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Coverage bias in small molecule machine
learning

Fleming Kretschmer 1, Jan Seipp2, Marcus Ludwig 1,3, Gunnar W. Klau 2 &
Sebastian Böcker 1

Small molecule machine learning aims to predict chemical, biochemical, or
biological properties from molecular structures, with applications such as
toxicity prediction, ligand binding, and pharmacokinetics. A recent trend is
developing end-to-end models that avoid explicit domain knowledge. These
models assume no coverage bias in training and evaluation data, meaning the
data are representative of the true distribution. However, the domain of
applicability is rarely considered in suchmodels. Here, we investigate howwell
large-scale datasets cover the space of known biomolecular structures. For
doing so, we propose a distance measure based on solving the Maximum
Common Edge Subgraph (MCES) problem, which aligns well with chemical
similarity. Although this method is computationally hard, we introduce an
efficient approach combining Integer Linear Programming and heuristic
bounds. Our findings reveal that many widely-used datasets lack uniform
coverage of biomolecular structures, limiting the predictive power of models
trained on them. We propose two additional methods to assess whether
training datasets diverge from known molecular distributions, potentially
guiding future dataset creation to improve model performance.

Machine learning has been successfully used in biochemistry and
chemistry for decades. We consider the task of predicting chemical,
biochemical or biological properties of small molecules of biological
interest from their molecular structure. A recent trend is to develop
end-to-end models that avoid the explicit integration of domain
knowledge via inductive bias1. Noteworthy examples are generative
models for novel antibiotics2 and highly toxic small molecules3, or
classifiers for antibiotic activity4,5, olfactory perception6 and enzyme-
substrate prediction7. The MoleculeNet paper from 2018 presents 17
medium- to large-scale datasets for molecular property prediction8.
These data are frequently used in machine learning to train and eval-
uate new models such as graph neural networks and graphormers;
notably, the paper has received more than 2000 citations in 5 years.

The fact that one should not use a model outside of its domain of
applicability, has been well-known in the chemometrics community.
The situation may be compared to spatial bias, where one uses test

(and training) data from a certain geographic location, but makes
claims about a model’s performance for other geographic location as
well9. Yet, this problem is usually ignored when training large-scale
end-to-end models for predicting molecular properties. Other
models10,11 are pre-trained on larger structure datasets; yet, this cannot
get around the distribution bias in training and evaluation data for
individual molecular properties. Recently, words of warnings have
emerged thatmachine learningmay result in a reproducibility crisis in
science9,12. In particular, the datasets from MoleculeNet have been
criticized13,14. Whereas it is comparatively simple to train a machine
learning model that performs well in evaluations, it is much harder to
derive a model that indeed contributes to solving the underlying
question.

The problem of generalization within a dataset has been exten-
sively researched. For small molecules, the widely-used scaffold split
ensures that evaluation is performed for scaffolds not seen in the
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training data. This allows us to asses a model’s ability to extrapolate to
novel molecular structures. However, doing so does not account for
the differences in distribution of a molecular property13. In particular,
small structural changes can entail large differences in the associated
molecular property to be predicted, a phenomenon known as “activity
cliff”15. Finally, all conclusions drawnon the extrapolation performance
by employing a scaffold split still only apply to the dataset itself and its
own (restricted) chemical space. A model trained and evaluated on a
dataset solely consisting of lipids may generalize well between differ-
ent lipid classes, but there is no reason to assume that it also works for
flavonoids.

To ensure that a model is not used outside of its domain of
applicability, we have to make sure that the data available for training
and evaluating themodel are a representative subset of the spaceof all
molecules of interest. It is understood that a dataset that is not suffi-
ciently comprehensive will not allow us to learn all aspects of the
problem approached. Yet, even for datasets that contain many thou-
sands of samples, the choice of small molecules included in any such
dataset is often far from random. For datasets that rely on experi-
mental measurements, it is instead governed by availability of com-
pounds and, hence, often by monetary aspects. The availability of a
compound depends on aspects such as difficulty of chemical synth-
esis, commercial availability of precursor compounds, and similar
considerations from synthetic chemistry and biotechnology. The
lower the availability of a compound, the higher the price, and the less
likely this compound can be found in large-scale datasets. Clearly, this
introduces bias into the training data. For datasets with experimental
measurements, unavailability of certain compounds is not going to
change in the near future.

To consider the training data distribution for small molecules
necessitates some way of estimating the similarity or dissimilarity
between molecular structures. Unfortunately, this is a highly intricate
problem, and is currently being approached in two ways with indivi-
dual shortcomings: Firstly, molecular fingerprints allow for a swift
processing of large datasets16. Yet, measures based on molecular fin-
gerprints are known to exhibit undesirable characteristics17–25. In par-
ticular, measured distances may differ substantially from chemical
intuition. Second, methods based on computing the Maximum Com-
mon (Edge) Subgraph better capture the chemical intuition of struc-
tural similarity26–28, see below, but unfortunately, require to solve
computationally hard problems.

Here, we show how to inspect a molecular structure dataset
for its coverage of small molecule structures of biological interest
("biomolecular structures” for the sake of brevity). Our approach
combines Uniform Manifold Approximation and Projection
(UMAP) embeddings29 and computation of structural distance via
the Maximum Common Edge Subgraph (MCES). We introduce the
myopic MCES distance (mMCES distance), which is the informative
exact MCES distance for closely related molecules or a good
approximation thereof, in case an exact computation is not
required and too costly. We demonstrate how we can compute
this distance swiftly in practice using a combination of fast lower
bounds and integer linear programming. We then show that the
distribution of compound classes, as well as a measure for natural
product-likeness30,31 can give good indications on whether the
distribution of molecular structures in a dataset differs sub-
stantially from that of biomolecular structures. Finally, we shortly
discuss shortcomings of the well-known Tanimoto coefficient for
performing this type of analysis.

Results
Distribution of biomolecular structures
It is understood that we do not know the true “universe of small
molecules of biological interest”, as this includes small molecules yet
to be discovered32. Here, we use a combination of 14 molecular

structure databases (biomolecular structures for short) as a proxy of
this space. These databases contain metabolites, drugs, toxins and
other small molecules of biological interest. As used here, the union of
databases contains 718,097 biomolecular structures, see the Methods
section andSupplementary Table 1 fordetails. Clearly, this proxy is and
will be incomplete; yet, restrictions on the domain of applicabilitymay
already be visible against this proxy.

Given a pair of molecular structures, we computed a distance
using their Maximum Common Edge Subgraph. To speed-up compu-
tations, we estimated (provably correct) lower bounds of all distances.
We performed exact computations only if the distance bound is at
most a chosen distance threshold, which we set to 10, unless stated
otherwise. If the lower bound was above the threshold, we used this
bound instead as a distance estimate. Similarly, if the exact distance
was computedand above the threshold,weused the threshold instead.
WeusedUMAP29 to visualize the universeof biomolecular structures in
a 2-dimensional plot.

To avoid both proliferating running times and cluttered plots, we
uniformly subsampled 20,000 biomolecular structures (Fig. 1). Total
running time forMCES computations was about 15.5 days on a 40 core
processor. To monitor the effect of subsampling, we uniformly sub-
subsampled nine times 10,000 molecular structures from this set. We
present corresponding UMAP embeddings in Fig. 2, to reveal varia-
tions. We observe that subsampling may indeed change the general
layout of the UMAP embedding, but that the general layout is often
surprisingly similar. It is well-known that these UMAP embeddings
have to be interpreted with care33, see also below.

Certain molecular structures and compound classes, in particular
certain lipid classes, result in outlier clusters in the UMAP embedding
(Fig. 1). To avoid that these molecular structures dominate the UMAP
embedding, we excluded them. This leaves us with 18,096 molecular
structures, whichwill be considered in all following analyses. See Fig. 3
for the resultingmap of biomolecular structures, wherewehave color-
coded compound classes according to ClassyFire34. Excluded mole-
cular structures can nevertheless be displayed in the UMAP embed-
ding (Supplementary Fig. 1).

Above, we used UMAP to visualize MCES distances. Clearly, any
other method for projecting high-dimensional data given as distances
(for instance, t-SNE35, multidimensional scaling36 or Minimum Span-
ning Trees) can also be applied (Supplementary Fig. 2)37–39.

Figure 4 shows the distribution of myopic MCES distances. As
expected, most distances are large; yet, for every molecular
structure, the smallest distance to another molecular structure is
usually below 10 (Fig. 4b). In fact, we observe that distance 10
occurs much more often than what we would expect by chance.
This is due to the threshold T = 10 used in our computations and,
in particular, due to the double thresholding: In case the exact
MCES distance is computed but turns out to be larger then T, we
instead use T as the myopic distance. Given that there is no such
hump in the distribution of myopic MCES distances (Fig. 4a), we
argue that this thresholding artifact has little effect on the com-
puted UMAP embeddings.

Chari et al.33 showed that one must be highly cautious deducing
structure of the data from a 2-dimensional UMAP embedding. We
stress that this is not a restriction for what we are doing: We already
know that our data are structured, in the sense that molecular struc-
tures can be (dis)similar, or belong or not belong to the same com-
pound classes. What we are investigating is to what extent a subset of
thedata is a uniformsubsample: Ifweare able to spot non-uniformness
in the 2-dimensional UMAP embedding, then it is presumably not a
uniform subsample in higher dimensions, either. It is nevertheless
indisputable that the UMAP embedding is far from perfect, meaning
that a small/large distance in the plot does not necessarily imply a
small/large MCES distance (Supplementary Fig. 3). UMAP shares these
restrictions with any method that projects a high-dimensional space
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into the plane. Clearly, there is also some arbitrariness in the layout of
the UMAP plot, see ref. 40 and Fig. 2. Finally, when inserting new
samples into an existing UMAP embedding, those new samples tend to
be inserted into the existing structure of the plot, rather than gen-
erating novel distant clusters or singletons. Compare Fig. 1 and Sup-
plementary Fig. 1: Whereas the lipid classes form distant clusters in the
original UMAP embedding, they are integrated into the existing plot
structure when reinserted.

Distribution of molecular structures in public datasets
We consider ten public molecular structure datasets frequently used
to train machine learning models41–53. See Supplementary Table 2 and
the “Methods” section for details. All of these datasets have in common
that molecular structures are labeled by experimentally determined
measures. Also, all of thesedatasets have repeatedly been used to train
and evaluate machine learning models8,54,55. Not all molecular struc-
tures in a dataset are biomolecules: See the discussion of natural

Fig. 1 | Initial map of biomolecular structures. Outlier clusters are highlighted
and annotated with three exemplary structures drawn at random for each cluster.
Different from Fig. 3 and Supplementary Fig. 1, the UMAP embedding was com-
puted from all 19,994 subsampled biomolecular structures. This includes the 1898
molecular structures removed from Fig. 3. In contrast, Supplementary Fig. 1 shows

the 1898 molecular structures added back into the UMAP embedding computed
from 18,096 molecular structures. Compound classes were chosen based on fre-
quency in thebiomolecular structures. For compoundsbelonging tomore thanone
compound class, the class with the largest structural pattern is selected34. Source
data are provided as a Source Data file.
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product-likeness score distributions below. Even less so, all molecular
structures in a dataset are contained in the 20,000 subsampled bio-
molecular structures, see again Supplementary Table 2 for the
statistics.

We investigated to what extent the molecular structures in each
dataset are a uniform subset of biomolecular structures. For each
dataset, we computed myopic MCES distances for all molecular
structures, combining the training dataset and the 18,096 biomole-
cular structures. Nine resulting plots can be found in Fig. 5 and one in
Supplementary Fig. 4. To ensure comparability of plots, we used the
same UMAP embedding as in Fig. 3. We observe that the subset of
molecular structures available in public datasets is usually far from
uniform. We stress that we can make this observation based on the

available UMAP embeddings, without the need that these plots
represent some chemical or biochemical truth. We argue that most of
the public datasets are also not representative, meaning that large
areas of the biomolecular structures are completely missing in the
datasets. In fact, some datasets are concentrated in one or few areas in
the plot.

Recall that additional samples tend to get inserted in the existing
structure of the plot even if they are different from all existing samples
(Fig. 1 and Supplementary Fig. 1). Hence, even molecular structures
highlydifferent fromall biomolecular structureswill not result in novel
outlier clusters. Arguably the best coverage is observed for the toxicity
datasets and the MS/MS dataset. Given the known limitations of the
UMAP plot, this does not imply that these datasets contain a uniform

Fig. 2 | UMAP embeddings vary when other biomolecular structures are sub-
sampled. It is understood that the (random and uniform) choice of 19,994 bio-
molecular structures affects the UMAP embedding. To investigate the effect of
subsampling, we further uniformly subsubsampled nine times 10,000 structures,

and created the corresponding UMAP embeddings. Compound classes are color-
coded as in Fig. 1. For easier visual inspection, some of the plots have been mir-
rored, as indicated. Source data are provided as a Source Data file.
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or representative subset of molecular structures. Instead, these plots
can only warn us that a dataset is not representative.

When evaluating machine learning models, molecular structures
are often split according to scaffold structures. This allows us to esti-
mate performance measures more indicative of generalization ability,
than uniformly splitting the dataset into train and test partitions13. We
computed scaffold splits for thenine trainingdatasets fromFig. 5 using
Bemis-Murcko scaffolds56 from DeepChem57 (Supplementary Fig. 5).
Next, we computed a ten-fold scaffold split for the dataset BBBP

(Supplementary Fig. 6). Scaffold splitting results in a non-uniform
distribution of train and test data; this is particularly the case for the
first two folds of the ten-fold scaffold split of BBBP (Supplementary
Fig. 6). Yet, even scaffold splits can be misleading with respect to a
model’s generalization performance: Whereas large subregions of
biomolecular structures have no coverage from the molecular struc-
tures in the training data, we observe that almost all molecular struc-
tures in the test split have a somewhat closemolecular structure in the
train split.

Fig. 3 | Map of biomolecular structures with outlier clusters removed. Certain
compounds were excluded before computing the UMAP embedding and the plot,
compare to Fig. 1. TheUMAPembeddingwas computed from the remaining 18,096

molecular structures. See Supplementary Fig. 1 for the corresponding plot where
these compounds were reinserted. Compound classes are color-coded as in Fig. 1.
Source data are provided as a Source Data file.
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Maximum Common Edge Subgraph computations
The Maximum Common Edge Subgraph problem is well-suited to
capture high similarities between molecular structures26–28,58. The
MCESdistancebetween twomolecular structures equals the number of
edges in the first molecular graph plus the number of edges in the
second molecular graph, minus twice the number of edges in the
MCES. This distance agrees well with chemical intuition: It is the
minimum number of edges we have to remove from both graphs so
that the resulting graphs are isomorphic, ignoring singleton nodes.
From a chemical standpoint, we can think of it as the number of che-
mical reactions required to transform one molecule into another.
Molecular graphs are labeled graphs where nodes are associated with
atom types and edges with bond orders. When comparing two such
graphs we have to take into account these labels and how to compare
them, such as double vs. aromatic bond, see the Methods section for
details. We do not consider hydrogen atoms in our computations.

Unfortunately, computing the MCES is provably hard, and it is
considered highly unlikely that an efficient algorithm for this problem
exists. Precisely speaking, the MCES problem is NP-hard, as it gen-
eralizes subgraph isomorphism which, in turn, generalizes the clique
problem. AsMCES is clearly in NP, it is NP-complete. Next, an “efficient
algorithm” is an algorithm with running time polynomial in the size of
the instance, that is, the number of edges or nodes of the two graphs
for the MCES problem. It is known that there cannot be an algorithm
with polynomial time for an NP-hard problem, unless P = NP. The field
of theoretical computer science usually assumes that P ≠NP holds, and
there exists a Millennium prize to prove or disprove this. But even if
P = NP, it is assumed that the exponent in the running time of any
polynomial time algorithmwill be prohibitively high, and the resulting
algorithms will be of no practical use, similar to the polynomial-time
algorithm for PRIMES59.

To compute distances for our UMAP embedding in Fig. 3 required
to swiftly solve more than 160 million instances of the NP-hard MCES
problem.We present an efficient implementation based on computing
lower distance bounds to quickly recognize dissimilar structure pairs,
with an additional step for potentially similar pairs for which we
computeprovably exactdistanceswith an Integer Linear Programming
(ILP) formulation. Using an ILP to compute the MCES has two key
advantages over previous methods based on enumerating cliques in a
product graph: (i) Contrary to the clique-basedmethods, the ILP tends

to be fast when the input is similar, which, as we argue, are exactly the
interesting cases and (ii) the ILP avoids the cumbersome treatment of
the so-called ΔY exchange that occurs whenmodeling the problem via
line graphs. Ourmethod is the first to use an ILP for the comparison of
chemical structures.

In practice, we decide for a distance threshold (say, T = 10 edge
modifications) whether our bounds guarantee that the true distance is
at least T; in these cases, we use the bound as an approximation of the
true distance. Only if no bound can guarantee that the distance is at
least T, we execute the exact algorithm and report its result, this time
using T as an upper bound. We call the resulting distance the myopic
MCES distance. The two-step procedure has two advantages: (a) The
ILP is usually fast if the MCES distance is small, whereas running times
can get very large for larger distances. Our two-step approach thus
explicitly and efficiently excludes most running time-intensive exact
computations. (b) Considering a pair of molecular structures, it is
obviously of high interest to know whether the MCES distance
between those two structures is 2 or 8. Yet, we argue that it is mostly
irrelevant to know whether the MCES distance is 42 or 48: In both
cases, the two molecular structures are highly dissimilar. Both num-
bers can serve as reasonable approximations for the true distance. In
particular, divergence in the larger distance will not result in sub-
stantial changes of the UMAP embedding, by formulation of the UMAP
optimization problem29.

We performed an in-depth evaluation of our methods using a
subset containing 20,000 uniformly subsampled instances, where an
instance is a pair of biomolecular structures (Fig. 6). Running times
were measured on a 40-core processor running 80 threads in parallel;
we report running times per thread. For the ILP, 24of 20,000 instances
did not finish within four days of wall clock time (Supplementary
Fig. 7). For those instances, we use the time at which computations
were stopped as a running time proxy. Doing so, total running time of
the ILP equals 234.2 days for the 20,000 instances (average 16.9 min
per instance). Sorting instances by ILP running time, we observe that
1.04% of the instances are responsible for more than 95% of the total
running time.

We first consider the dependence of ILP running times on the
exact MCES distance (Fig. 6a, b). ILP instances that did not finish are
excluded from this plot. For distances up to 75, we observe a clear
correlation between distance and running time. For example, 29.5% of
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the instances have MCES distance up to 30 but contribute only 0.91%
to the total running time. For larger distances up to 100, this correla-
tion becomes less clear. Apparently, both the MCES distance and the
actual structure of the MCES instance are affecting running times.
Beyond distance 100, results must be interpreted with care, as there
are few such instances corresponding to few outlier structures.

Second, we evaluated how the combination of bounds and exact
computations results in favorable running times (Fig. 6c, d). We con-
centrate on thresholds 10 ≤ T ≤ 25 reasonable for measuringmolecular
structure similarity. Increasing the threshold T means that more
instances have to be computed exactly since fewer instances result in a

lower bound above T. Compared to the exact method, we observe a
massive running time improvement: Even for the largest threshold
T = 25, total and average running times decrease 1101-fold. Further
lowering the thresholdalso further reduces running times:UsingT= 10
instead of T = 25 decreases the total and average running times 5.3-
fold. For the myopic MCES distances, we observe right humps in the
distributions of running times (Fig. 6c). We attribute these humps to
instances that have to be computed exactly.

To exclude bias through subsampling, we repeated the above
analysis using all pairs from the 19,994 biomolecular structures (see
Section Subsampling molecular structures). To avoid proliferating

a cb

d fe

g ih

Fig. 5 | Maps of nine public molecular structure training datasets. a–i UMAP
embedding of nine public datasets that are frequently used to train, evaluate, and
comparemachine learningmodels. Shown are datasets BACE (a), BBBP (b), ClinTox
(c), Delaney (d), Lipo (e), SIDER (f), Tox21 (g), ToxCast (h), and SMRT (i).We use the
sameUMAPembedding as in Fig. 3. Nomolecular structures fall outside of this plot.
Number of samples differ for each plot, as each plot combines the 18,096

biomolecular structures and the structures from the dataset. See Supplementary
Table 2 for details. Biomolecular structures are shown in light gray. For datasets
with single target variables, we color-code these in the plots. See Supplementary
Fig. 12 for the corresponding plots using ChEMBL as the background distribution.
Source data are provided as a Source Data file.
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running times — here and throughout the rest of the paper — we
concentrated on threshold T = 10, see Fig. 6e, f. Total running time for
the complete set was 1240 days, corresponding to 15.5 days of wall
clock time on a 40 core processor. We observe basically the same
pattern as for the subsampled instances, but the average running time
per instance is 5.2-fold larger than for the subsampled set (536 ms vs.
102ms). Here, 0.2% of the instances are responsible for half of the total
running time. The difference in average running time for the same
threshold can likely be attributed to a difference in ILP solver settings,
see theMethods section for details.Wedidnot use a running time limit
for the ILP solver, see Methods section.

Finally, we analyzed the error of computing bounds instead of
exact distances: The myopic MCES distance may differ from the exact
distance; the absolute error is the difference between the exact dis-
tance value and the myopic MCES distance. Recall that the myopic
MCES distance is a lower bound, so the absolute error is never nega-
tive. Deviations from the true value are relevant mostly in comparison
to the true value. To this end, we investigate the relative error, dividing
the absolute error by the exact distance value (Fig. 6g). As expected,
more distance estimates have a non-zero error if we lower threshold T:
In detail, 22.5% of instances have zero error for T = 25; this decreases to
9.5% for T = 10. Beyond this, we observe that varying the threshold T
between 10 and 25 does not substantially change the shape of the
relative error distribution. We observe that the distribution of myopic
MCES distances (compare to Fig. 4) is very similar for different
thresholds and for exact computations, only shifted (Fig. 6h).

Recently, an implementation of RASCAL60 has becomeavailable in
RDKit (RDKit: Open-source cheminformatics, https://www.rdkit.org).
RASCAL solves the MCES problem, computing the exact MCES when a
predefined similarity threshold is exceeded. Similar to our imple-
mentation, the results of computed bounds can be used to approx-
imate similarity when no exact calculations are performed. In contrast
to the (absolute) myopic MCES distance, a relative measure of simi-
larity introduced by Johnson61 is used. To evaluate RDKit’s RASCAL
implementation, we used the same subset of 20,000 instances as
above. Using the default similarity threshold of 0.7, only 280 of these
instances (1.40%) were calculated exactly. Notably, 100 of those 280
instances (35.7%) failed to compute, either because an internal limit on
the size of the product graph ("maxNumberMatchingBonds”) was
exceeded (98 instances), or because the time-out of one hour was
reached (two instances). Disabling the internal size limit on the pro-
duct graph, 68 of those 98 instances were computed exactly in less
thanonehour. In 29 cases, the running time thresholdwas reached and
in one case, the available memory of 256 GB was exceeded. For all 279
exactly calculated instances where the memory was not exceeded, the
average wall-clock per instance was 7.92 min, using one hour as proxy
for instances with time-out.

Next, to compute more instances exactly, we lowered the simi-
larity threshold to 0.5. Doing so, 2899 (14.5%) of the instances were
calculated exactly. Of these, 423 (14.6%) of these calculations did not
finish due to the internal size limit (408 instances) or time-outs (15
instances). When disabling the internal size limit, 186 of 408 instances
exceeded the time limit of one hour; for five instances, the memory
was exceeded. Here, the average wall-clock time for the exactly cal-
culated 2894 instances was 4.47 min, disregarding the instances were
the program crashed becausememory usage was exceeded. Again, for
instances with time-out one hour was used as proxy.

Notably, the internal size limit can only be changed by modifying
and re-compiling RDKit’s C++ source code; the strict size limit was a
deliberate choice of the developers to prevent excessive memory
usage. Also, the highmemory usage of this approachmakes it basically
impossible to parallelize computations. Finally, computing approx-
imate results via RDKit’s RASCAL is orders of magnitude faster than
computing MCES bounds, with a mean wall-clock time of 1.36 ms for
the former. Yet, comparing running times between RDKit and our

MCES code is misleading, as it is dominated by running time differ-
ences between compiled C++ and interpreted Python code.

Numerous variants of the MCES problem exist, such as finding a
MaximumCommon Subgraph (MCS), a connectedMCES, or restricted
variants of the problem28. It is extremely challenging to compare the
quality of results fromdifferent such variants, sowe refrain from an in-
depth evaluation. Seipp62 performed running time evaluations of the
myopic MCES distance against MCS computations using RDKit
("rdFMCS”module as opposed to “rdRascalMCES”, which contains the
RASCAL implementation) and SMARTScompare63 and found that the
myopic MCES approach is several orders of magnitude faster than
exact MCS methods implemented there, and sometimes even on par
with heuristic methods58. This is noteworthy as the MCES problem is
usually assumed to be substantially harder than the MCS problem.

For numerous computational tasks, it is required that a distance
measure is ametric.We can easily show that both the bounds aswell as
the exact MCES distances are (pseudo)metrics. For the myopic MCES
distances, the important fact is that we apply double thresholding: On
the one hand, the exact distance is only computed in case the bounds
are below thresholdT. On the other hand, if the exact distance is above
T, we instead report T as the myopic MCES distance. This implies that
whenever we execute exact computations, the reported distance is
smaller or equal to T; whereas if we only execute bound computations,
the reported distance is greater or equal to T. Doing so speeds up ILP
computations via constraint (8). Beyond that, it allows us to prove that
themyopicMCES distance is indeed ametric, see theMethods section.
If we do not use the second threshold (that is, we return the exact
MCES distance even if it is larger than T) then this does not only
increase running times of the ILP. In addition, the resulting distance
measure is no longer a metric: See Supplementary Fig. 8 for an
example where the triangle inequality is violated. Instead of double
thresholding, wemay use the Floyd-Warshall algorithm64 for finding all
shortest paths in a complete graph, to enforce the triangle inequality.

Compound class distribution
Besides a uniform subsample, there is another feature a molecular
structure dataset should exhibit so that it represents the full space of
biomolecular structures: Namely, all compound classes that biomole-
cules belong to should also be present in the training data. If a dataset
completely misses molecular structures from a particular compound
class, then a machine learning model trained on the data might show
poor predictions for this compound class. The same holds true in case
very few samples exist for a particular compound class. This will not be
noticeable in evaluations: If we split the dataset into test and training
data, the compound class is still absent from the test data. Similarly, if
only few examples from a compound class are present, then those will
have little or no influence on evaluation statistics. Consequently, we
may overestimate the power of the resultingmachine-learningmodels
for real-world data.

Historically, compound classes were defined based on, say, bio-
chemical precursors. Unfortunately, class annotations were available
only for a small fraction of molecular structures. Recently, certain
compound class ontologies were defined purely based on molecular
structures34,65. Here, we concentrate on the ClassyFire ChemOnt
ontology, which contains 4825 classes34.

Throughout this paper, we concentrated on machine-learning
models for biomolecular structures. Consequently, we want to ignore
compound classes that contain basically no biomolecular structures: If
no or few biomolecules are part of a certain compound class, it is not
surprising that amolecular structuredatasetwill also contain noor few
molecular structures for that compound class. To this end, we only
consider those classes where at least 5% or 1% of biomolecular struc-
tures are part of the class, respectively. See Fig. 7 and Supplementary
Fig. 9 for the corresponding statistics. There, we have chosen a
somewhat arbitrary threshold of 15 molecular structures ought to be
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present for any compound class. We argue that trends will stay the
same, independent of the chosen threshold. We only display those
compound classes in the two figures for which at least one dataset
contains less than 15 examples. For 65 compound classes (threshold
5%) and 95 compound classes (threshold 1%), respectively, none of the
datasets contains less than 15 examples. Yet, recall that ClassyFire
ChemOnt is an ontology and that a molecular structuremay belong to
several compound classes simultaneously. Compound classes on
higher levels of the ontology can be huge (for example, virtually all
molecular structures belong to the class organic compounds) and
consequently, somewhat uninformative. We provide the full statistics
in Supplementary Data 1.

Considering the compoundclassdistribution in adataset overlaps
to a certain extent with MCES UMAP embeddings, compare to Fig. 3.
Yet, both approaches also complement each other: The UMAP
embedding introduces a certain amount of arbitrariness andmay show
structure even if there is none33 (Supplementary Fig. 3). In contrast,
compound classes have a biochemical meaning, and we only super-
impose this known structure onto the dataset. On the other hand, this
restricts our analysis: Compound classes represent true structure in
the space ofmolecules, but by nomeans, they represent all structure in
this space. Hence, compound class analysis cannot detect all short-
comings of our training data. In contrast, the UMAP embedding allows
to spot issues without the corset of compound classes.

Natural product-likeness score distributions
As a third approach to test whether a molecular structure dataset
reproduces the universe of biomolecules, we propose to study the
distribution of natural product-likeness scores. These scores provide a
measure of how molecules are similar to the structural space covered
by natural products30. Natural products, in turn, are chemical entities
produced by living organisms. Hence, natural product-likeness scores

allow us to differentiate between biomolecules and synthetic mole-
cules presumably not of biological interest. Here, we use the score of
Ertl et al.30 as implemented in RDKit. Notably, we do not claim that this
score is a perfect classifier for a compound being a natural product;
yet, this is not necessary for spotting major changes in distribution.

Our reason to study natural product-likeness scores is linked to
the intrinsic problem of providing a molecular structure dataset with
experimental data: As discussed above, the choice of small molecules
included in a dataset is usually governed by monetary aspects. Next,
the prize of a compound depends on the difficulty of chemical
synthesis etc, not its importance for building a machine learning
model. Certain molecules may be regarded as highly interesting for a
certain dataset, but if those molecules are too expensive, they cannot
be measured.

We found that natural product-likeness scores allow us to get an
impression how far a particular dataset deviates from the universe of
biomolecules. In particular, we can compare the score distribution to
that of PubChem66: On the one hand, PubChem contains the vast
majority of biomolecular structures used here. On the other hand,
PubChemadditionally containsmanymillionmolecular structures that
are presumablymolecules of no particular biological interest. Hence, a
distribution somewhat similar to that of biomolecular structures hints
at a dataset where indeed, molecules of biological interest are present
in sufficient numbers. In contrast, a distribution similar to or beyond
that of PubChem indicates that the dataset contains only a small
fraction of biomolecules. If we apply a model trained on this data to
real-world data that, according to our assumptions, was measured
from a biological source, then the model may again perform much
worse than what we would expect from evaluation results. See Fig. 8
for natural product-likeness score distributions of the ten datasets. We
observe that for three datasets (BACE, Lipo, SMRT) the distribution of
natural product-likeness scores is substantially different from that of

Fig. 7 | Compound class distribution. Compound classes are not represented
equally in the datasets. Here, all ClassyFire compound classes occurring in at least
5% of the biomolecular structures are investigated. The occurrences for structures
of the datasets BACE, BBBP, ClinTox, Delaney, Lipo, SIDER, Tox21, ToxCast, SMRT,
and MS/MS are shown. Some molecular structures could not be classified by

ClassyFire and were discarded: This applies to seven structures from BBBP, one
from SIDER, four from ToxCast, and 1275 biomolecular structures. Compound
classes with at least 15 occurrences in all datasets are omitted; this applies to 65
compound classes. See Supplementary Fig. 9 for a larger subset of ClassyFire
classes at 1% cutoff.
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biomolecules. For the other seven datasets, we do not observe a par-
ticularly noteworthy distribution pattern.

Tanimoto coefficients
Tanimoto coefficients67 are arguably the most commonly employed
measure to estimate the (dis)similarity of two molecular structures,
and are theworking horse for numerous cheminformatics applications
including virtual screening. To compute a Tanimoto coefficient, we
independently transform each molecular structure into a binary vec-
tor, where each position encodes for the presence or absence of a
particular subgroup. Then, we compare the two binary vectors using
the Jaccard index (Tanimoto coefficient) or the Jaccard distance (one
minus Tanimoto coefficient) for similarities and dissimilarities,
respectively. One of the main advantages of Tanimoto coefficients is
that after transforming each molecular structure into a binary vector,
subsequent operations can be executed extremely fast. Consequently,
it is most likely that Tanimoto coefficients will remain in use for any
application that requires swift computations.

Unfortunately, Tanimoto coefficients also have a number of
issues, because we are transforming a molecular structure to a binary
vector. It is inevitable that substantial information is lost in this
transformation. Citing Bajusz et al.25, “despite the generally positive
findings about the applicability of the Tanimoto coefficient several of
its weaknesses have also been reported from as early as in a
1998 study.” Numerous resulting issues were first discussed by
Flower18, but see also refs. 17,19–25. For example, similarity values
when comparing large structures, for whichmany bits of the bit vector
are Ones, behave very differently from similarity values when com-
paring small structures, for which almost all bits are Zeros17,19,23. These
issues hold for any type of molecular fingerprint, be it a predefined list
of molecular properties (say, MACCS68 or PubChem CACTVS69) or
combinatorial fingerprints (Morgan16, Extended Connectivity70).
Notably, these issues have nothing to do with hashing Extended
Connectivityfingerprints to, say, 2048bits70. The expected value of the
Tanimoto coefficients between twodistantmolecular structures varies
between fingerprint types20, and is seemingly smallest for MAP4 fin-
gerprints (MinHashed atom-pair fingerprint up to a diameter of four
bonds)71. Yet, this must not be misinterpreted as a measure of quality
of a fingerprint type: If we replace each Tanimoto value by its square,
then values become smaller but not more informative. Finally, similar
issues hold for any similarity measure based onmolecular fingerprints

(say, the Sørensen-Dice coefficient), as the encoding into a binary
vector is responsible for the issues18.

In application, Tanimoto coefficients often result in counter-
intuitive values both for highly similar and highly dissimilar molecular
structures: See Fig. 9 for a collection of molecular structure pairs that
demonstrate this problem. Unlike machine learning task such as
structure-activity or structure-property prediction72,73, concatenation
of molecular fingerprints will not improve (dis)similarity estimation
but only dilute results.

For comparison,wehave also computedUMAPembeddings using
distances computed from Tanimoto coefficients, see Supplementary
Fig. 10. Tanimoto-based plots may also be helpful for spotting inho-
mogeneous training data; yet, given the known limitations and issues
of the fingerprint-based distance measures discussed above, we sug-
gest to treat the resulting UMAP plot with even more care than the
MCES-based plot.

Discussion
Machine learning datasets containing experimental data formolecular
structures usually differ substantially from a uniform subset of bio-
molecular structures. More worrying is the fact that for most datasets,
large regions of the biomolecular structure universe remain com-
pletely empty. We stress that this is a very practical issue, beyond the
“correlation vs. causality” discussion. Using a well-known example
from the literature: Even if we accept that childbirths in a country can
be predicted from stork population sizes74, it turns out that the model
fails miserably for African countries. Consequently, the absence of any
data for all countries outside of Europe should worry us massively on
the domain of applicability of the model. We noted above the recent
trend to train large end-to-end models without explicitly considering
the domain of applicability1–7. We note in passing that datasets relying
on quantum chemistry calculations instead of experimental values75,
usually do not share this issue.

Several guidelines for good machine learning practice in chem-
istry and the life sciences were published, due to the increasing
importance of machine learning in these areas. For large models
trained on small molecules, we suggest including a distribution ana-
lysis of the training data into these recommendations; this may indi-
cate whether the trained models are indeed predicting what they are
claimed topredict. Otherwise, performance improvements usingmore
complex machine learning models may be an adaption to the

a b

Fig. 8 | Natural product-likeness score distributions. Large scores indicate that a
molecular structure is regarded similar to a natural product. Shown are kernel
density estimates (a) for datasets BACE, BBBP, ClinTox, Delaney, Lipo and (b) for
datasets SIDER, Tox21, ToxCast, SMRT and MS/MS. For comparison, we show

kernel density estimates for the 19,994 biomolecular structures and PubChem (20k
uniformly subsampledmolecular structures). Source data are provided as a Source
Data file.
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peculiarities of the training data, and may potentially result in no
improvements in practice.

Our methods may allow us to spot datasets where the distribution
of molecular structures is peculiar and potentially hazardous. On the
other hand, if a dataset shows no peculiarities, this does not imply a
Carte Blanche formachine learning. As an example, consider theMS/MS
dataset that, in all of our analyses, did not appear peculiar. Yet, fromour
own experience with these data, we want to warn the reader that even
here, the distribution of molecular structures may result in unexpected
behavior of trained models and counterintuitive evaluation results76,77.

In our analysis, wemade a somewhat subjective decisions onwhat
small molecules are “of biological interest”. In particular, we did not
include the ChEMBL structure database78, as the distribution of
molecular structures differs substantially fromour set of biomolecules
(Supplementary Fig. 11). We have repeated our analysis of coverage for
small training dataset, this time using ChEMBL as our structures of
interest (Supplementary Fig. 12). Again, these plots may allow us spot
coverage bias and restrictions to the domain of applicability.

We have shown that the presented method for estimating MCES
distances exhibits fairly small running times. It is however important to

note that the current implementation is Python-based, with hardly any
optimizations applied. We conjecture that a C++ implementation of
the MCES bounds can reach running times comparable to that of
RDKit’s RASCAL implementation, as it consists primarily of computing
a maximummatching, one of the best-studied problems in theoretical
computer science. It is understood that being able to swiftly estimate
MCES distances allows for application beyond what we have discussed
in this paper. In particular, MCES distances can be used as part of
machine learning; notableexamples areclustering, k-nearestneighbor,
and the radial basis function kernel.MCES can also be used tomeasure
the diversity of a set of molecular structures79,80. Instead of simply
using the Kullback-Leibler divergences81 for this purpose, we suggest
to measure, for every biomolecular structure, its distance to the (k-th)
closest structure in the training data. As used here, the MCES distance
measures an absolute distance between molecular structures; it is
understood that it can be readily modified to take into account the
sizes of the molecular structures58. Similarly, it may be modified to
consider substructure relationships. Finally, we may incorporate dif-
ferences in elements between the two structures where appropriate,
for example for halogens.

MACCS 0.74, CACTVS 0.41, ECFP4 0.20, MAP4 0.13

CID 56660799 CID 77908081

a

MCES 2

CID 23204 CID 85649147

MACCS 0.67, CACTVS 0.69, ECFP4 0.69, MAP4 0.56

c

MCES 1

CID 23623084 CID 21150865

MACCS 0.82, CACTVS 0.77, ECFP4 0.75, MAP4 0.64

e

MCES 1

CID 13783147 CID 2877806

MACCS 0.63, CACTVS 0.72, ECFP4 0.62, MAP4 0.46

d

MCES 2

CID 225062 CID 14602301

MACCS 0.65, CACTVS 0.90, ECFP4 0.34, MAP4 0.16

h

MCES 7

MACCS 0.95, CACTVS 0.95, ECFP4 0.64, MAP4 0.25

CID 78171407 CID 73802882

i

MCES 30

CID 520552 CID 13491498

MACCS 0.73, CACTVS 0.92, ECFP4 0.48, MAP4 0.18

j

MCES 14

CID 3032811 CID 519180

MACCS 1.00, CACTVS 0.96, ECFP4 1.00, MAP4 0.36

g

MCES 11

MACCS 1.00, CACTVS 0.95, ECFP4 1.00, MAP4 0.34

k

MCES 10

CID 85708 CID 91342

l

MACCS 0.67, CACTVS 0.61, ECFP4 0.91, MAP4 0.42

MCES 7

CID 521684 CID 8452

MACCS 0.81, CACTVS 0.91, ECFP4 0.47, MAP4 0.50

b

MCES 1

CID 99895 CID 72988304

f

MACCS 1.00, CACTVS 0.90, ECFP4 0.31, MAP4 0.18

MCES 2

CID 11928 CID 69163

Fig. 9 | Tanimoto coefficients candiffer substantially fromperceived structural
similarity.Shown areTanimoto coefficients forMACCS, CACTVS, ECFP4 (Morgan),
and MAP4 fingerprints; high values imply high similarity. The corresponding Jac-
card distance is one minus this value. a–f Molecular structure pairs with high per-
ceived structural similarity but relatively low Tanimoto coefficient, for one ormore
fingerprint types. g–l Molecular structure pairs with low perceived structural
similarity but very high Tanimoto coefficient for at least one fingerprint type. All

molecular structures are biomolecular structures; “CID” is the PubChemcompound
identifier number. It is understood that similar pathological cases exist for another
fingerprint type. It is also understood that the problem cannot be solved by using
another fingerprint-based similarity measure, such as the Sørensen-Dice coeffi-
cient. For comparison, we also report the myopic MCES distance between each
molecular structure pair.
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Methods
In this paper, we consider onlymolecular structures: Precisely speaking,
we consider the identity and connectivity (with bond types including
aromatic bonds) of the atoms but ignore the stereo-configuration for
asymmetric centers and double bonds. For the sake of brevity, we will
simply speak of “molecular structures” in the remainder of this
paper. All molecular structures were standardized using the
PubChem standardization web service66. Few structures that failed
standardization were excluded. Tanimoto coefficients in Fig. 9 and
Supplementary Fig. 10were calculatedusingMolecular ACCess System
(MACCS)68, PubChem (CACTVS)69, and Extended-Connectivity
(ECFP)70 fingerprints. MACCS and ECFP fingerprints were computed
in RDKit, using the “MACCSkeys.GenMACCSKeys” and “rdMolDe-
scriptors.GetMorganFingerprintAsBitVect” (radius 2, 2048 bits) func-
tions, respectively; CACTVS fingerprints were retrieved from
PubChem. MAP4 fingerprints (MinHashed atom-pair fingerprint up to
a diameter of four bonds)71 were computed with the official Python
package (https://github.com/reymond-group/map4), setting the
number of bits to 4096 and using 1 minus the value from the “Min-
hash.get_distance”-function to obtain Tanimoto coefficients.

Biomolecular structures
As a proxy of the universe of biomolecules, we use a union of several
molecular structure databases that contain such molecules66,82–95.
Recall that we interpret the term “biomolecules” as molecules of bio-
logical interest; this includes primary and secondary metabolites,
xenometabolites, drugs, drug degradation products, toxins, but also
small molecules from, say, skin care products as well as common
contaminants. As biomolecular structures, we combine all molecular
structures from databases KEGG (Kyoto Encyclopedia of Genes and
Genomes), ChEBI (Chemical Entities of Biological Interest), HMDB
(HumanMetabolomeDatabase), YMDB (YeastMetabolomeDatabase),
PlantCyc, MetaCyc, KNApSAcK, UNPD (Universal Natural Products
Database), MaConDa (Mass spectrometry Contaminants Database),
HSDB (Hazardous Substances Data Bank), Super Natural II, COCONUT
(COlleCtion of Open Natural prodUcTs), and NORMAN (Network of
reference laboratories, research centers and related organizations for
monitoring of emerging environmental substances). These are data-
bases frequently used in (untargeted) metabolomics, environmental
research, and natural products research. See Supplementary Table 1
for details. HMDB and YMDB cover molecules that can be found in
specific organisms. KEGG, ChEBI, PlantCyc, MetaCyc, and KNApSAcK
allow to link molecules to species and/or pathway information. Com-
mon contaminants occurring in MS experiments can be found in
MaConda, hazardous compounds in HSDB. The NORMAN suspect list
focuses on compounds that are expected to occur in the environment,
including industrial chemicals, pesticides, pharmaceuticals, and food
additives. General collections of natural products are UNPD, Super
Natural II and COCONUT. COCONUT is a large collection of natural
products from 53 different data sources, including ChEBI natural
products, KNApSAcK, UNPD, and Super Natural II, but also FooDB,
Marine Natural Products, GNPS (Global Natural Products Social)
molecular structures, and a subset of ZINC (ZINC Is Not Commercial)
with natural products.

In addition, we use subsets of largemolecular structure databases
that are flagged as being of biological relevance: These are compounds
from PubChem which are either MeSH-annotated or part of particular
classification schemes based on Schymanski et al.96. The PubChem
classification “bio and metabolites” comprises structures from the
PubChem Compound TOC categories “Biomolecular Interactions and
Pathways”, “Bionecessity”, “Metabolite Pathways”, “Metabolism and
Metabolites”, “Plant Concentrations” and “Metabolite References”;
PubChem “drug” comprises structures from “Drug and Medication
Information” and “Pharmacology”; PubChem “food” are structures of
category “Food Additives and Ingredients”; and PubChem “safety and

toxic” comprises structures of “Toxicity”, “Chemical Safety”, “Safety
and Hazards” and “Agrochemical Information”.

Data from all databases was retrieved on February 10th, 2023. For
UNDP an older downloaded version was used since the website has
been taken offline. The combined dataset contains 718,097 unique
molecular structures of metabolites and other molecules that can be
expected in biological samples, see again Supplementary Table 1.
Notably, 16.7% of our biomolecular structures contain halogens. We
argue that this combination of databases may serve as a proxy for
known molecular structures of biological interest. There are clearly
larger databases such as PubChem, but those databases also contain
molecular structures not of biological interest.

What small molecules are actually “compounds of biological
interest”, clearly depends on the research question at hand. For
example, we decided not to include compounds from the ChEMBL
structure database into our set of biomolecular structures78. ChEMBL
contains curated data on bioactive molecules (drugs and drug candi-
dates) from the medicinal chemistry literature, as well as data directly
deposited to the database. Notably, ChEMBL is larger than our set of
“biomolecules”, and presently contains 2.4 million compounds. We
found that the distribution of molecular structures in ChEMBL differs
substantially from the structure databases mentioned above, see
Supplementary Fig. 11. Consequently, we decided to keep ChEMBL
separated, and use it as an alternative source of structures of interest.

Molecular structure datasets
We consider the following datasets frequently used in machine
learning:
– The BACE dataset comprises 1513 synthetic human BACE-1

inhibitors reported in the scientific literature41. It provides
inhibitory concentrations (IC50) and additionally transforms these
into binary labels by applying a concentration threshold.

– The BBBP dataset consists of 2039 molecules curated from the
scientific literature discussing blood-brain barrier penetration42.
The authors acknowledge that such a dataset curated from the
literature is generally biased over-representing positive examples.
Modeling blood-brain barrier penetration is of interest since the
barrier is impenetrable to most drugs.

– The ClinTox dataset compares FDA-approved drugs from SWEET-
LEAD database43 with drugs that failed clinical trials for toxicity
reasons retrieved from the Aggregate Analysis of ClinicalTrials.gov
(AACT) database (http://www.ctti-clinicaltrials.org/aact-database).
The dataset contains 1478 molecular structures.

– The Delaney dataset contains 1128 compounds with water
solubility data44.

– The Lipo dataset provides lipophilicity data for 4200 compounds45

and is part of the ChEMBL database78 which contains bioactive
molecules. For each compound octanol-water partition coeffi-
cients were experimentally measured (log D at pH 7.4).

– The Side Effect Resource (SIDER)46 is a database of drugs and
adverse drug reactions. The SIDERdataset contains 1427molecular
structures assembled in the DeepChem library47 with side effects
grouped in 27 system organ classes according to MedDRA
classifications (Medical Dictionary for Regulatory Activities,
http://www.meddra.org/).

– The SMRT (Small Molecule Retention Time) dataset consists of
molecules and their experimentally acquired reverse-phase chro-
matography retention times48. Pure standard materials of
80,038 small molecules including metabolites, natural products,
and drug-like small molecules have beenmeasured. This dataset is
much larger than the other datasets. To avoid proliferating
running times and cluttered plots, we uniformly subsampled
10,000 standardized molecular structures.

– ToxCast49 is an extended dataset from the Tox21 program that
includes toxicology data based on in vitro high-throughput
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screening of 8576 compounds.
– The Tox21 dataset consists of samples from 12 toxicological

experiments of in vitro bioassays and a total of 7831 molecular
structures50 used in the 2014 Tox21 Data Challenge51. This dataset
has a relative large overlap in molecular structures with the
ToxCast dataset: 6311 molecular structures are found in both
datasets.

– The MS/MS dataset contains compounds that have at least one
reference tandemmass spectrum in a spectral library. It comprises
compounds from GNPS52, MassBank53, and NIST 17 (commercial,
National Institute for Standards and Technology, Tandem Mass
Spectral Library, 2017 release). Note that NIST17 is not public but
very frequently used to trainmachine learningmodels. The dataset
underwent several rounds of manual validation, discarding
numerous molecular structures in the process97,98. In total, the
dataset contains 18,848 uniquemolecular structures. It is different
from the other datasets in that it is not one public dataset but
rather, a unionof different spectral libraries. Furthermore, for each
compound one or more tandem mass spectra (MS/MS) are
recorded, each being not a single value but rather complex
structured data.

All datasets except SMRT and MS/MS were retrieved from the mole-
cular property prediction framework CHEMPROP54 at https://github.
com/chemprop/chemprop. The SMRT dataset was downloaded from
https://doi.org/10.6084/m9.figshare.8038913. Structures for MS/MS
are based on the CSI:FingerID training dataset97,98. It was downloaded
from https://gnps.ucsd.edu/(GNPS) and https://massbank.eu/(Mass-
Bank), but also contains the commercial NIST 17 MS/MS library. See
Supplementary Table 2 for further statistics on the datasets. To the
best of our knowledge, these are among the largest public datasets
containing molecular structures based on experimental data. Many of
thesedatasets are living datasets,meaning thatmore compounds have
been added at a later stage. Apparently, Tox21 and ToxCast are now
provided as one dataset (https://www.epa.gov/chemical-research/
exploring-toxcast-data).

Subsampling molecular structures
The biomolecular structure set contains 718,097molecular structures.
From this set, we uniformly sampled a subset of cardinality 20,000:
Each of the 718,097 molecular structures has exactly the same prob-
ability to be drawn; similarly, each subset of cardinality 20,000 has
exactly the same probability to be drawn. We later noticed that six of
these 20,000 molecular structures are single ions, for example, a
single iron ion. Thesemolecular structures resulted in execution errors
when computing theMCES, but are also of no interest for our analysis.
To this end, we discarded these six structures before computing dis-
tances, embeddings, and running times. Consequently, our sub-
sampled set contains 19,994 uniformly sampled molecular structures.
The number of nodes n in the subsampled molecular graphs ranges
from 1 to 139, with an average of 33.8 nodes (quartiles 20, 28, 40).
Recall that we do not consider hydrogen atoms in our computations.
The number of bonds (edges without multiplicities) m ranges from 0
to 153, with an average of 35.8 bonds (quartiles 21, 30, 43). The com-
plexity of an instance can be roughlymeasured by the productm1 ⋅m2,
for number of bonds m1, m2. This product ranges from 0 to 22,950,
with an average of 1279.5 (quartiles 520, 900, 1593). We report quar-
tiles (25%,median, 75%) as our subset contains both very small and very
large molecular structures. In the extreme case, a few “molecular
structures” consist of a single atom only.

An instance consists of a pair of biomolecular structures. To avoid
proliferating running times in our running time evaluation, we uni-
formly subsampled a set of 20,000 instances. To allow that resulting
running times are comparable with other computations in this paper,
we used the 19,994 molecular structure from above to generate the

instances. We generated 199,870,021 pairs of molecular structures;
from this set, we uniformly sampled 20,000 instances. For the sub-
sample, the productm1 ⋅m2 ranges from0 to 14,124, with an average of
1273.0 (quartiles 525, 910, 1584). The list of molecular structures (both
the complete set of biomolecules, the subsample with 19,994 mole-
cular structures, and the 20,000 subsampled structures pairs) is
available for download.

The Maximum Common Edge Subgraph problem
Given twographsG1 = (V1, E1) andG2 = (V2, E2), theirMaximumCommon
Edge Subgraph (MCES) is a graph Gc = (Vc, Ec) with
Vc ⊆ Vi, Ec ⊆ Ei, i ∈ {1, 2}, such that ∣Ec∣ is maximal. We define theMCES
distance of the two graphs as ∣E1∣+ ∣E2∣� 2∣Ec∣. Note that a Maximum
Common Edge Subgraph minimizes this distance.

Different from other variants of the common subgraph problem,
MCES does explicitly not require that the subgraph is connected;
otherwise, displacing a single bondmay necessitate to exclude almost
half of the graphs from the common subgraph. It is easy to see that
MCES is NP-hard, as it generalizes subgraph isomorphism which, in
turn, canbe easilybe reduced fromthe cliqueproblem99. SeeRaymond
et al.26 from 2002 for an early and Englert et al.58 for a more recent
discussion of the different problem variants as well as exact and
heuristic algorithms for its solution. Exact methods guarantee that the
MCES of twomolecular structures is found, despite the computational
hardness of the problem. One approach is based on finding a largest
clique in the product graph of the line graphs of the two molecular
structure input graphs but has to deal with so-calledΔY exchanges that
happen because of identical line graphs of the two small graphs K3 and
K1,3. Restriction to finding connected common substructures leads to a
speed-up, as observed by Koch100. It is noteworthy that clique-based
algorithms are fastest when the subgraphs and hence, the cliques, are
small; hard instances can easily be constructed by considering highly
similar molecular structures, which are arguably the most interesting
for our application. TheprogramRASCAL60 is arguably the commercial
default for computing theMCESof smallmolecules basedon cliques in
a product graph; recently, an implementation of RASCAL has been
made available in RDKit (version 2023.09.1). A lesser-known approach,
which has so far not been applied to the comparison of molecular
structures, is based on integer linear programming101.

Some algorithms reach improved running times by restricting the
input to certain graph classes such as outerplanar graphs102,103 but are
therefore only of limited practical use. Next, certain algorithms do not
consider the optimal MCES solution but rather, introduce additional
constraints that have to be satisfied, to improve running times.
Examples are limiting the number of connected components28 and
considering simplified graph representations104. We argue that all of
these modifications, which are introduced because of the inability to
efficiently compute the MCES rather than problem-immanent con-
siderations, are again of only limited practical use.

We stress that beyond the simple number of edge modifications
introduced above, there exist numerous other possibilities to trans-
form theMCES into a distance betweenmolecular structures60.Wewill
not discuss this further here, as for the application of mapping all
molecular structures into the plane, using absolute distances appears
to be the appropriate choice.

Computing the maximum weight common edge subgraph
We suggest a new approach to compare two molecular structures,
which combines the computationof lower bounds as in ref. 60, with an
integer linear programming approach based on the formulation given
in ref. 101.

In molecular graphs, nodes are labeled by atom type and edges
are weighted reflecting their bond order. We therefore compute the
maximum weight common edge subgraph (MCES), a weighted variant
of MCES. Formally, the input consists of two molecular graphs
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M1 = (G1, a1, b1) andM2 = (G2, a2, b2), where ai: Vi → Σ denotes the atom
type and bi: Ei → {1, 1.5, 2} specifies the bond type (single, aromatic, or
double), for i ∈ {1, 2}. The task is to compute the maximum weight
commonedge subgraphGc= (Vc,Ec), that is,Vc⊆Viwitha1(v) =a2(v) for
all v ∈ Vc, Ec ⊆ Ei for i ∈ {1, 2}, such that their weighted distance

dðM1,M2Þ=
X

e2E1

b1ðeÞ+
X

e2E2

b2ðeÞ � 2
X

e2Ec

min b1ðeÞ,b2ðeÞ
� �

is minimal. Here, Σ is the set of elements, such as Σ = {C, H, N, O, P, S, B,
F, Si, Cl, Se, Br, I}. We reformulate this term and alternatively minimize

dðM1,M2Þ=
X

e2Ec

∣b1ðeÞ � b2ðeÞ∣+
X

e2E1nEc

b1ðeÞ+
X

e2E2nEc

b2ðeÞ:

Precisely speaking, we solve the following problem: Given two mole-
cular graphs M1 and M2, and a distance threshold T, compute their
minimumweighted distancew(M1,M2) if this is below T and otherwise
an (ideally large) lower bound for d(M1, M2).

We solve this problem using an algorithm engineering approach.
It consists of first computing lower bounds on the distance. Should the
maximum of these bounds already be larger than T, we report this
maximum. Only if both bounds fail, we use an exact algorithm based
on an integer linear program (ILP) to compute minfdðM1,M2Þ,Tg.

The bounds are similar to those used in ref. 60, but we addition-
ally take the weights of the edges into account. The first bound can be
computed in linear time using radix sort. It maps nodes onto each
other based on their weighted degree. We first sort both node sets V1

and V2 by weighted degree. Then, we iteratively go through both lists
by taking and removing the first pair and adding the absolute differ-
ence of the weighted degrees to the bound. Should one graph contain
more nodes than the other, we also add the weighted degrees of the
additional nodes to the bound. In the end, we divide the bound by two,
because each edge has been considered twice in this calculation.

The second bound is also based on mapping nodes onto each
other, but now we take the atom types of both nodes in an edge into
account. We therefore, we construct bipartite graphs with nodes from
each atom type on each side. Should the molecules have different
numbers of an atom type, we fill up the graphs such that both sides
have an equal number of nodes. We now link pairs of nodes in each
bipartite graph and set the weight of this edge to theminimumweight
to match the two nodes onto each other, which we compute using a
complete enumeration approach for mapping the local neighbor-
hoods. We calculate the final bound by computing minimum weight
perfect matchings in each of the bipartite graphs, summing up the
results and, again, dividing by two. See ref. 60 for correctness proofs.
We can compute this bound in cubic time in the number of nodes
(heavy atoms), using the Hungarian algorithm105 or faster methods for
findingminimum-weight perfectmatchings. In contrast, executing the
Integer Linear Program below may require exponential time.

We note that the second bound is stronger than the first, meaning
that the value of the first bound can never be larger than that of the
second. This followsbecause amatching for the secondbound is also a
validmatching for the first bound, but with smaller weight. In addition,
we use the same denominator of two for both bounds. The advantage
of the first bound is that it can be computed even faster. Since finding
minimum matchings can be executed very fast in practice, we con-
centrated on the second bound throughout this paper.

To compute minfdðM1,M2Þ,Tg, we use an integer linear pro-
gramming (ILP) formulation. It is similar to the formulation in ref. 101,
but explicitly addresses weighted minimization and unmapped edges,
and is faster to solve because of the atom labels and the threshold
constraint. We introduce variables yik for each node pair i ∈ V1 and
j∈ V2 with a(i) = a(j) to indicate whether i will be mapped to j in which
case yik = 1. We introduce similar variables cijkl for mappable edge pairs

ij ∈ E1 and kl ∈ E2 with a(i) = a(j) and a(k) = a(l) with corresponding
weights wijkl = ∣bðijÞ � bðklÞ∣. Finally, we have variables nij for all
ij ∈ E1 ∪ E2 to indicate whether an edge is not mapped. We denote by
N(i) the neighborhood of node i, that is the set of adjacent nodes.

Our ILP is as follows:

min
X

ijkl

cijklwijkl +
X

ij2E1 ∪ E2

nijbðijÞ ð1Þ

s. t.
X

k2V2

yik ≤ 1 for all i 2 V 1 ð2Þ

X

i2V 1

yik ≤ 1 for all k 2 V2 ð3Þ

X

j2NðiÞ
cijkl ≤ yik + yil for all i 2 V 1, for all kl 2 E2 ð4Þ

X

l2NðkÞ
cijkl ≤ yik + yjk for all k 2 V2, for all ij 2 E1 ð5Þ

X

kl2E2

cijkl +nij = 1 for all ij 2 E1 ð6Þ

X

ij2E1

cijkl +nkl = 1 for all kl 2 E2 ð7Þ

X

ijkl

cijklwijkl +
X

ij2E1 ∪ E2

nijbðijÞ≤T ð8Þ

yik 2 f0, 1g for allmappable i 2 V 1 and k 2 V2 ð9Þ

cijkl 2 f0, 1g for allmappable ij 2 E1 and kl 2 E2 ð10Þ

nij 2 f0, 1g for all ij 2 E1 ∪ E2 ð11Þ

We implemented the approach using Python with packages
networkx for graphs and graph algorithms and pulp for the ILP solver
interface, which enables the usage of different optimizers like CPLEX,
Gurobi or free libraries. For further details of our approach and
implementation, see ref. 62.

We stress thatwe can stop ILP computations at basically any time,
and receive both upper and lower bounds for the objective function
from the ILP solver. Similarly, we can start the ILP solver with a running
time limit such as 5min. This prohibits that few instances require hours
of computation time, but nevertheless, provides a lower of bound for
the myopic MCES distance.

Running time evaluations
All running times were measured on a 40-core Intel Xeon E5-2698
2.20GHz processor running 80 threads in parallel. Python version 3.9.7
on Ubuntu 20.04 was used to run the scripts; ILP computations were
executed with CPLEX version 12.8 (https://www.ibm.com/support/
pages/cplex-optimization-studio-v128). Running times of individual
instances were estimated via wall clock time using Python’s “time”
module. We stress that the resulting running times are not optimized,
in the sense that we did not exclude interrupts, thread switching, etc.
Furthermore, running two threads on a single core via hyperthreading
reduces the overall running time of the complete batch, but increases
the running time of each thread. Yet, the running times reported here
are a good measure of what to expect when computations are
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executed in applications, where such running time optimizations are
uncommon.

Notably, different settings were applied in the running time
evaluations. For the complete set of instances, CPLEX was executed
via pulp with the default settings. In this mode, CPLEX may use all
cores available, potentially starting a large number of threads.
Especially when already computing instances in parallel, this leads to
suboptimal running times — both because of the overhead intro-
duced by starting a large number of threads and because threads
started byCPLEXmayblockother computations. For the subsampled
set of 20k instances, CPLEX was executed with the parameter
“threads” set to 1, restricting CPLEX to single-threaded mode. This
option is only available when using the “CMD”-version of CPLEX
in pulp.

For comparisons with RASCAL, the RDKit implementation in
version 2023.09.3 was used; the time limit was set to one hour. As
described above, for part of the comparison the similarity thresholds
were modified. To obtain approximations when no exact computa-
tionswereperformed, theoption “returnEmptyMCES”wasenabled. To
circumvent the internal limit on the size of the product graph, the
option “maxBondMatchPairs” in the C++ base of RDKit was exposed to
Python interface, necessitating recompilation. Otherwise, all settings
were left at their default values.

The myopic MCES distance is a metric
We now prove that the myopic MCES distance is a metric. The proof
proceeds in four steps: For completeness, we show that the first bound
gives rise to a pseudometric. Next, we show that the second bound is a
pseudometric, too. Third, we show that the exact MCES distance is a
metric. Finally, we use all of these results to show that the myopic
MCES distance is a metric, for all T > 0.

The first bound equals zero if the node set and weighted
degrees are identical. It is symmetric because the absolute differ-
ence is symmetric. To see that the triangle inequality holds, we note
that this bound is in fact the weight of a minimum matching
between the two node sets. Now, two matchings between V1 and V2,
and V2 and V3, respectively, can be combined into a matching
between V1 and V3. Every edge weight is at most as large as the sum
of edge weights in the two original matchings. Hence, the minimum
matching between V1 and V3 will have weight at most as large as the
sum of matching weights. Next, the same arguments also hold for
the second bound, which, again, corresponds to a minimum weight
matching, albeit with more sophisticated edge weights. Let dB be
the second bound.

Third, for the exact MCES distance dE, it is understood that the
weighted distance between two molecular graphs is symmetric and
that it is zero if andonly themolecular graphs are identical. Proving the
triangle inequality for the weighted MCES distance can be done ana-
logously to the proof of Bunke et al.106 who showed that a relatedMCS
distance is a metric.

Fourth, we have shown that the bound dB is a pseudometric and
that the exact distance dE is ametric. We want to show that themyopic
MCES distance d is a metric, too. It is straightforward to infer from the
above that d is symmetric. Similarly, d(x, x) = 0 is clear. Next, d(x, y) = 0
implies dB(x, y) = 0 < T and, hence, 0 = d(x, y) = dE(x, y). Since dE is a
metric, we infer x = y. Hence, what remains to be shown is that d fulfills
the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

Recall that dðx, yÞ= minfdEðx, yÞ,Tg in case dB(x, y) < T. Clearly,
d(x, y) = dB(x, y)≥T ifdB(x, y)≥T. We stress that dB(x, y)≤d(x, y)must hold
even if dðx, yÞ= minfdEðx, yÞ,Tg: In this case, dB(x, y) < T and dB(x, y) ≤
dE(x, y) holds.

We make a case distinction on whether d(x, z) was computed via
the ILP or via bounds. (i) Assume dðx, zÞ= minfdEðx, zÞ,Tg holds. If at
least one of the two distances d(x, y) and d(y, z) is at least T

(say, d(x, y)≥T) then

dðx, zÞ= min dEðx, zÞ,T
� �

≤ T ≤ dðx, yÞ ≤ dðx, yÞ+dðy, zÞ : ð12Þ

This covers the case that one of the distances d(x, y) and d(y, z) was
computed heuristically. So, d(x, y) = dE(x, y) and d(y, z) = dE(y, z). Now,

dðx, zÞ= min dEðx, zÞ,T
� �

≤ dEðx, yÞ ≤ dEðx, yÞ+dEðy, zÞ=dðx, yÞ+dðy, zÞ

since dE is a metric. (ii) Now, assume d(x, z) = dB(x, z) was computed
heuristically. But then, d(x, z) = dB(x, z)≤dB(x, y) + dB(y, z)≤d(x, y) +
d(y, z). □

The important step in this proof is (12): Here, we require that d is
double thresholded via dðx, zÞ= minfdEðx, zÞ,Tg. If we do not use
double thresholding, then the resulting distance measure is not a
metric, see Supplementary Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used throughout this paper including thebiomolecular structures
dataset, the MS/MS dataset as well as computed MCES distances and
corresponding UMAP embeddings are available at https://github.com/
boecker-lab/myopic-mces-data. Interactive UMAP visualizations are
available at https://mces-data.boeckerlab.uni-jena.de/. The biomole-
cular structures dataset combines structures from the databases
KEGG82, ChEBI83, HMDB84, YMDB85, PlantCyc86, MetaCyc87,
KNApSAcK88, UNPD89, MaConDa90, HSDB91, Super Natural II92,
COCONUT93, NORMAN94, and subsets from PubChem66, retrieved on
February 10th, 2023. For UNDP an older downloaded version was used
since the website has been taken offline. ChEMBL78 was accessed on
July 31st, 2024. Molecular structures of the training datasets except
SMRT and MS/MS are available from https://github.com/chemprop/
chemprop. The SMRT dataset is available at https://doi.org/10.6084/
m9.figshare.8038913. Source data are provided with this paper and via
figshare at https://doi.org/10.6084/m9.figshare.27203583.

Code availability
Code is open source and freely available at https://github.com/AlBi-
HHU/myopic-mces and from Zenodo (https://zenodo.org/records/
13912999)107.
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