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Deciphering how noncoding DNA determines gene expression is critical for
decoding the functional genome. Understanding the transcription effects of
noncoding genetic variants are still major unsolved problems, which is critical
for downstream applications in human genetics and precision medicine. Here,
we integrate regulatory-specific neural networks and tissue-specific gradient-
boosting trees to build SVEN: a hybrid sequence-oriented architecture that can
accurately predict tissue-specific gene expression level and quantify the tissue-
specific transcriptomic impacts of structural variants across more than 350
tissues and cell lines. We further systematically screen a large-scale structural
variants dataset derived from 3622 individuals and clinical structural variants
from ClinVar, and provide an overview of transcriptomic impacts of structural
variants in population. As a sequence-oriented model, SVEN is also able to
predict regulatory effects for small noncoding variants. We expect that SVEN

will enable more effective in silico analysis and interpretation of human
genome-wide disease-related genetic variants.

Whole-genome sequencing enables the generation of high-resolution
maps of genomic variations in the human genome'”, revealing pervasive
structural variants (SVs) in the human genome**’. Operationally defined
as large-scale genomic alterations (>50 bp), SVs have been shown to
have prominent impacts on several complex diseases, including schi-
zophrenia, rheumatoid arthritis, and type 1 and type 2 diabetes®™.
Typically, SVs are thought to function by influencing gene expression via
effects on the regulatory regions of genes™. Determining the tran-
scriptomic impact of SVs genome-widely remains a serious challenge.
Multiple attempts have been made to systematically characterize
the cellular impacts of genetic variants. In addition to classical
annotation-oriented approaches that based on existing functional
annotations®™, multiple sequence-oriented methods have been
proposed’®™®, By attempting to “learn and model” regulatory codes from
DNA sequences directly via various deep learning networks, sequence-
oriented methods have demonstrated notable performance in predict-
ing the influence of genetic variants on gene expression in both well-
annotated and poorly annotated genomic regions' 2. However, these

sequence-oriented methods are mainly developed for single nucleotide
variants (SNVs) and small indels rather than large-scale SVs.

Here we present SVEN, a multi-modality sequence-oriented in
silico model, for quantifying both small and large-scale genetic variants’
regulatory impacts in over 350 tissues and cell lines. In addition to its
superior performance for tissue-specific gene expression prediction
(mean Spearman R =0.892), SVEN was found to be highly accurate for
assessing the impact of SVs on gene expression when being applied to a
large-scale SV dataset (Spearman R = 0.921), enabling to systematically
characterize the effects of common and pathogenic SVs detected in
large-scale population on gene expression in various tissues and cell
lines. SVEN is available at https://github.com/gao-lab/SVEN.

Results

SVEN predicts effects of SVs on tissue-specific gene expression
accurately

SVEN employs a hybrid architecture to learn “regulatory codes” and
infer the gene expression levels from transcription start site (TSS)-
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centered sequences in a tissue-specific manner (Fig. 1a and Methods).
Briefly, we first trained multiple regulatory-specific neural networks
based on 4516 transcription factor (TF) binding, histone modification
and DNA accessibility features across over 400 tissues and cell lines

a 131,072 bp

generated by ENCODE (Supplementary Fig. 1). Our evaluations sug-
gested that these networks successfully learned the underlying reg-
ulatory codes from the inputs directly, with 0.660 mean Pearson
correlation (Fig. 1b, Supplementary Fig. 2 and Supplementary Data 1). A
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Fig. 1| Tissue-specific gene expression prediction framework. a Schematic
overview of SVEN. SVEN consists of three components that act sequentially:
sequence-based deep neural networks to learn regulatory codes from sequences,
feature selection and transformation to reduce the dimensionality of features, and
gradient-boosting tree models to predict gene expression levels in a tissue-specific
manner. TSS transcription start site, TF transcription factor. b Representative

examples of observed and predicted functional genomic features (log;o scale)
obtained from deep neural networks. The sequence (chrl1:46,781,020-46,895,708)
at the CKAPS locus was included in the test dataset of the networks.
pyGenomeTracks®* was used to plot genomic tracks. DNase deoxyribonuclease,
ChIP chromatin immunoprecipitation. Source data are provided as a Source

Data file.
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Fig. 2 | SVEN improves tissue-specific gene expression prediction. a SVEN out-
performs state-of-the-art tools in predicting tissue-specific gene expression on
held-out sequences that were excluded from the training dataset for testing. The
predicted log;oRPKM values were compared with the observed log;o0RPKM values
from RNA-seq data for overlapped 218 tissues and cell lines with Enformer and

ExPecto. Spearman correlations between the predicted and observed values were
calculated for comparison. b The values predicted by SVEN versus the observed
values for all the testing sequences in the 6 example tissues reported by ExPecto
and Enformer. Source data are provided as a Source Data file.

data-oriented feature selection procedure was further employed, and
802 networks associated with less-informative regulatory features
based on model performance were excluded (Supplementary Fig. 3;
see the Methods for more details). The outputs of the remaining 3714
networks, along with a separate mRNA decay-related feature set?,
were used to train 365 gradient-boosting trees to infer gene expression
in 365 tissues and cell lines.

To evaluate the performance of the model in predicting gene
expression, we assessed the performance of SVEN on testing sequen-
ces that were excluded from the training dataset. SVEN accurately
predicted gene expression levels across 365 tissues and cell types, with
a mean Spearman correlation of 0.892 (Supplementary Data 2).
Notably, SVEN showed consistently better performance across

different tissues than ExPecto'” and Enformer (Fig. 2, Wilcoxon rank-
sum one-sided test p=7.070 x 1072 and 5.464 x 107, respectively).

We then evaluated the ability of SVEN to predict the regulatory
impact of SVs by applying SVEN to a large-scale SV dataset from 1019
samples with paired RNA-seq data”® (Methods). For 94,366 SV-gene
pairs from 126 samples (corresponding to 42,034 SVs and 19,995
genes), SVEN accurately predicted their regulatory effects, with a
Spearman correlation of 0.921 (0.907 after removal of unexpressed
genes) between the predicted expression levels and the observed
expression levels from paired RNA-seq data (Fig. 3a). Compared with
Enformer, SVEN can predict effects of SVs on gene expressions more
accurately and consistently across different SV types (Table 1, Sup-
plementary Fig. 4 and Supplementary Table 1).
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Serum albumin is the most abundant protein in human blood
encoded by gene ALB, and the synthesis of albumin occurs in liver.
Serum albumin has important biological functions® in human and it
suggests that low serum albumin has close relation with the emer-
gence and worsening of cardiovascular diseases®. It has been found
that a 4 kb deletion upstream of ALB affecting the promoter region

(Supplementary Fig. 5a) was associated with lower serum albumin
level. We predicted the effect of this deletion with SVEN and it was
predicted to decrease the expression of ALB in liver (log2 fold
change =-1.30) and HepG2 cell line (log2 fold change=-3.29) sig-
nificantly, which is consistent with serum albumin level of individuals
carried with this deletion®.
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Fig. 3 | SVEN can accurately quantify the regulatory potential of genetic var-
iants. a Evaluation of SVEN in assessing the effects of SVs on gene expression. The
predicted log;oRPKM value obtained from the GM12878 model was compared with
the observed log;oRPKM from RNA-seq data for the LCL cell line. Spearman cor-
relation is shown. b DNA fragments generated by PCR using genomic DNA from
non-targeting control A375 cells and those subjected to CRISPR-based deletion of
the FOLH1-SV region. ¢ Effect of CRISPR-based deletion on the relative abundance
of FOLHI mRNA, as determined by real-time quantitative PCR (qPCR) analysis. All
qPCRs were performed in 96-well plates, and for each set of measurements, 4 wells
were used as technical replicates. Relative mean expression levels +/- standard
deviation of all technical replicates are presented. Two-sided independent sample
t-test was conducted for statistical analysis. Since there was a difference between

the target deletion and the designed deletion in the CRISPR experiment, we also
used SVEN to predict the expected deletion in the CRISPR experiment, and the
same conclusion was reached. d Annotations of FOLH1-SV from the SVEN annota-
tion model. Differences in the annotation tracks revealed differences between the
signal of the reference sequence and the signal of the deleted sequence

(Signal; — Signal,). Since the SVEN annotation did not include annotations for the
A375 cell line, the CTCF, H3K4me3 and H3K27ac signals shown here are the features
with the largest feature contributions in the SVEN model (A375). e ROC (Receiver
Operating Characteristic) curves of small noncoding variants measured by in vitro
massively parallel reporter assays. AUROC: Area Under the Receiver Operating
Characteristic curve. f Model performance on cell line-specific small noncoding
variants. Source data are provided as a Source Data file.

To further demonstrate the predictive ability of SVEN, we selected
deletions from the large-scale SV datasets for experimental validation
(Methods). For the top 5 deletions predicted by SVEN to have the
strongest regulatory impacts (Supplementary Data 3), we ran inde-
pendent CRISPR-based assays. SVEN successfully predicted the direc-
tion of the impact on gene expression for 4 deletions, and 2 of the
results were statistically significant (Fig. 3b and ¢, Supplementary
Fig. 5b and 6). Notably, the deletion upstream of the cancer biomarker
PSMA-encoding gene FOLHI”"*° disrupts the promoter region (Sup-
plementary Fig. 5c) and the annotation-based algorithm predicted that
this deletion would barely affect gene transcription (regulatory dis-
ruption score=-0.02)*°; however, SVEN correctly predicted an
increase in expression, partly because its annotation module indicated
that the variant effectively increases expression-activating H3K4me3
and H3K27ac signals rather than the deleting known silencers® or
insulators, which further suggested a plausible underlying mechanism
for the effect of this deletion (Fig. 3d).

Screening of SVs detected in large-scale population and
clinical SVs

Large-scale whole-genome sequencing studies have identified a number
of SVs, however, their impacts on gene expression remain unclear. To
estimate the regulatory effects of SVs genome-wide, we systematically
screened a large-scale dataset derived from 3,622 samples®. For 159,018
curated SV-gene pairs corresponding to 70,749 SVs (Methods), SVEN
predicted that most SVs did not significantly affect gene expression
(Supplementary Fig. 7a). One of possible reasons is that all these SVs
were detected in the samples without disease-related phenotypes.

In addition, we further assessed the impact of pathogenic SVs on
gene expression. For pathogenic deletions (18,620 SV-gene pairs) and
duplications (428 SV-gene pairs) derived from ClinVar (Methods), we
noticed that known pathogenic deletions were more likely to affect
gene expression than benign and population ones (Wilcoxon rank-sum
one-sided test p=1.878 x 10" and O, respectively), especially exon-
disrupted SVs with longer length (Supplementary Fig. 7b, c and d). No
statistically significant difference was detected for duplications (Wil-
coxon rank-sum one-sided test p=0.785 and 0.212, respectively),

Table 1| Model performance in assessing the effects of SVs on
gene expression (Spearman R)

SV type Number of SV- SVEN Enformer
gene pair

All 94,366 (61,811) 0.921(0.907) 0.841(0.786)
Insertion 31,352 (20,360) 0.921(0.910) 0.841(0.785)
MEI 2109 (1401) 0.928 (0.915) 0.869 (0.810)
Deletion 36,450 (24,186) 0.923 (0.905) 0.844 (0.785)
Duplication 8671 (5805) 0.923 (0.909) 0.839 (0.792)
Inversion 88 (62) 0.923 (0.899) 0.846 (0.794)
duplication

Complex 15,696 (9997) 0.914 (0.903) 0.831(0.785)

Numbers in bracket are results after removal of unexpressed genes.

which may be attributed to the relatively lower statistical power caused
by limited number of duplications. Interestingly, the results obtained
with SVEN suggested that pathogenic deletions tended to decrease
gene expression, and loss of function of target genes might be one
reason for the pathogenic effects of these variants. For example, the SV
nssvl7171470 (chrX:139,530,701-139,530,862) is a 161bp deletion
located at the locus of the gene F9, which encodes coagulation factor
IX and is associated with hemophilia B. SVEN predicted that this SV
would decrease the expression of F9 (log2-fold change =-10.83 in the
liver). This deletion disrupts the first exon and the promoter region of
F9 (Supplementary Fig. 7e), including the TF binding sites of HNF4A
that has been reported to have a positive and significant correlation
with the level of F9 in the liver®.

SVEN improves small noncoding variant effects prediction

As a sequence-oriented model, SVEN should also be able to predict
regulatory effects for small noncoding variants (length £ 50 bp).
Therefore, we further evaluated the performance of SVEN with variants
whose functional effects were directly measured by in vitro massively
parallel reporter assays (MPRAs)**. We used 5,248,124 variants tested in
a variety of cell types, including 30,121 positive variants and 5,218,003
negative variants. Here, we would call a variant “positive” as long as it is
considered to be an expression-altering variant according to MPRA
experiments. For each variant, we calculated predicted score S without
any additional training to evaluate variant effects. Briefly,

alt ref
Pmn — Pmn

N
Sy g

m n
where M represents the number of features (M=4516 in this case,
considering all functional annotations), N represents the number of
128-bp bins of each feature (N=896), p% and pﬁ,f,f7 is predicted
genomic signal for feature m at bin n. Compared with several state-of-
the-art methods, SVEN showed the best performance, with the AUROC
(Area Under the Receiver Operating Characteristic curve) improving
by 8.9% (Fig. 3e).

Genetic variants can function in tissue and cell-line-specific
manner”. To evaluate performance for cell line-specific variants, we
extracted variants tested in the HepG2 and K562 cell lines from the
benchmarking dataset, selecting 265 and 483 cell line-matched fea-
tures in the HepG2 and K562 cell lines, respectively, from 4516 SVEN
annotations. SVEN-CellType-Match used the same K562 annotations
for the K562 and K562 (GATALI) variants. Notably, SVEN cell-line mat-
ched predictions outperformed cell-line agnostic predictions (Fig. 3f),
further demonstrating the importance of the context-specific design
of SVEN.

Feature importance for the prediction of gene expression

We further evaluated the importance of selected features for the
prediction of expression levels (Methods). The results showed that TF
binding features, as a class, made the largest overall contribution to
expression outcomes (Fig. 4a), DNA accessibility features had the
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lowest mean importance across all 365 models, which may be partly
due to their bidirectional biochemical effects: an accessible region of
DNA can be bound by either activating or repressing regulatory fac-
tors. Notably, we found that mRNA decay features had the highest
mean feature importance (Fig. 4b and c), likely owing to the close
relationship between the mRNA decay rate and the regulation of gene
expression®.
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We used decay constants to control the receptive field of the
transformed features (Methods and Supplementary Fig. 3b), and the
preferences of different categories of features were diverse. For DNA
accessibility features, there was no clear preference for features with
different receptive field (Fig. 4d). However, the feature importance of
histone modification features showed a different pattern: features
from TSS-proximal regions and those with the largest receptive field
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Fig. 4 | Feature importance for predicting gene expression. a Overall feature
importance across all 365 models by feature category. b Mean feature importance
across all 365 models by feature category. ¢ Correlations between the feature
contributions of different categories across all 365 models. The mean SHAP value
was calculated for each model on all training and testing sequences. d, eand

f Overall feature importance of (d) DNA accessibility, (e) histone modification and
(P TF binding features across all 365 models according to the decay constant used
in feature transformation. We used different decay constants to control the
receptive field of the transformed features: 0.01, + 56 kb; 0.02, + 30 kb; 0.05, +

12kb; 0.10, + 6 kb; 0.20, + 3 kb. Boxes were sorted based on the mean values of the
data within each category. In each boxplot (a, b and d-f), the lower and upper
boundaries of the box represent the first (Q1) and third quartiles (Q3), with the
median indicated by a line inside the box. The whiskers typically extend to the most
extreme data points within 1.5 times the interquartile range (IQR) from the quar-
tiles. Data points outside this range are considered outliers and are plotted indi-
vidually by circles. Wilcoxon rank-sum one-sided test (without adjustment) was
conducted for statistical analysis (a, b and d-f). TF transcription factor. Source data
are provided as a Source Data file.

had higher importance (Fig. 4e), further confirming the importance of
histone modifications”. As expected, the TF binding features from
TSS-proximal regions had the highest performance (Fig. 4f).

Discussion

SVs are a common form of genetic variation that may contribute to
diverse complex diseases; however, we still have a limited under-
standing of the functional impact of these variants. Previous studies try
to assess impacts of SVs through classical annotation-oriented
approaches®™** which highly rely on known functional annotations.
While current sequence-oriented approaches (like ExPecto) for char-
acterizing impacts of genetic variants mainly focus on small variants
other than large-scale SVs'®'*#*** In this study, we introduced SVEN, a
multi-modality sequence-oriented model for quantifying genetic var-
iants’ regulatory impacts. By integrating deep learning networks to
learn regulatory grammar from sequence ab initio and gradient
boosting tree models to predict gene expression levels, SVEN was
found to predict tissue-specific gene expression and the impact of
large-scale SVs on gene expression accurately across more than 350
cell lines and tissues. SVEN is able to assess both SVs and small variants’
impact at a whole-genome level and provide mechanism hints.

To achieve the high accuracy in predicting the impact of large-
scale SVs on tissue-specific gene expression, we introduced a hier-
archical hybrid architecture to build the model. On the one hand, SVEN
consists of three components that act sequentially, which makes SVEN
can benefit from existing genomic functional data rather than
sequence only (such as Enformer)®; on the other hand, we used hybrid
architecture to train annotation component: class-oriented holistic
models and feature-oriented separate models. Class-oriented holistic
models could benefit from related features (such as same modification
across different cell lines and tissues or biological-related features) and
feature-oriented separate model paid more attention on sequence
information alone. By combining these two kinds of models, annota-
tion component could utilize available data more effectively and
achieve better performance with relatively simple model structure.

SVs are of clinical interest because they have shown to have pro-
minent impacts on several complex diseases. Several methods have
been developed to predict pathogenicity of SVs**0424-48 'We’d noted
that SVEN was designed for quantifying the tissue-specific tran-
scriptomic impacts of SVs, and the fact that gene expression alteration
does not necessarily mean disease causing™, so we would expect
that the SVEN will hardly surpass these pathogenicity-oriented algo-
rithms in predicting the pathogenicity of SVs (Supplementary Table 2).
Instead, we’d suggest that SVEN and these algorithms could be rather
complementary, enabling a possibility to jointly identify pathogenic
SVs, which function through transcriptomic changes.

There are still several paths for further improving the accuracy
and scalability. Three-dimensional structure of human genome med-
iates the interaction between regulatory regions and regulates gene
expression, and we could further combine the prediction of the three-
dimensional structure of the human genome®>** to model distal reg-
ulation better as well as expand the scope of applicable genetic var-
iants. CAGE (cap analysis gene expression) and RNA-seq are two major
technologies used to quantify the transcription level of genes.
Although the data from them are not fully comparable, as

complementary technologies, they can be used to improve gene
expression prediction models™.

We believe that SVEN, an accurate and flexible sequence-oriented
model, will enable more effective and efficient mining of disease-
related genetic variants in the human genome. Thus, we constructed a
whole SVEN package, which includes tutorials and demo cases and is
publicly available online at https://github.com/gao-lab/SVEN for the
community.

Methods

Framework architecture of SVEN

The SVEN framework consists of three components that act sequen-
tially. The first component is a set of sequence-based deep neural
networks that learn regulatory codes from sequences to predict
functional genomic features such as TF binding, histone modification,
and DNA accessibility. The second component is a feature selection
and transformation approach to reduce the dimensionality of the
generated features obtained from deep neural networks. Finally, the
third component is a set of gradient-boosting tree models that are
trained with selected features as well as mRNA decay features and used
to make tissue-specific gene expression predictions.

The first component is a set of deep neural networks that were
used to predict 4516 functional genomic features, including 1896 TF
binding features, 1976 histone modification features, and 684 DNA
accessibility features. Inspired by previous work®, the basic neural
network consists of three parts: (1) 7 residual convolutional blocks with
pooling layers, (2) 11 residual dilated convolutional blocks, and (3) a
cropping layer followed by a pointwise convolution block and fully
connected layer for the output (Supplementary Fig. 1a). The input
sequence of the models was a one-hot encoded DNA sequence of
131,072 bp, and the output was (predicted) functional genomic fea-
tures with a length of 896 corresponding to 114,688 centered base
pairs aggregated into 128-bp bins. The residual convolution blocks
with pooling layers were used to extract sequence motifs and learn the
interactions between them, and the dimensionality was reduced to
1024. Then, we used residual dilated convolutional blocks to learn
long-range interactions across sequences. Finally, we applied a crop-
ping layer to trim off 64 units at the beginning and end of the sequence
due to the potential loss of information in these regions, where only
one-sided information can be observed. Then, we used a pointwise
convolution block to change the number of channels, followed by a
fully connected layer with a soft plus function as the activation func-
tion as the final output layer.

Inspired by our previous work®, we introduced a hybrid archi-
tecture including class-oriented holistic models and feature-oriented
separate models to train deep neural networks. Specifically, we trained 3
class-oriented holistic models for each type of chromatin profile (TF
binding, histone modification and DNA accessibility); this approach
could benefit from related features (such as the same binding protein or
modification across different cell lines and tissues). The outputs of three
class-oriented models were N x 896 x 1896, N x 896 x 1976 and N x 896 x
684 respectively (V: number of input sequences). We also trained
feature-oriented separate models, which paid more attention to
sequence information alone, with each model corresponding to one
feature (the output was N x 896 x 1). Finally, we selected the best models
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according to their performance on the validation set and combined the
outputs of these models as the final output.

In addition, we found that DNA accessibility information could
improve the model performance of TF binding and histone modifica-
tion models; therefore, we incorporated a pretrained DNA accessibility
model into the TF binding and histone modification models (Supple-
mentary Fig. 1b). Specifically, we first trained a holistic DNA accessi-
bility model as a pretrained model. Then, we incorporated the
pretrained model into the TF binding and histone modification model;
the pretrained model was not frozen and was involved in further model
training. The pretrained model was trained on the same sequences as
the TF binding and histone modification models.

The second component is feature selection and transformation.
First, we filtered all 4516 genomic features according to the model
performance (Supplementary Fig. 3a). We removed 802 features with
Pearson R<0.5 and retained 3714 genomic features. Then, we trans-
formed these features via the method described in ExPecto". Briefly, to
reduce the dimensionality of the features, we transformed features
with 10 exponential functions to weight the upstream and downstream
regions of the TSS separately based on the assumption that regions
with longer distances to the TSS usually have weaker effects on gene
expression (Supplementary Fig. 3b). We also use 5 different decay
constants {0.01, 0.02, 0.05, 0.10, and 0.20} to control the receptive
field of the transformed features. The number of features decreased
from 3,327,744 (3714 x 896) to 37,140 (3714 x 10).

In addition, we incorporated mRNA decay features for subsequent
model training. We extracted the GC content and the lengths of the
3’'UTRs and 5’'UTRs from Ensembl (104, GRCh38). We calculated the
minimum, maximum, median, and mean values of all 3UTRs and
5’'UTRs for the target genes and generated 16 features for each gene. If
there was no known 3’UTR or S’UTR for the target gene, the value of the
feature was set to O.

We combined the 37,140 transformed chromatin features and 16
mRNA decay features for further feature selection. We used all 37,156
features to train 365 extreme gradient-boosting (XGBoost) regression
tree models, and each model corresponded to one tissue or cell line.
Then, we selected the features used in the trained models, retrained
the models with the selected features and repeated this procedure
several times until the model performance decreased or the number of
features no longer decreased. We found that the number of features of
all models stopped decreasing after the third round of selection
(Supplementary Fig. 3c). Therefore, we used the features obtained
after the third-round selection as the final feature set.

The third component is a set of 365 gradient-boosting tree
models, each corresponding to one tissue or cell type. We used the
selected features to retrain all XGBoost regression tree models as the
final models.

Model training and evaluation of SVEN

For the first component of SVEN, the deep neural networks were
trained, evaluated, and tested on the same sequences of 4516 ENCODE
chromatin features extracted from 5313 features used in Basenji2. The
dataset contained 34,021 training, 2213 validation, and 1937 test
sequences. The length of the sequence was 131,072bp, and all
sequences were based on the GRCh38 reference genome.

We used the Poisson negative log-likelihood function as the loss
function and Adam as the optimizer, with default parameters. All
models were implemented on TensorFlow (v2.5.0) and trained on 8
NVIDIA Tesla A100 GPUs with a batch size of 32 for 1000 epochs with
early stopping. The validation set was used for hyperparameter
selection and model selection, and the performance on the test set was
reported as the final performance of all models. Pearson correlation
was used to evaluate model performance; this is identical to the metric
used by Basenji2 and Enformer. We used pretrained Basenji2 and
Enformer models for model performance comparison.

For the third component of SVEN and for feature selection, we
used the same XGBoost (v2.0.1) regression tree models. We used the
representative TSSs of genes (lifted to GRCh38 coordinates) used by
ExPecto to construct the training and evaluation dataset. Briefly, the
expression profiles of 365 tissues and cell lines were obtained from the
GTEx, Roadmap and ENCODE projects. We only used expression pro-
files of protein-coding genes (18,632) and lincRNA genes (5068). Then,
we added a pseudocount of 0.01 (0.0001 for GTEXx tissues due to high
coverage) and applied loglO transformation for model training. We
used trained deep neural networks to annotate all sequences centered
on the TSS of each gene for all genomic signals for subsequent feature
selection and model training.

All genes from chromosome 8 were excluded from training for
testing (987 genes), and all other genes were used for model training
(22,713 genes). However, to determine the hyperparameters of the
regression tree models, we further selected all genes from chromosome
9 (939 genes) from the training set as the temporary validation set, and
the remaining genes (21,774 genes) were used to train the models. Then,
we evaluated the performance of the model on the temporary valida-
tion set for hyperparameter selection. After hyperparameter selection,
we used fixed hyperparameters to retrain the models for feature
selection with the whole training dataset (22,713 genes) and evaluated
model performance on the held-out test set as the final model perfor-
mance. All the models were trained on NVIDIA Tesla A100 GPUs.
Spearman correlation was used to evaluate model performance; this is
identical to the metric used by ExPecto and Enformer.

For comparison with ExPecto, we retrained 218 ExPecto gene
expression prediction models with official codes on the original
training and testing dataset; for comparing with Enformer, we trained
218 Elastic Net models with all Enformer CAGE predictions (ten 128-bp
bins centered with TSS) on training and testing sequences used by
SVEN. The model performance of retrained models was comparable
with reported performance in their papers (median Spearman corre-
lations: 0.812 for ExPecto and 0.850 for Enformer).

To test each module’s contribution of SVEN, we made several tests
based on gene expression profiles across 218 tissues and cell lines used
by ExPecto, Enformer and SVEN. We replaced SVEN annotation module
with Enformer annotations (same 4,516 functional genomic features),
removed mRNA decay features and replaced gradient-boosting trees
with linear models, respectively (Supplementary Data 4).

Feature importance analysis

We used the built-in function of XGBoost to determine the importance
of features in the trained regression tree models. The importance type
we used was “gain” (the average gain of splits that use the feature). To
investigate the contributions of features to the prediction, we calcu-
lated the SHAP*® value of each feature on all training and testing
sequences. Then, we calculated the mean feature importance of each
category or decay constant in each model and combined the feature
importance or feature contributions from all 365 models for compar-
ison. Single-tailed Wilcoxon tests and Spearman correlations were
used for statistical analysis.

Prediction of the effects of SVs on gene expression

The effects of SVs on gene expression were predicted on the basis of
the differences between the predicted expression levels of sequences
with reference alleles and alternative alleles. Here, we used the log2
fold change to measure the effects of SVs on target genes. First, we
checked the reference alleles and alternative alleles of the SVs. The full
sequence of SVs is necessary for SVEN, which is a sequence-based
framework. Then, we checked the position of the SV to determine
whether the whole SV (all bases) fell within the region of 131,072 bp
centered on the TSS of any gene. If there was no overlapping gene, we
excluded this SV from further prediction of expression effects. The
TSSs of genes were the same as the representative TSSs used in model
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training. For the included genes, we constructed SV-gene pairs and
predicted the effects of SVs on all included genes. Specifically, we
extracted the sequences of each gene from the 5’ to 3’ ends and gen-
erated reference sequences and alternative sequences. If no reference
allele was specified, we used the sequences from the reference genome
(GRCh38) as reference sequences. Then, we used SVEN to predict the
expression levels of the included genes with reference and alternative
sequences. As the output of SVEN was the log-transformed value of the
expression level, we transformed the predicted values to the original
values and then calculated the log2 fold change in gene expression for
the included genes as the final output.

Evaluation of the ability of SVEN to predict the effects of SVs on
gene expression

To evaluate the ability of SVEN to predict the effects of SVs on tissue-
specific gene expression, we applied SVEN to a large-scale SV dataset
from 1019 samples from the 1000 Genome Project generated by
Schloissnig et al.”® via long-read sequencing, which contains 164,625
SVs. We first filtered SVs (lifted to GRCh38 coordinates) falling into the
131 kb sequences centered on the TSSs of lincRNAs and protein-coding
genes and constructed SV-gene pairs. We obtained 205,438 SV-gene
pairs corresponding to 92,943 SVs and 22,453 genes.

We also downloaded paired-end RNA-seq fastq files from Geuva-
dis project® and single-end RNA-seq fastq files from Human Genome
Structural Variation Consortium Phase 2 (HGSVC2). RNA-seq data were
mapped to the reference genome GRCh38 with HISAT2 (v2.2.1)°%. The
hisat2 index was built with the reference genome GRCh38 and tran-
script information extracted from the GENCODE (v24) annotation.
Then, we mapped the RNA-seq reads using HISAT2 with default para-
meters. The gene abundance data was generated by StringTie
(v2.2.1)*°. We used the expression estimation mode to estimate the
coverage of the transcripts on the basis of the GENCODE (v24) anno-
tation. For replicated experiments, we calculated the mean value of all
replicates as sample RPKM value (per gene). We used the loglO-
transformed expression levels for subsequent analysis.

To match SVs with gene expression levels, we used the expression
values of the lead sample (the first sample with paired RNA-seq data, if
any) as the target expression level. We filtered SVs with RNA-seq data
and obtained 94,366 SV-gene pairs from 126 samples corresponding to
42,034 SVs and 19,995 genes. The RNA-seq data was generated from
EBV-transformed lymphoblastoid cell lines (LCLs), therefore, we used
SVEN (GM12878) to predict the effects of these SVs on gene expression
and compared the predicted values with the observed values. Spear-
man correlation was used to evaluate the model performance.

We also used an SV dataset from 32 diverse human genomes
generated by Ebert et al.®° to evaluate the ability of SVEN. We obtained
129,815 SV-gene pairs with paired RNA-seq data from 26 samples cor-
responding to 57,893 SVs and 20,805 genes for following assessment.

Estimation of the effects of SVs in large populations and
pathogenic SVs

To better estimate the effects of SVs on gene expression in large
populations, we applied SVEN to a SV dataset from 3622 samples
generated by Beyter et al.”” using long-read sequencing. The dataset
contains 133,886 SVs, including 68,332 insertions, 26,370 deletions,
28,571 complex SVs and 10,613 sequence-unresolved SVs. We filtered
the SVs as described above and obtained 159,018 SV-gene pairs cor-
responding to 70,749 SVs and 21,998 genes. To estimate the effects of
these SVs in the population, we predicted the effects of these SVs in 53
GTEx tissues and calculated the maximum effect (absolute value)
across all tissues.

Similarly, for disease-related SVs, we used SVs with clinical anno-
tations (“pathogenic” and “benign”) from dbVar (nstd102, 20231012).
We filtered the SVs and selected deletions (11,509), duplications (573)
and inversions (14) due to the lack of sequence information for other

types of SVs. Inversions were excluded owing to the limited number of
SVs and finally we obtained 19,262 SV-gene pairs (pathogenic: 19,048;
benign: 214). We predicted the effects of pathogenic SVs in 53 GTEx
tissues and calculated the maximum effect (absolute value) across all
53 GTEXx tissues, and compared with reported benign deletions (175 SV-
gene pairs) and duplications (39 SV-gene pairs), as well as deletions
(84,881 SV-gene pairs) and duplications (18,777 SV-gene pairs) detec-
ted in large-scale population®.

Experimental validation

We selected deletions from the SV datasets generated by Ebert et al.
and Beyter et al. as candidates for experimental validation. We filtered
deletions with length less than 1kb and got 61,114 SV-gene pairs. To
evaluate the generalization ability of SVEN, we focused on deletions
predicted to cause the upregulation of gene expression in four cell
lines (HepG2, MCF-7, A375 and A549). We selected the top 5 deletions
(protein-coding gene, gene expression RPKM>1) with available
CRISPR target sites according to their effects on the target gene in the
target cell line and validated these 5 deletions in A375 cell line
(obtained from Cell Resource Center, Peking Union Medical College).

The guide RNA pairs that were closest to the targeted SV
boundaries were selected from the UCSC genome browser CRISPR
Targets track.

DNA fragments carrying guide RNA pairs (pgRNA) were generated
by performing PCR on the mU6-pgRNA-4.0 plasmid with the primers
pgRNA-F and pgRNA-R (Supplementary Data 5). These fragments were
then subjected to agarose gel electrophoresis, purified with a DNA
Clean Kit (Zymo #D4003), and assembled into the sgRNA-SV40-PURO
plasmid using the Golden Gate method (NEB #E1602). The success of
these assemblies was confirmed by Sanger sequencing.

The pgRNA lentiviruses were produced by transfecting 293T cells
at 70% confluence with 1 pg of sgRNA-SV40-PURO, 1 ug of pPCMVRS8.74
(Addgene #22036), and 0.1 pg of pVSV-G (Addgene #138479) in each
well of a 6-well plate. Transfections were carried out using PEI (Pro-
teintech #PR40001). The lentiviruses were harvested by collecting
supernatants from the 293T cell culture at 72 hours post-transfection.

Monoclonal cell lines with constitutive Cas9 expression were
generated by transduction with a lentivirus carrying a Cas9-2A-
mCherry construct. These cells were then transduced with the target
pgRNA lentiviruses when they reached 70% confluence. 0.5 ug/mL
Puromycin (InvivoGen #ant-pr-1) was added to the culture medium
24 hours post-transduction. The cells were cultured until all negative
control cells (non-transduced) had died, and the cells were allowed to
reach 70% confluence again (-6 days). The cells were then cultured in
fresh medium without puromycin for 24 hours before being collected.
All cells were maintained in DMEM (HyClone #SH30243.01) supple-
mented with 10% fetal bovine serum (Gibco #10091148) and 1x peni-
cillin-streptomycin-amphotericin B solution (Solarbio #P7630).

Nucleic acids from the cells were obtained by direct lysis on plates
using an AllPure DNA/RNA kit (Magen #R5111) following the manu-
facturer’s instructions.

We converted total RNA to cDNA by using HiScript Il RT Super-
Mix for gPCR (Vazyme #R323-01) following the manufacturer’s
instructions. We selected RPL41 as an internal reference gene because
it has the most consistently high expression levels in the HPA database
of 1055 cell lines. All gPCRs were performed in 96-well plates using a
Roche LightCycler 480 machine. Each well contained 10 pL of ChamQ
Universal SYBR qPCR Master Mix (Vazyme #Q711-03), 0.4 uL of 10 uM
forward primer, 0.4 uL of reverse primer, and 9.2 uL of cDNA (diluted
1:25). For each set of measurements, 4 wells were used as technical
replicates.

We performed melt curve analyses to ensure that the amplicons
produced by the same pair of primers were specific and consistent
each time. Each quantification cycle value was calculated using the
second derivative maximum method recommended in the manual of
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the instrument. All the above steps were carried out according to the
manufacturers’ instructions.

Statistics and reproducibility

The detailed statistical tests were explained in each figure legend.
Sample data were obtained from public repositories. No statistical
method was used to predetermine the sample size. No data were
excluded from the analyses. The experiments were not randomized.
The Investigators were not blinded to allocation during experiments
and outcome assessment. More information was provided in the
Reporting Summary file.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Basenji2 training, validation and testing sets, as well as the trained
model, were obtained from https://console.cloud.google.com/
storage/browser/basenji_barnyard. ExPecto training and testing
sequences for tissue-specific gene expression prediction, TSS anno-
tations of genes as well as training codes of ExPecto were obtained
from https://github.com/FunctionLab/ExPecto. Trained Enformer was
obtained from https://github.com/deepmind/deepmind-research/
tree/master/enformer. SVs and paired RNA-seq data for 1019 and 26
samples were obtained from the 1000 Genome Project (https://www.
internationalgenome.org/). SVs from 3622 Icelanders were obtained
from https://github.com/DecodeGenetics/LRS SV sets. Pathogenic
and benign SVs were obtained from dbVar at https://www.ncbi.nlm.
nih.gov/dbvar/studies/nstd102/. Gene annotations were obtained
from https://www.gencodegenes.org/ (v24, GRCh38). Benchmark
dataset of small noncoding variants is available at https://reva.gao-lab.
org/. Source data are provided with this paper.

Code availability

All codes for training and evaluating models, as well as trained models
and detailed parameters, are available at https://github.com/gao-lab/
SVEN and https://doi.org/10.5281/zenodo.14281154°",
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