce two
strategic types of abstractions to enhance the library: cascade chains
and complementary chains. Specifically, motivated by the cascade
reaction, we “compress out” the most frequently occurring sub-trees
and add them to the library, and we call them “cascade chains” —

sequences of consecutive chemical transformations. In addition, we
focus on another crucial chemistry pattern: complementary reactions.
We define these as “complementary chains” — pairs of reactions that
are complementary and follow tree-like partial order. Unlike cascade
chains, these do not occur consecutively but consistently perform
complementary functions on certain groups. Below, we first introduce
the reaction template tree to facilitate the analysis of synthesis trees
and then detail how to define, extract, and apply these two abstraction
strategies; additionally, in More illustration of the abstraction phase
and Supplementary Fig. 1, we provide further illustration of these two
types of abstraction strategies.

Preliminaries: reaction template tree. We focus on the abstraction of
commonly used and generalizable reaction templates instead of the
exact retrosynthetic routes. Therefore, we define and will be working
on the reaction template trees. Given a synthesis route tree that con-
tains bothmolecule and reaction nodes (e.g., the “best route” in Fig. 6),
we define the corresponding reaction template tree which consists of
only the reaction nodes of the synthesis route tree, where the parent of
each node in the reaction template tree is naturally set to be its
grandparent in the synthesis route tree (or the node becomes the root
if its grandparent does not exist, as illustrated at the bottom left
of Fig. 6).

A reaction template tree also naturally defines a reaction template
R(⋅): given a target molecule m, we may instantiate each reaction
template in a reaction node of the tree from the root to the leaves,
feeding the reactants needed by the parent node (or m, if there is no
parent node) to the reaction template of the node being processed.
Finally, we define the instantiated reaction RðmÞ : = ðm,RðmÞ, cðmÞÞ
where the reactant setRðmÞ is the union of all reactions needed by the
leaf nodes, and the cost c(m) is the total reaction costs instantiated in
the tree.

Cascade chain. A cascade chain is a sequence of consecutive reaction
templates that commonly appears in successful retrosynthesis routes,
which can be abstracted to form a new reaction template.

Definition A cascade chain is formally described as a reaction
template tree that frequently occurs as an induced sub-tree of the
reaction template trees defined based on the successful retrosynthesis
routes collected in our dataset.More specifically, let C be the collection
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of the successful reaction template trees, we extract the set P of cas-
cade chains as

P : =

P is a reaction template tree
��� freqðindÞðP, CÞ : = P

T2C1ðP ≼ ðindÞTÞ
jCj ≥ ζ

� �
,

ð10Þ
where ζ is the minimum frequency threshold, 1ð�Þ is the indicator
variable, and P ≼ (ind)T denotes that P is an induced sub-tree of T.

Fast extraction algorithm The number of the induced sub-trees
increases exponentially as its size increases. Therefore, we employ the
following algorithm to avoid enumerating toomany induced sub-trees
so as to run fast in practice. To describe our algorithm, we first define

Pk := fP 2 P jP has k nodesg ð11Þ

as the set of k-node cascade chains, and the following 1-node extension
operation on the set Pk :

ExtðPkÞ := fP is a reaction template tree of k + 1 nodes j 9P 0 2 Pk ,P
0 ≼ ðindÞPg:

ð12Þ

The key of our fast algorithm is to observe that if a tree P is an induced
sub-tree of P0, then

freqðindÞðP0, CÞ≤ freqðindÞðP, CÞ, ð13Þ

which implies that for any integer k ≥ 1, it holds that

Pk + 1 � ExtðPkÞ: ð14Þ

Based on Eq. (14), our algorithm first constructs P1 by definition:
enumerate all single-node reaction templates that appear in C,
calculate their frequency, and keep the ones above the threshold ζ.
Then, the algorithm constructs the setsPk + 1 for k = 1, 2, 3,… using Eq.
(14): obtain the extension set ExtðPkÞ by enumerating all additions of a
reaction template node to each tree in Pk , and keep the ones in the
extension set with frequency above ζ. This iteration terminates when
Pk = ;. Finally, the algorithm returns P = ∪ kPk . The computational
cost of this algorithm is proportional to jPj. Thus, it runs fast in
practice since there are not excessively many useful cascade chains.

Using cascade chains during planning A cascade chain directly
defines a reaction template by its reaction template tree (as described in
Preliminaries: reaction template tree). Thus it can be used in the same
way as existing reaction templates during planning (the wake phase).

Complementary chain. Complementary chains involve pairs of reac-
tion templates performing complementary operations on the same
functional groups. It is inspired by the common complementary
reactions in synthetic chemistry: addition and elimination of a pro-
tective group, where the former temporarily masks a functional group
due to its interference with another desired reaction, and the latter
removes this mask after the completion of the desired reaction.

Definition To define the complementary chains, we first define
the complementary reaction templates (CR templates): a pair of reaction
templates R+ and R− is called a pair of CR templates if the following two
conditions hold: (1) the reaction centers (where the chemical trans-
formation occurs) are the same in both reaction templates, (2) a pro-
duct (or a reactant respectively) of R+ and a reactant (or a product
respectively) of R− share the same functional group that is adjacent to
the common reaction center. In practice, we use RDChiral30 to identify
the reaction centers and the functional groups of the participating
reactants and products. We then define a complementary reaction
template tree (CR template tree) is a reaction template tree where the

nodes can be partitioned into pairs of CR templates and the following
two conditions hold: (1) eachpair of CRnodes is an ancestor and anoff-
spring of each other, (2) no two pairs of CR nodes interleave with each
other, i.e., there do not exists CR node pairs (R+, R−) and ðR0+ ,R0�Þ with
the following relationship (where a≺ b denotes that a is an ancestor of
b) : R + � R0+ � R� � R0�.

We now formally define a complementary chain as a CR template
tree that frequently occurs as an embedded sub-tree of the reaction
template trees collected in our dataset. (In contrast an induced sub-
tree, forQ to be an embedded sub-tree of T does not requireQ to keep
all edges in T; it is only required that every pair of parent and child inQ
remains a pair of ancestor and off-spring in T ). More specifically, let C
be the collection of the successful reaction template trees (as defined
in Cascade chain), we define the set Q of complementary chains as

Q : =

Q is a CR template tree
��� freqðembÞðQ, CÞ : =

P
T2C1ðQ≼ ðembÞTÞ

jCj ≥ ζ
� �

,

ð15Þ
where ζ is theminimum frequency threshold (the same as the Cascade
chain), and Q ≼ (emb)T denotes that Q is an embedded sub-tree of T.

Fast extraction algorithm We extend our fast extraction algo-
rithm for cascade chains in Cascade chain to complementary chains.
For each integer k ≥ 1, define

Qk := fQ 2 Q jQ consistsof k pairs of CRnodes g: ð16Þ

We similarly define the 1-pair extension operation on the set Qk :

ExtPairðQkÞ : =
fQ is aCR template tree of ðk + 1Þpairs of CRnodes j 9Q0 2 Qk ,Q

0 ≼ ðembÞQg:
ð17Þ

Using thatQ≼ ðembÞQ0 ) freqðembÞðQ0, CÞ≤ freqðembÞðQ, CÞ, we are able to
establish for each k ≥ 1,

Qk + 1 � ExtPairðQkÞ: ð18Þ

Our algorithm for extracting complementary chain is basedon Eq. (18),
similar to the one for cascade chains:first constructQ1 by enumerating
all single-pair CR templates that appear in C and keep the ones with
frequency above the threshold ζ; then for each k = 1, 2, 3,…, as long as
Qk≠;, construct ExtPairðQkÞ by enumerating all possible insertions of a
CR pair inQ1 to the CR template trees inQk , and select the ones in this
extension set with frequency above the threshold and form Qk + 1.
Finally, the algorithm returns Q= ∪ kQk . The computational cost of
this algorithm is proportional to jQj.

Integrating complementary chains intoplanning In contrast to
cascade chains, a complementary chain does not directly define a
reaction template, this is because the CR template tree of the chain
may only be an embedded sub-tree of the desired reaction route, and
much planning remains to further replace the internal edges of the CR
template tree with synthesis sub-trees. Therefore, different from the
cascade chains, we need a new method to integrate complementary
chains into planning. We achieve this by introducing a complementary
incentive score when proposing reaction nodes to expand (Line 5 of
Algorithm 1). More specifically, when a complementary chain is
adopted during the planning algorithm, the root node of the chain is
first added to the search graph, and the planning algorithm keeps
running as usual. Whenever proposing reaction nodes to expand the
molecule mnext (Line 5 of Algorithm 1), we align the current search
graph with the complementary chain and locate the edge ðR,R0Þ of the
CR template tree to which mnext is aligned. Suppose R is the parent,
then the reaction template R0 is given a favorable score, which is
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incorporated into the proposing model B(⋅), to boost its priority in
planning. This incentive score helps to guide the planning algorithm to
follow and complete the complementary chain.

Dreaming phase (Learn to plan better through reflection and
more practice with the growing reaction library)
During the dreaming phase, the system recalls past experiences and
dreams and then refines its two neural models (introduced in the Value
model and Single-step retrosynthesis prediction) used to guide graph
expansion, which later speeds up retrosynthetic planning during the
wake phase. We train such two networks on pairs drawn from two
sources of data: replays of search graph expanded during waking, and
fantasies. Replays ensure that these models are trained on the specific
tasks they need to solve and prevent the models from forgetting how to
solve them over time. On the other hand, generating diverse and
extensive datasets through fantasies is crucial for data efficiency and
enablesmodels to learn fromawider rangeof scenarios. To fantasy about
new reaction routes, we employ two strategies, the top-down strategy
and the bottom-up strategy, which are detailed below. These routes are
combined with the replays on a 50%/50% mix to train the two neural
models. The refined models will be used in the subsequent wake phase.

Top-down strategy. In the wake phase, some products cannot be
retrosynthesized. Inspired by that the synthesis route of similar
molecules can help experts as hints, we generate some similar and
synthesizable molecules to help our system solve the failure tasks. We
refer to this approach as the top-down strategy as wemodify the target
product at the top of the search graph directly. As illustrated at the top
of the fantasies panel in the dreaming module of Fig. 1c, in case a
molecule M1 cannot be synthesized by the present system, we gen-
erate a similarmoleculeM10 at the top of the search graph and obtain a
successful reaction route for M10 that may serve as a hint for the ret-
rosynthesis ofM1. In addition, a real exampleof the top-down fantasy is
provided in the Top-down strategy and Supplementary Fig. 2.

Here, we use a generative model to sample some similar mole-
cules first, then try to solve them using the same route search process
as in waking, and we save the successful results to the dataset. The
generative model we used is HierVAE31. In HierVAE, a hierarchical
representation of molecules with three layers is proposed, and the
generation process is implemented based on an encoder-decoder
framework (Supplementary Fig. 4a, b). Given the generativemodel, we
can easily perform similarity filtering in the embedding space of
molecules by using the encoder, and the pairwise molecular similarity
threshold we used is defined as the Tanimoto distance over the
embeddings of two molecules. Besides, this motif-based hierarchical
framework captures occurring substructures well, and molecules
generated by it, therefore, have good chemical validity.

Hierarchical representation of molecules A molecule can be
represented as a graphG= ðV, EÞ, with atomsV asnodes andbonds E as
edges. Then, the motif can be defined as a sub-graph of G, denoted as
Mi = ðVi, EiÞ. We can extract a set of motifs fM1,M2, . . . g from G such
that their union covers the entire molecular graph: V =

S
iV i and

E =
S

iEi. With the definition of motifs, the three hierarchical layers in
HierVAE are structured as follows:

• Motif layer: This layer outlines the high-level structure of the
graph by capturing how motifs are coarsely interconnected. It
consists ofn nodesM1, . . . ,Mn, each representing amotif, andm
edges fðMi,MjÞjMi \Mj ≠ ;g, which indicate shared elements
between motifs Mi and Mj .

• Attachment layer: This layer focuses on the finer-grained con-
nectivity between motifs. Each node Ai = ðMi, vjÞ represents a
specific attachment configuration ofmotifMi, where vj is the set of
atoms shared between Mi and one of its neighboring motifs, Mj .

• Atom layer: At the most detailed level, this layer represents the
atomic structure of the molecule. Each atom is represented by a

node v labeled with av, denoting its atom type and charge. Edges
(u, v) are labeled with buv, specifying the bond type between
atoms u and v.

Together, these three layers form a hierarchical graph repre-
sentation of the molecule, denoted as HG. This hierarchical approach
enables the model to capture both coarse structural information and
fine-grained atomic details, providing a comprehensive view of the
molecular graph.

Moreover, to construct the motif vocabulary, we follow the pro-
cedure introduced in HierVAE31 and begin by breaking down all mole-
cules in the training set into isolated fragments. The most frequently
occurring fragments are then selected as motifs. For a given molecule
G, we identify all bridge bonds ðu, vÞ 2 E. These bonds are defined as
those where both u and v have degrees δu, δv≥ 2, and at least one of
them is part of a ring. By removing these bridge bonds along with their
associated edges, the molecular graph G is divided into a collection of
disconnected subgraphs {G1, . . . , Gn}. A fragment Gi qualifies as a motif
only if it appears in the training set more than Δ= 100 times.

Hierarchical graph encoder Based on the three hierarchical
layers in the hierarchical graph HG, HierVAE uses an encoder con-
taining three message-passing networks (MPNs) that encode each
layer. Next, we introduce the details of the three MPNs. For simplicity,
we denote the MPN encoding process as MPNψ(.) with parameter ψ.

• Atom layer MPN: This MPN takes as input the embedding vectors
e(au) and e(buv), which represent all atoms and bonds in the
molecular graph G. The network propagates messages across
atoms over N iterations, resulting in the atom representations hv
for each atom v. This process can be expressed as:

fhvg=MPNψ1
ðHa

G, feðauÞg, feðbuvÞgÞ, ð19Þ

whereHa
G is the atom layer of HG.

• Attachment layer MPN: In the attachment layerHA
G , for each node

Ai, the input feature is constructed by concatenating the
embedding with the sum of the atom vectors as follows:

fAi
=MLP eðAiÞ,

X
v2Mi

hv

0
@

1
A: ð20Þ

For each edge ðAi,AjÞ, the input feature is represented by the
embedding vector e(dij), which captures the relative relationship
between nodesAi and Aj during the decoding. Here, dij = k ifAi

is the k-th child of Aj and dij= 0 if Ai is the parent node. The
network then performs N iterations of message passing overHA

G
to compute the attachment representations:

fhAi
g=MPNψ2

ðHA
G , ff Ai

g, feðdijÞgÞ: ð21Þ

• Motif layer MPN: At the motif layer, the input feature for each
node Mi is computed by concatenating its embedding with the
node vector obtained from the attachment layer.

fMi
=MLPðeðMiÞ,hAi

Þ: ð22Þ

Subsequently, N iterations of message passing are performed
over the motif layer HM

G to generate the motif representations:

fhMi
g=MPNψ3

ðHM
G , ffMi

g, feðdijÞgÞ: ð23Þ

Finally, the molecule G is represented by a latent vector zG, which
is sampled using the reparameterization trick based on the mean
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μðhM1
Þ and the log variance

PðhM1
Þ. This process is given as:

zG =μðhM1
Þ+ exp

X
ðhM1
Þ

� �
� ϵ, ϵ � ð0, 1Þ, ð24Þ

whereM1 is the root motif, representing the first motif reconstructed
during decoding.

Hierarchical graph decoder HierVAE generates a molecule by
incrementally expanding its hierarchical graph using the graph deco-
der. At each generation step, the same hierarchicalMPN architecture is
used to encode all the motifs and atoms in HðtÞG , which refers to the
(partial) hierarchical graph generated up to step t. This gives us motif
vectors hMi

and atom vectors hvj
for the existing motifs and atoms.

During the decoding process, themodel keeps track of a set of frontier
nodesF , where eachmotifMi 2 F corresponds to a node that still has
ungenerated neighbors. The frontier set F is organized as a stack, as
motifs are generated in a depth-first manner. At step t, if Mi is the
motif currently at the top of the stack F , the model makes the fol-
lowing three predictions conditioned on the latent representation zG:
1. Themodel first predicts the nextmotifMt thatwill be attached to

the current motif Mi. This is formulated as a classification pro-
blem over the motif vocabulary VM. The probability distribution
for Mt is computed as follows:

pMt
= softmaxðMLPðhMi

, zGÞÞ: ð25Þ

2. Once the next motif Mt is determined, the model predicts its
attachment configurationAt . This involves identifying the specific
atoms vj 2Mt that will form the intersection with its neighboring
motifs. The task is again treated as a classification problem, with
the probability distribution computed as:

pAt
= softmaxðMLPðhMt

, zGÞÞ: ð26Þ

3. In the final step, the model determines how Mt should be con-
nected to Mi. The attachment is defined by a set of atom pairs
Pti = fðuj , vjÞjuj 2 Ai, vj 2 Atg where atoms uj and vj represent the
atoms that will be linked. The probability of a specific attachment
configurationP is calculated based on the atom representations huj

and hvj
:

pP = softmaxðhP � zGÞ, ð27Þ

hP =
XjPti j

j =0

MLPðhuj
,hvj
Þ: ð28Þ

The three predictions above allow the model to decompose the
probability distribution of the next motif and its attachment into
sequential steps, enabling an autoregressive approach to molecule
generation. Each decoding step depends on the results of the previous
step, and the predicted attachments directly influence the subsequent
motif predictions.

Training detailsWe train the model using the following negative
ELBO as the loss:

‘n�ELBO = �EzG�Q½logPðGjzGÞ�+DKL½QðzGjGÞ k PðzGÞ�, ð29Þ

where G is the graph of molecules, DKL is the Kullback-Leibler
divergence. We set the hidden layer dimension to 270 and the
embedding layer dimension to 200. Furthermore, we set the latent
vector dimension ∥zG∥ = 8 and runN = 20 iterations ofmessage passing
in each layer of the encoder. We use the Adam optimizer with a

learning rate of 0.001 to train the model for 30 epochs, where each
epoch contains 56,000 batches with a batch size of 64. The training
loss curve is shown in Supplementary Fig. 4c.

Bottom-up strategy. Our secondapproach to fantasy about successful
synthesis routes is called the bottom-up strategy. This strategy aims to
generate routes and quickly accumulate experience about the new
reaction templates extracted in the abstraction phase. Given a synth-
esis route tree T = ðV, EÞ where V is the set of nodes for molecules and
reactions, we repeatedly replace the nodes starting from the leaves
and toward the root and correspondingly update the entire synthesis
route T to obtain a new one. More specifically, our bottom-up strategy
includes the following three steps:
1. We randomly choose a leaf node v in the synthesis route T, which

is an available molecule in the available set I .
2. We substitute node v with another molecule u 2 I that can be

applied to the reaction template R in the parent node. Since the
candidate set I is very large, we design the following method to
accelerate the selection process for u: First, we characterize the
reaction template R by its two key components: the reaction
center and the surrounding fragments, where the reaction center
refers to the part of the molecule where the chemical transfor-
mation occurs and the surrounding fragments are the portions of
the molecule immediately adjacent to the reaction center that
influences or participate in the reaction. Thenwe construct the set
U � I consisting of each u 2 I containing the surrounding frag-
ments of R that also appear in v. Usually we have jUj≪jI j; thus the
search space is significantly reduced. Finally, we use FAISS to find
the top-κ similar elements to v in U (where similarity is defined
according to the Tanimoto distance between the embeddings of
two molecules), and each of them is trialed to replace v in the
synthesis route T.

3. After replacing vwith a candidatemolecule u, we iteratively apply
each reaction template in the ancestor nodes of v from the bot-
tom up till the root node is updated.

An illustrative example of the bottom-up strategy is shown at the
bottom of the fantasies panel in the dreaming module (Fig. 1c). Sup-
pose we have a molecule M1 that can be synthesized using an
abstracted reaction template R0 which uses reactantsM4,M5, andM3.
We find a building block M30 that also fits R0 and replace v =M3 with
u=M30. We finally update the reaction route and obtain M10. We also
provide a real example of the bottom-up strategy in the Bottom-up
strategy and Supplementary Fig. 3. Compared to the top-down strat-
egy, the bottom-up strategy makes minimal changes to the entire
synthesis route, making it more suitable for accumulating common
empirical knowledge for newly discovered reaction templates.

Experimental setup
Datasets. To obtain a library of valid reaction templates, we use the
publicly available reaction dataset extracted from the United States
Patent Office (USPTO). Following the instructions in ref. 11, we remove
wrong labeling reactions and duplications, and adopt RDChiral30 to
construct the library of reaction templates with atom mapping. The
processed library consists of about 1.3M reactions and is split ran-
domly into train/val/test sets with 80%/10%/10% proportions.

To evaluate the performance of different retrosynthetic planning
approaches, we use the building block set I comes from eMolecules,
which consists of 231M commercially availablemolecules, and the route
dataset used in Retro*11 and Retro* +15, called Retro*-190. Retro*-190
comprises 299202 training routes, 65274 validation routes, and 190 test
routes. Note that the target molecules of these 190 test routes cannot
be efficiently synthesized by a simple heuristic-based BFS planning
algorithm within a limited search time, making this dataset more chal-
lenging than the one conventionally used in previous works9,10.

Article https://doi.org/10.1038/s41467-024-55374-9

Nature Communications |          (2025) 16:192 15

www.nature.com/naturecommunications


In addition, considering the small size of the Retro*-190 dataset,
we create a new test route dataset based on the methodology descri-
bed in ref. 32 and follow the same rules used in ref. 11 tomake sure that
there is no overlapbetween the new test set and train/val sets. Next, we
filter out the simpler molecules using Retro* 11 by discarding the
molecules that can be synthesized within fixed iterations. This process
results in a dataset of 20,000 molecules.

Baselines. In this work, we compare our single-step model against
existing single-step retrosynthesis models, which can be classified into
three categories: template-based, template-free, and semi-template-
based, as follows:

• Template-based: Retrosim33, Neuralsym34, and GLN35;
• Template-free: Transformer36 and Megan37;
• Semi-template-based: G2Gs38 and GraphRetro39.

Moreover, we compare our method against existing multi-step
retrosynthetic planning methods: greedy Depth First Search (denoted
as Greedy DFS), DFPN-E10, MCTS-rollout9, Retro* 11, Retro* +15, EG-
MCTS16 and PDVN40 on the Retro*-190 dataset.

Metrics. Following previous works39, we evaluate the performance of
single-step models using exact match accuracy, which is calculated by
comparing the set of reactants represented in canonical SMILES with
the ground truth reactants in the dataset. We assess the top-N pro-
posals provided by all models, where N = 1, 3, 5, 10, and check if any of
the proposals match the dataset exactly. We also use the success rate
and the time used to find the first route under the same 500 iteration
limit to evaluate the efficiency of the planning algorithms. Specifically,
we conduct experiments using 10 different random seeds, and then
report the average of the results.While success rate and time efficiency
are crucial, the quality of routes discovered by algorithmsmust not be
overlooked. To evaluate the quality of routes found by algorithms, we
calculate howmany routes found by algorithms are equal to or shorter
than the dataset.

Implementation details. Searching synthesis routes for a group of
molecules generated by generative models is more demanded in
practical application scenarios. To demonstrate the effectiveness
of our method in addressing this challenge, we use a generative
model proposed by Jin et al.31. We generate a group of similar
molecules with varying similarity thresholds and perform retro-
synthetic planning for each molecule separately on search graphs
as well as on a shared search graph. Here, We generate 200 groups,
with each group containing 20 synthesizable molecules. We then
compare the performance of the search graph and the shared
search graph to the search tree. We calculate the reduction in
the number of nodes added during the entire planning process.
The reduction ratio is defined as reduction ratioðmethodÞ=
#of nodestree�# of nodesmethod

#of nodestree
,method 2 fgraph, sharedgraphg. We design

an experiment to explore the impact of group size on the reduction
ratio, and we choose the group size = 10, 20, 30, 40.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The publicly available eMolecules dataset can be downloaded from
https://downloads.emolecules.com/free/. In the experiments, we used
the dataset after processing and the test set Retro*-190, which is pro-
vided by Chen et al. and available at https://github.com/binghong-ml/
retro_star. The generated data used in the experiments is available at
https://github.com/osu-zxf/DreamRetroerand also available at
Zenodo repository41 through https://doi.org/10.5281/zenodo.

14032989. In addition, source data of all figures are provided in this
paper. Source data are provided in this paper.

Code availability
The source code of ourmethod is available on ourGithub page https://
github.com/osu-zxf/DreamRetroer. In addition, the source code is also
available at Zenodo repository42 through https://doi.org/10.5281/
zenodo.14011051.
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