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Multimodal cell-free DNA whole-genome
TAPS is sensitive and reveals specific cancer
signals

Dimitrios V. Vavoulis 1,2 , Anthony Cutts1, Nishita Thota3, Jordan Brown 3,
Robert Sugar3, Antonio Rueda3, Arman Ardalan1, Kieran Howard 1,
FlaviaMatosSanto 1, ThippeshSannasiddappa3,BronwenMiller3, StephenAsh4,
Yibin Liu 5,6, Chun-Xiao Song 4,7, Brian D. Nicholson 8, Helene Dreau1,
Carolyn Tregidgo3 & Anna Schuh 1

The analysis of circulating tumour DNA (ctDNA) through minimally invasive
liquid biopsies is promising for early multi-cancer detection and monitoring
minimal residual disease. Most existing methods focus on targeted deep
sequencing, but few integrate multiple data modalities. Here, we develop a
methodology for ctDNA detection using deep (80x) whole-genome TET-
Assisted Pyridine Borane Sequencing (TAPS), a less destructive approach than
bisulphite sequencing, which permits the simultaneous analysis of genomic
andmethylomic data.We conduct a diagnostic accuracy study acrossmultiple
cancer types in symptomatic patients, achieving 94.9% sensitivity and 88.8%
specificity. Matched tumour biopsies are used for validation, not for guiding
the analysis, imitating an early detection scenario. Furthermore, in silico vali-
dation demonstrates strong discrimination (86% AUC) at ctDNA fractions as
low as 0.7%. Additionally, we successfully track tumour burden and ctDNA
shedding from precancerous lesions post-treatment without requiring mat-
ched tumour biopsies. This pipeline is ready for further clinical evaluation to
extend cancer screening and improve patient triage and monitoring.

Earlier cancer detectionhas the potential to improvepatient outcomes1.
Current screening programmes around theworld are limited to specific
cancers (cervical, breast, colorectal, lung, prostate) that together make
up less than 30%of all cancer diagnoses. Uptake of screening, especially
of invasive procedures, depends on acceptance in the population.
Multi-cancer early detection (MCED) using minimally invasive liquid
biopsies therefore holds great promise. However, it also poses chal-
lenges from the inherent false positive rate in asymptomatic individuals
caused by the low prevalence of cancer even in enriched risk groups2,3.

Targeting early cancer detection to high-risk individuals pre-
senting to primary care with symptoms of cancer represents an alter-
native approach4,5. However, many symptoms have poor predictive
value for cancer in primary care, where the tools for risk stratification
and patient triage remain limited6,7. In the UK National Health Service
(NHS) in 2020/2021, 7.0% of 2.07 million referrals of symptomatic
patients for urgent cancer investigation from general practitioners
(GPs) resulted in a cancer diagnosis, accounting for 55% of cancer
diagnoses that year8. Most patients present to their primary care
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provider with non-specific symptoms that could be caused by many
cancer types and non-cancer diagnoses making the sequencing of
investigations a challenge. Specialised services to investigate cancer
acrossmultiple sites in patients with non-specific symptoms have been
introduced in some countries leading to a conversion rate of 8.1%
across multiple cancer sites9,10 or even higher (11–35%)11. Additional
diagnostic technologies are urgently needed to assist primary care
providers with the triage of symptomatic patients to reduce unne-
cessary referrals for cancer investigation12–15.

The prospective observational cohort study SYMPLIFY5 investi-
gated recently the Galleri GRAIL MCED16 that exploits cancer-specific
targeted methylation signals, in symptomatic patients referred for
cancer investigation in the NHS. The overall sensitivity and specificity
were 66.3% (61.2–71.1%) and 98.4% (98.1–98.8%), respectively. Sensi-
tivity increased with increasing age and cancer stage, from 24.2%
(16.0–34.1%) in Stage I to 95.3% (88.5–98.7%) in Stage IV. Where a
cancer signal was detected among cancer patients, the MCED test’s
prediction of the site of origin was correct in 85.2% (79.8–89%) of
cases. SYMPLIFY showed the potential for MCEDs to direct investiga-
tion or referral towards cancers that guidelines would not, if based on
symptoms alone.

In theNHSGenomicMedicine Service, and inmany cancer centres
across theworld, whole genomesequencing (WGS) is already routinely

available for genetic analysis of tumour samples. Expanding the WGS
repertoire to indications that require ctDNA analysis would therefore
be feasible. Most technologies for interrogating liquid biopsies deploy
targeted deep sequencing of ctDNA and limit detection to the most
common types of cancers and cancer-specific, acquired single
nucleotide variants (SNVs). Some combine this information with tar-
geted epigenetic analysis and protein markers to improve sensitivity
across a wider range of tumour types2,17. Some studies have proposed
interrogating liquidbiopsies by shallowWGS for either cancer-specific,
acquired copy number aberrations (CNAs)18 or for specific ctDNA
fragment attributes19,20. This alternative to targeted deep sequencing
of SNVs supports the notion that breadth can replace depth21. Sparse
data on few patients undergoing treatment has been published on
integrating information from multiple modalities using deeper 30x-
100x WGS21–26. Tissue-type specific methylation patterns are used to
detect cancer signals and tissue of origin (TOO) in ctDNA and are
historically derived from bisulphite sequencing, which is also
employed in the Galleri assay. However, bisulphite treatment destroys
up to 80% of available ctDNA reducing sensitivity significantly. It
converts the 95% of unmethylated cytosines to thymines, destroying
the genetic code for alignment and making SNV calling impossible.

TET-Assisted Pyridine Borane Sequencing (TAPS) is a base-level-
resolution sequencing methodology for the detection of
5-methylcytosines and 5-hydroxy-methylcytosines27–30. Unlike bisul-
phite-sequencing, TAPS is a less destructive methodology, which
employs a combination of TET enzyme with borane to exclusively
convert the 5% of methylated cytosines, thus preserving the genetic
code and opening the possibility of simultaneous methylome and
genome analysis on the same sequencing data. Here, we aimed to
distinguish true cancer signals in ctDNA from non-cancer noise using
integrative multi-modal TAPS WGS in symptomatic cancer cases and
non-cancer controls referred from primary care for cancer
investigation.

Results
We conducted a diagnostic accuracy study using a case-control design
(Fig. 1 and Supplementary Data 1). Two-thirds of included patients
were biological males and 71% were aged 60 years or older. For the
cases with confirmed cancer, the median age was 67.5 years. They
presented with a wide range of different specific or non-specific
symptoms all representative of this patient group (Supplementary
Data 1). In total, 5 (8.2%), 20 (32.8%), 35 (57.4%) and 1 (1.6%) patientwere
diagnosedwith cancer stages 1, 2, 3 and 4, respectively. Just under two-
thirds of patients had colorectal cancer. Follow-up data was available
on all patients showing a median overall survival of 8.5 years for both
early- and late-stage patients (Supplementary Fig. 1A). Patients with
colorectal cancer had the longest median overall survival (>8.8 years),
followed by oesophageal (>8.1 years), ovarian (8 years), renal (3.7
years) and pancreatic (2 years) cancer patients (Supplementary Data 1
and Supplementary Fig. 1B).

Analysis of chromosomal alterations for the detection of ctDNA
Copy number aberrations (large losses or gains of chromosomal
material) are considered a hallmark of cancer,manifesting early during
tumorigenesis and persisting during subsequent stages of tumour
evolution31–33. They may involve large regions of each chromosome,
chromosome arms or whole chromosomes (aneuploidies). Such
alterations manifest themselves in the data derived from a WGS assay
as contiguous upward (gains) or downward (losses) deviations of the
number of aligned reads from a baseline corresponding to the non-
aberrant (diploid) state. The magnitude of each such deviation
depends on the underlying copy number state of the genome at the
locus of the aberration, and on the overall tumour fraction in the
sequenced sample32. To the extent that these aberrations are present
in the ctDNA captured and sequenced from the plasma of patients,
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Fig. 1 | Overview of the study.We conducted a diagnostic accuracy study using a)
cancer cases (GEL) from a cohort of symptomatic patients referred for urgent
investigation for a possible gynaecological, lower GI, upper GI or renal cancer, and
b) non-cancer controls with non-specific symptoms that might have been due to
cancer from a rapid diagnostic centre (SCAN) or fromCambridge Bioscience (CBS).
After collection of plasma samples, we conducted whole-genome sequencing at
80x or higher using TET-Assisted Pyridine Borane Sequencing (TAPS), aligned the
generated reads against the human genome (GRCh38), and conducted analyses of
copy number aberrations, methylationmodifications, and somatic pointmutations
and indels, which included efficient denoising using the non-cancer SCAN controls.
By integrating the analyses from all three data modalities, we generated sample-
specific scores for the quantification of plasma ctDNA burden, which was used for
cancer detection and post-treatment disease tracking. Matched tumour biopsies, if
available, were used for validation, not for guiding the analysis. GEL Genomics
England, SCAN Suspected Cancer Pathway, CBS Cambridge Biosciences Human
Blood Products Supply Service.
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they can be exploited for the non-invasive detection of almost all
cancer types, due to the universal presence of such alternations in the
pathogenesis of the disease.

For each cfDNA sample, we divided the genome in 1 kb-long non-
overlapping bins and counted the number of proper, high-quality
alignments that overlapped each bin, followed by a thorough filtering
process for removing potential artefacts (see ‘Methods’). Since next-
generation sequencing and variable mapping can introduce char-
acteristic biases, which alter the chromosomal representation of the
original genomic DNA depending on local GC content and
mappability34, we further applied a statistical approach to simulta-
neously remove these two types of bias from the number of reads in
each bin (see ‘Methods’; Fig. 2Ai).

Further systematic bias can be introduced due to experimental
(e.g., sample preparation) and biological factors (e.g., replication
timing), which may hinder detection of subtle read depth differences
across the genome in plasma samples with low cfDNA content. For this
reason, we further applied a denoising process to remove any sys-
tematic errors (see ‘Methods’). First, we characterised the background
noise using principal component analysis on a panel of non-cancer
plasma samples. These were obtained from 21 patients referred to a
non-specific-symptoms cancer pathway (SCAN group; see ‘Methods’),
which were confirmed healthy or with a non-cancer diagnosis, and
therefore appropriate to characterise any non-cancer-specific unwan-
ted variation. This was followed by removing the background noise
from each sample and, subsequently, applying a Savitzky-Golay
smoothing filter, which further removes unwanted variation without
distorting the underlying signal (Fig. 2Aii–iv).

To imitate an early detection scenario, where solid tumour biop-
sies are not available, we used matched tumour samples for validation
purposes only, and never for guiding the search for copy number
aberrations. We focused our analysis on whole chromosome arms to
confidently distinguish positive signals from any remaining back-
ground noise (compare Fig. 2Aii, iii). Specifically, the denoised cover-
age signal in each arm was aggregated in each cancer plasma sample,
aswell as in eachof nine age-matchednon-cancer controls (CBS group;
see ‘Methods’). In the controls, the signal ranged from −0.34 to 0.22,
while in the cancer samples, the range of coverage values was twice as
wide (−0.71 to 0.42). To determine whether the aggregate coverage in
each arm in a particular patient deviated significantly from the corre-
sponding measurement in the controls (upward, indicating chromo-
somal gain, or downward, indicating chromosomal loss), we calculated
a z-score for each arm as the number of standard deviations from the
mean aggregate coverage of the same arm across the non-cancer CBS
controls (see ‘Methods’). In these controls, absolute z-scores were
lower than 2.35, while in the cancer plasma samples absolute z-scores
took values as high as 34.2 (Fig. 2Bi). Given these scores, p-values were
calculated for each arm using an appropriate test statistic and a
t-distributionwith 8 degrees of freedom (9 controlsminus 1), and they
were corrected formultiplicity across all arms in each sample using the
Benjamini-Hochberg procedure (see ‘Methods’). Corrected p-values
less than 0.05 (FDR < 5%) indicated significant loss or gain of chro-
mosomal material in the corresponding arm in comparison to the CBS
controls. Chromosomal armalterationswere detected in samples from
all six cancer types in our cohort, with the number of altered arms per
aberrant sample ranging from 1 to 29 (mean= 8.9, std. dev. = 8.1;
Fig. 2Bi). Subsequently, we devised a sample-specific copy number
aberration score by integrating the p-values across all aberrant arms in
each sample using Stouffer’s method. Overall, we detected aberrant
arms in 15/36 colorectal, 3/8 oesophageal, 5/6 pancreatic, 3/5 renal, 2/4
ovarian and 1/2 breast cancer plasma samples resulting in 47.5% sen-
sitivity (Fig. 2Bii). The integrated scores in the aberrant samples ranged
from 3.0 to 18.1 (mean = 7.6, std. dev. = 4.1). The integrated CNA scores
in the CBS control samples were all zero (100% specificity). Aberrant
samples covered both early (Stage 1 or 2) and more advanced (Stage 3

or 4) cancer stages (Fig. 2Ci) and the median integrated scores
increased monotonically with cancer stage (Fig. 2Cii).

To evaluate the capacity of the above approach to discriminate
between non-cancer and cancer plasma samples, we conducted
Receiver Operating Characteristic (ROC) analysis on synthetic data
generated using actual clinical plasma samples as templates. We
examined simulated ctDNA fractions ranging from 0.1% to 2% and for
eachctDNA fraction,we simulated 1000non-cancer controls and 1000
cancer plasma samples by admixing data from actual non-cancer CBS
samples and a colorectal cancer plasma sample with 9% tumour bur-
den (see Methods). For each sample in the synthetic case-control
dataset, we calculated sample-specific integrated CNA scores, which
were used in the construction of an ROC curve. The area under the
ROC curve (AUC) at each simulated ctDNA fraction was used to assess
classifier performance. The integrated CNA scores correlated with
increasing ctDNA fractions 0.6% or higher, while 80% AUC was
achieved at ctDNA fractions as low as 0.7% (Fig. 2D).

Analysis of somatic mutation burden for ctDNA detection
Elucidating the profile of somatic mutations present in the plasma
cfDNAhasbeen amajor research focus in the clinical study of ctDNAas
an emerging biomarker for the detection of cancer and monitoring of
disease progression. Towards this aim, themajor obstacle hasbeen the
need to discriminate tumour-originating SNVs and indels from the
much more abundant germline variants and sequencing errors. In
order to overcome this problem, one group of methods focuses on
deep targeted sequencing of cancer-type-specific panels and driver
genes, combined with error-suppression methodologies35. Although
potentially extremely sensitive, targeted approaches are constrained
by the fact that they only sample a small number of human genome
equivalents, possibly leading to an inflated false negative rate. In
response, an alternative group of approaches centred around shallow
WGS and compendiumsof patient-specific somaticmutations to guide
the analysis has been proposed, thus replacing depth with breadth of
sequencing at the cost of increased sequencing noise21.

To overcome these limitations, we adopted a deep (at least 80x)
WGS approach for sensitive mutation detection without requiring
matchedbiopsy samples to guide the analysis. Eachplasma samplewas
a) paired with a matched germline sample for efficient removal of
germline mutations, b) processed with bespoke software, which
recognises changes induced by the TAPS process (mC>T) and differ-
entiates these from C>T variants, c) cleaned up using a thorough fil-
tering pipeline to remove sequencing artefacts, and d) further
denoised by removing all variants shared with any of 21 age-matched
non-cancer plasma samples from SCAN patients referred for cancer
investigation with non-specific symptoms. All remaining non-
synonymous variants were retained for further downstream analysis
(see ‘Methods’ and Supplementary Fig. 2).

Each non-cancer control CBS plasma sample carried between 125
and 192 somatic mutations (mean= 151.1, std. dev. = 25.3; Fig. 3Ai). As
expected, cancer plasma samples harboured on average a higher
number of mutations, and showed higher variability (mean= 425.8,
std. dev. = 747.3). Plasma samples from pancreatic cancer patients
harboured the highest number of mutations on average (mean =
1771.2, std. dev. = 1770.2), followed by oesophageal (mean = 731.8, std.
dev. = 1025.9), breast (mean= 385.5, std. dev. = 268.0), colorectal
(mean= 288.0, std. dev. = 417.4) and renal (mean = 252.2, std. dev. =
224.0) cancer samples. Across all cancer plasma samples, 11730 genes
harboured at least one somatic mutation. Among these, 8902, 1793
and 341 genes carried 1, 2 or 3 somatic mutations, respectively
(Fig. 3Aii). As expected from whole genome data, among all mutated
genes, only a small fraction of 493 (4.4%) genes were previously
reported in COSMIC. Most mutations were non-COSMIC missense
mutations, followed by nonsense and COSMIC missense mutations,
and splice sitemutations (Fig. 3Aiii and Supplementary Fig. 3). The vast
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majority of these are likely representing acquired passenger events
(which are expected to accumulate more rapidly in cancer samples
than controls due to the higher division rate of tumour cells) that we
used for cancer detection, as described below.

For each plasma sample, we compared the somatic mutation bur-
den in each chromosome arm against the corresponding arms of the
nine age-matched non-cancer CBS controls. Since the density of somatic

mutations is not uniform across the whole genome, a comparative
analysis based on chromosome arms is expected to be more sensitive,
compared to an analysis based merely on the total somatic mutation
burden of the sample. For each chromosome arm in each sample, we
calculated the log10 of the number of somatic mutations, we derived a
z-score as the number of standard deviations from themean of the same
quantity across the CBS controls, and we calculated a p-value, which we
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corrected for multiplicity across all chromosome arms in each sample
using the Benjamini-Hochberg method (see ‘Methods’). A corrected p-
value lower than 5% indicates a statistically significant difference in the
mutation burden of the chromosome arm in comparison to the non-
cancer CBS controls. A significantly increased chromosome arm muta-
tion burdenwas detected in samples fromall cancer types in our cohort,
with the number ofmutated arms per aberrant sample ranging from 1 to
39 (mean = 13.6, std. dev. = 15.9; Fig. 3Bi). Subsequently, we devised a
sample-specific somatic mutation score by integrating the p-values
across all significantly mutated arms in each sample using Stouffer’s
method. Overall, we detected arms with increased mutation burden (p
value < 5%) in 17/36 colorectal, 5/8 oesophageal, 5/6 pancreatic, 2/5
renal, 1/4 ovarian and 2/2 breast cancer plasma samples resulting in
52.5% sensitivity (Fig. 3Bii). The integrated scores in the aberrant samples
ranged from 2.63 to 23.2 (mean = 10.4, std. dev. = 7.2) and were zero in
all non-cancer CBS controls (100% specificity). Aberrant samples cov-
ered both early (Stage 1 or 2) and more advanced (Stage 3 or 4) cancer
stages (Fig. 3Ci), while median integrated scores were moderately cor-
related with cancer stage (Spearman’s r= 50%; Fig. 3Cii). Further eva-
luation of the discriminatory performance of the above analytical
approach using ROC analysis on synthetic data (see ‘Methods’) indicates
AUC at least 74% at ctDNA fractions 1% or higher (Fig. 3D). This is con-
sistent with a depth of coverage at 100×, which implies a minimum
variant allele fraction (VAF) for any mutated locus of 1% (at least one
mutated read in a locus covered by 100 reads).

Analysis of methylation signals for ctDNA detection
DNA methylation is an epigenetic mechanism that can regulate gene
expression. When located in a promoter, it typically acts to supress
gene expression. Thus, hypomethylation and hypermethylation can
lead to increased expression of oncogenes or decreased expression of
tumour suppressor genes, respectively. Abnormal DNA methylation
patterns are associated with all aspects of cancer pathophysiology,
from tumour initiation to tumour progression and metastasis, making
DNAmethylation abnormalities one of the hallmarks of cancer that can
be exploited for disease diagnosis, treatment and monitoring36–41.

Current approaches for investigating the methylome using
plasma cfDNA3,39–41 rely on tissue-specific methylation signatures,
which provide a reference set against which the methylation profile of
any case of interest is compared to. In this study, we extracted data
from several TCGA studies to identify a set of hypermethylated
regions, each containing at least three differentially methylated CPGs
(Supplementary Data 2). We chose to focus on hypermethylation
markers, where baseline methylation should be close to zero in non-
cancer controls and only successful conversion by the TAPS chemistry
would result in a positive signal. Subsequently, we identified fragments
in each cfDNA sample overlapping at least three CPGs in any of these
regions and we calculated the overall methylation level of the frag-
ment. We decided to follow a fragment- rather than a locus-centric
approach, since it is known that in low ctDNA fraction settings, this

increases sensitivity40. Fragments with higher than 80% methylation
were classified as tumour-originating and the total fraction of tumour-
originating fragments was calculated in each region. An additional
level of denoising was added by removing all regions containing at
least one tumour-originating fragment in any of the 21 non-cancer
SCAN controls (Supplementary Data 2).

Next, we compared the fraction of tumour-originating fragments
in each region between each plasma sample and the 9 age-matched
non-cancer CBS controls. For each region in each sample, we calcu-
lated the logit of the fragment fraction, we derived a z-score and a
corresponding p-value, which was corrected for multiplicity across all
regions in each sample using the Benjamini-Hochberg method (see
‘Methods’). The number of regions with significantly higher burden of
tumour-originating fragments per sample ranged from 1 to 371
(mean= 113.6, std. dev. = 134.1; Fig. 4Ai) and, from the p-values of these
regions, an integrated methylation score was derived for each sample
using Stouffer’s method. Overall, we detected regions with sig-
nificantly highermethylation burden (p-value < 5%) in 18/36 colorectal,
2/8 oesophageal, 1/6 pancreatic, 4/5 renal, 3/4 ovarian and 0/2 breast
cancer plasma samples resulting in 45.9% sensitivity (Fig. 4Aii). The
integratedmethylation scores in the aberrant samples ranged from 3.8
to 64.0 (mean = 24.5, std. dev. = 17.7) and were zero in all CBS controls
(100% specificity). Aberrant samples covered both early (Stage 1 or 2)
and more advanced (Stage 3 or 4) cancer stages (Fig. 4Bi) and the
median integrated scores increased monotonically with cancer stage
(Fig. 4Bii). ROC analysis on synthetic data (see ‘Methods’) indicated an
AUC value of 87% at a ctDNA fraction of 0.9% (Fig. 4C).

Integration ofmultiple genomicmodalities for ctDNA detection
The genomic data modalities analysed above provide three indepen-
dent and complementary assessments of tumour content in the
plasma.We reasoned that combining these datamodalitiesmay enrich
the available signal and increase the sensitivity ofdetectionof ctDNA in
each plasma sample, particularly in cases where not all three types of
abnormalities are detectable due to the sparsity of ctDNA. In each
sample, given the sample-specific p-values for each data modality, an
integratedmultimodal score and corresponding p-value can be readily
calculated using Stouffer’s method. Although in this study all three
modalities are combinedusing equal weights, unequalweights specific
to each genomic data type can also be introduced, if necessary. Fur-
thermore, this approach is applicable even if not all three modalities
are available in a particular sample. In our cohort, multimodal scores
across aberrant plasma samples ranged from 1.8 to 36.5 (mean= 11.8,
std. dev. = 9.8) and they were all zero across the 9 age-matched non-
cancer CBS controls (specificity 100%). Significant p-values (<5%)
indicating the presence of ctDNA were calculated in 29/36 colorectal,
7/8 oesophageal, 5/6 pancreatic, 5/5 renal, 4/4 ovarian and 2/2 breast
cancer plasma samples resulting in a substantially increased sensitivity
of 85.2%, compared to the sensitivity of each independent data mod-
ality (Fig. 5A). Positive results covered both early- (stages 1 or 2) and

Fig. 2 | Analysis of copy number aberrations (CNA). ACoverage signal for patient
GEL195 (colorectal cancer) before denoising (Ai), after denoising (Aii) and in the
biopsy after denoising (Aiii). A non-cancer control is also shown for comparison
(Aiv). The aggregated coverage signal in each chromosome arm in the plasma
sample is compared against the corresponding arm in a cohort of non-cancer
control plasma CBS samples in search of gains (red) or losses (green). Gains in
chromosomes 7, 13, 16, 20 and losses in chromosomes 4 and 18 in the plasma
sample of patient GEL195 reflect aberrations in the same chromosomes in the
matched biopsy, although this has not been used for guiding the analysis.Bi Scores
quantifying coverage imbalances in the chromosome arms of each cancer plasma
sample compared to the non-cancer plasma CBS controls. In each sample, each
circle corresponds to a different chromosome arm. Red circles indicate a gain or
loss of chromosomal material. Bii Integrated CNA scores over all chromosome
arms in each plasma sample. Red circles indicate the gain or loss of chromosomal

material in the corresponding samples. 29 out of 61 cancer samples were correctly
identified (sensitivity 47.5%). C Integrated CNA score against cancer stage and type
(Ci) and monotonic increase of median integrated CNA score with cancer stage
(Cii). D In silico assessment of CNA analysis performance at increasing ctDNA
fractions. At each ctDNA fraction, we simulated 1000 non-cancer and 1000 cancer
plasma samples using actual non-cancer and cancer plasma samples as templates
(see ‘Methods’). The area under the receiver operating characteristic (ROC) curve
(AUC) was 80% at ctDNA fraction 0.7%. CTRL CBS controls (n = 9 subjects), CRC
colorectal (n = 36 subjects), OES oesophageal (n = 8 subjects), PNCR pancreatic
(n = 6 subjects), RNL renal (n = 5 subjects), OVR ovarian (n = 4 subjects), BST breast
(n = 2 subjects). For each boxplot in (Ci,D) the box bounds, and centre correspond
to the 25th, 50th (median), and 75th percentiles of the data in each corresponding
group, and the whiskers extend to 1.5 times the interquartile range (IQR) above and
below the box bounds. Source data is provided as a source data file.
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late-stage (stages 3 and 4) cancer cases (Fig. 5Bi). Median multimodal
scores increasedmonotonicallywith cancer stage (Fig. 5Bii), while ROC
analysis using synthetic data indicates an AUC of 86% at ctDNA frac-
tions as low as 0.7% (Fig. 5C).

Further validation using leave-one-out cross-validation (LOO-CV;
see ‘Methods’) indicates 85.2% sensitivity and 88.8% specificity
(implying a balanced accuracy of 87%), and an AUC of 83.5%, when all
three data modalities are considered (Supplementary Fig. 4). In addi-
tion, we used LOO-CV to assess four additional methodologies for
integrating different data modalities for cancer status prediction;
specifically, Fisher’s method (a popular alternative to Stouffer’s),

Logistic Regression, Random Forest and Support Vector Machine, all
of which are commonly used in the statistics and machine-learning
community (see ‘Methods’). The best performing methods were
Stouffer’s and Fisher’s (AUC 83.5%), followed by Logistic Regression
(AUC 81.3%), Random Forest (80.7%) and Support Vector Machine
(AUC 66.3%; Supplementary Fig. 5).

Finally, we developed a multi-class classifier by integrating all
three data modalities (copy number aberrations, somatic single
nucleotide variants and indels, andmethylation signals) for predicting
cancer type (see ‘Methods’), and we validated its performance using
LOO-CV (Supplementary Fig. 6). The multi-class classifier is a Support

Fig. 3 | Burden analysis of somatic single nucleotide variants (SNVs) and
INDELs. A Somatic mutation burden in different cancer types and in non-cancer
CBS controls (Ai), distribution of mutation numbers across genes (Aii) and con-
sequences ofmutations (Aiii). In (Ai), each circle corresponds to a different plasma
sample. Bi Scores quantifying mutation burden imbalances in the chromosome
arms of each cancer plasma sample compared to the non-cancer plasma CBS
controls. In each sample, each circle corresponds to a different chromosome arm.
Red circles indicate a difference in the somatic mutations burden of the chromo-
some arm in relation to the same arm in the CBS controls. Bii Integrated somatic
mutation scores over all chromosome arms in each plasma sample. A red circle
indicates a higher mutation burden in the corresponding sample, when compared
to the CBS controls. We identified correctly 32 out of 61 cancer plasma samples
(sensitivity 52.5%). C Integrated somatic mutation scores against cancer stage and

type (Ci) and moderate correlation between median integrated somatic mutation
score and stage (Cii); Spearman’s r = 50%).D In silico validation of somaticmutation
analysis at increasing ctDNA fractions. At each ctDNA fraction, we simulated 1000
controls and 1000 cancer plasma samples using actual non-cancer and cancer
plasma samples as templates (see ‘Methods‘). The area under the receiver operating
characteristic (ROC) curve (AUC) is 74% at ctDNA fraction 1%. CTRL CBS controls
(n = 9 subjects); CRC colorectal (n = 36 subjects), OES oesophageal (n = 8 subjects),
PNCR pancreatic (n = 6 subjects), RNL renal (n = 5 subjects), OVR ovarian
(n = 4 subjects), BST breast (n = 2 subjects). For each boxplot in (Ai, Ci, D), the box
bounds, and centre correspond to the 25th, 50th (median) and 75th percentiles of
the data in each corresponding group, and the whiskers extend to 1.5 times the
interquartile range (IQR) above and below the box bounds. Source data is provided
as a source data file.
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Vector Machine, and it correctly identifies the cancer origin in 25/36
colorectal, 4/8 oesophageal, 3/4 ovarian, 2/6 pancreatic and 0/5 renal
cancer cases, leading to an overall balanced classification accuracy of
71.7%. At the same time, we correctly identified as negative 8/9 non-
cancer controls and as positive 56/59 cancer cases resulting in 94.9%
sensitivity and 88.8% specificity. It is interesting to observe that among
the 377 hypermethylated TCGA regions used in our analysis, only 4
were specific to renal cancer (see Methods), which may explain our
inability to correctly classify any of the 5 corresponding cases in our
cohort (although they are correctly identified as cancer cases). Notice
that we did not consider two cases with breast cancer, because it is not
possible to conduct cross validation of the multi-cancer classifier with
only two cases in any of the cancer groups.

Multimodal ctDNA detection for post-operative MRD and adju-
vant therapy response tracking in colorectal cancer without
matched tumour
Up to this point, we focused our analysis on treatment-naive and non-
cancer plasma samples, aiming to imitate an early detection scenario.
In order to evaluate our approach for tracking diseaseprogression42–45,
we further analysed pre- and post-operative plasma samples from 10
colorectal cancer patients with detectable ctDNA in the pre-operative
sample, half of which had also received adjuvant therapy following

surgical resection. For each plasma sample in each patient, integrated
ctDNA scores and p-values from all three data modalities were calcu-
lated as for the pre-operative samples. A p-value threshold of 5% was
taken to indicate the presence of ctDNA in the plasma. As before,
matched tumour biopsies, if available, were not used for guiding the
analysis, since this carries the risk of missing recurrence due to clonal
evolution of the primary tumour or the presence of a second primary.
Besides, it has been shown that in the real-world, there are significant
delays in accessing tumour tissue biopsies for monitoring.

Five patients did not receive adjuvant therapy. In one of them,
(GEL193; Fig. 6A), ctDNA was detectable in the plasma 1 year after
surgery. The patient was diagnosed with inoperable metastatic rectal
cancer three years later and a possible lung adenocarcinoma on radi-
ological examination. Two patients (GEL066, Supplementary Fig. 7Ai;
GEL339, Supplementary Fig. 7Aii) had detectable ctDNA in the plasma
2 years and 6 months after surgery, respectively. They were found to
have tubular adenomas with low-grade dysplasia on routine follow-up
2 years and 7 months after the last post-surgery blood samples were
collected, respectively. The remaining two patients permanently
cleared ctDNA 3 months and 16 months after surgery, respectively
(Supplementary Fig. 7Aiii, iv). One of them (GEL107) is alive 8 years
after the last blood sample was taken, while the other (GEL197) died
from sudden cardiac death after 5 years.

Fig. 4 | Overviewofmethylation analysis. Ai Scores quantifying imbalances in the
methylation burden in any of 377 regions (extracted from TCGA; see ‘Methods’) in
each cancer plasma sample compared to the non-cancer plasmaCBS controls. Each
circle corresponds to a different region and red circles indicate over-methylation of
the corresponding regions between the cancer plasma and the CBS controls. Aii
Integrated methylation scores over all regions in each plasma sample. A red circle
indicates an over-methylated plasma sample, when compared to the CBS controls.
We identified correctly 28 out of 61 cancer plasma samples, which corresponds to a
45.9% sensitivity. B Integrated methylation scores against cancer stage and type
(Bi) and monotonic increase of median integrated methylation scores with cancer
stage (Bii). C In silico validation of methylation analysis at increasing ctDNA

fractions. At each ctDNA fraction, we simulated 1000 non-cancer and 1000 cancer
plasma samples using actual non-cancer and cancer plasma samples as templates
(see ‘Methods’). The area under the receiver operating characteristic (ROC) curve
(AUC) is 87% at ctDNA fractions 0.9%. CTRL CBS controls (n = 9 subjects); CRC
colorectal (n = 36 subjects), OES oesophageal (n = 8 subjects), PNCR pancreatic
(n = 6 subjects), RNL renal (n = 5 subjects), OVR ovarian (n = 4 subjects), BST breast
(n = 2 subjects). For each boxplot in (Bi,C), the box bounds, and centre correspond
to the 25th, 50th (median) and 75th percentiles of the data in each corresponding
group, and the whiskers extend to 1.5 times the interquartile range (IQR) above and
below the box bounds. Source data is provided as a source data file.
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Five patients received adjuvant therapy after surgery. GEL282 did
not have detectable ctDNA immediately after the last cycle of adjuvant
treatment (Fig. 6Bi). However, a low positive ctDNA burden was
detected 5months later, which correlatedwith the presence of tubular
adenomaswith low grade dysplasia in the sigmoid colon at around the
same time. Cases GEL432 (Fig. 6Bii) and GEL205 (Supplementary
Fig. 7Bi) did not have detectable ctDNA after the end of treatment and
they were both alive 6 years and 4 years after the last plasma sample
was collected, respectively.

For case GEL195 (Supplementary Fig. 7Bii), a post-operative blood
sample collected 3 months after surgery indicated the presence of
ctDNA in the plasma, although there was a 74% reduction in tumour
burden compared to the pre-surgery sample (multimodal ctDNA score
before surgery: 16.86, after surgery: 4.34). Since the sample was taken
1½ months after the first cycle and ~4 months before the last cycle of
adjuvant treatment, we presume that there would be no detectable
ctDNA in the plasma after the end of therapy. The patient was still alive
~8 years after the last blood sample was collected. Finally, case GEL223
(Supplementary Fig. 7Biii) did not show detectable ctDNA levels
8months after the last cycle of adjuvant therapy, despite the diagnosis
of prostate adenocarcinoma 1 month earlier. This was treated with
hormone therapy and radiotherapy, and the patient was still alive 6½
years after the last plasma sample was collected.

Overall, presence or absence of ctDNA in the last plasma sample
was correlatedwith adjuvant therapy or clinical outcome in 9 out of 10
cases (the exception was case GEL223). Furthermore, in the cases for
whichwehadplasmasamples after surgeryor after the endof adjuvant
therapy (n = 9 cases), event-free survival (i.e., no recurrence, metas-
tasis, or pre-cancerous adenomas) was correlated with the absence of
detectable ctDNA post-treatment (HR 8.2; 95% CI 1.3–53.1; two-sided
log-rank test p value = 0.02; Fig. 6Ci, ii). Follow-up samples frommore
patients would be necessary to increase our confidence in this

interesting result and to estimate with higher precision the association
of post-treatment residual ctDNA with event-free survival.

Discussion
After sequencing TAPS-treated ctDNA at a target coverage depth of at
least 80x, we integrated genome-wide information from CNAs,
acquired point mutations and indels, and methylation changes with a
strict de-noising strategy to reveal cancer signals with high sensitivity
and specificity. We sequenced plasma and matched germline samples
from61 cancer and 30 non-cancer subjects, as well as several follow-up
plasma samples from 10 of the colorectal cancer patients for a total of
214 samples.We hope that this large, deeply sequenced dataset will be
a valuable resource to the cfDNA research community. Furthermore,
we show that comprehensive multimodal whole-genome TAPS of
ctDNA including CNV, SNV and DNA methylation analysis at 80x or
higher can improve the detection of cancer signals from liquid
biopsies.

We demonstrate that we can successfully call acquired SNVs from
TAPS-treated samples in a single sequencing run using bioinformatics
to correct for C>T changes. As we only had paired tissue samples
available for a minority of cases, future studies are needed to under-
stand whether the mutation spectrum seen in plasma using this
approach is representative of that seen in corresponding tissue
biopsies.

While future validation in larger data sets of different cancer types
and stages is needed, we provide proof-of-principle that deep whole
genome sequencing combining depth with breadth of sequencing to
allow integration of information from various modalities (copy num-
ber aberrations, single nucleotide variants, insertions/deletions, and
methylation signals) is sensitive.

Circulating tumour DNA is highly fragmented, of low abundance
and highly diluted in circulating germline DNA originating from

Fig. 5 | Integration of genomic data modalities for ctDNA detection.
A Multimodal scores for the quantification of plasma ctDNA generated from the
integration of copy number aberrations, somatic SNVs and INDELs, and methyla-
tion signals in each plasma sample. A red circle indicates a higher ctDNA burden in
comparison to the non-cancer CBS controls. 52 out of 61 cancer plasma samples
were correctly identified as such, which corresponds to 85.2% sensitivity. This is
higher than the sensitivity of any of the three data modalities. BMultimodal scores
against cancer stage and type (Bi) and monotonic increase of median multimodal
scores with cancer stage (Bii). C In silico validation of multimodal analysis at
increasing ctDNA fractions. At each ctDNA fraction, we simulated 1000 controls

and 1000 cancer plasma samples using actual non-cancer and cancer plasma
samples as templates (see Methods). The area under the receiver operating char-
acteristic (ROC) curve (AUC) is 86% at ctDNA fractions 0.7%. CTRL CBS controls
(n = 9 subjects), CRC colorectal (n = 36 subjects), OES oesophageal (n = 8 subjects),
PNCR pancreatic (n = 6 subjects), RNL renal (n = 5 subjects), OVR ovarian
(n = 4 subjects), BST breast (n = 2 subjects). For each boxplot in (Bi, C), the box
bounds, and centre correspond to the 25th, 50th (median) and 75th percentiles of
the data in each corresponding group, and the whiskers extend to 1.5 times the
interquartile range (IQR) above and below the box bounds. Source data is provided
as a source data file.
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peripheral blood mononuclear cells. In addition, some cancers might
not have many copy number changes. Instead, they display a char-
acteristic acquired SNV or methylation signature profile. Others (~25%
of cancers worldwide) are infection-related and shred viral-human
DNA hybrid fragments into plasma. Amain advantage of our approach
is therefore that it considers cancer heterogeneity by using different
types of aberrant signals that are enriched for somatic (acquired)
events to refine the probability for a cancer diagnosis.

This case-control design aimed to explore the potential utility of
our approach for triaging patients presenting with symptoms of can-
cer. We used samples from patients who were referred to surgery with
curative intent to enrich for earlier stage cancers, as well as samples
from patients presenting with non-specific symptoms of cancer, who
remained without a cancer diagnosis for at least two years following
the blood draw, and who were used as controls for signal denoising. If
we were to apply the cancer prevalence of 6.7% observed in SYMPLIFY
to model our test performance and assume a test sensitivity and spe-
cificity of 85.2% and 88.8%, respectively (which are the values we
observed in this study, based on 9 negative CBS controls and 61 cancer
cases), then the negative predictive value (NPV) would be 98.8% in this
group of patients. A negative test result would reduce the risk of
cancer down from 6.7% to 1.2%. If a cohort with a lower pre-test
probability was investigated in primary care pre-referral, such as a
cohort with a pre-test probability of 3% (the referral threshold used in
the NHS), the NPV would be 99.5% and the post-test probability fol-
lowing a negative test would decrease from 3% down to 0.5%. Con-
sidering these encouraging predictions, prospective studies in primary
and secondary care are required to confirm these estimates.

Therefore, the results of our study presented here pave the way
to a future larger scale validation in people with high-risk features.
These could be defined by age16, non-specific symptoms5 or genetic
cancer predisposition, life-style habits, or the refusal to participate in
any of the existing more invasive screening procedures for cervical,
breast, lung or colorectal cancer. Past and ongoing studies led by
others have already highlighted some of the practical challenges
associated with early cancer detection from liquid biopsies, parti-
cularly the potential psychological, emotional and financial “toxicity”
from false positive results2,46. For MCED tests to enter clinical prac-
tice, future efforts are needed to further improve test attributes,
especially positive predictive values. Importantly, long-term follow-
up of the cohort study Detect-A already suggests that overall survival
of patients correctly identified with cancer from liquid biopsy
screening is improved while emotional or physical morbidity from
false positive results recovers soon after testing47. Additional and
prospective data will be hopefully available from longer follow-up of
the GRAIL-NHS study.

The results presented here must be validated in randomised
controlled studies of people at risk before implementation into public
healthcare systems that rely on re-imbursement from national or pri-
vate insurance contributions. Once, randomisation demonstrates
clinical utility and cost-effectiveness, a complementary and important
step in the validation process is the post-approval real-world (RW) data
collection (Phase 4). Although data is often of lesser quality and
incomplete compared to formal prospective studies, RW data will
reveal important implementation challenges, for example: who the
test is prescribed for (e.g., at risk individuals and what type of at-risk

Fig. 6 | Multimodal ctDNA detection for post-operative MRD and adjuvant
therapy response tracking in colorectal cancer without matched tumour.
ATracking post-operativeMRD in caseGEL193. ctDNAwasdetectable in the plasma
1 year after surgery and this correlatedwith inoperablemetastatic rectal cancer and
a possible lung adenocarcinoma suggested through radiological examination, both
of which were recorded ~3 years after the post-operative plasma sample was col-
lected. B Tracking response to adjuvant therapy following surgery. Case GEL282
(Bi) did not have detectable ctDNA immediately after the last cycle of treatment.
However, lowctDNAburdenwasdetected5months later,which correlatedwith the
presence of tubular adenomas with low grade dysplasia in the sigmoid colon at
around the same time. Case GEL432 (Bii) did not have detectable ctDNA shortly

after the last cycle of treatment and was still alive ~6 years after the last plasma
sample was collected. C Confusion matrix (Ci) and event-free (i.e., no recurrence,
metastasis, or precancerous adenomas present) survival (Cii) in 9 patients with
colorectal cancer. In 8 out 9 patients, ctDNAburden after the end of surgery and/or
adjuvant therapy correlated with the presence/absence of clinical events, such as
recurrence or pre-cancerous adenomas (Ci). Absence of ctDNA detection after the
end of surgery/adjuvant treatment correlated (hazard ratio: 8.2; 95% CI: 1.3–53.1;
two-sided log-rank testp value =0.02)with longer survival times (Cii). Dxdiagnosis,
Sx surgery, Tx0 first cycle of adjuvant therapy, Tx1 last cycle of adjuvant therapy,
RR recurrence, LGD low-grade dysplasia. Source data is provided as a source
data file.
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individuals? How often is the test prescribed? How are false positive
results handled in the RW?).

It remains to be seen whether additional refinements of the
bioinformatics pipeline integrating fragment size distribution, muta-
tional signatures, telomere length and other genome-wide cancer
signals increase sensitivity further. As we have generated whole (epi-)
genome data, we investigated the capacity of ourmethodology to also
predict cancer origin. This analysis is limited by the fact that our
methylation signatures are based on array data (covering approxi-
mately only 1% of the human genome) for a small set of cancer types
from TCGA. This data comes mainly from colorectal cases, as this is
where the TCGAdataset wasmost complete. To performmore precise
tissue-of-origin analysis across many different tumour types, we need
to have access to a methylation atlas of normal tissue generated using
whole-genome TAPS. So far, such methylation atlases (including the
TCGA methylation array data) have only been generated using bisul-
phite sequencing. A TAPS-specific methylation atlas is in preparation
(Chun-Xiao Song, personal communication) to enhance the accuracy
of TAPS-derived tissue-of-origin (TOO) prediction. However, the
debatewhether TOOprediction is useful in clinical practice orwhether
it leads to an increase in false positive cancer calls is on-going.

Furthermore, deep sequencing (at 80x) of both plasma and
matching germline samples could pose an obstacle in the wider
adoption of this approach, particularly in resource-restricted clinical
settings. For this reason, future research should also focus on deter-
mining the minimum feasible depth of coverage for this type of study
using down-sampling experiments made possible by the deep whole-
genome sequencing dataset we present here, as well as on the com-
parison against potentially cheaper long-read sequencing
technologies.

In conclusion, we indicate that our approach to multi-modal
ctDNA analysis using deep whole genome sequencing combined with
TAPS detects cancer signals in early- and late-stage cancer with high
accuracy. The next step will be to perform prospective studies in
unselected consecutive cases to fully establish diagnostic
performance.

Methods
The research presented in this paper complies with all relevant ethical
regulations (see ‘Ethics section’, below).

Ethics
The National Health Service (NHS) Health Research Authority South
Central—Oxford C Research Ethics Committee approved this study,
and all research was performed in accordance with relevant regula-
tions and guidelines and with the Declaration of Helsinki. Written
informed consent was obtained for patients recruited into the
100,000 Genomics England (GEL) pilot study and the rapid diagnostic
clinic research pathway in Oxford called Suspected CANcer (SCAN)
according to Oxford Radcliffe Biobank (ORB) guidelines (Oxford C
Research Ethics Committee Number: 19/SC/0173). For 9 additional
non-cancer controls (CBS group), bloodwas received fromCambridge
Bioscience Human Blood Products Supply Service, where compre-
hensive informedwritten consent wasprovided in accordancewith UK
ethics and consent regulations.

Study design and clinical cohorts
We conducted a diagnostic accuracy study using a case-control design
(Fig. 1 and Supplementray Data 1). Patients were eligible for recruit-
ment if they were aged 18 years or above, willing, and able to give
informed consent for participation in the study and were referred for
urgent investigation for a possible gynaecological, lowerGI or upperGI
or renal cancer or to a rapid diagnostic centre (RDC) with non-specific
symptoms that might be due to cancer. Referral criteria for each
pathway were as summarised in the National Institute for Health and

Care Excellence (NICE) Guideline 12 Suspected cancer: recognition and
referral (NG12) (Supplementary Material)48. Patients could not enter
the study if they had a history of invasive or haematological malig-
nancy diagnosed within the preceding 3 years or if they were taking
cytotoxic or demethylating agents that might interfere with test per-
formance. Only samples of patients (n = 61; GEL Cancer Pilot group)
with confirmed cancer diagnosis whowere advised to undergo surgery
with curative intent were selected. For non-cancer controls, only
samples of patients referred with non-specific symptoms of cancer
who had not developed cancer within the subsequent two years were
chosen for signal-to-noise control (n = 21; SCANgroup). Asymptomatic
age and sex-matched people served as negative controls (n = 9;
CBS group).

For measurable disease monitoring, we chose a cohort of 10
patients with colorectal cancer undergoing surgery with or without
adjuvant chemotherapy, which had detectable ctDNA at the pre-
treatment plasma sample. Post-surgery samples were taken from all
patients at least 6weeks after surgery. For 5 patients, additional follow-
up samples were obtained. In total, WGS data from ctDNA was avail-
able from 26 samples.

Clinical sample collection
Blood samples were collected into K2EDTA tubes in all cases for
germline DNA (gDNA) extraction from normal peripheral blood leu-
cocytes. For GEL pilot patients, blood was collected into additional
K2EDTA tubes and processed within 4 h for plasma extraction. For all
other cases, blood was collected into PAXgene Blood ccfDNA tubes
and processed within 72 h of venepuncture. Blood samples were cen-
trifuged for 10min at 1600 g to separate the plasma, which was sub-
sequently aliquoted into fresh tubes and underwent a second
centrifugation for 10min at 4500 g. The plasma supernatants were
stored in aliquots at −80 °C prior to extraction. Tissue samples were
obtainedduring surgical resectionandFreshFrozen (FF) until required
for extraction.

DNA extraction
cfDNA was extracted using the QIAamp circulating nucleic acid kit
(Qiagen), according to the manufacturer’s instructions. Input plasma
volumes ranged from 4ml to 25ml per sample, where the maximum
input volumeper extractionwas 5ml.Wheremore than one extraction
was carried out per patient, extracted cfDNAwas pooled. DNAwas first
eluted into 30 µl of buffer AVE and subsequently a second elution of
30 µl to maximise yield. gDNA was extracted using the QIAamp Blood
Mini kit (Qiagen), according to the manufacturer’s instructions. FF
tissue samples initially underwent disruption and homogenization
using a TissueRupter and DNA tumour DNA (tDNA) was extracted
using the QIAamp Allprep Mini kit (Qiagen), according to the manu-
facturer’s instructions. All samples were quantified using the Qubit
Fluorimeter (ThermoFisher) high sensitivity dsDNA assay.

Library preparation and sequencing
Amethylated control (control A) and anunmethylated control (control
B) were spiked-in to the extracted DNA. 1 µg of GL and FF DNA spiked
with controls were fragmented to 450bp using the M220 focused-
ultrasonicator (Covaris). GL and FF DNA were size selected for
300–500 bp fragments using 0.55X followed by 0.75X ratios of sample
to Agencourt AMPure XP Beads (Beckman Coulter). 50ng of cfDNA
were spiked with the same two controls previously fragmented to
150 bp. End repair and adapter ligation adjusted with a 1:10 dilution of
adapters for cfDNA, were performed using the KAPA HyperPrep Kit
(KAPA Biosystems), according to the manufacturer’s recommenda-
tions. Post adapter ligation, an AMPure bead purification step was
done using 0.8X ratio of beads to sample and DNA eluted in buffer EB.
DNAoxidationused reagents andprotocols supplied by Exact Sciences
Innovation. Oxidationwas followed by an incubationwith Proteinase K
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(0.8U) (New England Biolabs (NEB)) at 50 °C for 30min, stopping the
oxidation. This was followed by an AMPure bead clean-up using a 1.8X
bead to sample ratio. Reduction was completed using borane com-
pound and other reagents and protocols supplied by Exact sciences
Innovation. Subsequently, libraries were purified using AMPure XP
beads at a 1.8X bead to sample ratio. A first extension was completed
with an enzyme mix from Exact Sciences Innovation before library
amplification was performed using KAPA HiFi HotStart Uracil+
ReadyMix Kit (KAPA Biosystems), according to the manufacturer’s
instructions, with the exception that i5 and i7 NEBNext Multiplex Dual
Oligos for Illumina (NEB) were used. GDNA and tDNA libraries under-
went 4 PCR cycles, while 6 PCR cycles were performed on cfDNA
libraries. Final libraries were purified using AMPure beads at a 1X ratio
and DNA was eluted into buffer EB. To assess the conversion of 5mC,
amplification of a 194 bp DNA fragment from the methylated lambda
control was performed, using the primers F_5'-GCTGGGGAACTA-
CAGGCT-3' and R_5'-AGAACCAGAACTCAAACTGTAC-3' (Integrated
DNA Technologies). A PCR master mix was made containing 1 µl 10x
Standard Taq Buffer, 0.5 µl 10mMdNTPs, 0.5 µl 10mMprimers, 0.25 µl
Taq polymerase, 2 ng DNA template and the final volume made up to
50 µl with nuclease-free water. Thirty-five cycles of PCR were carried
out (1 cycle of 95 °C 30 s, 35 cycles of 95 °C, 48 °C 30 s, 68 °C 1 s,
followed by 1 cycle of 68 °C 5 s). Once complete, a restriction-enzyme
digest mix was set up containing 1 µl 10X Cutsmart buffer, 0.2 µl TaqI,
5 µl PCR product and made up to 10 µl with nuclease water. This mix
was incubated at 65 °C for 30min and the products analysed using
agarose gel electrophoresis. Shallow sequencing runs for initial quality
metrics were performed using a MiniSeq (Illumina). Paired-end
(2 × 150bp) runs utilised the MiniSeq High Output Reagent Kit (300-
cycles) aiming for a depth of at least 0.4x. Whole-genome sequencing
was performed on a NovaSeq 6000 (Illumina) (paired-end
reads–2 × 150) aiming at 30x sequencing depth for GL and at least 80x
for FF and cfDNA on an S4 flowcell (Illumina) (Supplementary Fig. 8).

Read Alignment
Paired-end sequencing reads were aligned to the reference genome
GRCh38 using bwa v0.17.7, facilitated by asTair v3.3.2. The
alignment process generated BAM files containing the aligned reads.

Coverage signal extraction and denoising
Each cfDNA BAM file was segmented into 1000 bp-long non-over-
lapping bins, and the number of alignments in each bin was reported
using bedtools intersect v2.30.0. Only properly paired non-
duplicated reads with high mapping quality (MAPQ>30) were con-
sidered. These genome-wide counts represent the raw coverage signal,
which was then brought into a state appropriate for statistical analysis
through several pre-processing steps, as follows. First, we subtracted
from the raw signal all ENCODE blacklisted regions v2 and all difficult
regions from the Genome-In-A-Bottle project. In a subsequent filtering
step, we removed bins with mappability score less than 50%, as well as
bins with excessively high or low GC content, as these indicate the
presence of potential artefacts. In the following step, we normalised the
coverage signal in each bin by dividing by the genome-wide median
coverage, and then taking the log2 value of the resulting ratio. Each bin
was then annotated with its median GC content and mappability score.
Since the coverage signal in eachbin is dependenton itsGCcontent and
mappability, it must be corrected for any bias introduced by these two
variables. For this purpose, we used a Generalised Additive Model
(GAM) to describe the coverage signal as a function of GC content and
mappability. The choice of a GAM allows us to model the coverage
without assuming any particular form for the functions that model its
dependence on GC content and mappability. In R v4.1.3, this is done
using the function gam from package mgcv v1.8-40, as follows:
gam(y ~s(GC, bs='cs')+ s(MAP, bs='cs')). In this code snippet,
y is the vector of normalised coverage values across all bins, while GC

andMAP are the corresponding vectors of GC content andmappability
scores. The coverage y is corrected by subtracting its dependencies on
GC and MAP, as estimated using the above procedure. Finally, the de-
biased coverage signal in each bin is normalised again by subtracting
the genome-wide average. The filtered and de-biased coverage for all
plasma cfDNA samples obtained from the previous steps is further
denoised, using the identically pre-processed non-cancer cfDNA sam-
ples from the SCAN pathway for characterising the systematic back-
ground noise. These samples encapsulate unwanted variance, which we
wish to remove from all cancer samples. This is achieved in two stages.
We start by collecting the non-cancer SCAN samples in a matrixM with
m columns (equal to the number of samples) and n rows (equal to the
total number of bins), where m is typically much smaller than n. We
factorise this matrix using its singular value decomposition,M =UΣVT ,
whereΣ is anm×m squarematrixwith the singular values along itsmain
diagonal in decreasing order, U is an orthogonal n ×m matrix with the
corresponding left singular vectors as its columns, and V is also an
orthogonalm×m matrix with the corresponding right singular vectors
as its columns. If the coverage signal for a particular sample is y, the
systematic background noise is given by the product UUTy, which is
subsequently subtracted from y. In the second stage, the coverage
signal is further denoised through application of the Savitzky-Golay
filter49, a digital filter that smooths the data without distorting the
underlying signal. In R v4.1.3, this can be achieved using the function
sgolayfilt from theRpackagesignalv0.7-7.Weuse afilter of order
3 and length 1000 bins (106 base pairs). After smoothing, the denoised
signal is again normalised by subtracting the genome-wide median.

Methylation calling
TAPS induces specific modification signatures that are essential for
methylation analysis. Methylated cytosines undergo a C>T conversion
on the forward strandandaG>Aconversionon the reverse strand,while
unmethylated cytosines remain unchanged. This strand-specific sig-
nature is critical for accurate methylation detection. The open-source
TAPS methylation caller, asTair v3.3.2, was used to call methylation
from the cfDNA and the germline BAM files. The asTair algorithm
recognizes TAPS changes (mC>T) and differentiates these from C>T
variants or variants resulting in a methylated C>T. It can also indicate
the co-location of methylation change and a variant. The aligned reads
were processed to detect methylated cytosines using the call com-
mand of asTair. This step involved several sub-processes: 1) Base
Quality Filtering: bases with a quality score below 30 were excluded to
ensure data reliability. 2) Context Identification: cytosine bases within
specified sequence contexts (e.g., CpG) were identified. 3) Conversion
Detection: methylation was inferred from C>T conversions on the for-
ward strand and G>A on the reverse strand. 4) Strand-Specific Analysis:
it ensures that modifications appeared only on the expected strand, as
TAPSmodifications are strand-specific. To distinguish truemethylation
events from sequencing artifacts or variants, the support for mod-
ifications on both strands was assessed. Specifically, C>T modifications
should only appear on the forward strand. Observations of C>T mod-
ifications on the reverse strand indicate potential non-TAPS variants.
For example, if the C>T ratio on the forward strand suggests a mod-
ification ratio of 0.25 and there is no support on the reverse strand, this
implies a TAPS-like modification. If the same modification ratio is
observed on both strands, this suggests a variant, rather than methy-
lation. Positions with both variation and methylation can be identified
by differing frequencies of support on each strand.

Somatic variant calling
Upon asTair analysis, a cfDNA and a germline methylation VCF was
generated for each patient. For both the cfDNA and germline, the TAPS
methylation calls were filtered to keep positions indicatingmethylation
alone as these are then used to filter out methylation from cfDNA var-
iant calls in a later step. The GATK4 Haplotype Callerwas used to call
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germline variants from germline BAM files with GATK recommended
settings. bcftools mpileup v1.15 was used to generate a pileup file
from the cfDNA BAM file. To identify potential variants in the cfDNA
sample an extensive filtering process was applied to the pile-up. Spe-
cifically, the raw cfDNA variant calls were sorted, decomposed and
normalized using bcftools to ensure consistency and improve
downstream analysis accuracy when filtering germline variants from
this set. Normalised variant VCF was further sorted and indexed.
Germline variants (Haplotype Caller output VCF) and germline methy-
lation calls (filteredasTairoutput)werefilteredout if present in cfDNA
variants. From this, cfDNA methylation calls (filtered asTair output)
were then filtered out. The variants obtained from the previous step
underwent quality filtering based on established criteria, such as read
depth, variant allele frequency, quality scores, and annotation infor-
mation, to ensure the reliability and accuracy of the final variant call set.
For SNVs, exclusion criteria were as follows: DP > 200 or DP < 50,
MQ<60, MQBZ< −9, RPBZ< -5 or RPBZ > 5, MQ0F>0, BQBZ< −4,
VAF>0.3 or VAF <0.03. For INDELs, the following exclusion criteria
were used: DP > 200 or DP< 50, VAF >0.3 or VAF<0.03. The resulting
cfDNA VCF was annotated using VEP and converted to MAF format for
easier use of annotations. Finally, the non-cancer SCAN samples were
used for denoising, by generating a merged VCF of all these samples,
which was used to remove shared variants from the cfDNA VCF files for
all samples (Supplementary Fig. 2).

Fragment-based methylation analysis
Lists of differentially methylated CpGs identified in TCGA were
downloaded via SMART for the cancer types in this study. These lists
were used to generate BED files of differentiallymethylated regions by
extending the coordinates 100 bp in eachdirection andmerging anyof
the resulting regions that overlapped. Any regions that contained
fewer than 3 differentially methylated CpGs after this process were
discarded along with hypomethylated regions, leaving 2113 hyper-
methylated regions from 5 TCGA studies: COAD, ESCA, KIRC, KIRP and
PAAD (SupplementaryData 2).We chose to focus onhypermethylation
markers, where baseline methylation should be close to zero in non-
cancer individuals and only successful conversion by the TAPS chem-
istry would result in a positive signal. For each sample, any aligned
reads that overlapped with the selected methylation marker regions
were matched with their mate pair and the entire fragment was con-
sidered together. Fragments that overlapped with fewer than three
CpGs in any region were discarded and then methylation calling was
performed based on TAPS base changes. Fragments were then classi-
fied as either originating from a tumour or originating from healthy
cells based on the proportion of callable positions that were modified
by the TAPS chemistry. For the purposes of this study the threshold for
classification as a tumour fragment was set at 80% modification. The
rationale behind this thresholdwas to improve sensitivity (allowing for
fragments where not all CpG positions were converted; for example, if
methylated bases were replaced during end-repair or the chemistry
was not 100% efficient), whilst not sacrificing the specificity of the
fragment-based approach by ensuring that only well converted frag-
ments were considered as originating from tumour cells (i.e., frag-
ments with fewer than 5 CpGsmust be fully converted; fragments with
between 5 and 9 CpGs can have only one CpG unconverted; fragments
with between 10 and 14 CpGs can have atmost twoCpGs unconverted,
and so on). Finally, the proportion of fragments classified as originat-
ing from tumour cells was calculated for each marker. Samples from
the SCAN cohort were used to identify markers that were not specific
to cancer. Any marker overlapping with one or more tumour-
originating fragments in these samples was excluded, leaving 377
markers for downstream analysis of the cancer cases and non-cancer
CBS controls (Supplementary Data 2). Among these markers, 280, 51,
42 and 4were specific to colorectal, oesophageal, pancreatic and renal
cancer, respectively.

Statistical analysis for cancer detection
The clean SNV/INDELs, methylation and coverage signals from each
cancer plasma sample were compared to the corresponding signals
fromnon-cancer plasmaCBS samples. In the case of the coverage data,
the signal was first aggregated in each chromosome arm in each
sample. The mean and standard deviation of the total coverage signal
for each chromosome arm were calculated across all non-cancer
controls. These statistics were subsequently used in the calculation of
coverage z-scores for each chromosome arm in each cancer sample.
For a particular cancer sample, the z-score at chromosome arm k is
given by zk = yk �mk

� �
=sk , where yk is the aggregated coverage signal

at arm k in the cancer sample, andmk and sk are themeanand standard
deviation of the aggregated coverage signal at chromosome arm k
across the non-cancer CBS controls. The sampling distribution of the
statistic tk = zk=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +N�1

p
is a t-distribution with N-1 degrees of free-

dom, where N is the number of non-cancer CBS controls used for the
calculation ofmk and sk. From this, we calculated two-sidedp-valuespk,
which were corrected for multiplicity using the Benjamini-Hochberg
procedure. In each cancer sample, those arms with corrected p-values
lower than 5% are copy number aberrant in comparison to the corre-
sponding arms of the non-cancer controls. To derive a sample- and
modality-specific p-value, we selected the aberrant arms, and we
combined theirp-values using Stouffer’smethod: given uncorrected p-
values pk , we derived scores zk =Φ

�1 1� pk

� �
, whereΦ�1 is the inverse

cumulative distribution function of the standard normal distribution.
These are then combined into an overall z-score zm =

P
kzk=

ffiffiffiffi
K

p
, where

K is the total number of aberrant chromosome arms. Since zm follows a
standard normal distribution, a sample-specific p-value for this
data modality was derived as pm = 1�Φ zm

� �
. The cancer samples with

p-values less than 5% are copy-number aberrant in comparison to the
non-cancer controls. Sample-specific p-values were also derived from
the SNV/INDEL and methylation data using the same methodology. In
the case of SNVs/INDELs, we used the log10 of the mutation burden of
each chromosome arm. For the methylation data, we used the logit of
the total methylation ratio in each of the 377 methylation markers,
derived as explained above. For each sample, a p-value across all three
modalities was derived using again Stouffer’s method. If weights
were available quantifying our confidence in each data modality, a
weighted sample-specific multi-modal z-score would take the form
z =
P

mwmzm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

mw2
m

p
, where index m enumerates each data mod-

ality. Again, this is distributed according to the standard normal
distribution, which allows easy calculation of an associated p-value, as
explained above.

We adopted Stouffer’s method because of its straightforward
applicability to our problem, the ease of incorporatingweights (if such
weights become available), and the easy adaptability of the method to
the absence of one ormore datamodalities fromone ormore patients
(which is not uncommon in a real-life clinical scenario).

An alternative method for integrating data modalities is Fisher’s
method. Given modality-specific p-values pm in a particular sample
(which were derived as explained above), we calculate the statistic
S= � 2

P
m logpm. This statistic follows the χ2 distribution with 2M

degrees of freedom, whereM is the number of data modalities (in our
case, M =3).

In addition, we used three common algorithms in statistics and
machine learning, as an alternative approach for integrating different
data modalities, namely Logistic Regression (using function glm in R
v4.1.3 with argument family=binomial(link='logit')), Ran-
dom Forest (using function randomForrest in the R package ran-
domForrest v4.7.1) and Support Vector Machine (using function
svm in the R package e1071 v1.7). In all three cases, we used the
modality-specific scores zm as predictors in a binary classification
model, where the response variable was the clinical status of each
patient (i.e., cancer ornon-cancer). Algorithmparameterswerefixed at
their default settings in all three cases.
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Prediction of cancer origin
Finally, we developedmulti-cancer classifiers using the RandomForest
and Support Vector Machine paradigms, as above, as well as the
Penalised Multinomial Regression formalism, as implemented in the R
package glmnet v4.1-7with argument family='multinomial'. In
all three cases, we aimed to predict the cancer type/origin using as
predictors the coverage signal, the log10-transformed number of
somatic SNVs/INDELs across each chromosome arm, as well as the
logit of the methylation ratio across 377 TCGA regions (see Methods
section for each data modality, above). Algorithm parameters were
fixed at their default values for Random Forest and Support Vector
Machine, but for glmnet, the L1 penalty was estimated using leave-
one-out cross-validation with function cv.glmnet (see relevant sec-
tion below for details).

Calculation of ctDNA fractions
In those samples with copy-number aberrations, we were able to
calculate the ctDNA fraction based on further analysis of the
coverage data. First, the filtered, debiased, denoised and nor-
malised coverage signal was divided into contiguous segments of
relatively constant coverage. Genome segmentation was con-
ducted using DNAcopy v1.68.0 after subsampling the coverage
signal every 1000 bins (106 base pairs). Segments less than
3 standard deviations apart were merged into a single segment.
Assuming the log2-transformed coverage at bin i in segment k is
yki, we calculated the untransformed coverage xki = 2

yki + 1. Typi-
cally, the plasma cfDNA is a mixture of DNA fragments originating
from normal diploid cells and cancer cells. Previous approaches
make the strong assumption that the tumour component of the
plasma cfDNA originates from one major clone and one subclone.
Here, we make the less restrictive assumption that the ctDNA
originates from an unspecified number (one or more) of clones of
not-necessarily-diploid cancer cells. It follows that the expected
value of xki is equal to 2ð1� ρÞ+ρ�ck , where ρ is the ctDNA fraction
and �ck is the average ploidy at segment k across all cancer cells. It
is important to notice that �ck is, in general, not an integer, unless
the copy number aberration overlapping segment k is a clonal
event, i.e., harboured by all cancer cells. We model xki using a
normal distribution, as follows:

xki � Normal 2ð1� ρÞ+ρ�ck , s2k
� � ð1Þ

where s2k =
PNk

i= 1ðxki �mkÞ2=ðNk � 1Þ is the observed variance of xki,

mk =
PNk

i = 1xki=Nk its observed mean, and Nk the number of bins sup-
porting segment k. Since �ck is not an integer, we can impose a uniform
prior on it between0 and amaximumploidy value, e.g., 4. Similarly, we
impose a uniform prior on ρ between 0 and 1. The advantage of this
formulation is that it allows for a very efficient Gibbs sampling infer-
ence scheme for calculating the posterior distribution of �ck (across all
segments) and ρ. This scheme consists of repeatedly sampling from
the following conditional posteriors for ρ and �ck :

ρ � Normal

PK
k = 1Nkðmk � 2Þð�ck � 2Þ=s2kPK

k = 1Nkð�ck � 2Þ2=s2k
,

1PK
k = 1Nkð�ck � 2Þ2=s2k

 !

ð2Þ

�ck � Normal
mk � 2ð1� ρÞ

ρ
,

s2k
Nkρ2

 !
ð3Þ

When applied to a particular sample, we ran the above procedure
for 10K iterations, and we recorded the mean and variance of the
resulting sample chains, after they had attained equilibrium (usually
after ~5 K iterations).

In silico data generation for methods validation
To validate the above pipeline, we simulated non-cancer and cancer
plasma samples at various ctDNA fractions using actual plasma sam-
ples as templates. For each in silico sample, we simulated aggregate
coverage and somatic mutation burden per chromosome arm, and
methylation ratios per methylation marker. The aggregate coverage
signal in arm k for a non-cancer sample was simulated by sampling a
point from a normal distribution with meanmk and variance sk. These
statistics were estimated from the actual non-cancer CBS samples. The
aggregate coverage signal in arm k for a cancer sample was simulated
as a mixture: yk =wxtk + ð1�wÞxh

k , where xhk is a random point from a
normal distribution with meanmk and standard deviation sk, xt

k is the
aggregate coverage signal in chromosome arm k from an actual
tumour sample with ctDNA fraction ρ, andw is the ratio r/ρ, where r is
the target ctDNA fraction of the simulated cancer plasma sample.
Mutation burden and methylation signals were generated in the same
way using respectively the arm-specific mutation burden and methy-
lation marker-specific statistics in place of mk and sk calculated from
the non-cancer CBS controls. For all these mixtures, we used a color-
ectal cancer plasma sample with ρ = 9%. For each of ten target ctDNA
fractions spanning the range from 0.1% to 2%, we simulated 1000 non-
cancer and 1000 cancer samples, resulting in a total of 20K simulated
plasma samples. The capacity of the previously described statistical
methodology to discriminate between cancer and non-cancer plasma
samples at decreasing ctDNA fractions was assessed using these
simulated data and the area under the ROC curve (AUC) as perfor-
mance metric. For recent publications using synthetic data in liquid
biopsy research, we refer the reader to21,26,50,51.

Leave-one-out cross-validation (LOO-CV)
Furthermore, we adopted a LOO-CV approach to estimate the gen-
eralisation capacity of the abovemethodologies. In summary, for each
tested model (Stouffer’s and Fisher’s methods, Logistic Regression,
Random Forrest, Support Vector Machine, and Penalised Multinomial
Regression), we removed the first subject from our cohort, trained the
model on the remaining subjects, and predicted the cancer status of
the first subject using the trainedmodel. Since the first subjectwas not
used in training, it essentially constitutes an independent sample. We
repeated the same steps with all subsequent subjects until all were
used for prediction. This procedure estimates the out-of-sample (or
generalisation) error of each model on an effectively independent
cohort, which is the same size as our original dataset. In the case of
PenalisedMultinomial Regression, at each iteration of the LOO-CV, the
L1 penalty was estimated in a second (inner) loop of LOO-CV on the
training data only using the glmnet function cv.glmnet. In all other
models, parameters were fixed at their default values. Finally, to
account for class imbalance (i.e., the fact that not all cancer groups in
our cohort are of equal size), at each LOO-CV iteration, we weighted
each case by a weight proportional to max n1,n2, . . .

� �
=n, where n is

the number of subjects in the diagnostic group of the case in the
training data at each iteration. max n1,n2, . . .

� �
is the number of sub-

jects in the largest diagnostic group, i.e. the number of patients with
colorectal cancer in the training data at each iteration of the LOO-CV
procedure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TAPSdata (in the formof BAM files) from214 samples generated in this
study (plasma and matched germline pairs from 91 non-cancer and
cancer subjects, matched fresh-frozen tumour biopsies from 16 sub-
jects among these, as well as several follow-up plasma samples from
10 subjects with colorectal cancer) has been deposited in the European
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Genome-Phenome Archive (EGA) under the study with accession code
EGAS50000000715. Source data is provided as a source data
file. Source data are provided with this paper.
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