Table 1 Comparison with existing on-chip ONN works

From: Spectral convolutional neural network chip for in-sensor edge computing of incoherent natural light

Publication

Pixels

Computing speed

Computing density

In-sensor

Incoherent light

MMI

Application

X., X. et al.27

Nature, 2021

500 × 500

1.785

TOPS

–

×

×

×

handwritten digit recognition (HDR)/image processing

F., J. et al.26

Nature, 2021

128 × 128

4

TOPS

1.2

TOPS/mm2

×

×

×

HDR/edge detection

A., F. et al.11

Nature, 2022

5 × 6

0.27

TOPS

3.5

TOPS/mm2

×

×

×

low-resolution image classification

F., T. et al.24

Nat. Commun., 2023

28 × 28

13.8

POPS

–

×

×

×

HDR

M., X. et al.31

Nat. Commun., 2023

28 × 28

0.27

TOPS

25.48

TOPS/mm2

×

×

×

HDR

B., B. et al.32

Nat. Commun., 2023

250 × 250

–

1.04

TOPS/mm2

×

×

×

HDR/edge detection

D., B. et al.33

Nature, 2024

28 × 28

0.108

TOPS

–

×

×

×

HDR

Ours

400 × 533

Adaptivea

Adaptive

√

√

√

complex tasks in the real world: face anti-spoofing and disease diagnosis

  1. aOCL performs analog computing. It has adaptive computing speed that can always meet the imaging speed.