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Understanding the spread of agriculture in
the Western Mediterranean (6th-3rd
millennia BC) with Machine Learning tools

Maria Elena Castiello 1,2 , Emmanuele Russo3, Héctor Martínez-Grau4,
Ana Jesus4, Georgina Prats 4,5 & Ferran Antolín 2,4

The first Neolithic farmers arrived in theWesternMediterranean area from the
East. They established settlements in coastal areas and over time migrated to
new environments, adapting to changing ecological and climatic conditions.
While farming practices and settlements in the Western Mediterranean differ
greatly from those known in the Eastern Mediterranean and central Europe,
the extent to which these differences are connected to the local environment
and climate is unclear. Here, we tackle this question by compiling data and
proxies at a superregional and multi-scale level, including archaeobotanical
information, radiocarbon dates and paleoclimatic models, then applying a
machine learning approach to investigate the impact of ecological and climatic
constraints on the first Neolithic humans and crops. This approach facilitates
calculating the pace of spread of farming in the Western Mediterranean area,
modelling and estimating the potential areas suitable for settlement location,
and discriminating distinct types of crop cultivation under changing climatic
conditions that characterized the period 5900 – 2300 cal. BC. The results of
this study shed light onto the past climate variability and its influence on
human distribution in the Western Mediterranean area, but also discriminate
sensitive parameters for successful agricultural practices.

The spread of early farmers from SWAsia towardsWestern Europe is a
testament to the capacity of Neolithic farmers to succeed in many
different environments, substrates and climatic regions. This success is
possible partly thanks to the large variety of crops available at the
beginning of this process, the intensive (garden-plot-type) and mixed
(closely integrated with animal management) nature of farming1, but
also the important role of wild plants in the diet2–4. There is abundant
literature reviewing how the spread of these populations was only
possible by focusing on the crops better adapted to the new climatic
conditions5–8. However, so far no research has quantitatively assessed
the ecological niche of these crops in the past, and the degree towhich
these farming communities and the crops they cultivated were

constrained by or adapted to climate change events that potentially
happened during the Neolithic period (between 5900 and
2300 cal. BC)9.

The North-west Mediterranean region and the western Alpine
Foreland (current Switzerland) is one of the best-investigated areas
regarding settlement patterns and agricultural practices in the Wes-
ternMediterraneanand also oneof the regions that have seen a greater
improvement of the datasets in recent times. In comparison to central
Europe, the area is less intensively known10, particularly for the Early
Neolithic (5900–4500 BC, our Phase 01 and Phase 02), but sites are
well radiocarbondated, partlydue to the establishmentof radiocarbon
dates asproxies to understand theNeolithisation process11,12 andpartly
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because of the long stratigraphies preserved in cave sites requiring
accurate dating and modelling13, but particularly thanks to den-
drochronological dating of waterlogged sites. The Middle
(4500–3500/3300 BC, our Phase 03) and Late Neolithic (3500/
3300–2300 BC, our Phase 04) periods are very well researched, par-
ticularly if we consider the large amount of high-quality data coming
from the pile-dwellings in current Swiss territory and the abundant
research carried out in some of the other areas, partly connected to
rescue archaeology interventions as human impact on the landscape
of the region increases14–16.

It is commonly agreed that the first farmers that got to the region
spread along the coasts since new populations arrived through navi-
gation, and progressively moved inland. Recent work has questioned
this assumption13. Manen and others highlighted that early Neolithic
settlements seem to have optimized adapting capacities to dwell in
different environments and different types of sites: open-air sites, cave
sites, pile dwellings, etc.10. Whether this observation translates in a
particularly diverse niche or only in diverse topographical locations
with similar conditions is unclear. Between the 5th and 3rd millennia
strong networks develop. In this context, the settling of farmers in the
Swiss Plateau (and around lakes in the Jura region) takes place, prob-
ably connected to a spread of populations from the South12,17. There is
abundant evidence of changing technologies due to internal dynamics
and external influences, as well as of the exchange of prestige goods
and even small-scale migrations, particularly at the end of the
Neolithic18. According to available archaeological evidence, migrating
individuals did not necessarily move in large population waves, and
they integrated into existing villages, which is well documented, for
instance, in the Swiss pile dwellings19. Considering this, for the
moment, changes in niche amplitude should not be understood as
evidence of the arrival of new groups that prefer other locations. It is
our hypothesis, that changes in the niche breadth imply economic
changes that may or may not be connected to climatic changes.
Authors observe an important use of middle/low mountain ranges in
the 6th and 5th millennia BC20,21, but the interpretations of this phe-
nomenon differ, either as evidence of an economic specialization or of
permanent occupations at middle altitudes. Higher mountain ranges
would be seasonally targeted in the 4th and 3rd millennia BC20,22.

Actually, a long-term analysis of the changing niches in the Neo-
lithic has not been evaluated in combination with agricultural prac-
tices. This is an important research gap considering that EarlyNeolithic
societies in the area are poorly stratified and site location will probably
be mostly driven by environmental factors as well as social networks.
The use of niche modelling techniques is generally not new, and our
efforts here align with the most recent studies in archaeology23–27 try-
ing to assess the responses of human societies to climate variability,
making useof the latest high-resolution climatemodel results. ‘Habitat
suitability’ (HS) is (as detailed inMethods,Habitat Suitability andNiche
models construction, following the work of Braunisch and others28) an
inference based on extrapolation from archaeological site distribu-
tions, and not on a priori arguments about the suitability of different
landscapes. It has the implicit assumption that archaeological sites
must have been located in areas that are suitable for human habitation
at a given time. Blinkhorn and others29 have indeed tried to infer
human behaviour from the archaeological record of the Late Pleisto-
cene, while Banks and others30 adopted more specific environmental
and cultural niche modelling techniques to conclude that environ-
mental factors did have an influence on the predisposing occupation
of regions most suited to specific cultural adaptations for the pre-
historic farmers. Such first quantitative attempts, and the process of
exploring and explaining where and why Neolithic populations
occurred and settled, and to which extent people’s lives were already
affected by climatic factors and constraints has rightly become a
central focus of debate for an increasing number of archaeological
studies, concurrently with themore pressing concern and challenge of

the global climate crisis31,32. Computational and quantitativemodelling
techniques come in hand and can be of greatest benefit for archae-
ologists trying to address large-scale events connected with relevant
modern challenges.When considering the greatest amountof data and
information available today, especiallywhen approaching the complex
phenomena of the spread of agriculture that includes dozens of
countries, we realize that computer tools and more advanced statis-
tical methods are essential to combine and integrate multiple proxies
and databases at different spatiotemporal scales, to test and validate
several hypotheses indeed formulated to reconstruct the past.

Previous research has focused on the spread or on the under-
standing of expansions anddeclines of certain archaeological cultures.
We nevertheless do not advocate for deterministic positions aiming to
explain the disappearanceof siteswith certain potterydecorations.We
aremore interested in the relationship between site location and crop
diversity at a given time and place since crops have a more direct
relationship with weather and climate.

Among the crops available to early farmers arriving into current
mainlandGreece fromSWAsia, we can consider nakedwheat (Triticum
aestivum/durum), emmer (Triticum dicoccon), einkorn (Triticum
monococcum), Timopheev’s wheat (Triticum timopheevii), hulled bar-
ley (Hordeum distichon/vulgare), naked barley (Hordeum vulgare var.
nudum), lentil (Lens culinaris), pea (Pisum sativum), broad bean (Vicia
faba), chickpea (Cicer arietinum), bitter vetch (Vicia ervilia) and flax
(Linum usitatissimum). The characteristics of the different cultivated
plants and their uses differ, as highlighted by numerous authors33–39.
Einkorn grows well on poor soils and in cold areas and tolerates wet
climates. It is mostly used to produce bulgur and similar products
instead of bread-like foodstuffs. Emmer is slightly more drought-
resistant than einkorn and a bit more demanding on soil quality. It is
also more productive. Timopheev’s wheat is the most wet-tolerant
cereal of all and is also resistant to many cereal plant pathogens40.
Barleys have a shorter growing period, and this makes them more
adaptable to arid conditions, while they also grow well on poor soils.
They can be turned into flour but with a low starch content, hence
mostly used in porridge soups as roasted grains or added to other
flours to produce bread.

Chickpea41 is one of the crops that is first abandoned as farmers
started spreading towards the European continent, although there are
a few occurrences in the Iberian Peninsula42. Naked wheat and broad
bean only seem to spread along the Mediterranean coast, but not
towards central Europe until later chronologies. One final crop, opium
poppy (Papaver somniferum) seems tohavebeen taken into cultivation
in theWesternMediterranean and then spread towards central Europe
together with naked wheat43–45. The reason for the early abandonment
of nakedwheat and chickpea by farmers entering the Carpathian Basin
may be due to the continental climatic conditions, whichmade itmore
difficult for these crops to thrive. Conversely, in the Western Medi-
terranean, naked wheat was a very important crop, and it eventually
overtook the role of hulled wheat in the economy7,33. After the first
spread of farming, further changes in the crop spectrum occurred in
different regions. For instance, in the Western Mediterranean,
according to previous research46–48, a virtual replacement of naked
wheat by einkorn, emmer and Timopheev’s wheat occurred at ca.
4000 BC. As crops expanded from the Western Mediterranean coast
towards the Alpine area (both southwest and northwest)17 new cli-
mates had to be faced. Although this condition should have posed
similar challenges to early farmers than the expansion towards the
northern Balkans and the Hungarian plain, it seemed to not have
affected their crop choice (with the great importance of naked wheat,
nakedbarley and opiumpoppy, similar to otherMediterranean sites)35.
Previous approaches to the reconstruction of ecological niches of
Neolithic cultures30 interpreted the potential differences in the eco-
logical niches of early farming groups in central and southern Europe
as deriving from the crops they were growing. While this may be
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partially true, it is even more interesting to observe how farming
evolved in well investigated regions and whether the niche of those
crops actually expanded or reduced with time.

In this study, we propose an innovative multi-proxy and inter-
disciplinary approach based on Machine learning (ML) algorithms,
namely Random Forest (RF) and Maximum Entropy (MaxEnt) to
characterize and quantify the mechanisms and the impact of climatic
and environmental factors on early farmer settlement preferences and
crop choices over the Neolithic period in the North-west Mediterra-
nean region and Switzerland. We coupled a database consisting of a
total of 3416 geo-referenced archaeological sites, with associated
radiocarbondates (calibratedusingOxCal v. 4.4.2 and the atmospheric
curve IntCal20) from AgriChange_14Cdatabase49 and crop occurrences
in archaeobotanical analyses obtained within the AgriChange
project50. The study area (Fig. 1) of this research amounts in total to
almost 310,000 km2 of surface and offers a wide topographic and
bioclimatic diversity, furthermorewith ecologically diverse regions. By
coupling an increased amount of published heterogeneous data and
proxies at a superregional and multi-scale level, we demonstrate that
climatic fluctuations, such as dropping or rising temperatures,
increasing precipitation or decreasing seasonality values, were tightly
intertwined with the history and distribution of the early farmers and
especially their coping agricultural strategies.

Here, we show the extent to which the changes observed in crop
distribution were climatically driven in this particular study area,
characterizing expanding crop niches and climatic conditions across
past chronologies, by coupling paleoclimatic data from the most
recent high-resolution climate model results (CHELSA TraCE21k

dataset from Karger et al.51; see “Methods” section), with crop occur-
rences. The main premise of the paper is that choices regarding site
location and crop cultivation made in periods of climatic changemost
likely reflect the adaptive strategies of prehistoric populations.

The aims of the paper are to (1) Determine whether human and
crop niches changed over time in the Neolithic; (2) Establish if new
niches followed climate changes but remained stable in character or if
they changed in climatic/landscape factors; (3) Observe if new niches
were tied to the adoption of new crops or if new crops were adopted
within stable niches; (4) Generate maps of potentially suitable areas of
early farmers’ settlements; (5) Assess the capacity of these techniques
to address key archaeological and archaeobotanical questions.

Results
Paleoclimate and environmental envelope
To evaluate Neolithic farmers and crop niches, we first provided a
rapid characterization of past climate variability. We examined possi-
ble patterns in downscaled annual precipitation and temperature
valueswith theCHELSA-TraCE21k dataset51 (for a complete overviewof
the temporal evolution of the CHELSA paleoclimatic variables see
Supplementary Figs. 1 and 2) which has yet to be used more widely in
studies modelling archaeological or archaeobotanical occurrences for
the time frame selected here, and we could thus observe important
variability in the Annual Mean Temperature (Bio01) and the Tem-
perature Seasonality (Bio04) values, especially in correspondence and
between the four Phases (see the vertical dashed grey lines in Fig. 2) in
which the available archaeological and archaeobotanical information
was organized following previous work49 (see Supplementary Table 1

Fig. 1 | Study Area. The study area of the Western Mediterranean with the archaeological sites (red dots) and the ecologically diverse regions highlighted in different
colours.
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and Methods, Archaeological and Archaeobotanical data). These four
Phases are based on crop dynamics and divide our study period
according to the changing dominance of crop assemblages (for more
details about the division into four Phases, see Supplementary Note 1).

In general terms, for the study area and the full period, a general
increase in Annual Mean Temperature (Fig. 2a) is paired with a
decrease in Temperature Seasonality (Fig. 2b) and in the Temperature
Annual Range (Fig. 2c), reflecting an evolution towards a warmer and

Fig. 2 | Modelled climatic oscillation in the study area over the period 5900-
2300cal. BC (derived from CHELSA-TraCE21k dataset). Evolution of Annual Mean
temperature (a), Temperature Seasonality (b), Temperature Annual Range (c),
Annual Precipitation (d) and Precipitation Seasonality (e) over the entire study area
and period. The points represent the calculated mean value over the entire study

area for each 100-year step.Thedotted line represents the loess smoothwith a span
of 0.3 and the filled area the 95% confidence level interval (geom_smooth function
from ggplot2 package in R). The vertical dashed lines indicate the limits of our 4
chrono-phases. Source data can be found at https://doi.org/10.5281/zenodo.
14253277.
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less extremeclimate for theWesternMediterranean area. Likewise, the
Annual Precipitation increases over time while the Precipitation Sea-
sonality remains generally constant, showing a less pronounced trend
towards lower seasonality (Fig. 2d, e). Summers became cooler and
wetter while winters became warmer with variable amounts of
precipitation.

Considering these results, we would hypothesize that we should
first find crops that benefit from stronger seasonality and lower tem-
peratures, and there could be a progressive shift to crops that perhaps
do not need such strong seasonality and are better prepared to with-
stand higher temperatures. We could also expect a spread of settle-
ment locations to previously less favourable areas, such as higher
altitudes, given a general trend to reduction of seasonality. Consider-
ing theAnnual Precipitation,weobserve a verydry phase around5300-
5200 BC, which coincides with the change from Phase 01 to Phase 02,
and a very wet period in Phase 04. We could, in this sense hypothesize
the appearance of highly drought-resistant crops in Phase 02 and wet-
tolerant crops in Phase 04. We should also expect the appearance of
wells in the driest phases, as a phenomenon known in other regions52,
but the evidence ofwells is still sparse in our study region, perhaps due
to taphonomic issues.

Given these general conditions, we then examined, more specifi-
cally, the ecological envelope for the settlements classified per type
and phase (see Fig. 3 below; Supplementary Table 2and Supplemen-
tary Fig. 3a–d). Over the entire period, we found that the majority of
sites were located in warm environments with an Annual Mean Tem-
perature between ca. 10 and 15 °C (Fig. 3a) and Annual Precipitation
values no higher than 1250mm per year. They are especially clustered
around 750mm(Fig. 3b). A largeportionof “open air” sites persistently
occupied the areas in proximity to the main lakes and main rivers,
especially during Phase 03 (Fig. 3c, d). Lower altitudes (below
700m.a.s.l.) and gentler slopes were preferred by most of the sites
(Fig. 3e, f; the complete list of these outputs can be found in Supple-
mentary Fig. 3a–d).

The Neolithic farmers’ niche
We developed two HS models based on two different ML algorithms:
RF and MaxEnt, using paleoclimatic and environmental variables as
predictor inputs to produce maps of suitable areas for Neolithic
farmers’ occupation, one for each of the Phases identified (Figs. 4
and 5). Thesemapswith high (purple) and low (green) values show that
suitable areas for Neolithic settlements changed considerably over
time. In particular, the maps produced by the RF algorithm (Fig. 4a–d)
point to a significant change between 5900-4500BC (Phase 01 and 02)
and 4499–2300 BC (Phase 03 and 04). Looking closely at Fig. 4a,
during the first phase (5900–5300 BC), the most suitable areas are
essentially distributed along the Liguro-Provence and Languedoc
shores (Northern Mediterranean shores), the Llobregat river mouth
(Southern Mediterranean shores) and the Pyrenees. Consistent high
suitability is also observed in the area of the Po valley and along the
Adriatic shores until the end of the second phase (4500 BC) (Fig. 4b).
Starting with Phase 03 (4499–3100 BC) in Fig. 4c, the most suitable
areas seem to shift towards the inland, the lower-course of the Rhone
valley, the Swiss Plateau and the main Swiss lakes, as well as the Jura
region, thus abandoning the Mediterranean shores (Fig. 4d). The Ita-
lian Peninsula as well as the Alpine regions present very few suitable
areas during these two more recent periods.

The suitability maps produced using MaxEnt (Fig. 5) show some
differences but also some similarities in many cases with the maps
produced using RF. During Phase 01 (Fig. 5a), there is an absence of
suitable areas in the Po valley, the Italian Peninsula, the Swiss Plateau
and the higher course of the Rhone valley. With Phase 02 (Fig. 5b), the
map shows again higher suitability along the Po valley, along the Pyr-
enees and around Lake Garda, but less suitable areas over Liguro-
Provence and Languedoc shores. During Phase 03 (4499–3100 BC),

higher probabilities are found around the alpine region, the Pyrenees
and the lower Rhone valley. The highest suitability scores are more
widely distributed over the landscape during the last phase (Fig. 5d),
and reach further inland, away from the coast, compared to earlier
phases. A shift that is supported both by the MaxEnt and the RF
models.

The significance of each variable used in the two models is pre-
sented as Variable Importance Ranking (Supplementary Fig. 4) and
Partial Dependence plots (Supplementary Fig. 5a–d) for RF. The Vari-
able Importance Ranking for RF (using Mean Decrease Accuracy) is a
statistical measure computed by looking at how much removing a
variable decreases the model accuracy53. The Partial Dependence plots
are a graphical indication of the influence (or marginal effect) of the
specific class/range of values on the computed probability of site
location54.

For MaxEnt, the Response Plots (Supplementary Fig. 6a–d) indi-
cate the role of a particular variable depicted as a response curve
showing the predicted relative occurrence rate (suitable areas) against
the values of that predictor (variable). As stated by Hong and others53,
“a key advantage of variable importance measures, as compared to
univariate screening methods, is that they cover the impact of each
predictor variable individually as well as in multivariate interactions
with other predictor variables”.

As a result of the RF computations, the Mean Temperature
Diurnal Range (Bio02) and the distance to the main lakes (D_Lakes)
are the two most important variables in predicting high suitability
areas during the first Phase 01, with a peak of suitability prediction at
a Temperature Diurnal Range of 6 °C and far away from the main
lakes above 100 km. During Phase 02, Bio02 is associated with the
elevation variable (DEM), and together they represent the two most
important factors in defining the best ecological settings. Similar to
Phase 01, the peak of suitability prediction of Bio02 is maintained
between 6 °C and 8 °C. Regarding elevation, the highest positive
dependence is shown below 500m.a.s.l. During Phase 03 and 04, the
distance to the main lakes plays the most relevant role in predicting
the highest suitability areas, with the highest suitability in close
proximity to them, associated with the Mean Temperature of Wet-
test Quarter (Bio08) during Phase 03 with values over 10 °C and to
elevation during Phase 04, with positive values between 200 and
700m.a.s.l. (see Supplementary Figs. 4 and 5a–d).

While MaxEnt provides more generalized response curves, the
variable Response Plots show very similar results for these variables.
The highest prediction appears again at a Mean Temperature Diurnal
Range (Bio02) of 6 °C and gently decreases with increasing Bio02
values (during Phase 01 and 02). Similarly, the peak in prediction lies
below 500m.a.s.l. in Phase02with high values (> 0.5) up to 700m.a.s.l.
in Phase 04.While in Phase 01, the highest predictions correspond to a
distance to lakes between 100 and 150 km, in Phase 03 and 04 they lie
in close proximity to them (see Supplementary Fig. 6a–d).

The shift further inland and towards higher altitudes observed
above when comparing the suitability maps computed by the two
models has been also statistically inspected as the distribution of the
predictedmost suitable areas (with suitability ≥0.75) over the climatic
and environmental features. The RF model shows that between 5900
and 4500 BC, the most suitable areas are those with an Annual Mean
Temperature (Bio01) around 13 °C and mainly located at very low
altitudes (with median values at 193 for Phase 01 and 210m.a.s.l. for
Phase 02 and a peak in the density of occurrences below these values).
These preferences changed with the onset of Phase 03, when the best
areas spread over a larger range both considering altitude and mean
annual temperature. Median altitudes increase to 323m.a.s.l (Phase
03) and 392m.a.s.l. (Phase 04) with a mean annual temperature
showing much larger ranges than in the previous phases (see
Fig. 6a, b). The MaxEnt model shows very similar predictions, with a
peak of high suitability areas at very low altitudes during Phase 01 and
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similar interquartile ranges (boxes) with slightly higher median values
during Phase 01 and 02. A similar altitude shift between Phase 02 and
Phase 03 is observed when the median altitude of the most suitable
areas increases from 304m.a.s.l. to 360m.a.s.l and their distribution

spreads over a larger range (see Fig. 6c, d). Indeed, it was around 4500
BC that we could also observe a shift in the type of preferred land-
scapes. While during the first two phases, the most suitable areas were
mainly located at the lowest altitude, with warmer temperatures and

Fig. 3 | Distribution of Site types over paleoclimate and environmental vari-
ables per Phase.Eachpanel shows theoverall distribution (boxplot) of all sites and
the distribution of site types (histograms) over Annual Mean Temperature (a),
AnnualPrecipitation (b),Distance to lakes (c),Distance to rivers (d), Altitude (e) and
Slope (f) per Phase. The histograms display 30 equally wide bins showing the

percentage distribution of site types over the variables. The boxplots show med-
ians, first and third quartiles (hinges), and minimum and maximum values no fur-
ther than 1.5*IQR from the hinge where IQR is the inter-quartile range (whiskers).
Details about sample numbers are provided in Supplementary Table 2. Source data
can be found at https://doi.org/10.5281/zenodo.14253277.
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low precipitation values, in time they shifted towards higher eleva-
tions, in colder and more humid environments. (for a complete over-
view of the distribution of the predicted areas over all variables see
Supplementary Fig. 7).

Agricultural variability and Crop niches
We also analysed the ecological niche of each of the main crops over
the entire period. These might differ individually from the general
trends shownby the sites sincenot all the cropswerepresent at all sites
during all phases (see Fig. 7a).

Figure 8 reproduces the distribution of crop occurrences over
Annual Mean Temperature and Mean Annual Precipitation. It shows
that for the entire period analysed, naked wheat clustered around
higher temperatures, between 12 °C and 15 °C, and annual pre-
cipitation values of ca. 800mm per year (see also Supplementary
Fig. 8a, k), spreading in warmer and more arid environments. Glume

wheat (einkorn, emmer and Timopheev’s wheat), similar to naked
wheat, cluster with preference in areas with relatively high Annual
Mean Temperatures (ca. 14 °C to 15 °C) and mean annual precipita-
tion around 800–880mm per year. Poppy and apple/pear instead
are found in more humid and cooler environments, with precipita-
tion values around 1000–1250mm and temperature values of less
than 10 °C. Pea and hazel, and to a lesser extent lentils and oak, are
found both in warmer and drier as well as in humid and cooler
conditions.

The results (Fig. 9) show thatmildwinterswith lower precipitation
values were suitable for barley, glume wheat, naked wheat, and oak
(clusters around temperature values of the coldest quarter above 5 °C
and precipitation of the coldest quarter around 200–250mm, see also
Supplementary Fig. 8j,r). In places with harsher winters (temperature
values of the coldest quarter below 0 °C and precipitation of the
coldest quarter above 250mm), wild crops such as apple/pear and

Fig. 4 | Suitabilitymaps resulting from the Random Forest models for the four
Phases. Phase 01 is shown in panel (a), Phase 02 in panel (b), Phase 03 in panel (c)
and Phase 04 in panel (d). High suitability areas are coloured in purple, while low

suitability areas are coloured in green. Source data can be found at https://doi.org/
10.5281/zenodo.14253277.
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hazel were complemented with oil seeds (flax and opium poppy).
Lentils and peas are found in both types of environments.

Discussion
The main objective of this research was to identify changes in human
and crop niches and their interrelationship with climatic changes
across theWestern Mediterranean area, based on a big database and a
data-driven approach using machine learning techniques. While com-
putational and quantitative modelling techniques offer an exciting
newopportunity to create and empirically testmore explicitmodels of
past human ecological dynamics and agriculture development strate-
gies, one must keep in mind that these approaches carry also some
limitations. Accessing andmanipulating large datasets across different
sources requires, on the one side, significant computational power and
processing time and on the other side, complementary and multi-
disciplinary expert knowledge. Moreover, the inherent bias within the

archaeological and archaeobotanical datasets represents today a
challenge for many modelling exercises, in particular here where the
available site and crop samples with associated C14 dates are likely
under-representative for some of the regions included in the study
area (e.g., the Catalan coast or the regions of northern Italy and the
Alps), and for some of the periods identified (Phase 04 in particular).
The state of archaeobotanical research may indeed influence the
suitability models of some of the crops. This is the case of the opium
poppy, for instance, a crop of Mediterranean origin that spread to
central Europe together with other Neolithic elements (and possibly
populations)most likely from theWesternMediterranean area43,44. Our
analyses could suggest its great suitability towet and cold climates, but
actually, they show how quickly the plant was able to adapt to and
thrive in new climatic conditions under cultivation. The spatial and
temporal bias may be due to preservation issues due to a different
distribution of research efforts on the territories or to the fact that

Fig. 5 | Suitability maps resulting from theMaxEntmodels for the four Phases.
Phase 01 is shown inpanel (a), Phase 02 inpanel (b), Phase 03 in panel (c) and Phase
04 in panel (d). High suitability areas are coloured in purple, while low suitability

areas are coloured in green. Source data can be found at https://doi.org/10.5281/
zenodo.14253277.
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archaeological sites have a greater chance of being discovered if they
are repeatedly used in time. Lastly, our study can also be partly limited
by the absence of soil-related variables used in the modelling proce-
dure, such as indices of soil types, texture, and vegetation
distribution55. All of these drawbacks need to be considered in the
discussion of the results generated.

In this study, we applied both spatial statistics analysis andmachine
learning/speciesdistributionmodellingcomparison techniquesusingRF
and MaxEnt. One can consider these two algorithms as complementary
methods. RF is an ensemble learning method based on decision trees,
constructing multiple decision trees during training that outputs the
average prediction of the individual trees. MaxEnt, however, is a prob-
abilistic modelling approach that aims to find the distribution of max-
imum entropy given a set of constraints. RF tends to capture complex
interactions between variables, while MaxEnt might provide more gen-
eralised response curves. We believe that comparing these two techni-
ques allowedus to take advantage of the strength of the twomodels and
to be more confident in the comparable predictions.

The combined analyses performed in this paper prove very useful
to answer questions regarding agricultural decision-making and
spreading in the past. Phase 01 presents a relatively narrow niche. The

strong seasonality and the colder climatic conditions favoured glume
wheat as a predominant taxa, possibly due to their resilience capacity,
within broadly diverse crop assemblages. These first two Phases, Phase
01 and Phase 02 also witness a cluster of settlements suitability areas
mainly distributed along the Mediterranean shores. In Phase 03, a
warmer and more humid phase allowed farmers to migrate to drier
internal zones and to colder temperatures, where theymostly took the
set of crops from the previous phase. The optimal climate conditions
during this Phase, along with the ease of processing of these specific
taxa prior to consumption might have led the farmer communities to
prefer these amongothers56. Several factorsmight have influenced this
decision, such as a higher population density or a possible population
boom, as observed in several archaeological proxies from the area57

(and in Europe)58. So not only could these cereals have been suited for
the climate, but also the most productive and interesting to sustain a
growing population inhabiting a broader niche. With the general
increase in temperature and decrease in seasonality (see Fig. 2b), the
climatic niche for barley, naked and glume wheat shifted inland
towards higher altitudes over time. This might have allowed farmer
communities to expand and occupy new territories. Similar observa-
tions were made in the natural environment of the alpine and
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Fig. 6 | Comparisonof the distributionofpredicted high suitability areasusing
both models over Annual Mean Temperature and Elevation. a shows the dis-
tribution of predicted high suitability areas (≥ 0.75) modelled using Random
Forest (RF) over Annual Mean Temperature (Bio01). b shows the distribution of
predicted high suitability areas (≥ 0.75) modelled using Random Forest (RF) over
Elevation (DEM). c shows the distribution of predicted high suitability areas (≥
0.75)modelled usingMaximum Entropy (MaxEnt) over AnnualMean Temperature

(Bio01). d shows the distribution of predicted high suitability areas (≥ 0.75) mod-
elled using Maximum Entropy (MaxEnt) over Elevation (DEM). Ridge lines on each
panel show kernel density estimates, and the boxplots show medians, first and
third quartiles (hinges), minimum and maximum values no further than 1.5*IQR
from the hinge where IQR is the inter-quartile range (whiskers). Points show the
jittered distribution of data points. Source data can be found at https://doi.org/10.
5281/zenodo.14253277.
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subalpine areas of the central Pyrenees during the first half of the
Holocene period20. Some authors had interpreted these sites at higher
altitudes as evidence of increased site specialization21, but our results
would support an expansion into the highlands of year-round farming
sites during a period of climatic amelioration, which would have a
more or less similar economy and would be tightly networked in
comparison to previous phases. The networks during this period have
been extensively analysed using many different types of artifacts (i.e.,
pottery59,60). Our results suggest that farmers responded to climate
change bymoving to higher altitudes (broadening their niche) and not
as a shift to specialization in particular products, but rather tomaintain
the resilience of the whole mixed farming network. During Phase 04,
wetter conditions prompted farmers to adapt and favour wet-tolerant
crops. In colder and wetter environments, wild crops such as oil seeds
flax, opium poppy, pea or apple/pear might have been more regularly
added to the communities’ diets in order to compensate for the diffi-
culty of growing naked wheats as in earlier periods. Emmer seems to
partially replace free-threshing wheat in wetter and colder areas.

The results highlight in particular three relevant moments of
change at a large scale and of high relevance: (1) A first one in corre-
spondence of 5300 BC approx., when the climate became drier in the
NWMediterranean area, and thus the early farmers had the possibility
to choose the most appropriate crops to grow and keep growing at
specific locations. Until this moment, glume wheat was the pre-
dominant taxa within broadly diverse crop assemblages and the set-
tlements clusteredmainly along the Mediterranean shores, but during

Phase 02, naked wheat and (naked) barley become more important,
and glume wheat become residual (as also observed in other works7);
(2) This situation started to change around 4000 BC, Specifically, the
peak of naked wheat occurrences (Fig. 7b) happens at amoment when
Mean Annual Temperature and Precipitation are at their highest (in
Phase 03). After this moment, glumewheats, particularly einkorn, gain
importance. It is possible also that not only climate variations but also
the emergence of main storage pests, such as the grain weevil, might
have played a role in the clear shift of the crop spectrum, particularly
visible in the Mediterranean regions, as recently suggested by other
works47,56. The spread of these pests could have been facilitated by the
active networks that functioned at the time. (3) Finally, a last moment
of major change can be identified around 3100 BC, when the wetter
climate in the alpine Foreland prompted the farmers to adapt to the
new conditions and to make different choices in order to face the new
climatic/environmental conditions. For example, we see that oil seeds
like flax, opium poppy, pea or apple/pear, have been found in colder
andwetter environments thanbarley, glumewheats andnakedwheats.
These wild crops might have been more regularly added to the com-
munities’ diets in order to compensate for the difficulty of growing
naked wheat in such environments (see also Steiner et al.61). Changes
towards more widespread cultivation of einkorn and emmer have also
been pointed out for regions such as Southern France62 and
Switzerland35. Our analyses indicate that these changes could have
been, to some extent, an adaptation to new climatic conditions,
although social factors cannot be excluded.

Fig. 7 | Quantified crop occurrences per phase (a) and density of crop occur-
rences over time (b). a The bars show the number of occurrences in the database
for each type of crop per chronological phase. b Coloured areas show Kernel
Density estimates of crop occurrences over the entire period for each crop. The

vertical dashed lines indicate the limits of our 4 chrono-phases. Details about
sample numbers are provided in Supplementary Table 3. Source data can be found
at https://doi.org/10.5281/zenodo.14253277.
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Fig. 8 | Distribution of crop occurrences over Annual Mean Temperature and
Annual Precipitation.Blue areas in eachpanel show2Dkernel density estimatesof
the distribution of crop occurrences over Annual Mean Temperature (y-axis) and
Annual Precipitation (x-axis) over the study period. Darker blue indicates higher

density and light blue indicates low density. Details about sample numbers are
provided in Supplementary Table 3. Source data can be found at https://doi.org/10.
5281/zenodo.14253277.
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indicates higher density and light blue indicates low density. Details about sample
numbers are provided in Supplementary Table 3. Source data can be found at
https://doi.org/10.5281/zenodo.14253277.
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Comparably to recent works that made use of a similar metho-
dology, for more specific ecological analyses63,64, we have identified
correlations between temperature and precipitation increases/
decreases and the overall settlement distribution patterns and crop
diversification for the period 5900-2300 BC cal. The results we
obtained are consistent with previous studies64,65 that highlighted
considerable challenges related to climate and climatic changes being
among the key drivers of Neolithic human dynamics and agricultural
adaptation and resilience strategies30,66, which furthermore suggest
how small-scale communities could have developed different adaptive
or resilient strategies to face climatic-based limitations in a given time
and space67.

We conclude that human niche changes and crop changes in the
Neolithic period of the region are independent of each other. Crop
niches prove to have a plasticity beyond initial expectations from
present-day crops and human niche breadth expansion is possible
without crop changes. Crop changes resulting from short-term and
long-term climatic oscillations were instead detected. As archae-
obotanical and climate datasets gain higher resolution, paleo-climate
and paleo-environmental modelling approaches become the road to
be travelled for the future to reconstruct ancient crop ecologies and,
hence, to refine uniformitarian inferences.

Methods
Archaeological and archaeobotanical data
A database consisting of a total of 3416 geo-referenced archae-
ological sites, with associated radiocarbon dates (calibrated using

OxCal v. 4.4.2 and the atmospheric curve IntCal20) falling within the
timeframe considered in this research was initially drawn from
AgriChange_14Cdatabase49. This open-access dataset contains a
unique collection of inventoried sites located between the Upper
Rhine, the Po, the Rhone and the Ebro valleys, obtained from a
combination of own fieldwork and the published literature. It
includes six different types of archaeological sites (we grouped
Chasm type in the Rock shelter category), amongwhichOpen air sites
with multiple occupation phases account for over half of the
occurrences, followed by Cave sites, Rock shelters and Pile-dwellings
(see Fig. 10 and Supplementary Table 2). The chronological phases
used in this paper follow previous work49,68,69 and correspond to the
main socioeconomic dynamics in the region.

The fields extracted from this database and retained for the pre-
sent research concern the specificity of the sites (ID, name and type of
the site, their geographic coordinates (GCS WGS 1984 using decimal
degrees as angular unit)) and the dating information (the corre-
sponding calibratedmean). When sites were occupied multiple times,
and samples lay in different stratigraphic units, these were treated as
individual sites with their respective environmental conditions.

In addition, a second database33,70, collecting archaeobotanical
information for 843 archaeological sites, was integrated and pro-
cessed. Thus, the archaeobotanical dataset assembled for this study
provides a synthesis of the recorded presence of taxa (only charred
remainswere considered) at a site level for the regionof interest, with a
specific reference to the seeds and the crop typologies described (the
term “crop typology” refers here to economically important,
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Fig. 10 | Distributionof sites per type andphase.TheAlluvial diagramshows the distribution of sites per site type (left) andper phase (right). Sourcedata canbe found at
https://doi.org/10.5281/zenodo.14253277.
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potentially managed, plants and not only to traditional crops). We
merged this information in a unique database, and hence, all available
crop records were georeferenced and attributed to a spatiotemporal
dimension (Fig. 7 and Supplementary Table 3).

Paleoclimate variables
The selection of paleoclimate records was essentially based on a set of
criteria, including high dating reliability, high time resolution and a
spatial extent that could cover the entire region in the exam. Specifi-
cally, we use a set of 18 reconstructed climatic variables (see Supple-
mentary Table 4) from themid-to-late Holocene for land surface areas,
selected based on their relevance and interpretability for our research.
These variables are retrieved from the open access dataset CHELSA-
TraCE21k v.1.0, downscaled51,71 and derived from the CCSM3_TraCE21k
model to a 30 arcsec resolution using the CHELSA V1.2 algorithm71,
which covers time steps of 100 years for the last 21’000 years, with
minimum and maximum temperatures, surface precipitation, and
paleo-orography information. It contributes to creating a paleocli-
matic envelope that best matches the spatiotemporal distribution of
our settlements and crops. The data were read as GeoTiff using the
raster package72 in R73

Environmental variables
In addition to the paleoclimate variables, more specific environmental
variables (see Supplementary Table 4) were computed and used to
describe landscape characteristics, such as the digital elevation model
(DEM) expressing the elevation and derived from the same CHELSA-
TraCE21k v.1.0 dataset. Although the elevation may not be an optimal
proxy for describing the landscape, as it may introduce bias in the
modelling procedure and catalyse predicted areas74, we nevertheless
decided to include it here to evaluate if adaptation to height might
have played a role in the distribution of the early Neolithic farmers and
their specific subsistence activities asdone in otherworks75.We further
derived the slope, which defines the steepness of the terrain, and the
terrain ruggedness index (TRI), which is the mean of the absolute
differences between the value of a cell and the value of its eight sur-
rounding cells, using the terrain function in the terra package76, and
calculated the proximity to important water resources77 as recon-
structed permanent lakes and rivers in a GIS environment (see the tool
Euclidean distance in ArcGIS 10.8 – ESRI).

Habitat Suitability and Niche models construction
The methodology developed in this study is primarily based on
machine learning techniques and on species distribution modelling
(SDM) approaches, linking known species localities with predictor
variables to assess patterns of species occurrence and habitat
suitability78,79. Such methods, well established in ecology and
biogeography80, evolution and more recently in conservation biology
and climate change research78,81–83, have only recently seen first appli-
cations in archaeology and, more specifically in research related to
archaeobotanical studies, as modelling tools for analysing occurrence
data and for predicting human habitat suitability29,66. Especially,
extensive literature supports the use of advanced quantitative and
machine learningmethods to reconstruct empirical ecological settings
of ancient human populations and their subsistence activities25,84–86, as
well as to examine potential environmental and climatic changes and
their ecological consequences in modern and future scenarios.

Although there is a variety of algorithms with different levels of
complexity for SDMs87, only a limited number of algorithms are being
applied in archaeology (often Maximum Entropy alone) and thus we
decided to test and compare the algorithms of Random Forest (RF)88

and Maximum Entropy (MaxEnt)89 and to explore and discuss their
results, as also suggested by several authors80,90.

RF is an ensemble decision tree method of ML based on classifi-
cation and regression tree algorithms. It is widely recognized for its

capacity to produce good predictive models with few sparse data91.
Further, it can tolerate noise overfitting and can handle a large number
of predictors and their interactions92–95, although, it is still in its infancy
in archaeological studies, with few applications to different research
branches96–98. This technique has been applied here to investigate the
relationships between a categorical dependent variable (Neolithic
settlements) to a set of predisposing factors such as ecological and
climatic variables (topography, paleoclimatic data, etc.), to identify if
and to what extent the ecological setting of the study area acts as a
predictor in the determination of thedependent variable (settlements)
and by this means contributes to the shaping of an eco-cultural niche.

MaxEnt builds upon the principle of maximum entropy and is
used to approximate a target probability distribution of data occur-
rences that is closest to uniform and subject to environmental/climate
constraints99. Being a generative approach rather than discriminative,
it shows several advantageswhen the amountof trainingdata is limited
and when only presence/occurrences data is available100. For its high-
performance rate, MaxEnt is mainly preferred in SDMs in the field of
ecology and palaeoecology and has repeatedly shown to be an
invaluable tool in a wide number of applications101–103, but yet only a
few and very recent applications of this specific algorithm can be
enumerated in archaeology75,104,105. Both algorithms can utilize con-
tinuous and categorical data and can incorporate interactions between
different variables. They are considered among the leading data-
mining ML methods for their high accuracy prediction93.

Our modelling pipeline conceptually follows the research work-
flow defined in the most recent literature65,100,106, as well as by research
exercises for modelling population distribution, agriculture and crop
niches on different spatiotemporal scales25,66.

Data preparation was performed both in ArcGIS 10.8, ArcGISPro
and in R. The model calibration, final model computations, post-
modelling analyses, and assessment were performed in R.

We used 18 downscaled Bio (paleoclimate) variables extracted for
the study area and limited to the period 5900-2300 BC to spot climate
trends for the specific region and period29. We then combined this
climatic information, along with the computed five environmental
variables (elevation, slope, TRI, distance to main rivers, distance to
main lakes) to classify the local ecological envelope for each site type
and location.

The paleoclimatic and environmental variables retained as model
inputs in the subsequent modelling procedure were further used to
build two HS Models (based on the randomForest107 and maxnet108

packages available at cran.r-project.org/web/packages/randomForest/
and cran.r-project.org/package =maxnet).

For each of the four phases, we imported the occurrence data
(archaeological sites) and the predictor variables (paleoclimate and
environmental), defining the spatial resolution and extent of the ana-
lysis to a 30-arcsecond cell size.

To avoid spatial autocorrelation affecting the predictors and the
model results18 and to reduce the dimensionality of the initial pool of
18 paleoclimates and five environmental variables, we used the non-
parametric Spearman correlation coefficient test for each variable set
(paleoclimatic and environmental). From the list of the paleoclimate
and environmental variables (as shown in Supplementary Table 4), we
retained those predictors with correlation values of r < 0.25. Where
several variables form highly correlated clusters (r >0.75), we selected
the one predictor from each cluster least correlated to all other vari-
ables. Slope and elevation are correlated by less than 0.01 more than
the threshold of 0.75. Nonetheless, as the dataset contains high alti-
tude sites, we decided to keep both variables, as we considered them
to be important factors to detect relations between site locations and
their environmental surroundings, at play here both in past human
mobility choices and adaptations strategies, thus retaining 9 paleo-
climate and 4 environmental variables as input in the modelling pro-
cess. These include Mean Diurnal Range (Bio02), Temperature

Article https://doi.org/10.1038/s41467-024-55541-y

Nature Communications |          (2025) 16:678 14

www.nature.com/naturecommunications


Seasonality (Bio04), Mean Temperature of Warmest Month (Bio05),
Mean Temperature of Wettest Quarter (Bio08), Mean Temperature of
Driest Quarter (Bio09), Precipitation of Wettest Month (Bio13), Pre-
cipitation Seasonality (Bio15), Precipitation of Driest Quarter (Bio17)
and Precipitation of Coldest Quarter (Bio19), as well as Distance from
Lakes (D_Lakes), Distance from Rivers (Dist_Riv), Slope (Slope) and
Altitude (DEM) (see Supplementary Fig. 9).

We performed both model fittings with spatial split-block cross-
validation techniques. The data are split into k-independent subsets,
and for each subset, themodel is trainedwith k-1 subsets and evaluated
on the kth subset109. The optimal block size was selected based on the
spatial autocorrelation structure of the predictors using the spatia-
lAutoRange function in the R package blockCV 110 and was set at 170 km
X 170 km.

We ran the RF model in classification mode, and because our
dataset does not contain confirmed absences, we generated a set of
random pseudo-absences over the landscape, equal in number to the
occurrence dataset. Bootstrapped comparisons were repeated 1000
times to ensure that sites and their surroundings were treated as a
whole, and to generate a distribution of AUC values using different
training data sets, while four predictors were chosen at each split.

Unlike RF, MaxEnt uses presence-only data to predict the distribu-
tion of species based on the theory ofmaximum entropy.We run it with
presences only and a group of 10,000 random background points, as
this amount of background data is considered large enough to provide
an accurate representation of the study area, while a larger background
sample increases computation time without improving modelling
performance111,112. The model prediction function was set on cloglog
transform108, it is the most appropriate method for estimating prob-
ability of presence and since it gives a better result over logistic when
bias correction is used108. Other settings were left at their default values.

Eventually, weobtained eight suitabilitymaps, one for eachPhase,
in which each raster cell was assigned with the relative index of
occurrence of the archaeological settlement (ranging from 0 for pre-
dicted absence to 1 for predicted presence – low to high suitability).
We further generated variable importance rankings, partial depen-
dence and response plots to reveal the importance of each predictor
variable in the prediction of site occurrence.

Model validation and performance assessment
In this study and in spatial data analysis more broadly, test dataset
observations are often situated near training dataset observations.
This spatial proximity can cause an overestimation of model perfor-
mance due to spatial autocorrelation, where nearby observations
share similar attributes.92 To address this issue, training and testing
datasets should be geographically separated. Spatial k-fold cross-
validation is a common method to achieve this. The dataset is divided
into k non-overlapping groups, themodel is trained on k-1 groups, and
performance is evaluated on the remaining group. This process is
repeated k times, and the error estimates are averaged to provide an
overall performancemetric. For this study, we employed 5-fold spatial
cross-validation, implemented with the blockCV package109.

Model performance for both algorithmswas assessed on test data
as the Area Under the Receiver-operating characteristic curve (AUC),
which represents the capacity of the models to distinguish between
the presence and absence or background points. This measure is
independent of threshold selection, making it a powerful tool for
assessing model performance113. The accuracy of the two models was
assessed through the AUC curves, which are presented in the Sup-
plementary Fig. 10. This graphical method illustrates the relationship
between the true positive rate (TPR) and the false positive rate (FPR),
both represented as percentages of the total cases. True positives (TP)
and true negatives (TN) refer to correctly identified outcomes, while
false positives (FP) occur when a prediction incorrectly labels an out-
come as a presencewhen it is actually an absenceor backgroundpoint.

Conversely, false negatives (FN) happen when an outcome is wrongly
classified as an absence or background point instead of a presence.
AUC can generally range from 0 to 1, where a score of 1 indicates
perfect discrimination and values < 0.5 indicate a predictive perfor-
mance worse than random. AUC values for RF models range between
0.64 and0.78 accuracy on the testing dataset, while the AUC values for
MaxEnt models range between 0.69 and 0.86 on the testing dataset,
indicating that RF model predictions are slightly more accurate than
MaxEnt for Phase 02 and 03 and MaxEnt model predictions are more
accurate for Phase 01 and 04.

Statistics
R 4.1.2 version was used for all statistical and ML modelling analyses.
Parameters such as sample size, number of replicates are reported in
the Text, Figures and Figure Legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The source archaeological data used in this study are available at:
https://doi.org/10.5334/joad.72. The paleoclimatic dataset used in this
study was published by: Karger, D. N., Nobis, M. P., Normand, S., Gra-
ham, C. H., Zimmermann, N. E. (2020). CHELSA-TraCE21k: Downscaled
transient temperature and precipitation data since the last glacial
maximum. EnviDat. https://doi.org/10.16904/envidat.211 and is avail-
able at: https://envicloud.wsl.ch/#/?bucket=https%3A%2F%2Fos.zhdk.
cloud.switch.ch%2Fchelsav1%2F&prefix=chelsa_trace%2F. The com-
puted analyses, archaeological and archaeobotanical (crop) datasets
produced in this study are available on the corresponding author’s
GitHub at https://github.com/MaCasti21/Nat-Comm_Castiello_2024.
Data to generate all figures can be found on the following Zenodo
repository: Castiello, M.E., et al., Understanding the spread of agri-
culture in the Western Mediterranean (6th-3rd millennia BC) with
Machine Learning tools, Nat-Comm_Castiello_2024, https://doi.org/10.
5281/zenodo.14253277, 2024.

Code availability
Code to reproduce the results and generate all figures can be found on
the following Zenodo repository: Castiello, M.E., et al., Understanding
the spread of agriculture in the Western Mediterranean (6th-3rd mil-
lennia BC) with Machine Learning tools, Nat-Comm_Castiello_2024,
https://doi.org/10.5281/zenodo.14253277, 2024 and on the corre-
sponding author’s GitHub at https://github.com/MaCasti21/Nat-
Comm_Castiello_2024.

References
1. Bogaard, A. Neolithic Farming in Central Europe. (Routle-

dge, 2004).
2. Antolín, F. Local, Intensive and Diverse? Early Farmers and Plant

Economy in theNorth-East of the Iberian Peninsula (5500–2300cal
BC). (Barkhuis, 2016).

3. Antolín, F. et al. Quantitative approximation to large-seeded wild
fruit use in a lateNeolithic lake dwelling. The case study of layer 13
of Parkhaus-Opéra in Zürich (Central Switzerland).Quat. Int. 404,
56–68 (2016).

4. Antolín, F. & Jacomet, S. Wild fruit use among early farmers in the
Neolithic (5400–2300 cal bc) in the north-east of the Iberian
Peninsula: an intensive practice? Veg. Hist. Archaeobot. 24,
19–33 (2015).

5. Colledge, S. The evolution of Neolithic farming from SW Asian
origins to NW european limits. Eur. J. Archaeol. 8, 137–156 (2005).

6. Colledge, S. & Conolly, J. The Origins and Spread of Domestic
Plants in Southwest Asia and Europe. (Left Coast, 2007).

Article https://doi.org/10.1038/s41467-024-55541-y

Nature Communications |          (2025) 16:678 15

https://doi.org/10.5334/joad.72
https://doi.org/10.16904/envidat.211
https://envicloud.wsl.ch/#/?bucket=https%3A%2F%2Fos.zhdk.cloud.switch.ch%2Fchelsav1%2F&prefix=chelsa_trace%2F
https://envicloud.wsl.ch/#/?bucket=https%3A%2F%2Fos.zhdk.cloud.switch.ch%2Fchelsav1%2F&prefix=chelsa_trace%2F
https://github.com/MaCasti21
https://doi.org/10.5281/zenodo.14253277
https://doi.org/10.5281/zenodo.14253277
https://doi.org/10.5281/zenodo.14253277
https://github.com/MaCasti21
https://github.com/MaCasti21
www.nature.com/naturecommunications


7. de Vareilles, A. et al. One sea but many routes to Sail: the early
maritime dispersal of Neolithic crops from the Aegean to the
western Mediterranean. J. Archaeol. Sci. Rep. 29, 102140 (2020).

8. McClatchie, M. et al. Neolithic farming in north-western Europe:
archaeobotanical evidence from Ireland. J. Archaeol. Sci. 51,
206–215 (2014).

9. Vidal-Cordasco, M. & Nuevo-López, A. Difference in ecological
niche breadth between Mesolithic and Early Neolithic groups in
Iberia. J. Archaeol. Sci. Rep. 35, 102728 (2021).

10. Manen, C. et al. Territoriality and settlement in Southern France in
the Early Neolithic: Diversity as a strategy? 7, 923–938 (2021).

11. Zilhao, J. Radiocarbon evidence for maritime pioneer colonization
at the origins of farming in west Mediterranean Europe. Proc. Natl.
Acad. Sci. USA 98, 14180–14185 (2001).

12. Martínez-Grau, H. et al. Global processes, regional dynamics?
Radiocarbon data as a proxy for social dynamics at the end of the
Mesolithic and during the Early Neolithic in the NW of the Medi-
terranean and Switzerland (c. 6200–4600 cal BC). Doc. Praehist.
47, 170–191 (2020).

13. Manen, C. et al. The neolithic transition in the Western Medi-
terranean: a complex and non-linear diffusion process—the
radiocarbon record revisited. Radiocarbon 61, 531–571 (2019).

14. Lemercier, O. in 4e millénaire. La transition du Néolithique moyen
au Néolithique final dans le sud-est dee la France et les régions
voisines Vol. 27 (eds O. Lemercier, R. Furestier, & É. Blaise) 17–44
(Monographies d’Archéologie Méditerranéenne, 2010).

15. Burri-Wyser, E. & Jammet-Reynal, L. in Chronologie de la Pré-
histoire Récente Dans le Sud de la France. Acquis 1992-2012.
Actualité de la Recherche. Actes des 10e Rencontres Méridionales
de Préhistoire Récente, Porticcio, 18 au 20 octobre 2012 (eds Ingrid
Sénépart et al.) 75–86 (Archives d'Écologieee Préhistorique, 2012).

16. Stöckli, W. Urgeschichte der Schweiz im Überblick (15000 v.Chr.
–Christi Geburt). Die Konstruktion einer Urgeschichte. Vol. 54
(Archäologie Schweiz Antiqua, 2016).

17. Antolín, F. et al. Neolithic occupations (c. 5200-3400 cal BC) at
Isolino Virginia (Lake Varese, Italy) and the onset of the pile-
dwelling phenomenon around the Alps. J. Archaeol. Sci. Rep. 42,
103375 (2022).

18. Lemercier, O. et al. in Implantations Humaines en Milieu Littoral
Méditerranéen: Facteurs d’installation et Processus d’appropiation
de l’espace (Préhistoire, Antiquité, Moyen Âge) (eds L. Mercuri, R.
González Villaescusa, & F. Bertoncello) 191–203 (Éditions
APDCA, 2014).

19. Heitz, C. in Mobility and Pottery Production. Archaeological &
Anthropological Perspectives (eds C. Heitz & R. Stapfer) 257–292
(Sidestone Press, 2017).

20. Gassiot, E., Rodríguez-Antón, D., Burjachs, F., Antolín, F. & Bal-
lesteros, A. Poblamiento, explotación y entorno natural de los
estadios alpinos y subalpinos del Pirineo central durante la pri-
mera mitad del Holoceno. Cuatern. Geomorfol. 26, 29–45 (2012).

21. Bréhard, S., Beeching, A. & Vigne, J.-D. Shepherds, cowherds and
site function on middle Neolithic sites of the Rhône valley: An
archaeozoological approach to the organization of territories and
societies. J. Anthropol. Archaeol. 29, 179–188 (2010).

22. Cunill, R., Soriano, J. M., Bal, M. C., Pèlachs, A. & Pérez-Obiol, R.
Holocene treeline changes on the south slope of the Pyrenees: a
pedoanthracological analysis. Veg. Hist. Archaeobot. 21,
373–384 (2012).

23. Pedersen, J. B., Assmann, J. J., Normand, S., Karger, D. N. & Riede,
F. Climate niche modeling reveals the fate of pioneering late
Pleistocene populations in Northern Europe. Curr. Anthropol. 64,
599–608 (2023).

24. Yaworsky, P. M., Hussain, S. T. & Riede, F. Climate-driven habitat
shifts of high-ranked prey species structure Late Upper Paleolithic
hunting. Sci. Rep. 13, 4238 (2023).

25. Krzyzanska, M., Hunt, H. V., Crema, E. R. & Jones, M. K. Modelling
the potential ecological niche of domesticated buckwheat in
China: archaeological evidence, environmental constraints and
climate change. Veg. Hist. Archaeobot. 31, 331–345 (2022).

26. Burke, A. et al. Risky business: The impact of climate and climate
variability on human population dynamics in Western Europe
during the Last Glacial Maximum. Quat. Sci. Rev. 164,
217–229 (2017).

27. Weide, A. et al. A new functional ecological model reveals the
nature of early plantmanagement in southwest Asia.Nat. Plants 8,
623–634 (2022).

28. Braunisch, V. et al. Selecting from correlated climate variables: a
major source of uncertainty for predicting species distributions
under climate change. Ecography 36, 971–983 (2013).

29. Blinkhorn, J., Timbrell, L., Grove, M. & Scerri, E. M. L. Evaluating
refugia in recent human evolution in Africa. Philos. Trans. R. Soc. B
Biol. Sci. 377, 20200485 (2022).

30. Banks, W. E., Antunes, N., Rigaud, S. & Francesco, D. E. Ecological
constraints on the first prehistoric farmers in Europe. J. Archaeol.
Sci. 40, 2746–2753 (2013).

31. Burke, A. et al. The archaeology of climate change: The case for
cultural diversity. Proc. Natl. Acad. Sci. USA 118,
e2108537118 (2021).

32. Altschul, J. H. et al. To understand how migrations affect human
securities, look to the past. Proc. Natl. Acad. Sci. USA 117,
20342–20345 (2020).

33. Antolín, F., Bouby, L., Martin, L., Rottoli, M. & Jesus, A. Archae-
obotanical evidence of plant food consumption among early
farmers (5700–4500 BC) in the Western Mediterranean Region.
Food Hist. 19, 235–253 (2021).

34. Hajnalová,M. & Dreslerová, D. Ethnobotany of einkorn and emmer
in Romania andSlovakia: Towards interpretation of archaeological
evidence. Památky Archeol. CI, 169–202 (2010).

35. Jacomet, S., Brombacher, C. & Dick, M. Archäobotanik am Zür-
ichsee. Ackerbau, Sammelwirtschaft und Umwelt von neo-
lithischen und bronzezeitlichen Seeufersiedlungen im Raum
Zürich. Ergebnisse von Untersuchungen pflanzlicher Makroreste
der Jahre 1979–1988. Vol. 7 (Orell Füssli Verlag, 1989).

36. Percival, J. The Wheat Plant. (Duckworth, 1974 (Reprint von 1921)).
37. Peña-Chocarro, L. Prehistoric Agriculture in Southern Spain during

the Neolithic and the Bronze Age. The application of ethnographic
models. Vol. 818 (Archaeopress, 1999).

38. Rovira, N. Agricultura y gestión de los recursos vegetales en el
sureste de la Península Iberíca durante la prehistoria reciente,
Universitat Pompeu Fabra, (2007).

39. Shands, H. L. & Dickson, A. D. Barley: Botany, production, har-
vesting, processing, utilization and economics. Econ. Bot. 7,
3–26 (1953).

40. Badaeva, E. D., Filatenko, A. A. & Badaev, N. S. Cytogenetic
investigation of Triticum timopheevii (Zhuk.) Zhuk. and related
species using the C-banding technique. Theor. Appl. Genet. 89,
622–628 (1994).

41. Marinova, E. & Popova, T. Cicer arietinum (chick pea) in the Neo-
lithic and Chalcolithic of Bulgaria: implications for cultural con-
tacts with the neighbouring regions? Veg. Hist. Archaeoabot. 17,
73–80 (2008).

42. Antolín, F. & Schäfer, M. Insect pests of pulse crops and their man-
agement in Neolithic Europe. Environ. Archaeol. 29, 20–33 (2024).

43. Jesus, A. et al. A morphometric approach to track opium poppy
domestication. Sci. Rep. 11, 9778 (2021).

44. Salavert, A. et al. Direct dating reveals the early history of opium
poppy in western Europe. Sci. Rep. 10, 20263 (2020).

45. Salavert, A., Martin, L., Antolín, F. & Zazzo, A. The opium poppy in
Europe: exploring its origin and dispersal during the Neolithic.
Antiquity 92, e1 (2018).

Article https://doi.org/10.1038/s41467-024-55541-y

Nature Communications |          (2025) 16:678 16

www.nature.com/naturecommunications


46. Jesus, A., Prats, G., Follmann, F., Jacomet, S. & Antolín, F. Middle
Neolithic farming of open-air sites in SE France: new insights from
archaeobotanical investigations of three wells found at Les Bag-
noles (L’Isle-sur-la-Sorgue, Dépt. Vaucluse, France). Veg. Hist.
Archaeobot. 30, 445–461 (2021).

47. Antolín, F. et al. An archaeobotanical and stable isotope approach
to changing agricultural practices in theNWMediterranean region
around 4000 BC. Holocene 34, 239–254 (2024).

48. Martin, L. et al. in Le Chasséen, des Chasséens… Retour sur une
Culture Nationale et ses Parallèles, Sepulcres de Fossa, Cortaillod,
Lagozza. Colloque International de Paris, 18–20 novembre 2014
(eds T. Perrin, P. Chambon, J. F. G. Bao, & G. Goude) 259–272
(Archives d'Écologie Préhistorique, 2016).

49. Martínez-Grau, H., Morell-Rovira, B. & Antolín, F. Radiocarbon
dates associated to neolithic contexts (Ca. 5900–2000 Cal BC)
from the Northwestern Mediterranean Arch to the high rhine area.
J. Open Archaeol. Data 9, 1–10, (2021).

50. Antolín, F. et al. The AgriChange project: an integrated on-site
approach to agricultural and land-use changeduring theNeolithic
inWestern Europe. PAGESN. Glob. Chang. Mag. 26, 26–27 (2018).

51. Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Zim-
mermann, N. E. CHELSA-TraCE21k – high-resolution (1 km) down-
scaled transient temperature and precipitation data since the Last
Glacial Maximum. Clim. Past 19, 439–456 (2023).

52. Tegel,W., Elburg, R., Hakelberg, D., Stäuble,H. &Büntgen,U. Early
Neolithic Water Wells Reveal the World’s Oldest Wood Archi-
tecture. PLOS ONE 7, e51374 (2012).

53. Hong,H., Xiaoling,G. &Hua, Y. in 7th IEEE InternationalConference
on Software Engineering and Service Science (ICSESS).
219–224 (2016).

54. Molnar, C. Interpretable Machine Learning (2022).
55. Contreras, D. A. et al. From paleoclimate variables to prehistoric

agriculture: Using a process-based agro-ecosystem model to
simulate the impacts of Holocene climate change on potential
agricultural productivity in Provence, France. Quat. Int. 501,
303–316 (2019).

56. Häberle, S. et al. Small animals, big impact? early farmers and Pre-
and Post-harvest pests from the middle Neolithic site of les bag-
noles in the South-East of France (L’Isle-sur-la-Sorgue, Vaucluse,
Provence-Alpes-Côte-d’Azur). Animals 12, 1511 (2022).

57. Barton, C. M., Ullah, I. I. & Bergin, S. Land use, water and Medi-
terranean landscapes: modelling long-term dynamics of complex
socio-ecological systems. Philos. Trans. R. Soc. A Math. Phys. Eng.
Sci. 368, 5275–5297 (2010).

58. Timpson, A. et al. Reconstructing regional population fluctuations in
the European Neolithic using radiocarbon dates: a new case-study
using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).

59. Borrello, M. A. & Van Willigen, S. Lagozza et Chasséen: Insertion
chronologique et culturelle des céramiques de la Lombardie
occidentale et du Sud-est de la France. Sibrium Cent. di Stud.
Preistorici e Archaeol. di Varese 26, 90–111 (2012).

60. Bouby, L. et al. Early Neolithic (ca. 5850-4500 cal BC) agricultural
diffusion in the Western Mediterranean: An update of archae-
obotanical data in SW France. PLOS ONE 15, e0230731 (2020).

61. Steiner, B. L. et al. Archaeobotanical and isotopic analyses of
waterlogged remains from the Neolithic pile-dwelling site of Zug-
Riedmatt (Switzerland): Resilience strategies of a plant economy
in a changing local environment. PLOS ONE 17, e0274361 (2022).

62. Bouby, L., Philippe, M. & Núria, R. Late Neolithic plant subsistence
and farming activities on the southern margins of the Massif
Central (France). Holocene 30, 599–617 (2020).

63. Sánchez Goñi, M. F. et al. The expansion of Central and Northern
European Neolithic populations was associated with a multi-
century warm winter and wetter climate. Holocene 26,
1188–1199 (2016).

64. Timmermann, A. et al. Climate effects on archaic human habitats
and species successions. Nature 604, 495–501 (2022).

65. Hua, X., Wiens, J. J., Associate Editor: Uta, B. & Editor: Troy, D. How
does climate influence speciation? Am. Nat. 182, 1–12 (2013).

66. Burke, A., Riel-Salvatore, J. & Barton, C. M. Human response to
habitat suitability during the Last Glacial Maximum in Western
Europe. J. Quat. Sci. 33, 335–345 (2018).

67. Ordonez, A. & Riede, F. Changes in limiting factors for forager
population dynamics in Europe across the last glacial-interglacial
transition. Nat. Commun. 13, 5140 (2022).

68. Hafner, A. & Suter, P. J. Das Neolithikum in der Schweiz (2003).
69. Oms, F. X. et al. The Neolithic in Northeast Iberia: Chronocultural

phases and 14C. Radiocarbon 58, 291–309 (2016).
70. Jesus, A. Crop Dynamics in the Neolithic Period in the NW Medi-

terranean Area and the Swiss Plateau The Role of Opium Poppy (P.
somniferum/setigerum) PhD thesis, University of Basel, (2021).

71. Karger, D. N. et al. Climatologies at high resolution for the earth’s
land surface areas. Sci. Data 4, 170122 (2017).

72. Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R
package version 3.5-2. (2021).

73. R Core Team, https://r-project.org (2021).
74. Guisan, A. & Zimmermann, N. E. Predictive habitat distribution

models in ecology. Ecol. Model. 135, 147–186 (2000).
75. Rodríguez, J., Willmes, C., Sommer, C. & Mateos, A. Sustainable

human population density in Western Europe between 560.000
and 360.000 years ago. Sci. Rep. 12, 6907 (2022).

76. Hijmans, R. J. terra: Spatial Data Analysis. R package version 1.5-17,
<https://CRAN.R-project.org/package=terra > (2022).

77. Osborne, P. E., Alonso, J. C. & Bryant, R. G. Modelling landscape-
scale habitat use using GIS and remote sensing: a case study with
great bustards. J. Appl. Ecol. 38, 458–471 (2001).

78. Segurado, P. & Araújo, M. B. An evaluation of methods for mod-
elling species distributions. J. Biogeogr. 31, 1555–1568 (2004).

79. Bocinsky, R. K. & Kohler, T. A. A 2000-year reconstruction of the
rain-fed maize agricultural niche in the US Southwest. Nat. Com-
mun. 5, 5618 (2014).

80. Nogués-Bravo, D. Predicting the past distribution of species cli-
matic niches. Glob. Ecol. Biogeogr. 18, 521–531 (2009).

81. Araújo,M. B. et al. Standards for distributionmodels in biodiversity
assessments. Sci. Adv. 5, eaat4858 (2019).

82. Drew, C. A., Wiersma, Y. F. & Huettmann, F. Predictive Species and
Habitat Modeling in Landscape Ecology: Concepts and Applica-
tions. (Springer New York, 2011).

83. Franklin, J., Potts, A. J., Fisher, E. C., Cowling, R.M. &Marean, C.W.
Paleodistribution modeling in archaeology and paleoanthropol-
ogy. Quat. Sci. Rev. 110, 1–14 (2015).

84. Banks, W. E. et al. An ecological niche shift for Neanderthal
populations in Western Europe 70,000 years ago. Sci. Rep. 11,
5346 (2021).

85. Bergin, S. & Pardo-Gordó, S. Simulating Transitions to Agriculture
in Prehistory. (Springer International Publishing, 2022).

86. Timbrell, L., Grove, M., Manica, A., Rucina, S. & Blinkhorn, J. A
spatiotemporally explicit paleoenvironmental framework for the
Middle Stone Age of eastern Africa. Sci. Rep. 12, 3689 (2022).

87. Guisan, A., Thuiller,W. & Zimmermann, N. E.Habitat Suitability and
Distribution Models: With Applications in R. (Cambridge University
Press, 2017).

88. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
89. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy

modeling of species geographic distributions. Ecol. Model. 190,
231–259 (2006).

90. Zhao, Z., Xiao, N., Shen, M. & Li, J. Comparison between optimized
MaxEnt and random forest modeling in predicting potential dis-
tribution: A case study with Quasipaa boulengeri in China. Sci.
Total Environ. 842, 156867 (2022).

Article https://doi.org/10.1038/s41467-024-55541-y

Nature Communications |          (2025) 16:678 17

https://r-project.org
https://CRAN.R-project.org/package=terra
www.nature.com/naturecommunications


91. Mi C., Huettmann F., Guo Y., Han X. & L., W. Why choose Random
Forest to predict rare species distribution with few samples in
large undersampled areas? Three Asian crane species models
provide supporting evidence. PeerJ 5, https://doi.org/10.7717/
peerj.2849 (2017).

92. Castiello, M. E. & Tonini, M. An explorative application of random
forest algorithm for archaeological predictive modeling. A swiss
case study. J. Comput. Appl. Archaeol. 4, 110–125 (2021).

93. Cutler, D. R. et al. Random forests for classification in ecology.
Ecology 88, 2783–2792 (2007).

94. Han, X., Guo, Y., Mi, C., Huettmann, F. & Wen, L. Machine learning
model analysis of breeding habitats for the black-necked crane in
central Asian uplands under anthropogenic pressures. Sci. Rep. 7,
6114 (2017).

95. Vignoles, A. Guide francophone pour la modélisation de niches
écologiques. Biodivers. Inform. 17, 67–95 (2022).

96. Castiello, M. E. Computational and Machine Learning Tools for
Archaeological Site Modeling. 296 (Springer 2022).

97. Jones, P. J., Williamson, G. J., Bowman, D. M. J. S. & Lefroy, E. C.
Mapping Tasmania’s cultural landscapes: Using habitat suitability
modelling of archaeological sites as a landscape history tool. J.
Biogeogr. 46, 2570–2582 (2019).

98. Roalkvam, I. Algorithmic classification and statistical modelling of
coastal settlement patterns inmesolithic South-EasternNorway. J.
Comput. Appl. Archaeol. 3, 288–307 (2020).

99. Elith, J., Kearney, M. & Phillips, S. The art of modelling range-
shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

100. Phillips, S. J. et al. Sample selection bias and presence-only dis-
tribution models: implications for background and pseudo-
absence data. Ecol. Appl. 19, 181–197 (2009).

101. Elith, J. & Leathwick, J. R. Species distribution models: Ecological
explanation and prediction across space and time. Annu. Rev.
Ecol., Evol. Syst. 40, 677–697 (2009).

102. Galletti, C. S., Ridder, E., Falconer, S. E. & Fall, P. L. Maxent mod-
eling of ancient and modern agricultural terraces in the Troodos
foothills, Cyprus. Appl. Geogr. 39, 46–56 (2013).

103. Qin, A. et al. Maxent modeling for predicting impacts of climate
change on the potential distribution of Thuja sutchuenensis
Franch., an extremely endangered conifer from southwestern
China. Glob. Ecol. Conserv. 10, 139–146 (2017).

104. Conolly, J., Manning, K., Colledge, S., Dobney, K. & Shennan, S.
Species distribution modelling of ancient cattle from early Neo-
lithic sites in SW Asia and Europe. Holocene 22, 997–1010 (2012).

105. Demján, P. et al. Long time-series ecological niche modelling
using archaeological settlement data: Tracing the origins of
present-day landscape. Appl. Geogr. 141, 102669 (2022).

106. Gibert, C. et al. Climate-inferred distribution estimates of mid-to-
late Pliocene hominins. Glob. Planet. Change 210, 103756 (2022).

107. Liaw, A. & Wiener, M. Classification and regression by random-
Forest. R. N. 2, 18–22 (2002).

108. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M.
E. Opening the black box: an open-source release of Maxent.
Ecography 40, 887–893 (2017).

109. Merow, C., Smith, M. J. & Silander, J. A. Jr A practical guide to
MaxEnt for modeling species’ distributions: what it does, and why
inputs and settings matter. Ecography 36, 1058–1069 (2013).

110. Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G.
blockCV: An r package for generating spatially or environmentally
separated folds for k-fold cross-validation of species distribution
models. Methods Ecol. Evol. 10, 225–232 (2019).

111. Phillips, S. J. & Dudík, M. Modeling of species distributions with
Maxent: new extensions and a comprehensive evaluation. Eco-
graphy 31, 161–175 (2008).

112. Anderson, R. P. & Gonzalez, I. Species-specific tuning increases
robustness to sampling bias inmodels of species distributions: An
implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).

113. Hosseini, N., Ghorbanpour, M. & Mostafavi, H. Habitat potential
modelling and the effect of climate change on the current and
future distribution of three Thymus species in Iran using MaxEnt.
Sci. Rep. 14, 3641 (2024).

Acknowledgements
The study was funded by the GroundCheck Research Cluster of the
GermanArchaeological Institute and the Schweizerischer Nationalfonds
zur Förderung der wissenschaftlichen Forschung (Swiss National Sci-
ence Foundation) in the framework of the SNSF professorship of Ferran
Antolín (Grant Number PP00P1 170515). We thank Dr. Marj Tonini, Dr.
Alejandra Moràn Ordonez, and Dr. Andreas Angourakis for the insightful
exchanges.

Author contributions
M.E.C.: Conceptualisation; Methodology; Formal analysis; Visualisation;
Writing original draft; Manuscript Review and Editing. E.R.: Climatic
analyses: Conceptualisation and Methodology of the climate analysis;
Review original draft. H.M.G., A.J., G.P. and F.A.: Archaeological and
archaeobotanical data Collection and Processing. F.A.: Obtained fund-
ing; Supervised the study; Writing original draft; Manuscript Review and
Editing. All authors reviewed the manuscript and provided feedback.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55541-y.

Correspondence and requests for materials should be addressed to
Maria Elena Castiello.

Peer review information Nature Communications thanks Mark Vander
Linden, and theother anonymous reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article's Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-024-55541-y

Nature Communications |          (2025) 16:678 18

https://doi.org/10.7717/peerj.2849
https://doi.org/10.7717/peerj.2849
https://doi.org/10.1038/s41467-024-55541-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Understanding the spread of agriculture in the Western Mediterranean (6th-3rd millennia BC) with Machine Learning tools
	Results
	Paleoclimate and environmental envelope
	The Neolithic farmers’ niche
	Agricultural variability and Crop niches

	Discussion
	Methods
	Archaeological and archaeobotanical data
	Paleoclimate variables
	Environmental variables
	Habitat Suitability and Niche models construction
	Model validation and performance assessment
	Statistics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




