Fig. 3: ROI-based MVPA classification performance on relative numerosity coding. | Nature Communications

Fig. 3: ROI-based MVPA classification performance on relative numerosity coding.

From: Hierarchical representations of relative numerical magnitudes in the human frontoparietal cortex

Fig. 3

The figure illustrates classification performance (x-axis) across all ROIs (y-axis). The classification results in the left and right hemisphere ROIs, indicated by left- and right-headed triangles, are depicted in the left and right panels, respectively. For the bilateral ROIs (circles), which span across both hemispheres, identical data are displayed in both panels to aid interpretation. The data points represent the mean classification performance across all participants (n = 30), with error bars indicating the standard error of the mean. *p < 0.05, **p < 0.01, ***p < 0.001 (one-sided t-tests against zero, Holm corrected for multiple comparisons). The suffix of ROI labels indicates the functional network each ROI belongs to. Vis, visual; SomMot, somatomotor; DA, dorsal attention; VA, ventral attention; Fp, frontoparietal; Df, default. The remainder of ROI labels indicates the anatomical location. pCun, precuneus; PCC, posterior cingulate cortex; Temp, temporal; TempOcc, temporal-occipital; ParOper, parietal operculum; Par, parietal; Post, posterior; FrOper, frontal operculum; Ins, insula; PFC, prefrontal cortex; PFCl, lateral prefrontal cortex; PFCv, ventral prefrontal cortex; PFCmp, medial posterior prefrontal cortex; Med, medial; Cing, cingulate; FEF, frontal eye field; PrCv, precentral ventral. See Table 1 for a detailed description of ROI labeling. See Supplementary Table 1 for the statistical test results. Source data are provided as Source Data file.

Back to article page