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Integrating artificial intelligence with
mechanistic epidemiological modeling:
a scoping review of opportunities and
challenges

Yang Ye1, Abhishek Pandey 1, Carolyn Bawden2,3, Dewan Md. Sumsuzzman 3,
Rimpi Rajput1, Affan Shoukat 4, Burton H. Singer5, Seyed M. Moghadas 3 &
Alison P. Galvani 1

Integrating prior epidemiological knowledge embedded within mechanistic
models with the data-mining capabilities of artificial intelligence (AI) offers
transformative potential for epidemiological modeling. While the fusion of AI
and traditional mechanistic approaches is rapidly advancing, efforts remain
fragmented. This scoping review provides a comprehensive overview of
emerging integrated models applied across the spectrum of infectious dis-
eases. Through systematic search strategies, we identified 245 eligible studies
from 15,460 records. Our review highlights the practical value of integrated
models, including advances in disease forecasting, model parameterization,
and calibration. However, key research gaps remain. These include the need
for better incorporationof realistic decision-making considerations, expanded
exploration of diverse datasets, and further investigation into biological and
socio-behavioral mechanisms. Addressing these gaps will unlock the syner-
gistic potential of AI and mechanistic modeling to enhance understanding of
disease dynamics and support more effective public health planning and
response.

Epidemiological modeling is a powerful tool for understanding the
dynamics of infectious diseases and guiding public health decisions
and policies1–5. Mechanistic models, grounded in the known governing
laws and physical principles of disease transmission, have been widely
used to investigate various infectious diseases, including respiratory
infections6–8, sexually transmitted diseases9,10, and vector-borne
diseases11,12. Unlike empirical models, which primarily focus on data
fitting without necessarily incorporating the underlying causes of
observed patterns, mechanistic models aim to explain how and why
epidemics unfold.

Despite their utility for predicting and controlling the spread of
infectious diseases, traditional mechanistic models, such as the clas-
sical susceptible-infected-recovered (SIR) structure, face several chal-
lenges. First, the reliability of these models depends heavily on the
accuracy of estimated parameters governing transmission
dynamics5,13,14. However, current models are often constrained by
simplifications and data availability. For example, disease transmissi-
bility, though modeled as dynamic, is frequently calibrated using lag-
ged and potentially incomplete death or hospitalization data.
Similarly, human contact patterns, crucial for understanding
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transmission, are often assumed to be static due to limited access to
high-quality, real-time data. Furthermore, the impact of interventions
is typically modeled using linear terms, failing to fully capture the
complex interplay between public responses and pathogen evolution.
Second, despite the wealth of epidemiological knowledge encoded in
unstructured and multimodal data sources (e.g., satellite imagery,
social media, electronic health records), their incorporation into
mechanistic models has largely relied on manual feature extraction,
hindering the effective utilization of the richness of these data15–17.
Third, the rise of big data18,19 has spurred the development of more
complex mechanistic models that offer granular and detailed
descriptions of disease dynamics20,21, but also increase the computa-
tional resources required for model calibration and validation, epi-
demic simulation, and optimization.

Recent advances in artificial intelligence (AI), especially machine
learning (ML) and deep learning (DL), offer promising solutions to
overcome the challenges and limitations of traditional epidemiological
modeling using mechanistic models22–26. AI techniques demonstrate
exceptional capabilities in predicting future outcomes, processing
diverse databases, and extracting nuanced patterns and insights from
big data. Various AI-based approaches have been successfully
deployed for healthcare applications27–30, including medical image
analysis, drug discovery, clinical outcome prediction, and treatment
optimization. The potential of AI to transform epidemiological mod-
eling has been actively explored across disciplines31–34. One line of
research focuses on purely AI-driven predictive models35–37, as alter-
natives to traditional mechanistic models. Although these predictive
models may perform well in short-term epidemic forecasting, their
lack of underlying mechanisms limits their utility for long-term plan-
ning and scenario analysis. Integrated models, which combine the
data-mining capabilities of AI techniques with the explanatory power
of mechanistic models, are gaining significant attention. Despite the
wide spectrum of AI methods, current integrations with mechanistic
epidemiological models are predominantly limited to traditional sta-
tistical models, particularly for parameter inference and model
calibration38–41. Explorations on emerging ML and DL techniques,

though promising and rapidly expanding, remain fragmented due to
the complexity of these techniques and interdisciplinary commu-
nication challenges. Bridging this gap is crucial to fully harnessing the
power of AI to advance epidemiological modeling.

Existing reviews on emerging AI applications in infectious disease
management have primarily focusedonclinical aspects (e.g., diagnosis
and treatment), drug discovery, and purely AI-driven predictive
models18,42–45. Some reviews have provided overviews of AI applica-
tions in infectious disease surveillance46–48, offering vistas into the
integration between AI and mechanistic models; however, a compre-
hensive review dedicated specifically to this integration is lacking. This
scoping review aims to address this gap by systematically synthesizing
literature in this emerging field. We identify solutions with the
potential to address the immediate need in epidemiological modeling
from various disciplines, outline the gaps between research and real-
world applications, and highlight promising research directions for
utilizing integrated models to provide data-driven policy guidance.

Results
Study selection and characteristics
Our search produced 15,460 studies (15,422 from database search, 17
through backward citation search, and 21 through manual search of
relevant journals and conference proceedings). After eliminating 6267
duplicates, 9193 studies were screened. Of these, 807 studies
advanced to the full-text review, and 245 studies were ultimately
included in this scoping review (Methods, Fig. 1). The characteristics of
these studies are provided in Supplementary Appendix 5.

The studies spanned various application areas of integrated
models for diverse infectious diseases. Overall, 26 infectious diseases
were investigated using integrated models (Supplementary Appen-
dix 6). Themajority of these studies focused onCOVID-19 (148 studies,
60%), followed by influenza (18 studies, 7%), dengue (4 studies, 2%),
and HIV (3 studies, 1%). Additionally, 56 studies (23%) used hypothe-
tical disease scenarios to demonstrate method applicability rather
than investigating specific diseases. The recent surge in COVID-19
research has notably increased the volume of studies integrating AI

15422 records identified through database search
1382 PubMed
3342 Embase

2003 Web of Science
4574 Scopus

3317 IEEE Xplore
804 ACM Digital Library�

38 records identified through other methods
17 through backward citation search

21 through manual search

9193 records screened against title and abstract�

6267 duplicates removed�

807 full-text articles accessed for eligibility�

8386 records excluded�

245 articles included in the scoping review�

562 full-text articles excluded�
301 not using eligible AI techniques or mechanistic epidemiological models

138 no integration of AI techniques and mechanistic
epidemiological models

56 not studying infectious disease epidemiological modeling
17 duplicates

16 not reporting original research
13 not published in peer-reviewed journals or�proceedings of conferences,

workshops, or symposiums
11 provided only frameworks

5 English translation not available
4 full-text not available

1 retracted

Fig. 1 | PRISMA flowchart detailing the search strategy, screening process, and article selection.
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with epidemiological models, with 217 (89%) of the included studies
published between 2020 and 2023. Despite the increase in research
study volume, the distribution of application areas for integrated
models remained consistent over time (Fig. 2). We grouped the
application areas into six primary categories (Fig. 2, Box 1, Supple-
mentary Appendix 6): infectious disease forecasting (86 studies, 35%),
model parameterization and calibration (77 studies, 31%), and disease
intervention assessment and optimization (72 studies, 29%), followed
by retrospective epidemic course analysis (16 studies, 7%), transmis-
sion inference (9 studies, 4%), and outbreak detection (7 studies, 3%).
These categories are not mutually exclusive, indicating that a single
integrated model can serve multiple application areas.

Infectious disease forecasting
Among the included studies, 86 reported on the use of integrated
models for infectious disease forecasting (Supplementary

Appendix 7). Nearly all of these studies validated their proposed
forecasting frameworks with real-world datasets, and 76 studies (88%)
used COVID-19 datasets.

One study used a hierarchical clustering approach to group
regions with similar disease activity patterns, partially determined by
epidemiologicalmodels49. This approach allowed for the identification
of regions with synchronized disease activity and the generation of
cluster-based predictions. One study predicted case numbers using
tree-based models, with input features informed by an epidemiologi-
cal model50. Two studies leveraged tree-based methods, trained on
synthetic datasets generated by epidemiological models, to discern
the relationship between early-phase outbreak situation metrics and
futureepidemic outcomes51,52. Six studies employed ensemble learning
frameworks that combined forecasts from AI and epidemiological
models to improve forecasting performance53–58. Long short-term
memory (LSTM) networks–the most frequently used method–are
adept at learning temporal dependencies from time-series data,
thereby complementing mechanistic models in generating robust
forecasts. Of these six studies, four used weighted averaging to com-
bine forecasts based on historical model performance53–55,57; one uti-
lized stacking, where an LSTM-based meta-model was trained to learn
the optimal way to integrate forecasts from epidemiological models56;
and one employed boosting, where a neural network learned to cor-
rect errors in the epidemiological model’s forecasts58.

Twenty-nine studies forecasted epidemic trajectories based on
physics-informed neural networks (PINNs; n = 9)32,59–66, epidemiology-
aware AI models (EAAMs; n = 11)67–77, and synthetically-trained AI
models (n = 9)78–86. PINNs represented state variables and other time-
varying parameters as neural networks with the input time t. The loss
function of PINNs consists of two components: (i) the data loss,
reflecting the disparity between neural network outputs and actual
data, and (ii) the residual loss, ensuring adherence to disease trans-
mission mechanisms represented by differential equations. By incor-
porating epidemiological knowledge into neural networks through
residual loss, PINNs exhibit enhanced performance in parameter
inference and disease forecasting. PINNs extrapolated future state
variables using time steps over the forecast period as input. In con-
trast, EAAMs offered more adaptable model structures and
knowledge-infusing frameworks that extended standard AI models,
such as recurrent neural networks (RNNs) and graph neural networks
(GNNs), by assimilating epidemiological knowledge into the archi-
tectures, loss functions, and training processes of AI models.
Synthetically-trained AI models employed time series or

BOX 1

Application areas of epidemiological modeling

Infectious disease forecasting Infectious disease forecasting aims to predict the future trajectory of disease outbreaks using epidemiological
models304,305.

Model parameterization and calibration Model parameterization and calibration are the processes of determining the optimal values of
epidemiological model parameters. Parameterization involves assigning values to model parameters, while calibration adjusts these values to
ensure the model’s outputs align closely with real-world observations306,307.

Disease intervention assessment and optimization Disease intervention assessment and optimization utilize epidemiological models to
evaluate the potential impact of interventions (e.g., vaccination campaigns and contact tracing programs) and identify the optimal strategies
under constraints such as cost and feasibility308–310.

Retrospective epidemic course analysisBy reconstructing epidemic trajectories under various factors such as pathogen transmissibility and
human behavior, retrospective epidemic course analysis aims to illuminate how these factors contribute to disease transmission patterns,
thereby identifying key factors and informing future preparedness efforts311,312.

Transmission inference Transmission inference utilizes observed data, such as case counts, contact tracing information, and genome
sequences, to unravel the underlying disease transmission patterns, enabling the implementation of targeted control measures313,314.

OutbreakdetectionOutbreak detection aims to identify the emergenceof newdisease outbreaks or unusual case surges of existingdiseases.
Early detection enables a rapid public health response that can potentially limit the spread of a disease and mitigate its impact315.
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Fig. 2 | Number of studies satisfying the inclusion criteria, stratified by infec-
tious diseases investigated, application areas, and year of publication. A list of
investigated infectious diseases can be found in Supplementary Appendix 6.
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spatiotemporal forecastingmodels, such as LSTMnetworks andGNNs,
for infectious disease forecasting. These models acquire epidemiolo-
gical insights by learning transmission mechanisms from synthetic
datasets generated by epidemiological models. Such integrated
approaches surmount the limitations of methodological frameworks
that rely solely on mechanistic or AI models, which may be computa-
tionally impractical when surveillance data are noisy or sparse.

Forty-seven studies adopted AI-augmented epidemiological
models, which replaced parts of epidemiological models (e.g., model
parameters, derivatives, or derivative orders) with AI components.
These AI components were employed to predict future values of epi-
demiological model parts, which were subsequently inputted for
forecasting. Among these, eight studies employed end-to-end training
of AI-augmented epidemiological models87–94. When inserting epide-
miological model parts directly or indirectly approximated by AI
models into numerical solvers, AI-augmented epidemiological models
can produce estimated observational data, which were used to train AI
models by minimizing the loss function designed based on the dif-
ference between actual and estimated observations. Thirty-seven stu-
dies forecasted unknown components in epidemiological models
based on supervised learning frameworks, where AI models (primarily
RNNs) were trained on synthetic data generated by epidemiological
models or historical component values95–131. Two studies did not spe-
cify their component learning frameworks132,133.

Model parameterization and calibration
Seventy-seven studies explored the use of integrated models for
parameterization or calibration of epidemiological models (Supple-
mentary Appendix 8). Among these, four studies employed AI tech-
niques to improve observational data by extracting auxiliary
information from non-traditional surveillance sources, such as social
media content and search trend data134–137. The improved observa-
tional data were then used for precise parameterization and calibra-
tion of epidemiological models, investigating diseases including
COVID-19 and influenza. Two of these studies utilized support vector
machines (SVMs) or tree-based methods to generate disease activity
data by inferring individuals’ health status from social media
content134,136. Another study employed tree-based methods to refine
observed data and estimate unobserved data by supplementing tra-
ditional surveillance data (specifically, laboratory-confirmed influenza
hospitalizations) with search trend data137. The final study used tree-
based methods to determine the relative importance of various non-
pharmacological interventions in modifying the transmission rate
within the epidemiological model135.

The remaining 73 studies implemented AI-enhanced calibration
methods using three main approaches: surrogate modeling (n = 13),
synthetically-trained scenario classifiers (n = 5), and direct parameter
calibration (n = 56). In surrogate modeling-based calibrationmethods,
lightweight AI-based surrogates of epidemiological models were
integrated into Bayesian138–140 or simulation-based optimization
frameworks86,141,142 to achieve efficient parameter inference, thereby
replacing computationally intensive processes. Trained on datasets
generated by epidemiological models with varying input parameters,
these surrogates learned the relationships between inputs and simu-
lated outputs, thereby acceleratingmodelfitting.Mostof these studies
(9 out of 13) developed surrogates for agent/individual-based models,
primarily due to their high computational demands. Neural networks
were the most frequently used surrogates (10 of 13 studies). Five stu-
dies evaluated the performance of AI-based surrogates using simula-
tion datasets generated by disease-specificmodels. Scenario classifier-
basedmethods reframe parameter inference as classification tasks. To
predict epidemic scenarios characterized by sets of parameters, clas-
sifiers are trained on synthetic data from epidemiologicalmodels143–147.
This approach has been applied to calibrate epidemiological models
for diseases such as influenza and tomato spotted wilt virus infection.

Common classification algorithms, including tree-based methods (4
out of 5) and SVMs (2 out of 5), were frequently employed.

Of the 56 studies employing direct parameter calibration meth-
ods, 29 leveraged PINNs32,59–66,131,148–166, 3 used EAAMs73,74,167, 18 adopted
AI-augmented epidemiological models87,89,91–94,168–179, 4 employed
Bayesian neural networks180–183, and 2 used synthetically-trained neural
networks95,139. In PINN or EAAM-based methods, parameters in epide-
miological models were either represented by AI models or set as
trainable weights, enabling parameter estimations to be updated
during training. Among studies employing AI-augmented epidemio-
logical models, 17 utilized neural networks to estimate model
parameters87,89,91–93,168–179, while one study utilized a regression method
to predict model parameters with unobserved features estimated by
tree-basedmethods94. These AI-augmentedmodels underwent end-to-
end training, similar to the approach discussed in the Infectious Dis-
ease Forecasting section. Bayesian neural networks leverage the cap-
abilities of neural networks in handling high-dimensional data to
enhance parameter inference in Bayesian approaches, including var-
iational and simulation-based inference. These approaches attempt to
approximate the posterior distribution of model parameters given
observed data, especially when faced with intractable likelihood or
marginal likelihood. One study employed variational inference to
jointly infer unknown parameters and latent diffusion processes in the
epidemiological model181. An RNN formed part of the variational
approximation of the joint posterior distribution of the parameters
and diffusion processes, conditional on the observed data. This
approximation was optimized by maximizing the evidence lower
bound (ELBO). Three studies utilized simulation-based inference
techniques to approximate the posterior when the likelihood, impli-
citly defined by epidemiological models, was intractable180,182,183. These
techniques include neural density estimation methods and neural
network-based approximate Bayesian computation184. Methods utiliz-
ing synthetically-trained neural networks, by contrast, involved train-
ing on labeled datasets generated by epidemiological models to
directly predict parameter values from observational data.

Among 77 studies that focused on model parameterization
and calibration, 28 used well-calibrated models for
retrospective disease intervention assessment or future
projections32,59,62,64,87,92,134–137,147,148,150–152,156,160,161,163–165,167–170,174,176,177. Retro-
spective assessments were achieved by analyzing the fitted values of
parameters affected by interventions. Parameter values over the pro-
jection horizon were set as their final values in the training window.

Disease intervention assessment and optimization
Seventy-two studies leveraged integrated models to assess (n = 13) or
optimize (n = 59) the impact of interventions (Supplementary Appen-
dix 9). To accelerate estimating the effectiveness of interventions,
sevenof these studies constructed neural network-based or tree-based
surrogates of epidemiological models185–191. In four studies, AI-
augmented epidemiological models were utilized to establish
relationships between control measures and epidemiological para-
meters. AI models, including tree-based methods, SVMs, and neural
networks, were trained for this purpose31,192–194. The impact of control
strategies was then assessed by incorporating the parameter values
estimated by these AI models into epidemiological models. Addition-
ally, one study employed a cluster-based framework to assess the
effectiveness of large-scale interventions. K-means clusteringwas used
to identify representative areas with distinct archetypes195, after which
an agent-basedmodelwas used to evaluate the impact of interventions
on these areas. Three studies utilized a game-theoretic approach to
assess196 or optimize197,198 control measures using agent-based
models. In these studies, Nash equilibrium was derived using a
neural network approach. Of the 13 studies utilizing integrated
models for intervention assessment, six focused on investigating
COVID-19, one studied malaria, one was plague, one was on dengue,
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and one examined HIV. Three studies did not investigate any specific
disease.

In addition to the game theory-based optimization
frameworks197,198, intervention optimization in integrated models also
used reinforcement learning (RL) (38 studies)34,199–235, key node finding
(10 studies)236–245, optimal control theory (6 studies)93,212,246–249, Markov
decision process (MDP) (1 study)250, and surrogate modeling
(3 studies)251–253 frameworks. In RL-based frameworks, RL environ-
ments were constructed based on epidemiological models to assess
the impact of different intervention strategies. Through interactions
with these environments, RL agents learned the optimal intervention
strategy. In key node finding-based frameworks, AI models were uti-
lized to identify the optimal set of individuals for interventions based
on their attributes. With the exception of one study that used an AI-
augmented epidemiological model to derive node importance236, all
other studies employed synthetically-trained AI models, primarily
GNNs (7 out of 9 studies). These models were trained on datasets
generated by epidemiological models, featuring various source node
sets and transmission network structures, to identify key nodes in
unobserved scenarios.

In optimal control problem frameworks applied to intervention
optimization, obtaining optimal control signals is typically challenging
due to complexities arising from the underlying transmission dynam-
ics. To address this challenge, one study developed a reduced model
for an agent-based model, where neural networks were employed to
approximate transition rates among individuals in different
compartments246. Other studies used neural networks to approximate
decision variables, thereby transforming the optimal control problem
into a parameter learning problem. Identifying the optimal control
strategy parallels training neural networks to minimize the loss func-
tion designed based on the objective function of the intervention
optimization problem.

In MDP-based frameworks, the optimal intervention problem was
translated into a discrete-time MDP, where neural networks approxi-
mated time-dependent control strategies as a function of current
states, similar to the training strategy in the optimal control theory-
based frameworks. In surrogate frameworks for intervention optimi-
zation, AI models were trained to improve the computational effi-
ciencyof identifying optimal control strategies. TheseAImodels, often
tree-based methods, learned decision rules from computationally
intensive non-AI techniques such as search-based optimization
methods.

Among the 59 studies utilizing integratedmodels for intervention
optimization, 25 studies investigated COVID-19, one studied malaria,
one was on foot-and-mouth disease, one was related to influenza, one
studied HIV, one was on porcine reproductive and respiratory syn-
drome, and one examined Zymoseptoria tritici infection. Additionally,
28 studies proposed general methodological frameworks without
investigating any specific disease.

Retrospective epidemic course analysis
Sixteen studies leveraged integratedmodels to retrospectively analyze
past epidemics using surrogatemodeling frameworks (Supplementary
Appendix 10). In 14 of these studies, surrogate models were used to
identify key factors influencing transmission dynamics. This was done
by training the models to recognize dependencies between various
factors and the corresponding simulation outputs254–267. Two studies
used surrogate models to understand how individual characteristics
and behaviors relate during epidemics268,269. Most (13 out of 16) studies
adopted tree-basedmodels. This frameworkwas applied to investigate
COVID-19 (4 studies), influenza (3 studies), dengue (1 study), enter-
ovirus infection (1 study), brucellosis (1 study), foot-and-mouthdisease
(1 study), smallpox (1 study), pertussis (1 study), SARS (1 study), and
varicella zoster virus infection (1 study).

Transmission inference
Nine studies investigated the use of integrated models for transmis-
sion inference (Supplementary Appendix 11), focusing on source
localization (n = 4)270–273, determining the underlying transmission
network or pattern (n = 2)236,274, inferring the health status of unob-
served individuals (n = 1)275, reconstructing disease evolution dynamics
(n = 1)276, and inferring incidence from death records (n = 1)33.

One study defined the COVID-19 transmission mechanism based
on the renewal equation33. This knowledge was then incorporated into
the loss function of a convolutional neural network, which connected
death records with incidence data, similar to the PINNs/EAAMs
described previously. The other eight studies relied on individual-
based disease models. Due to challenges in obtaining real-world indi-
vidual-level disease transmission networks, the majority (6 out of
8 studies) proposed general methodological frameworks and eval-
uated their performance using hypothetical networks and disease
transmission scenarios. Only two studies validated their methods
using real-world COVID-19 or tuberculosis datasets272,274.

Among studies employing individual-level models, one study
formulated transmission inference as an optimal control problemwith
the unknown network structure treated as the control variable, the
underlying transmission dynamics as constraints, and the difference
between actual and estimated observations as the objective
function236. The problem was then solved using a neural network
approach. Another study employed a tree-based classifier to infer the
health status of unobserved individuals based on their attributes.
Disease propagation properties derived from epidemiological models
were used as features in the classifier275.

The remaining six studies employedAImodels trainedondatasets
generatedby epidemiologicalmodels. These trainedmodelswere then
applied to unseen synthetic or real-world data to infer transmission
dyanamics270–274,276, such as generating source probability
distribution272,273 or identifying the underlying transmission pattern
(e.g., homogeneous transmission and super-spreader transmission)274.
GNN-basedmodelswere commonlyused in 5 out of 6 studies, owing to
their ability to learn the intricate structures of transmission networks
and dynamics on networks.

Outbreak detection
Seven studies reported on the use of integrated models for outbreak
detection (Supplementary Appendix 12). Among these, two studies
formulated the problem of COVID-19 outbreak detection as a classifi-
cation problem, where tree-based, SVM-based, or multilayer percep-
tron (MLP) classifierswere trained topredict theoutbreak risk level in a
region based on its associated features277,278. Three studies estimated
the outbreak risk of vector-borne diseases using epidemiological
models parameterized by tree-based or Natural Language Processing
(NLP) methods279–281. The final two studies gauged influenza outbreak
risks using posterior probabilities of epidemiological models in the
presence and absence of outbreaks282,283. Specifically, NLP methods
were used to extract patient diagnosis data from emergency depart-
ment reports, which were then input into Bayesian frameworks to
derive the posterior probabilities for model selection.

Summary of integration methodologies
We identified nine primary methodological frameworks (Fig. 3, Sup-
plementary Appendix 16), with surrogate modeling/synthetically-
trained AI models comprising the largest proportion at 28% (68 stu-
dies). AI-augmented epidemiological models accounted for 26%
(64 studies), AI-enhanced optimization frameworks made up 20%
(48 studies), and PINNs and EAAMs collectively represented 17%
(42 studies). Epidemiological models utilizing improved observational
data appeared in 4% (9 studies), Bayesian neural networks in 3%
(7 studies), ensemble learning frameworks in 2% (6 studies), AI models
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incorporating epidemiological input features in 1% (3 studies), and
cluster-based transmission analysis frameworks in 1% (2 studies).

Seven integration approaches were adopted across methodolo-
gical frameworks (Fig. 4). Nearly half (112 studies) of the studies
employed AI models to learn unknown components of epidemiologi-
cal models, enabling the incorporation of time-varying components
and diverse datasets into disease modeling. Other common integra-
tion approaches (76 studies) included training AI techniques using
data generated from epidemiological models. These approaches were
used to learn disease transmission mechanisms, build surrogates for
faster estimation and evaluation of model outcomes, or overcome the
limitations of scarce and low-quality real-world data by leveraging
synthetic datasets. Additionally, 73 studies demonstrated the integra-
tion of epidemiological knowledge into the input, loss functions,
architectures, and learningprocesses of AImodels. Forty-seven studies
utilized AI models, primarily RL and optimal control theory-based
frameworks, to determine optimal decisions under dynamic disease
spreading processes. Only ten studies employed AImodels to enhance
observational data by extracting auxiliary information from non-
traditional surveillance data, while six studies combined AI and

epidemiological models through ensemble modeling frameworks to
improve epidemic forecasting performance. Finally, one study used
clusteringmethods todecompose large-scale epidemiologicalmodels.

Measures of quality
Among the 178 articles published in peer-reviewed journals, 14 (8%) did
not list an impact factor, and 15 (8%) lacked a listed h5-index in Google
Scholar (Supplementary Appendix 13). Seventy-four articles (42%)were
published in quartile 1 (Q1) journals, meaning their impact factors were
higher than thoseof at least 75%of journals in the samesubject domain.
Of the 67 articles published in the proceedings of conferences, work-
shops, or symposiums, 15 (22%) lacked a listed h5-index in Google
Scholar. Additionally, 75 articles (26 published in peer-reviewed jour-
nals and 49 published in the proceedings of conferences, workshops,
or symposiums) did not have citation information in Web of Science.

Discussion
The rapid expansion of big data and advancements in computational
capacity have greatly broadened the integration of AI techniques with
mechanistic epidemiological modeling. This scoping review identified

Fig. 3 | Illustrative examples of the methodological frameworks employed by
studies satisfying the inclusion criteria. Nine primary frameworks were identi-
fied, including AI-augmented epidemiological models (a), epidemiological models
with improved observational data (b), PINNs/EAAMs (c), AI models incorporating
epidemiological input features (d), surrogate modeling/synthetically-trained AI

models (e), ensemble learning frameworks (f), Bayesian neural networks (g), AI-
enhanced optimization frameworks (h), and cluster-based transmission analysis
frameworks (i). Details of these frameworks can be found in Supplementary
Appendix 16. PINNs physics-informed neural networks, EAAMs epidemiology-
aware AI models.
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and synthesized contributions to this burgeoning field. Among the 245
studies reviewed, nearly 90%werepublishedduring thepast four years,
propelled by the surge in COVID-19 research. We identified 26 infec-
tious diseases that have been investigated using integrated models,
with COVID-19 research constituting 60% of the studies. The applica-
tions of integratedmodels fell into six primary areas: infectious disease
forecasting, model parameterization and calibration, disease inter-
vention assessment and optimization, retrospective epidemic course
analysis, transmission inference, and outbreak detection. The majority
of studies focused on the first three categories. In contrast, fewer stu-
dies addressed retrospective epidemic course analysis, with notably
limited research on transmission inference and outbreak detection,
highlighting potential areas for future exploration. The majority of
studies validated their proposed frameworks using real-world datasets
(Supplementary Appendix 5). However, studies on transmission infer-
ence or intervention optimization often relied on synthetic data due to
a sparsity of real-world data required for validation.

Integrated models have successfully addressed the challenges
posed by mechanistic models in the face of continuously evolving
epidemiological situations. This success has been achieved by lever-
aging AI techniques (Supplementary Appendix 15) to extract valuable
information from diverse databases, uncover hidden spatiotemporal
dependencies within high-dimensional data, discern complex rela-
tionships between variables and outcomes of interest, effectively learn
and transfer knowledge embedded in the data, and introduce meth-
odological innovations within established Bayesian and optimization
frameworks.

Our review identified significant gaps and opportunities in the
literature regarding the use of AI in mechanistic epidemiological
modeling. First, among the six application areas identified in our
review, integrated models stand out for their practical potential to
revolutionize disease forecasting, model parameterization, and cali-
bration in the near future. Traditional mechanistic models, grounded
in human knowledge of disease progression and pathogen character-
istics, have been constrained by their inflexibility in rapidly refining
model structures and parameters to reflect current disease landscapes
and policy priorities5,13. Continuous model refinement is resource-
intensive and time-consuming, potentially leading to more complex
models that are difficult to calibrate. Empowered by AI’s ability to
handle diverse datasets and approximate complex functions, inte-
gratedmodels offer crucial and timely solutions. These advancements
enable the effective utilization of widely available, yet dynamically
evolving and intrinsically noisy, non-traditional surveillance data and
facilitate the calibration of increasingly sophisticated mechanistic
models with numerous free parameters. While extensive studies focus
on intervention optimization, most remain theoretical, with limited
demonstrations of practical applicability. For example, despite the
heterogeneity in intervention objectives, most studies formulated the
optimization problemusing oversimplified assumptions about disease
transmission dynamics, decision-making processes, and the costs and
impacts of intervention strategies. Realistic considerations for deci-
sion-makers, such as the reasonableness of model assumptions, the
feasibility of intervention strategies, public responses, and the trade-
offs between disease and socioeconomic outcomes, were frequently
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Integrating epidemiological
knowledge into AI models

Training AI models using
data generated from
epidemiological models

Using AI models to enhance
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Using AI models to learn
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Using AI models to find
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spreading processes
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Fig. 4 | Sankeydiagramvisualizationof study categorization.Theweight of each
edge is proportional to the numberof studies. Edges between application areas and
methodological frameworks are colored based on application areas. Edges
between methodological frameworks and integration approaches are colored

basedon integration approaches. Source data for the Sankeydiagramcanbe found
in Supplementary Appendix 14. PINNs physics-informed neural networks, EAAMs
epidemiology-aware AI models.

Article https://doi.org/10.1038/s41467-024-55461-x

Nature Communications |          (2025) 16:581 7

www.nature.com/naturecommunications


overlooked. Although several studies attempted to incorporate eco-
nomic factors into decision-making processes to balance health ben-
efits and costs, significant gaps remain between proof-of-concept
methods and real-world applications.

Second, while big data has great potential to enhance these
models, the integration of non-traditional surveillance data such as
social media content, search queries, medical reports, and satellite
imagery remains limited. These data types could significantly augment
or even replace traditional data sources in some contexts. For exam-
ple, the transmission of climate-sensitive vector-borne diseases is
influenced by a variety of climate and environmental factors. However,
existing mechanistic models often utilize basic weather data, such as
temperature, rainfall, andhumidity11,284. These data, primarily collected
by meteorological institutions, can be limited by spatial coverage and
temporal resolution. Satellite imagery presents a valuable supplement,
offering real-time, high-resolution data for a wide range of climate and
environmental variables47,285. Previous studies have shown the poten-
tial of integrating satellite data into disease surveillance and forecast-
ing models, utilizing purely AI approaches286–288. This highlights the
ability of AI to extract rich information from satellite data, enabling
mechanistic models to build more comprehensive and dynamic
representations of abiotic and biotic drivers of disease transmission.

Third, disease transmission is a complex process influenced by a
confluence of epidemiological, biological, and socio-behavioral fac-
tors. However, existing integrated models focus predominantly on
epidemiological aspects, often neglecting the intricate interplays
between biological and socio-behavioral processes5,289. This omission
constrains the models’ utility for in-depth analysis, long-term fore-
casting, and strategic decision-making. These observations under-
score the need for broader data integration and the development of
new analytical tools capable of generating detailed, timely, and high-
resolution insights into disease dynamics and evolution, policy
impacts, and population behavior. The successful application of AI
techniques across related fields290–292, including sociology and biology,
creates opportunities to bridge this gap. For instance, agent-based
models, equipped with large language models to enable human-like
reasoning and decision-making, have demonstrated remarkable suc-
cess in replicating human behaviors293. Incorporating such advance-
ments into agent-basedmodels of infectious diseases, which often rely
on rule-based methods, has the potential to improve the realism of
simulations in capturing complex human behaviors during
epidemics294. Furthermore, machine learning and deep learning
methods, trained on the rapidly growing volume of biological data,
exhibit great promise for forecasting viral evolutionary dynamics and
understanding immunity landscapes295,296.

Fourth, our review reveals a research landscape that is currently
concentrated on direct transmission (especially COVID-19). The dom-
inance of COVID-19 research is likely attributable to the vast amounts
of data collected and shared during the pandemic. However, such
extensive datamay not be available for less prevalent or local diseases,
particularly in low- and middle-income countries with limited surveil-
lance capabilities. The practicality and scalability of most methodolo-
gical frameworks depend on the availability of abundant, high-quality
data, which is often lacking. For instance, GNN-basedmethods require
individual-level contact networks that are frequently unavailable.
Therefore, it is crucial to invest in both enhanced disease surveillance
and research to improve modeling techniques capable of handling
incomplete and noisy data.

Moreover, this narrow focus on direct transmission raises con-
cerns about their generalizability to diseases with indirect transmis-
sion routes. While these models offer valuable insights into common
modeling challenges faced across disease types—such as model cali-
bration, parameter estimation, and capturing the non-linear impacts of
interventions—their lack of consideration of more complex transmis-
sion mechanisms hinders their full potential. For example, models for

vector-borne diseases should account for the vector population
dynamics and the interactions between vector and human popula-
tions. Similarly, models for water-borne diseases require a detailed
representation of environmental factors, such as sanitation infra-
structure and contamination pathways, and human behavioral factors,
such as hygiene practices and access to clean water sources. Tradi-
tionalmechanisticmodels, constrained by simplified assumptions and
parameter uncertainties, face challenges in fully capturing these
complexities. By leveraging AI’s ability to integrate diverse data, learn
complex patterns, and generate accurate predictions, integrated
models can potentially enhance our understanding of underlying
transmission mechanisms, optimizing a balance between model sim-
plification and realism. This enables the application of integrated
models to a broader spectrumof infectious diseases, eachwith unique
challenges requiring tailored AI solutions.

Finally, while this review identified a diverse range of methodo-
logical frameworks, many studies lacked rigorous evaluations of
robustness, sensitivity, and generalizability—all crucial for real-world
application. Addressing these deficiencies in performance evaluation
is essential to increase model transparency and reliability, ultimately
fostering public trust and facilitating wider adoption of these models.
Moreover, the proliferation of methodological frameworks raises
important questions about the relative performance of integrated,
purely AI, and traditional mechanistic models. While integrated mod-
els often outperform simple mechanistic models (e.g., classical SIR
systems), theymaynot surpass those that capture sufficient realism for
practical decision-making. Additionally, although traditional statistical
models fall outside the scope of AI techniques considered in our
review, their integration into mechanistic epidemiological models
remains valuable38. However, comparisons between these integrated
approaches, especially those incorporating traditional statistical
models versus those based on ML/DL, are rarely discussed. For
example, while LSTM networks, with their ability to capture temporal
dependencies, were frequently used in AI-augmented epidemiological
models to predict dynamic model parameters, traditional statistical
models such as autoregressive integrated moving average (ARIMA)
models may be more robust when faced with noisy and scarce time
series data297. Therefore, future research is needed to rigorously
examine the limitations and comparative utility of AI-assisted andwell-
established traditional disease transmission models to guide effective
model selection.

In conclusion, AI techniques and mechanistic epidemiological
models can synergistically enhance one another, leveraging the
strength of AI methods to learn complex input-output relationships
while incorporating the prior epidemiological knowledge embedded
within mechanistic models. This scoping review systematically syn-
thesizes the literature in this field and identifies diverse applications of
integrated models, including disease forecasting, model calibration,
and intervention optimization. While highlighting promising metho-
dological advancements with practical potential, our review also
reveals significant gaps in the current literature. These include the
need for rigorous evaluation and comparisonofmethodologies, better
incorporation of domain expertise in guiding the development of
integrated models for policy-relevant decision-making, and expanded
exploration of diverse datasets and underlying biological and socio-
behavioral mechanisms. By addressing these challenges through
interdisciplinary collaboration, we can unlock the full potential of AI to
enrich the toolkit for epidemiological modeling, ultimately enhancing
our ability to understand, prevent, mitigate, and respond to infectious
disease outbreaks.

Methods
Overview
We conducted a scoping review to synthesize the literature on the
integration of AI techniques, specifically ML and DL models, with
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mechanistic epidemiological models of infectious disease dynamics.
Our methodology adhered to the framework proposed by the Joanna
Briggs Institute (JBI)298 and reporting follows the guidelines for the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR)299. The protocol was
registered prospectively with the Open Science Framework (registra-
tion https://doi.org/10.17605/OSF.IO/E8ZG7) on October 9, 2023. Our
review focuses on three key questions: (i) In which areas of epide-
miological modeling have integrated models been applied? (ii) What
infectious diseases have been modeled using integrated models? (iii)
HowhaveAI techniques andmechanistic epidemiologicalmodels been
integrated?

Eligibility criteria
Our review included studies that integrated AI techniques with
mechanistic models of infectious disease, irrespective of the disease
type or research objective. We included studies published in English
that underwent peer review, whether in journals or in the proceedings
of conferences, workshops, or symposiums. Seven types of mechan-
istic models, commonly used in epidemiological modeling, were
considered eligible for this review: compartmental models, individual/
agent-based models, metapopulation models, cellular automata,
renewal equations, chain binomial models, and branching processes.
Eligible AI techniques include all ML and DL models, excluding statis-
tical models and fuzzy logic systems.We define “integratedmodels” as
those combining mechanistic epidemiological models with AI techni-
ques specifically for transmission analysis and disease intervention
optimization. Studies that constructed AI techniques as alternative
modeling methods, compared the performance of AI techniques with
mechanistic models, or used mechanistic models solely to generate
validation/testing datasets for AI techniques were not considered eli-
gible under this definition. We excluded studies that did not use eli-
gible AI techniques or mechanistic models, did not integrate AI
techniques with mechanistic models, or were not original research
(e.g., reviews, commentaries, and editorial notes). Studies lacking
methodological details, numerical results, or accessible full texts were
excluded. Detailed eligibility criteria and justifications are provided in
Supplementary Appendix 1.

Search strategy
We conducted searches across six databases: PubMed, Embase (Ovid),
Web of Science, Scopus, IEEE Xplore, and ACM Digital Library (the
ACM Full-Text collection). Our search combined six categories of
terms (“AI”, “Epidemic modeling”, “Modeling”, “Infectious disease”,
“Infectious agents”, and “Spreading”) using Boolean operators. We
employed three kinds of search strings: (“AI” AND “Epidemic model-
ing”), (“AI” AND “Modeling” AND “Infectious disease”), and (“AI” AND
“Modeling” AND “Infectious agents” AND “Spreading”). Within each
category, termswere linkedby theBooleanoperator “OR.”Restrictions
on search functionality within IEEE Xplore and ACM Digital Library
required multiple separate searches. We used the Polyglot tool300 to
translate search syntax across databases. Details of the search strings
for each database can be found in Supplementary Appendix 2.

Our initial literature search commenced on October 6, 2023. To
ensure comprehensive results, we updated this search onNovember 7,
2023 and December 6, 2023 to include newly published literature. We
also conducted manual searches of relevant journals and conference
proceedings (e.g., Nature Machine Intelligence and the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining). Finally, we
reviewed the references of all included studies to identify additional
relevant studies.

Selection of sources of evidence
All retrieved records were initially imported into EndNote 20.1301 to
remove duplicates before transferring to Covidence302 for screening

and processing. Three reviewers (YY, AP, and CB) screened titles and
abstracts during the primary screening stage, using the ASReview
software (version 1.5)303 — an open-source, ML-assisted tool for active
learning and systematic reviews — to aid in decision-making (Supple-
mentary Appendix 3). Full-text screening was conducted indepen-
dently by six reviewers (YY, AP, CB, DMS, RR, and AS), with any
discrepancies resolved through team discussion, ensuring adherence
to the inclusion and exclusion criteria throughout the review process.

Data charting and data items
We extracted data from studies satisfying the inclusion criteria using
Covidence and exported the data to Google Forms for further analysis.
We piloted a standardized data extraction form with two members of
the team (Y.Y. and A.P.) on three studies to ensure it captured all
necessary information; the form is available in Supplementary
Appendix 4. The data extraction form was first completed by one
reviewer (Y.Y.), and subsequently verified by another reviewer (A.P.)
for correctness, with any discrepancies resolved through discussion.

Quality assessment
The quality of each included study was assessed through the 2022
journal impact factor (not applicable for proceedings of conferences,
workshops, or symposiums), the h5-index of the publication (journal,
conference, workshop, or symposium) from Google Scholar, and the
number of citations listed in Web of Science as of November 13, 2024.
The h-index is an author-level metric that measures both the pro-
ductivity and citation impact of a publication, and the h5-index is the
h-index for articles published in the last 5 complete years (2018–2022).

Synthesis of results
We tabulated and summarized the characteristics of eligible studies by
grouping them based on their application area, methodological fra-
mework, and integration approach. The application area encompassed
the specific use of integrated models, such as outbreak detection and
forecasting. We also identified the advantages of integrated models
and highlighted the most commonly used AI techniques.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this
published article (and its supplementary information files).
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