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Substantially underestimated global health
risks of current ozone pollution

Yuan Wang 1,11, Yuanjian Yang 1,11, Qiangqiang Yuan 2 , Tongwen Li3,
Yi Zhou 1, Lian Zong1, Mengya Wang1, Zunyi Xie4, Hung Chak Ho 5,
Meng Gao 6, Shilu Tong 1,7,8, Simone Lolli9 & Liangpei Zhang 10

Existing assessments might have underappreciated ozone-related health
impacts worldwide. Here our study assesses current global ozone pollution
using the high-resolution (0.05°) estimation from a geo-ensemble learning
model, with key focuses on population exposure and all-cause mortality bur-
den. Our model demonstrates strong performance, achieving a mean bias of
less than -1.5 parts per billion against in-situ measurements. We estimate that
66.2% of the global population is exposed to excess ozone for short term (> 30
days per year), and 94.2% suffers from long-term exposure. Furthermore,
severe ozone exposure levels are observed in Cropland areas, particularly over
Asia. Importantly, the all-cause ozone-attributable deaths significantly surpass
previous recognition from specific diseases worldwide. Notably, mid-latitude
Asia (30°N) and the western United States show high mortality burden, con-
tributing substantially to global ozone-attributable deaths. Our study high-
lights current significant global ozone-related health risks andmay benefit the
ozone-exposed population in the future.

Ambient ozone (O₃) posed a significant threat to humanhealth and the
ecological environment worldwide, particularly duringwarmer days1–5.
Several countries, including China, the United States (US), Italy, and
Japan, have established standards for ambient O₃ concentrations to
improve air quality6. TheWorld Health Organization’s (WHO) latest air
quality guideline (AQG), published in 2021, recommended that the
maximum daily 8-hour averaged (MDA8) ambient O₃ concentrations
should not exceed 100μgm−3 or 50.11 parts per billion (ppb) for short-
term exposure. Additionally, the AQG of warm-season MDA8 ambient
O₃ concentrations (the maximum consecutive 6-month average) was
suggested as 60μgm-3 or 30.07 ppb for long-term exposure. In the last
few years, global ambient O₃ concentrations have shown an upward
trend7–10. It was estimated thatO₃-attributablemortality due to chronic

respiratory disease (CRD) increased by 46% from 2000 to 2019
worldwide11. Furthermore, global exposure to ambient O₃ resulted in
0.470 million (95% confidence interval [CI]: 0.100, 0.818) and 0.423
million (95% CI: 0.223, 0.659) deaths from chronic obstructive pul-
monary disease (COPD)12 and CRD13 in 2019, respectively. Therefore, it
is crucial to accurately and continuously monitor global ambient O₃
distribution and assess O₃-related health risks.

In-situ measurements can provide accurate and reliable ambient
O₃ concentrations for estimating exposure levels and associated
health impacts14. However, in situ stations were typically located in
cities15,16, which limited their representativeness for peri-urban and
rural areas. In contrast, the chemical transport model offered an
alternative method for simulating ambient O₃ concentrations over
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large areas17,18. Unfortunately, it required extensive computational
resources and relied on temporally lagging emission inventories with
unexpected biases over local regions. These factors can significantly
increase the time consumed for simulations and result in high uncer-
tainties into the model output.

To date, data fusion algorithms based on statistical or machine
learning (ML) techniques7–13,15,19–25 have been emerging as preferred
methods to acquire ambient O₃ distribution. For example, in national/
regional studies, a geographically weighted regression model was
proposed by Zhang et al. 19 to acquiremonthly 0.25-degree ambient O₃
concentrations over Eastern China. Li et al. 20 developed an enhanced
geographically and temporally weighted neural network for obtaining
high-resolution (0.05°) MDA8 ambient O₃ concentrations across the
Greater Bay Area in China. A daily ambient O₃ dataset at spatial reso-
lution of 0.1° over China was established by Wei et al. 21 based on a
space-time extremely randomized trees model. Wang et al. 22

employed the random forest model to generate 0.1-degree MDA8
ambientO₃ concentrations over California in theUS. The light gradient
boosting machine was adopted by Chen et al. 23 for estimating MDA8
ambient O₃ concentrations (0.1°) in Europe, which also analysed O₃
exposure with other air pollutants.

Regarding globe-scale works7–13,24,25, a M3Fusion model and its
improved version with Bayesian maximum entropy (M3Fusion-BME)
were devised by Chang et al. 7 and DeLang et al. 10, respectively, to
establish warm-season 0.1-degree ambient O₃ datasets over the globe.
Liu et al. 8 mapped globally distributed monthly ambient O₃ exposure
at spatial resolution of 0.5° by developing a cluster-enhanced ML
model. The random forest model was employed in Xu et al. 24 for
estimating daily 0.25-degree ambient O₃ concentrations from land-
scape fire, which then systematically analysed relevant population
exposure worldwide. Sun et al. 9 proposed a spatiotemporal Bayesian
neural network to generate global monthly ambient O₃ dataset (0.1°)
and assessed O₃-attributable mortality burden for respiratory diseases
in 2010. Based on existing modelling algorithms, the global burden of
disease (GBD) 202112 discussed the health risks of ambientO₃ for COPD
across 204 countries and regions through a M3Fusion-BME model10.
The M3Fusion-BME model10 was also introduced by Malashock et al.
(2022)11,13 to assess O₃-attributable mortality burden for CRD in cities
and peri-urban/rural areas globally. Xue et al. 25 investigated the
exposure-response function between O₃ exposure and children mor-
tality in 55 low-income and mid-income countries using a cluster-
enhanced ML model8.

Data fusion algorithms based on statistical or ML
techniques7–13,15,19–25 have significantly advanced the estimation of
population exposure to ambient O₃ and its associated health risks. For
national/regional studies, localized methods with individual O₃ mod-
elling strategies15,19–21 generally outperformed the holistic models that
utilized all in situ stations simultaneously. The superior performance
was attributed to the pronounced local heterogeneity of ambient O₃
distribution, driven by spatiotemporally varying surface emissions of
O₃ precursors5,26 and meteorological conditions27,28. Furthermore, the
established ambient O₃ datasets mostly achieved high spatial (e.g.,
0.05°) and temporal (e.g., daily) resolutions in national/regional stu-
dies. Conversely, the globe-scale works typically utilized the holistic
models to acquire ambient O₃ concentrations, often with coarse spa-
tial (e.g., 0.25°) or temporal (e.g., monthly) resolutions. As for health
impacts, they mainly aimed at assessing long-term O₃ exposure
referencing part of WHO standards. Meanwhile, the globe-scale works
usually concentrated on investigating O₃-related health risks for spe-
cific diseases, selected countries, or single source.

Previous studies7–13,15,19–25 have yielded robust results and sig-
nificantly contributed to society. However, the severity of current
global O₃-related health risks still remained underappreciated in the
globe-scale works7–13,24,25, which exhibited considerable shortcomings.
To be specific, the geospatially local apriority of ambient O₃

distribution has not been adequately incorporated into global mod-
elling, unlike in national/regional studies, potentially introducing
greater uncertainties in the modelled results. In the meantime, pre-
vious globe-scale works generally adopted statistical or ML models
with coarser spatial (e.g., 0.25°) or temporal (e.g.,monthly) resolutions
compared to national/regional studies. This likely led to cumulative
errors or defects in the estimation of O₃ exposure levels andmortality
burden29,30. For instance, triple coarser spatial resolution (e.g., 36
versus 12 km) might cause biased (> 10 %) O₃-attributable mortality
burden in national regions30. The coarse temporal resolution (e.g.,
monthly) also cannot support the assessment of short-term popula-
tion exposure to ambient O₃. Moreover, these globe-scale works have
not sufficiently explored the connection between short- and long-term
O₃-related health risks withmultiple standards fromWHO. Both short-
and long-term health impacts should be considered to evaluate the
acute and chronic risks due to O₃ exposure over the globe. Impor-
tantly, previous globe-scale works simply focused on limited condi-
tions (e.g., diseases, countries, or O₃ sources), which might
substantially underestimate current worldwide O₃-attributable mor-
tality burden.

In our study, the objectives are threefold: to propose a geospa-
tially dynamic ensemble ML model (global-local coupled ensemble
forest, GL-CEF) (1) for the global modelling of daily seamless high-
resolution (0.05°) ambient O₃ concentrations; to provide an in-depth
assessment of global O₃ pollution, with prominent focuses on short-/
long-term population exposure (2) and all-cause mortality burden (3).
It is crucial to incorporate geospatially local apriority into the model
due to the pronounced local heterogeneity in ambient O₃ distribution.
Nevertheless, the spatial locations of in situ stations were highly non-
uniform across the globe, with sparse or even nonexistent stations in
many regions. To fix this issue, we devise three modules (global, local,
and global-local) in the GL-CEF model for the estimation over station-
sparse (or no-station) and station-dense regions, exhibiting superior
performance to popular holistic ML models. The GL-CEF model can
generate consistent global ambient O₃ distribution with previous
globe-scale works7–13,24,25, but performed at higher resolutions (daily
and 0.05°). The high resolutions result in data volumes 25 to 1,460
times larger per year (yr-1) compared to them, offering richer spatio-
temporal details. By combining all three objectives, our study inves-
tigates current O₃-related health risks worldwide, considering the
latest WHO standards and land use disparities. The ambient O₃ stan-
dards from WHO include the AQG, interim target 2 (IT2), and interim
target 1 (IT1), with the values of 50.11/30.07, 60.13/35.08, and 80.18/
50.11 ppb for short-/long-termO₃ exposure, respectively. Our ambient
O₃ dataset supports for fine-scale assessment of health risks fromboth
short- and long-term O₃ exposure, potentially reducing cumulative
errors in global analyses. Our findings reveal that O₃-related health
impacts might have been underappreciated and identify key polluted
regions over the globe. Therefore, our studymay have implications for
investigating global O₃ pollution and benefiting the O₃-exposed
population in the future.

Results
Multiscale model performance
Figure 1a, b depict the performance of GL-CEF model based on two
cross validation schemes, which include the space-informed cross
validation (SICV) and temporally extrapolated SICV (TESICV)15,16,20,21,29.
The collocated samples are sufficient, 3.67 million for SICV and 1.15
million forTESICV,providing reliable validationmetrics.Allmetrics are
computed under the significance levels of p <0.01. At daily scale, the
GL-CEF model demonstrates satisfactory performance, with the coef-
ficient of determination (R2) of 0.87 and 0.73 for SICV and TESICV,
respectively. At monthly (warm-season) scale (Supplementary
Fig. 1a–d), the model errors decrease further, with the root mean
square error (RMSE) improving by 2.200 (2.624) ppb for SICV and
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4.537 (5.192) ppb for TESICV compared to daily scale. Additionally, the
GL-CEFmodel generally yields favourable accuracyon collocated grids
that involve in situ stations (Fig. 1c–f), with 82.59%/50.54% and 87.97%/
81.26% of them showing the R2 of > 0.7 and mean bias of < ± 5 ppb for
SICV/TESICV, respectively. Meanwhile, the collocated grids with high
R2 ( > 0.8) and near-zero mean bias are mostly located in densely
populated regions, such as China, Europe, and the US. This indicates
that the global MDA8 ambient O₃ concentrations established by the
GL-CEF model are of both significant quality and practical utility.

Global population exposure to ambient O₃

The spatial patterns of annual MDA8 ambient O₃ are generally similar
to those observed during the warm season (Fig. 2a, b). However, sig-
nificant regional differences still exist. For example, there is much

higher MDA8 ambient O₃ during the warm season than the annual
levels over Africa and southern Asia, likely due to massive surface
emissions of O₃ precursors from biomass burning31–33. Meanwhile, the
high values ofMDA8 ambient O₃ are also observed in southern Europe
and the western US during the warm season, exceeding annual levels.
At country scale (Fig. 2c, d), the large population-weighted MDA8
ambient O₃ (> 48 ppb) is predominantly found in Asia and Africa,
particularly in northern regions of middle latitudes. By contrast, the
population-weightedMDA8 ambientO₃ is smaller (<32 ppb) across the
countries of South America and Oceania.

Globally, the population-weighted MDA8 ambient O₃ are
42.39 ± 11.29 and 49.76 ± 13.75 ppb for annual and warm-season levels,
respectively (Fig. 2e–j). In some Asian countries, annual and warm-
season population-weighted MDA8 ambient O₃ are distinctly higher

Fig. 1 | Overallmodel performanceof theGL-CEFmodel. a,bDensity scatter plots
of cross-validation results and c–f spatial distributionofmetricson collocated grids
worldwide at daily scale. Black dashed and red solid lines stand for 1:1 and fitted
lines in a, b, respectively. Colour bars denote the normalized densities of data pairs

in a, b and the values of metrics in c–f. Unit for RMSE and mean bias: ppb. Defini-
tions of acronyms: GL-CEF (global-local coupled ensemble forest), N (number of
collocated samples), SICV (space-informed cross-validation), TESICV (temporally
extrapolated space-informedcross-validation), and RPE (relative percentage error).

Article https://doi.org/10.1038/s41467-024-55450-0

Nature Communications |          (2025) 16:102 3

www.nature.com/naturecommunications


Fig. 2 | Maps and statistics of current global ambient O₃ distribution.
a, b Annual and warm-season globally gridded, c, d country-scale population-
weighted, and e–j population-weighted statistics for typical countries of MDA8
ambient O₃ concentrations. Colour bar stands for the values of ambient O₃ con-
centrations (unit: ppb) in a–d. Light grey denotes the unavailable regions with
snow, ice, and lake for the GL-CEF model in a–d. The black and red dashed lines
represent population-weighted MDA8 ambient O₃ concentrations worldwide for

annual (42.39 ppb) and warm season (49.76 ppb) in e–j, respectively. The vertical
lines indicate the ranges of one standard deviation in e–j. The countries that pre-
sent significantly larger (difference > 10 ppb) and smaller (difference < −10 ppb)
population-weightedMDA8 ambient O₃ concentrations than the global average are
marked with red up arrow and blue down arrow in e–j, respectively. Definitions of
acronyms: PW (population-weighted) and SA (South Africa).
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than the global average (difference > 10 ppb), likely due to sufficient
solar radiation intensity combined with favourable meteorological
conditions27,28 and surface emissions ofO₃precursors5,26. By contrast, a
few countries in South America and Oceania exhibit much lower
population-weighted MDA8 ambient O₃ compared to the global
average (difference < −10 ppb), indicating milder O₃ pollution. Nota-
bly, severe O₃ pollution can occur at country scale for brief periods

(Supplementary Fig. 7). For instance, the population-weighted MDA8
ambient O₃ is observed extremely high over China and South Korea
from March to May (MAM), which surpasses the IT1 standard (i.e., >
80.18 ppb).

Four land use classes (Natural Vegetation, Cropland, Urban, and
Bareland) are adopted to assess the population exposure to ambient
O₃ (Fig. 3). Natural Vegetation includes forests, shrublands, savannas,

Fig. 3 | Current population exposure to ambient O₃ worldwide. a–f Population
fractions divided by land use classes falling on total (> AQG) and three short-term
O₃ exposure intervals (AQG-IT2, IT2-IT1, and > IT1). g–m Population fractions
dividedby landuse classes falling on total (>AQG) and three long-termO₃ exposure
intervals (AQG-IT2, IT2-IT1, and > IT1). T1, T2, and T3 represent the thresholds of

more than 30, 60, and 90 days yr−1 at the right Y-axis in (a-f), respectively. Defini-
tions of acronyms: AQG (air quality guideline, 50.11 ppb for short term and 30.07
ppb for long term), IT2 (interim target 2, 60.13 ppb for short termand 35.08ppb for
long term), IT1 (interim target 1, 80.18 ppb for short term and 50.11 ppb for long
term), and NV (Natural Vegetation).
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and grasslands (see Supplementary Table 4 for details). The total
(three) O₃ interval (intervals) represents (represent) > AQG (AQG-IT2,
IT2-IT1, and > IT1). Regarding short-term O₃ exposure (Fig. 3a–f),
66.2%/54.9%/47.5% of the global population is exposed to excess
ambient O₃ for more than 30/60/90 days yr-1. The global O₃ exposure
patterns aremainly influenced by thoseof Asia (large population),with
similar land use fractions on various O₃ exposure intervals (e.g., large
contribution from Cropland). In North America (Africa), the popula-
tion exposed to O₃ pollution primarily lives in Urban (Natural Vege-
tation and Cropland) areas, especially for the MDA8 ambient O₃
exceeding IT1. Europe and South America both exhibit relatively low
O₃ exposure levels, predominantly within the AQG-IT2 interval. TheO₃
pollution is very mild in Oceania and consequently not analysed in
detail. As for long-term O₃ exposure (Fig. 3g–m), 94.3% of the global
population experiences excess ambient O₃, with nearly half (45.1%)
exposed to severeO₃ pollution (> IT1). Asia again dominates the global
O₃ exposure patterns, generally presenting consistent land use frac-
tions across different O₃ exposure intervals. Specifically, the fraction
of Cropland increaseswith higherO₃pollution levels (Fig. 3g, h), which
likely suggests that more people suffer from high MDA8 ambient O₃
during the warm season11,13,34. Europe, North America, and Africa
exhibit similar O₃ exposure patterns, though varying by land use dis-
parities. SevereO₃pollution (> IT1) is notobservedover SouthAmerica
and Oceania, indicating low O₃ exposure levels there.

Overall, the population amount exposed to short-term ambient O₃
gradually declines with the O₃ pollution increasing (Fig. 3a–f).
However, the O₃ exposure interval of IT2-IT1 involves the largest global
population (20.1%) for the duration of > 90 days yr-1 (Fig. 3a). This
implies thatmore people worldwide are exposed to theMDA8 ambient
O₃ within the IT2-IT1 interval for a long period, likely leading to higher
short-term mortality risks. On the other hand, the areas of polluted
regions for long-term O₃ exposure on IT2-IT1 (near 70%) distinctly
exceed that on > IT1 (less than 20%) globally (Supplementary Fig. 5g, h).
Nevertheless, more people (45.1%) are exposed to the warm-season
MDA8 ambient O₃ of > IT1 (Fig. 3g), which also potentially results in
higher long-term mortality risks.

Global O₃-attributable mortality burden
Our study adopts a log-linear exposure-response function to obtain
the global O₃-attributable mortality burden, based on the pooled
relative risks of short- and long-term O₃ exposure for all-cause deaths
from two worldwide epidemiological researches35,36. We estimate that
the short- and long-term population attributable fraction (PAF) are
3.42 × 10−3 (95% CI: 2.71 × 10−3, 4.12 × 10−3) and 0.0272 (95% CI: 0.176,
0.365) globally during 2019–2021 (Supplementary Fig. 5i, j), respec-
tively. This indicates that 0.34% (95% CI: 0.27%, 0.41%) and 2.72% (95%
CI: 1.76%, 3.65%) of the global total deaths are attributed to O₃ pollu-
tion. The long-term PAF substantially exceeds that of the short-term
(eight times), suggesting its much higher mortality risks. This is
potentially attributed to that short-term O₃ exposure may stimulate
the production of antioxidant enzymes, which is deemed as a com-
pensatory mechanism37. The upregulation of antioxidant enzymes can
decrease oxidative stress and is likely related to the suppression of
proinflammatory responses. Conversely, long-term O₃ exposure
probably engenders the upregulation of internal redox homoeostasis,
which will result in an increment of systematic inflammation37.

The total (three) exposure interval (intervals) stands (stand)
for > AQG (AQG-IT2, IT2-IT1, and > IT1) in Fig. 4. For short-term
O₃-attributable mortality (Fig. 4a–d), the high values of PAF
( > 3 × 10-3) are predominantly observed in Asian countries of
middle latitudes (30°N), while other countries generally present
relatively smaller PAF ( < 2 × 10-3). Within different O₃ exposure
intervals, the high values of country-scale PAF ( > 3 × 10-3) typically
emerge on IT2-IT1. Notably, China also demonstrates large PAF
(3.46 × 10-3 [95% CI: 2.75 × 10-3, 4.17 × 10-3]) for the > IT1 interval,

indicating more frequent occurrences of extremely high MDA8
ambient O₃ (i.e., > 80.18 ppb) than other countries. Furthermore,
the four land use classes (Natural Vegetation, Cropland, Urban,
and Bareland) are applied to assess the O₃-attributable mortality
burden (Supplementary Fig. 5i). Cropland shows the largest total
PAF (4.68 × 10−3 [95% CI: 3.71 × 10−3, 5.64 × 10−3]), reflecting sig-
nificant mortality risks due to heavy O₃ pollution. This is likely
because surface emissions of biogenic volatile organic com-
pounds (O₃ precursor) from vegetation and carbon monoxide
(which contributes to radical formation) from incomplete bio-
mass burning are likely pronounced over Cropland areas34.
Additionally, nitrogen oxides (another O₃ precursor) can also
transport from Urban to Cropland areas34. Favourable solar
radiation intensity further accelerates photochemical reactions,
leading to the accumulation of ambient O₃ concentrations5,26–28.
Among three O₃ exposure intervals, the distribution of PAF based
on land use classes is diverse. Generally, the PAF on IT2-IT1 is
larger compared to other O₃ exposure intervals, which results
from its higher short-term O₃ exposure levels over the
globe (Fig. 3a).

As for long-term O₃-attributable mortality (Fig. 4e–h), the high
values of country-scale PAF ( > 0.03) also primarily concentrate in Asia
of middle latitudes (30°N), which signifies the substantial mortality
risks from both short- and long-term O₃ exposure over these regions.
Other countries generally show moderate PAF of > 0.01. Among three
O₃ exposure intervals, the high values of country-scale PAF ( > 0.03)
are predominantly observed for > IT1. By contrast, most countries
exhibit significantly small PAF on AQG-IT2 ( < 1 × 10-3), suggesting that
the ambient O₃ standard of long-term IT2 (35.08 ppb) fromWHOmay
need to be revised upward, which has shown a similar effect with AQG
(30.07 ppb) across various countries. Moreover, Cropland and Bare-
land both present large total PAF (0.0332 [95% CI: 0.0216, 0.0446] and
0.0355 [95% CI: 0.0230, 0.0477]) (Supplementary Fig. 5j). However,
excess ambient O₃ is more hazardous for Cropland worldwide due to
its larger population amount (2.885 billion) compared to Bareland
(0.114 billion). Concerning various O₃ exposure intervals, the PAF
gradually increases with O₃ pollution rising, since more people are
exposed to higher warm-season MDA8 ambient O₃ over the
globe (Fig. 3g).

We estimate that a total of 0.177 million yr-1 (95% CI: 0.139, 0.214)
and 1.407 million yr-1 (95% CI: 0.909, 1.896) deaths globally stem from
short- and long-term O₃ exposure, respectively (Supplementary
Table 5). The mortality burden attributed to long-term O₃ exposure
distinctly exceeds that from short term. Meanwhile, most O₃-
attributable deaths due to short- and long-term exposure occur in
the IT2-IT1 (53.01%) and > IT1 (73.04%) intervals, respectively. This
aligns with the above analyses of O₃ exposure. Notably, the polluted
regions on IT2-IT1 for short-term exposure present a similar distribu-
tion with that on > IT1 for long-term exposure (Supplementary
Fig. 5c, h). Considering the top-10 countries simultaneously (Supple-
mentary Table 2, 3), we find that Asia of middle latitudes (30°N) and
the western US experience high mortality burden attributed to short-
and long-term O₃ exposure.

Discussion
This study provides an assessment of current global O₃ pollution. We
propose a geo-ensembleMLmodel (GL-CEF) to acquireMDA8 ambient
O₃ concentrations worldwide. The establishment of global ambient O₃
dataset integrates remote sensing observations, chemical apriori data,
meteorological fields, geographic elements, and in-situ measurements
from > 7000 stations across more than 100 countries. The GLC-CEF
model is rigorously validated and stably displays global daily seamless
high-resolution (0.05°) patterns of O₃ pollution during 2019–2021,
achieving the R2 of 0.87 and 0.73 for SICV and TESICV, respectively.
Based on the modelled dataset, we characterize short- and long-term
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Fig. 4 | Current O₃-attributablemortality burden worldwide. a–d Country-scale
PAF for total (> AQG) and three short-termO₃ exposure intervals (AQG-IT2, IT2-IT1,
and > IT1). e–h Country-scale PAF for total (> AQG) and three long-term O₃ expo-
sure intervals (AQG-IT2, IT2-IT1, and > IT1). The short- and long-term gridded PAF
with more details at a high spatial resolution can be referred to in Supplementary

Fig. 8. Colour bars stand for the values of PAF. Definitions of acronyms: AQG (air
quality guideline, 50.11 ppb for short term and 30.07 ppb for long term), IT2
(interim target 2, 60.13 ppb for short term and 35.08 ppb for long term), and IT1
(interim target 1, 80.18 ppb for short term and 50.11 ppb for long term).

Article https://doi.org/10.1038/s41467-024-55450-0

Nature Communications |          (2025) 16:102 7

www.nature.com/naturecommunications


O₃ population exposure and their associated all-cause mortality bur-
den globally, with consideration of the latest ambient O₃ standards
from WHO and land use disparities. The assessment of population
exposure and mortality burden is conducted at various scales (the
globe, continent, country, and grid), with results that corroborate
across different levels.

Our study improves the modelling algorithm to derive global
ambient O₃ concentrations. The spatial distribution of ambient O₃
generally presented strong local heterogeneity, making it essential to
incorporate geospatially local apriority into the model. Nevertheless,
there were sparse or even no in situ stations established in plenty of
regions worldwide, which rendered previous localized methods15,19–21

challenging for global modelling tasks. To address this issue, the
developed GL-CEF model comprises three components: global module
(employing global features), local module (incorporating geospatially
local apriority), and global-local module (connecting global and local
modules). Notably, the local module consisted of two strategies: sliding
block strategy (to acceleratemodel convergence) and variable local sub-
model (to improve model robustness). The GL-CEF model can adopt
global and local knowledge over station-sparse (or no-station) and
station-dense regions, respectively. Additionally, we introduce a
spatiotemporal-based imputation method for recovering missing
information in the model inputs based on their self-correlation. Valida-
tion results demonstrate that the GL-CEF model achieves favourable
accuracy, with the mean bias of −0.03 and −1.41 ppb for SICV and
TESICV, respectively. The performance of the GL-CEF model also sur-
passes those of widely-used holistic ML models (Supplementary Fig. 2),
such as random forest and light gradient boosting machine.

Using the GL-CEF model, we generate a daily spatiotemporally
continuous 0.05-degree dataset for assessing short- and long-termO₃-
related health risks. This dataset exhibits improved performance (an
increment of 0.39 in R2) and spatial resolution five times higher than
the GEOS-CF product from the National Aeronautics and Space
Administration (NASA) (Supplementary Fig. 3). The modelled dataset
captures the seasonality of current ambient O₃ worldwide, showing
high values during the warm season over Asia, Africa, and North
America, which is consistent with previous reports7–10,16. In addition,
the ambient O₃ concentrations from previous globe-scale works7–13,24,25

had coarse spatial (e.g., 0.25°) or temporal (e.g., monthly) resolutions
(Supplementary Table 1), potentially introducing spatially or tempo-
rally cumulative errors in final analyses29,30. Conversely, our study
considers O₃ precursors3,5,26 and employed high-resolution (~ 5 km)
remote sensing observations as key inputs8,19–22 of the model, which
include nitrogen dioxide (NO₂) and formaldehyde (HCHO) from the
tropospheric monitoring instrument (TROPOMI). By integrating var-
ious multisource datasets, the modelled dataset achieves spatial and
temporal resolutions of 0.05° and daily, respectively. The high reso-
lutions lead tomassivedata volumes, ranging from25 to 1460 times yr-1

compared to previous globe-scale works7–13,24,25, which provide richer
spatiotemporal details and information.

Our study refines the land use disparities in global O₃-related
health risks assessment. Land use disparities potentially signified dif-
ferent sources of ambient O₃38,39, which affected O₃ exposure levels
and mortality burden worldwide. Previous reports9,11,13,34 implied that
O₃-related health risks were generally higher in peri-urban or rural
areas compared to those in cities. We further divide global land use
disparities into four classes, including Natural Vegetation, Cropland,
Urban, and Bareland. Although more people experience short- and
long-term O₃ exposure in Cropland areas over Asia, the population
exposed toO₃pollution primarily reside inUrbanareasoverNorth and
South America. In addition, a large amount of population suffers from
short- and long-term O₃ exposure in Natural Vegetation areas over
Africa. We reveal the geographically diverse impacts of land use dis-
parities on O₃-related health risks globally.

Our study increases the understanding of ambientO₃ standards in
the context of global O₃-related health risks assessment. The ambient
O₃ standards from WHO were applied in some previous globe-scale
works8,11,24,25. Liu et al. 8 reported that 37.13% of global population lives
in the regions beyond the long-term IT1 suggested byWHO during the
warm season. The short-term WHO AQG was adopted in Xu et al. 24 to
define the events of substantial fire-sourced air pollution. Malashock
et al. 11 implied that the number of cities with warm-season MDA8
ambient O₃ of > long-term AQG from WHO increased by 865 from
2000 to 2019. A threshold value near the long-term WHO IT1 was
designed by Xue et al. 25 for obtaining the non-linear exposure-
response function of O₃ and under-5 mortality. However, these globe-
scale works only considered partial WHO standards and did not
account for the different O₃ exposure levels and mortality burden
defined by AQG, IT2, and IT1. Additionally, they focused solely on
either short- or long-term WHO standards, without exploring the
connection between short- and long-term O₃-related health risks.

By contrast, our study provides an assessment of both short- and
long-term health risks associated with current O₃ pollution globally,
with consideration of all ambient O₃ standards from WHO. We esti-
mate that a large amountofglobal population (20.1%) is exposed to the
MDA8 ambient O₃ of between IT2 and IT1 standards for more than
90 days yr-1, likely leading to higher mortality risks from short-term
exposure. Meanwhile, nearly half of the people worldwide (45.1%) are
exposed to the warm-season MDA8 ambient O₃ exceeding the
IT1 standard, which also potentially results in elevated mortality risks
due to long-term exposure. As a consequence, the majority of O₃-
attributable deaths from short- and long-term exposure are associated
with the IT2-IT1 (53.01%) and > IT1 (73.04%) intervals, respectively.
Importantly, this analysis reveals that mid-latitude Asia (30°N) and the
western US experience high mortality burden due to short- and long-
term O₃ exposure, likely driven by intense solar radiation, favourable
meteorological conditions27,28, surface emissions of O₃ precursors5,26.
Our study identifies the similar key polluted regions at grid level for
global short- and long-term O₃-related health risks.

A highlight of our study is the assessment of both short- and long-
term exposure levels and all-causemortality burden due to current all-
source O₃ pollution across > 200 countries or regions, rather than
focusing on specific diseases, limited countries, or single-source O₃.
Especially for specific diseases, previously reported global O₃-
attributable mortality burden primarily involved respiratory diseases,
such as CRD and COPD9,11–13,17,18,40. TheO₃ exposure could stimulate the
respiratory system to generate a large amount of inflammatory cell
hormones and then accumulate toxic lipid oxidation products, which
finally engendered respiratory diseases.Nevertheless, a recent review41

has provided the epidemiological evidence andbiologicalmechanisms
linking O₃ exposure to cardiovascular diseases. Specifically, the O₃
exposure could trigger chain reactions including respiratory and sys-
temic inflammation, oxidative stress, disruption of autonomic nervous
and neuroendocrine systems, impairment of coagulation function,
glucose, and lipid metabolism. These reactions can ultimately lead to
vascular dysfunction and the progression of cardiovascular diseases.
Furthermore, a number of existing meta-analyses have indicated that
the mortality of all-cause diseases was positively associated with
short-35,42,43 and long-term36,44,45 O₃ exposure globally. Therefore,
focusing solely on respiratory diseases might significantly under-
estimate the broader mortality burden associated with ambient O₃
worldwide, which ignored potential influences from other diseases.

Specifically, we estimate that 1.407 million yr-1 (95% CI: 0.909,
1.896) all-cause deaths are attributed to long-term O₃ exposure glob-
ally, which substantially exceeds estimates from the GBD 202112

(COPD, 0.470 million [95% CI: 0.100, 0.818]) and Malashock et al. 11,13

(CRD, 0.423million [95%CI: 0.223, 0.659]).Nevertheless,Malley et al. 17

and Chowdhury et al. 18 claimed that 1.04 million (95% CI: 0.72, 1.37)
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and 1.30million (95% CI: 0.93, 1.68) respiratory deaths were attributed
to long-term O₃ exposure worldwide in 2010 and 2015, respectively.
The O₃-attributable mortality burden from respiratory diseases might
be overestimated in these two globe-scale reports17,18. This was mainly
because they adopted chemical transport models (e.g., GEOS-Chem)
with large errors against in-situmeasurements worldwide (e.g., amean
bias of 10.8 ppb in Malley et al. 17), which also had coarse spatial
resolutions (e.g., 2.5°). Conversely, the global ambient O₃ dataset
established via our model is performed at high spatial resolution of
0.05°, achieving the mean bias of less than -1.5 ppb, suggesting more
reasonable results of O₃-attributablemortality burden. In addition, we
find that global short-termO₃ exposure results in 0.177million yr-1 (95%
CI: 0.139, 0.214) all-cause deaths. By adopting a comprehensive per-
spective, our assessment reveals that the severity of currentworldwide
O₃-relatedhealth risks is fairly greater thanpreviously recognized from
specific diseases.

However, there are some limitations in this study. The global
module in theGL-CEFmodel is trainedwith all collocated samples over
station-sparse regions, where only a few in situ stations can be applied
in the validation. This probably leads to insufficient representativeness
of the validation results compared to other regions. Meanwhile, our
study is restricted by the availability of satellite observations from
TROPOMI (operating since 2018), preventing the comparison with the
historical sequence (e.g., 2000-2018). Additionally, our study assumes
even personal O₃ exposure on each grid, likely resulting in mis-
classification bias due to the population migration and diverse time
patterns of anthropogenic activities (e.g., time spent outdoors versus
indoors). Moreover, the calculation of premature deaths uses a log-
linear exposure-response function between ambient O₃ concentra-
tions and premature deaths from epidemiological researches35,36.
Limited by existing meta-analyses, it is challenging to account for all
conditions (e.g., ages and socioeconomic differences) of worldwide
population in the computation of pooled relative risks due to O₃
exposure. The calculation of O₃-attributable premature deaths also
ignores other related influencing factors on mortality burden, such as
heat waves. Heat waves are favourable meteorological conditions for
photochemical reactions, which can exacerbate O₃ pollution46,47. The
synergistic effects between heat waves and ambient O₃ may lead to
greater health risks. Finally, the impacts of O₃ exposure on the mor-
tality burden attributed to the coronavirus disease 2019 (COVID-19)
are not evaluated in our study. There was literature claiming that
higher mortality risks of COVID-19 were associated with short-/long-
term O₃ exposure48,49. Nevertheless, the exact mechanisms of chronic
and acute exposure to ambient O₃ on COVID-19 mortality are unclear
and required to be elucidated, which need further exploration in the
future. These limitations potentially introduce some uncertainties in
the estimation of O₃-attributable health risks.

In conclusion, we conduct a globe-scale study on current O₃
pollution, utilizing a daily seamless high-resolution (0.05°) perspec-
tive. This study features a geospatially dynamic modelling algorithm
and assesses short- and long-term O₃ exposure levels as well as their
associated all-cause mortality burden. Our ambient O₃ dataset offers
insights into a fine-scale assessment of both short- and long-term O₃-
related risks worldwide. Notably, our study reveals significant global
O₃-related health impacts that might have been underappreciated in
recent years. Effective mitigation of global O₃ pollution, particularly
over the regions identified in this study, may lead to a reduction of
significant O₃-related health risks and benefit the population exposed
to O₃ pollution in the future.

Methods
In this study, all variates are first imputed for missing values and re-
sampled before being considered as inputs. Next, the processed data
and ground truths (output) should be spatiotemporally collocated and
fed into the GL-CEF model for training. A total of two validation

schemes are then exploited to verify the performance of modelled
results. Eventually, the global exposure levels and all-cause mortality
burden due to ambient O₃ are carefully assessed and discussed.

Datasets
Previous works widely considered O₃ precursors as key inputs of the
model8,19–22, includingNO₂ andHCHO. In our study, the high-resolution
(~ 5 km) NO₂ and HCHO tropospheric vertical column density
(TroVCD) from TROPOMI50,51 are adopted as the primary variates. The
O₃ profile from CAMS52 is also introduced as a primary variate to
provide the apriori information of ambient O₃. Meanwhile, multiple
frequently used factors are selected as the auxiliary variates to improve
the performance of the model, which consist of solar radiation inten-
sity (necessary conditions for photochemical reactions53–55), meteor-
ological fields, and geographic elements. The in-situ measurements of
MDA8 O₃ from the Open Air Quality (OpenAQ), China National Envir-
onmental Monitoring Center, US Environmental Protection Agency,
and European Environment Agency are used as the ground truths
(output). At last, the latest replay ambient O₃ product fromGEOS-CF56

is applied for comparison to themodelled results.More specific details
are given as follows.

OpenAQ can provide globally distributed ambient concentrations
of major air pollutants, which came from various sources over more
than 100 countries. The air quality records from OpenAQ have been
broadly utilized in worldwide studies of recent years24,56–59. In the
present study, the global in-situ O₃ measurements during 2019–2021
are collected from OpenAQ and calculated to MDA8 ambient O₃
concentrations (regarded as the ground truths). It’s worth noting that
the duration of in-situ measurements per day should exceed 20 h
(from the first to the last). Furthermore, only the source of “govern-
ments” is employed to guarantee the data quality. The units of all
values are transformed to ppb based on corresponding references.
Supplementary Fig. 9a illustrates the spatial locations of in situ stations
in the globe, using the symbols of red circles. A total of > 7,000 in situ
stations (by 2021) are considered in this study, which densely cover
China, Europe, the US, etc. Since the data from OpenAQ could be
irregularly missing, the in-situ O₃ measurements from the China
National Environmental Monitoring Center, US Environmental Pro-
tection Agency, and European Environment Agency are selected for
supplement.

TROPOMI devised a self-appropriate atmospheric NO₂ retrieval
algorithmbasedon that from theOzoneMonitoring Instrument,which
can generate NO₂ TroVCD worldwide51. The differential optical
absorption spectroscopymethod, a chemical transportmodel (or data
reanalysis system), and an air-mass factor lookup table were all intro-
duced in the TROPOMI NO₂ retrieval algorithm. Related steps are as
below: (1) Retrieve NO₂ total slant column density via the differential
optical absorption spectroscopy method. (2) Separate the strato-
spheric and tropospheric parts using the chemical transportmodel (or
data reanalysis system). (3) Transform the tropospheric slant column
density to TroVCD according to the air-mass factor lookup table. In our
study, the record of “nitrogendioxide_tropospheric_column” is applied
as a primary variate for modelling global ambient O₃ concentrations
from 2019 to 2021. Supplementary Table 6 lists more information
about the TROPOMI NO₂ TroVCD.

TROPOMI applied a method based on differential optical
absorption spectroscopy and combined ultraviolet spectral bands to
produce HCHO TroVCD globally50. The detailed procedures of TRO-
POMI HCHO retrieval algorithm were similar to those of NO₂. In the
present study, the global record of “formaldehyde_tropo-
spheric_vertical_column” during 2019–2021 is adopted as a primary
variate. Supplementary Table 6 provides more details about the
TROPOMI HCHO TroVCD.

CAMSwas the fourth generation of globally gridded atmospheric
reanalysis product from the European Centre for Medium-Range

Article https://doi.org/10.1038/s41467-024-55450-0

Nature Communications |          (2025) 16:102 9

www.nature.com/naturecommunications


Weather Forecasts52. Based on the mechanisms of physics and chem-
istry, CAMS can providemultiple chemical components by integrating
simulations of chemical transport model with worldwide measured
data. The general spatial and temporal resolutions for CAMS were
0.75° and 3-hour, respectively. CAMS reanalysis product has been
extensively exploited for previous atmospheric works over the globe52,
which suggested its reliable data quality. In this study, the global
record of “ozone_mass_mixing_ratio” (O₃ profile) from 2019 to 2021 is
selected as a primary variate to introduce the apriori information of
ambient O₃ into the model. Considering that ground truths were
MDA8 ambient O₃ concentrations, the daily maximum 9-hour aver-
agedO₃profile is employed. Supplementary Table6 shows the specific
information of the CAMS O₃ profile.

Similar to CAMS, ERA5 reanalysis product was also devised by the
European Centre for Medium-Range Weather Forecasts60, which
involved simulations of chemical transport model and actual mea-
sured data. In general, ERA5 can generate atmospheric/surficial para-
meters with spatial and temporal resolutions of 0.25° and hourly,
respectively. In our study, the records of solar radiation intensity (i.e.,
“surface_solar_radiation_downwards”) and several meteorological
fields are regarded as auxiliary variates for modelling global ambient
O₃ concentrations during 2019–2021. Attributed to that ground truths
are MDA8 ambient O₃ concentrations, the MDA8 solar radiation
intensity, air temperature, and dew point temperature are utilized. As
for other meteorological fields, the hourly values for each day are
averaged in this study. Detailed information can be referred to in
Supplementary Table 6.

Previous works broadly adopted the geographic elements as
auxiliary inputs of themodel8,9,20,21,61 due to their significant association
with the spatial distribution of ambient O₃. In this study, the normal-
ized differential vegetation index (NDVI)62 and land use classes63 from
the moderate resolution imaging spectroradiometer (MODIS) with
LandScan population density64 worldwide are deemed as auxiliary
variates to increase the robustness of the model. Supplementary
Table 6 lists the specific details of geographic elements.

GEOS-CF was developed by NASA in 2021, including two versions:
forecast and replay (improved through reanalysed meteorological
fields)56. It can produce various global atmospheric chemical compo-
nents based on simulations of chemical transport model, with spatial
and temporal resolutions of 0.25° and hourly, respectively. In the
present study, the replay record of “surface_ozone” is exploited in the
validation for comparison with the modelled MDA8 ambient O₃ con-
centrations globally.More information about GEOS-CF can be found in
Keller et al. 56.

Data preprocessing
The surface emissions of O₃ precursors had continuous and compli-
cated impact on ambient O₃ distribution65–67. Therefore, the NO₂ and
HCHOTroVCD are averaged to acquiremonthly data, which reflect the
conditions for surface emissions of O₃ precursors in our study.
Meanwhile, the average bymonth can reducedata noise (especially for
HCHO TroVCD68) and improve the coverage of available values.

Afterward, the data interpolating empirical orthogonal functions
(DINEOF) method69 is employed to recover the missing information in
monthly NO₂ TroVCD, HCHO TroVCD, and NDVI, relying on their
spatiotemporal self-correlation. The brief procedures of the DINEOF
method are as follows: 1) Initialize missing values and unfold the
3-dimensional origin data to a 2-dimensional matrix (M) along the
spatial dimension; 2) Decompose M using the singular value decom-
position; 3) Reconstruct a matrix Mr with top-k singular values and
replace the missing values of M with those of Mr; and 4) Repeat the
procedures of 2) and 3) until the errors reach a pre-determined
threshold and reshape M to final results according to the origin
dimensions. More details of the DINEOF method can be referred to in
Alvera-Azcárate et al. 69. Supplementary Table 7 shows the simulated

experiment results of the DINEOF method. The missing masks for
validation in the simulation are acquired from the real scenes of origin
products. As listed, the imputed results in monthly NO₂ TroVCD,
HCHO TroVCD, and NDVI present expected accuracy via the DINEOF
method, with the correlation coefficient (CC) of 0.85, 0.8, and 0.91,
respectively.

Furthermore, the spatial resolutions of various variates need to be
consistent in our study.Considering the spatial resolutionof TROPOMI
products (~ 5 km), a global grid of 3600× 7200 (0.05°) is adopted. To
be specific, the monthly NO₂ and HCHO TroVCD are re-sampled to
0.05° through the nearest neighbouring interpolation70. The re-
sampling methods for other variates are inverse distance weighted
interpolation71 and area-weighted aggregation72 (Supplementary
Table 6).

Remote-sensing and reanalysis products were gridded data with
various spatial and temporal resolutions,while the applicable rangesof
in-situ measurements only focused on small regions. Therefore, it is
required to unify the spatial and temporal dimensions between grid-
ded data and ground truths. Initially, the variates with multiple tem-
poral resolutions, such as monthly NO₂ TroVCD and daily
meteorological fields, are mutually aligned. Next, all the ground truths
falling on the same grid are averaged to collocate with the aligned
gridded data.

Model description
The GL-CEF model includes global, local, and global-local modules,
whichcanadopt global and local knowledgeover station-sparse (or no-
station) and station-dense regions, respectively. Specific information
about the three modules is shown in the following parts.

Global module: as depicted in Supplementary Fig. 9b, a certain
number of collocated grids are firstly given (blue circles). Next, a
transition zone is set in the regions that are [lmin, lmax] from the col-
located grids. If the distance between the target grid i (yellow square)
and its h-th nearest collocated grid is greater than lmax, i is deemed as
station-sparse, and the global module should be exploited for the
estimation (G-value). In our study, the global module utilizes all col-
located samples in the modelling, which adopts the deep forest73 (see
the SupplementaryMethods for details) as the global sub-model. The
general expression of the global sub-model is defined in Eq. (1).

VGO3 = FGðVTHCHO,VTNO2,VCAMS,VESRI ,VEMF ,VGE ,VTC Þ ð1Þ

where VGO3 represents the modelled MDA8 ambient O₃ concentra-
tions through the global sub-model (G-value). FG stands for the global
sub-model based on the deep forest. VTHCHO, VTNO2, VCAMS, VESRI , and
VEMF indicate the TROPOMI HCHO TroVCD, TROPOMI NO₂ TroVCD,
CAMS O₃ profile, ERA5 solar radiation intensity, and EAR5 meteor-
ologicalfields.VGE denotes geographic elements, includingNDVI, land
use classes, and population density. VTC signifies the temporal
encoding74. Supplementary Table 8 lists the parameters of the global
sub-model designed in this study.

Local module: as illustrated in Supplementary Fig. 9c, if the dis-
tance between the target grid i and its h-th nearest collocated grid is
less than lmin, i is regarded as station-dense, and the local module
ought to be adopted for the estimation. The localmodule involves two
highlights: sliding block strategy and variable local sub-model.

Sliding block strategy. Previous localized methods15,19,20 normally
built independent sub-model for each target grid, which yielded
commendable performance but required large time consumptions.
These methods were likely unfit for the global modelling task. As a
result, the sliding block strategy is proposed for the fast training of
local sub-models in our study. Related procedures are as follows. A
sliding block with the radius of r is first selected and then traverses all
the target grids with the step size of s. To ensure that collocated
samples can smoothly change in adjacent sliding blocks, a buffer
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distance of db is introduced, which is larger than r. If the collocated
samples in some sliding blocks are too few (<cm), they should be
discarded. Next, the collocated samples in each sliding block are uti-
lized for the independent modelling, which can generate several well-
trained local sub-models. The local sub-models trained by the nearest
N sliding blocks from the target grids are adopted for their inter-
mediate estimation (Ls-values). Finally, the Ls-values are aggregated to
acquire the modelled result (L-value). In addition, if the collocated
samples included in a few adjacent sliding blocks remain unchanged,
they need to be discarded. This can avoid multiple identical local sub-
models that likely lead to discontinuous modelled results. Supple-
mentary Table 8 shows the parameters of the sliding block strategy
devised in this study.

Variable local sub-models. Generally, the complexity of themodel
is supposed to be positively correlated with the number of collocated
samples. In our study, the variable local sub-models are developed
deriving from the light gradient boosting machine75 (see the Supple-
mentary Methods for details). The parameters of variable local sub-
models can automatically vary depending on the number of collocated
samples, whose key parameters (see bold fonts in Supplementary
Table 8) are determined as provided in Eq. (2).

p=

pmin, cou<qmin

Rou cou�qmin
qmax�qmin

× pmax � pmin

� �
+pmin

� �
,qmin < cou< qmax

pmax, cou≥qmax

8
><

>:
ð2Þ

where pmin and pmax stand for the minimum and maximum of
key parameters, respectively. qmin and qmax represent the minimum
and maximum of number thresholds, respectively. cou is the
number of collocated samples.Rouð�Þ indicates the rounding function.
The general expression of the variable local sub-models is defined in
Eq. (3).

VLO3 =
1
N

XN

n= 1

FVLnðVTHCHO,VTNO2,VCAMS,VESRI ,VEMF ,VTC Þ ð3Þ

where N denotes the number of variable local sub-models. VLO3
signifies the modelled MDA8 ambient O₃ concentrations (L-value)
aggregated from the intermediate estimation through the variable
local sub-models (Ls-values). FVLn indicates the n-th VLSM deriving
from the light gradient boosting machine. It is worth noting that the
inputs of variable local sub-models discard geographic elements,
which ensures their collocated samples can present sufficient
temporal differences.

Global-local module: as displayed in Supplementary Fig. 9d, a
transition zone is set to smooth the modelled results in the connec-
tions of global and local modules. Regarding the target grid i in the
transition zone, the modelled results of global (G-value) and local (L-
value) modules are merged using a geospatial weighting method.
Related weights are defined in Eqs. (4)–(6).

VWO3 =VGO3 ×w1 +VLO3 ×w2 ð4Þ

w1 =
l21

l21 + l
2
2

ð5Þ

w2 =
l22

l21 + l
2
2

ð6Þ

where VWO3 indicates the MDA8 ambient O₃ concentrations after
geospatial weighting (W-value). l1 and l2 stand for the distances
between i and two boundaries (lmin and lmax) of the transition zone,
respectively.

Validation scheme
The spatial performance of the GL-CEF model need to be emphati-
cally validated. Hence, the SICV and TESICV schemes of 5 folds are
utilized in the present study, which focus on spatial accuracy and
spatiotemporally predictive ability, respectively. As depicted in
Supplementary Fig. 6a, all the collocated samples are first divided
into 5 folds based on spatial locations in the SICV scheme. Next, the
GL-CEF model will be trained and validated using 80% (4 folds) and
20% (1 fold) of the collocated samples, respectively. Finally, the
above step should be repeated 4 times until each fold has been
adopted. As for the TESICV scheme, the only difference is that the
training and validation sets came from 2020–2021 and 2019,
respectively. In our study, the global imputed and modelled results
are verified with the help of 5 metrics: R2, as defined in Eq. (7); CC, as
defined in Eq. (8); RMSE, as defined in Eq. (9); relative percentage
error (RPE), as defined in Eq. (10); and mean bias, as defined in Eq.
(11).
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mean bias =
1
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X
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where k represents the number of collocated samples. v̂, v, and �v stand
for the modelled, benchmark, and mean benchmark values,
respectively.

Population exposure estimation
In this study, the population-weighted MDA8 ambient O₃ concentra-
tions are acquired using Eq. (12)13,76.

vpw =
P

popi × v̂iP
popi

ð12Þ

where v̂i indicates the modelled MDA8 ambient O₃ concentrations on
grid i. popi stands for the population density on grid i. vpw represents
thepopulation-weightedMDA8ambientO₃ concentrations over target
region. In the meantime, the standard deviation of vpw (i.e., stdpw) is
computed with Eq. (13)57,77.

stdpw =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
popi × ðv̂i � vpwÞP
popi × ðe� 1Þ=e

s

ð13Þ

where e signifies the grid count of the population density exceeding 0.
Moreover, the exposure levels during a period are calculated by Eq.
(14)77,78, which temporally cumulates the MDA8 ambient O₃ con-
centrations on each grid.

ELU,D Ux ,Dy

� �
=

P
popi × IU,D Ui >Ux ,Di > Dy

� �

P
popi

× 100% ð14Þ

where ELU,DðUx ,DyÞ reflects the fraction of the population exposed to
MDA8 ambient O₃ concentrations > Ux ppb for more than Dy days.
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IU,DðUi >Ux ,Di >DyÞ denotes positive as the day count of MDA8
ambientO₃ concentrations >Ux ppb surpassesDy days. Otherwise, it is
configured to negative.

Mortality burden estimation
In the present study, the long-term all-cause mortality burden due to
O₃ exposure is computed according to a log-linear exposure-response
function between ambient O₃ and premature deaths from epidemio-
logical researches. The all-cause diseases are defined by A00 to R99 in
the International Classification of Diseases 10. The full procedures can
be expressed as Eqs. (15)–(18)2,11,34,79.

RRi = e
γðvmi�vs Þ ð15Þ

where RRi represents the pooled relative risk on grid i. γ indicates the
pooled effect value of long-term ambient O₃ exposure for all-cause
deaths from a worldwide meta-analysis involving 226 million
participants36, with a value of 1.39 × 10−3 (95% CI: 8.9597 × 10−4,
1.8822 × 10−3) per ppb. This suggests that an increment of 10 ppb in
warm-season MDA8 ambient O₃ concentrations is associated with a
pooled relative risk of 1.014 (95% CI: 1.009, 1.019) for long-term
exposure. vmi is the warm-season modelled MDA8 ambient O₃
concentrations on grid i. vs stands for the long-term threshold of
counterfactual concentrations advised by WHO in 202180, which
denotes its AQG (30.07 ppb) as the starting point.

paf i = 1�
1

RRi
ð16Þ

where paf i reflects the PAF on grid i, indicating the proportion of
mortality burden thatwill be eliminatedwhen ambient O₃ is decreased
to the threshold of counterfactual concentrations (30.07 ppb for long
term).

tpaf =
P

popi ×paf iP
popi

ð17Þ

dea =
X

popi × tpaf ×mor ð18Þ

where tpaf signifies the PAF over target region. dea denotes the
annual long-term O₃-attributable deaths over target region. mor
indicates the annual baseline mortality from the GBD 202112 over
target region. For different land use classes, tpaf is acquired using the
population of a single class.

As for short-termO₃ exposure, the associated all-cause deaths are
also calculated through Eqs. (15)–(18). By comparison, γ can be
obtained from another worldwide meta-analysis for short-term all-
cause deaths, with a value of 8.5627 × 10−4 (95% CI: 6.7736 × 10−4,
1.035 × 10−3)35 per ppb. This demonstrates that an increment of 10 ppb
in MDA8 ambient O₃ concentrations is associated with a pooled rela-
tive risk of 1.0086 (95%CI: 1.0068, 1.0104) for short-term exposure. vmi

stands for themodelledMDA8 ambient O₃ concentrations on grid i. vs
indicates the short-term threshold of counterfactual concentrations
provided by WHO in 202180, which deems its AQG (50.11 ppb) as the
starting point. The daily PAF is first accumulated and then averaged to
acquire the annual value for the short-term O₃ exposure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data of in-situ O₃measurements is available from the Open Air Quality
(https://openaq.org), China National Environmental Monitoring

Center (http://www.cnemc.cn), US Environmental Protection Agency
(https://www.epa.gov), and European Environment Agency (https://
www.eea.europa.eu/en/); Data of NO₂ and HCHO TroVCD from the
TROPOMI can be accessed at the Copernicus Open Access Hub
(https://scihub.copernicus.eu); Data of CAMS and ERA5 atmospheric
reanalysis products are available at the Copernicus Atmosphere Data
Store (https://ads.atmosphere.copernicus.eu) and Copernicus Climate
Data Store (https://cds.climate.copernicus.eu), respectively; Data of
LandScan population density and MODIS NDVI/land use classes are
open-access at the Oak Ridge National Laboratory (https://landscan.
ornl.gov) and NASA Level-1 and Atmosphere Archive & Distribution
System Distributed Active Archive Center (https://ladsweb.modaps.
eosdis.nasa.gov), respectively;Data of ambientO₃product fromGEOS-
CF is available at theNASAGoddardSpaceFlight Center (https://gmao.
gsfc.nasa.gov); Results of theGBD2021 canbe accessed at the Institute
for Health Metrics and Evaluation (https://vizhub.healthdata.org/gbd-
results/). Modelled daily spatiotemporally continuous 0.05-degree
ambient O₃ dataset worldwide generated in this study has been
deposited on the Zenodo databasewith public availability (https://doi.
org/10.5281/zenodo.13386462)81. Source data are provided with
this paper.

Code availability
Relevant code can be accessed from the corresponding authors on
request or from the GitHub with public availability (https://github.
com/nuist-wy/global_ozone_pollution)82.
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