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Connecting genomic results for psychiatric
disorders to human brain cell types and
regions reveals convergence with functional
connectivity

Shuyang Yao 1,2, Arvid Harder1,2,9, Fahimeh Darki3,9, Yu-Wei Chang4, Ang Li 5,
Kasra Nikouei1, Giovanni Volpe 4, Johan N. Lundström 3,6, Jian Zeng5,
Naomi R. Wray 5,7, Yi Lu 2, Patrick F. Sullivan 2,8 &
Jens Hjerling-Leffler 1

Identifying cell types and brain regions critical for psychiatric disorders and
brain traits is essential for targeted neurobiological research. By integrating
genomic insights fromgenome-wide association studieswith a comprehensive
single-cell transcriptomic atlas of the adult human brain, we prioritized spe-
cific neuronal clusters significantly enriched for the SNP-heritabilities for
schizophrenia, bipolar disorder, and major depressive disorder along with
intelligence, education, and neuroticism. Extrapolation of cell-type results to
brain regions reveals the whole-brain impact of schizophrenia genetic risk,
with subregions in the hippocampus and amygdala exhibiting the most sig-
nificant enrichment of SNP-heritability. Using functional MRI connectivity, we
further confirmed the significance of the central and lateral amygdala, hip-
pocampal body, and prefrontal cortex in distinguishing schizophrenia cases
from controls. Our findings underscore the value of single-cell transcriptomics
in understanding the polygenicity of psychiatric disorders and suggest a
promising alignment of genomic, transcriptomic, and brain imaging mod-
alities for identifying common biological targets.

Genome-wide association studies (GWAS) have yielded fundamental
insights into the nature of a wide range of human diseases, disorders,
biomarkers, and traits. A recent summary1 of 4593 GWAS publications
studying 3908 phenotypes found 156,556 significant SNP-trait asso-
ciations; notably, only 4.19% of significant SNPs were in a protein-
coding region. GWAS have been particularly informative for psychia-
tricdisorderswhoseenigmaticnaturehas long impededprogress. This
body of work has shown thatmajor psychiatric disorders are heritable,

that clinically dissimilar disorders nonetheless have genetic overlap,
and that this can clarify causality2–6.

However, the genetic architectures of psychiatric disorders have
proven to be particularly complex7. For example, predictions that
genomic studies of schizophrenia would readily identify a few genes
with near-causal effects8–10 are inconsistent with the accumulated
results: empirical studies of common genetic variation, rare copy
number variation, rare exonic variation (both de novo and inherited),
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and whole genome sequencing11–14 were well-powered to detect a few
causal genes shared by most cases and yet none were identified.
Compared to many other human diseases/disorders, schizophrenia is
notably polygenic15 with the major population impact resulting from
inheritance of a large number of common variants of small effect12,14,16.
Indeed, the most recent GWAS for schizophrenia14 implicated 287
genomic loci (median size 652 kb, interquartile range, IQR, 238–652 kb)
often intersecting multiple protein-coding genes (median 2, IQR 1-6,
and 13% of all loci contained no protein-coding genes). It is highly likely
that there aremanymore loci to be discovered. It is not clear how these
findings inform understanding of the fundamental nature of schizo-
phrenia or what the underlying neurobiology might be.

In this paper, we evaluate the evidence that genomic results for
brain disorders, diseases, and traits point at specific brain cell types.
We evaluate the overarching hypothesis that cell types are an impor-
tant readout of genomic studies for notably complex psychiatric dis-
orders. We17,18 and others19–26 have previously evaluated this idea.
However, for brain traits, the key limitations have been the sheer cel-
lular complexity of the brain and limited transcriptomic data that
previously forced reliance on mouse brain transcriptomic surveys.
Siletti et al.27 recently published the most comprehensive human
transcriptomic dataset to date: single-nucleus RNA sequencing
(snRNAseq) of 3.369 million nuclei from 106 anatomical dissections
within 10 brain regions.

Here, we incorporate this large-scale human brain atlas alongwith
newer and larger GWAS. We extend our prior work by evaluating evi-
dence for anatomical regions as well as their functional connectivity.
Cell types form local networks that are connected to different brain
regions. Functional magnetic resonance imaging (fMRI) is a non-
invasive and widely used tool to evaluate brain regional functional
connectivity in both health and disease. Systematic reviews have sug-
gested disturbances in the Default Mode Network and the Core Net-
work in cases with schizophrenia and their neurotypical relatives28–30.
These findings suggest that genetic liability to schizophrenia can be
manifest in empirically-defined cell types, anatomical regions, and in
functional connectivity between brain regions. Despite the challenges
in analyzing the high-dimensional fMRI data31, in this paper, we inte-
grate fMRI data from schizophrenia cases and controls to illustrate
how genetic information, via transcriptomics, agrees with fMRI in the
prioritization of brain regions and changes in functional connectivity
using two independent fMRI data sets. Identifying affected brain
regions and circuits is important given “interventional psychiatry”
therapeutics that can modulate activity of specific brain regions (e.g.,
transcranial magnetic stimulation or deep brain stimulation).

Results
Our overarching goal was to evaluate whether the genomic regions
identified by GWAS for complex brain phenotypes implicated specific
brain cell types, anatomical regions, or their functional connectivity.
As diagrammed in Fig. 1, we integrated the most comprehensive
human snRNAseq brain atlas to date27 with GWAS summary statistics
for 36 primary traits including psychiatric disorders, brain traits,
neurological diseases, structural MRI measures, and control traits
(Supplementary Data 1, Supplementary Fig. 1, and Methods for inclu-
sion criteria). We systematically processed summary statistics for
these GWAS. Supplementary Fig. 2 shows the genetic correlations
between the primary traits whichwere in accordwith prior reports3. As
in our past papers17,18, we used stratified LD score regression (S-LDSC)
to estimate the enrichment of SNP-heritability for a trait in genes
whoseexpression typified cell classes. Thegenetic liability of a trait can
be measured by SNP-heritability, the proportion of phenotypic var-
iance in a trait attributable to the additive genetic variation estimated
from GWAS data32.

Cellular diversity is hierarchically organized in the brain33,34, from
a tripartite classification (neuronal excitatory, neuronal inhibitory, and

non-neuronal) to higher-order cell superclusters that are divisible into
clusters and subclusters/cell types. Following the Siletti
nomenclature27, we analyzed 31 superclusters and their component
461 clusters. In Supplementary Data 2, we characterize the super-
clusters: 10 non-neuronal and 21 neuronal superclusters (13 excitatory,
seven inhibitory, and one mixed neuronal supercluster). The super-
cluster labels capture major features but, inevitably for a complex
tissue, some labels do not capture all features: for instance, “medium
spiny neurons” and “eccentric medium spiny neurons” also contain
cells from outside caudate and putamen (e.g., other long-range pro-
jecting inhibitory cells) and “amygdala excitatory neurons” also con-
tain cells from paleocortex. Non-neuronal superclusters generally
derived from dissections across the brain: e.g., astrocyte, ependymal,
fibroblast, oligodendrocyte, and vascular cells were identified in many
anatomical regions. Neuronal superclusters usually had a main ana-
tomical region: e.g., deep-layer near-projecting and upper-layer intra-
telencephalic excitatory neurons were from neocortical dissections
and the three hippocampal cell classes were from hippocampus (the
chief exceptions were the more heterogeneous miscellaneous and
splatter superclusters).

We identified protein-coding genes whose expression was highly
specific for each brain cell type as assessed by top decile expression
proportion (TDEP or “gene specificity”). Li et al.35 determined that the
TDEP approach combined with S-LDSC had power and false positive
rates that were jointly equivalent or superior to eight other methods
(Methods). We also compared gene selection using relative versus
absolute expression (i.e., TDEP versus TPM, transcripts per million),
and found that both yielded nearly identical high-dimensional visua-
lizations (Supplementary Fig. 3) but TPM was strongly influenced by
broadly expressed “housekeeping genes” and this altered (and in some
instances biased) gene ontology (GO) gene set analysis results
(Methods).

We posit that TDEP genes for cell types are enriched for biological
processes related to cellular identity and function. First, TDEP genes
for different cell types generally had low overlap (Supplementary
Fig. 6, median Jaccard index 0.049, IQR 0.022–0.099) but certain pairs
had greater overlap (necessitating conditional analyzes, Fig. 2A). Sec-
ond, as expected, “housekeeping” genes (highly and consistently
expressed across tissues)36 weremarkedly less likely to be TDEP genes.
Third, we conducted GOgene set analyzes37 for lists of the ~1300 TDEP
genes per supercluster (Supplementary Data 2). Results for non-
neuronal cells suggested a diverse range of significant GO terms con-
sistent with the supercluster labels: astrocyte with biological adhesion,
choroid plexus with cilium, microglia with immune response, oligo-
dendrocyte with neuron ensheathment, oligodendrocyte precursor
with gliogenesis, and vascular with vasculature development. GO
terms for most neuronal cell types were dominated by synaptic biol-
ogy, consistentwithfindings that forebrain neuronal cell identity is to a
large extent driven by specific expression of synaptic genes38 (excep-
tions were lower/upper rhombic lip and cerebellar inhibitory neurons
from non-cortical regions). Fourth, the “Methods” section describes
additional features of TDEP genes: (a) visualization of supercluster
TDEP genes yielded groups of non-neuronal cells, neocortical excita-
tory neurons plus medium spiny neurons, and inhibitory interneurons
plus non-cortical excitatory interneurons (Supplementary Fig. 4A); (b)
TDEP genes tend to co-occur in genomic regions (Supplementary
Fig. 5); (c) visualizations for gene expression specificity and genomic
co-occurrence were similar suggesting that TDEP genes tend to be
locatednear eachother; and (d) all neuronalTDEP genes accounted for
61–65% of the SNP-heritability for the largest brain trait GWAS
(scz2020, bip2021, mdd2019*, neuroticism, education, and IQ).

Identifying human brain cell types implicated by GWAS
For each of the 36 primary GWAS, we estimated SNP-heritability
enrichment for TDEP genes in each of the 31 superclusters (1116
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estimates). We used FDR correction for multiple comparisons per
GWAS (Fig. 2A, Supplementary Data 3). The P-values were not uni-
formly distributed (modes near 0 and 1) and 9.6% of all comparisons
had FDR <0.05. Of the non-neuronal superclusters, only microglia
reached significance for any trait (lymphocyte count, neutrophil
count, andmultiple sclerosis). As in our prior reports17,18, non-neuronal
superclusters were not significant for psychiatric disorders. In con-
trast, eight neuronal superclusters accounted for 60% of all significant
enrichments. The numbers of superclusters with significant trait SNP-
heritability enrichmentswere highly variable: (a) none of the structural

MRI measures; (b) most neurological diseases had none (except for
multiple sclerosis and epilepsy); (c) of the control traits, neutrophil
and lymphocyte counts enriched for microglia and BMI enriched for
two deep layer pyramidal cell superclusters and amygdalar excitatory
neurons; (d) broad neocortical and non-cortical signals are also
observed for other brain traits including educational attainment, IQ,
neuroticism, and alcohol drinks per week with all neuronal neocortical
superclusters significant for scz2022 and bip2021 (except for deep-
layer near projecting). Non-cortical forebrain clusters from “amygdala
excitatory” to “eccentricmedium spiny neuron” showed strong signals

Fig. 1 | Study schematic. We first identified cell types enriched for the SNP-
heritability of 36 primary traits including major psychiatric disorders, using the
most comprehensive Adult Human Brain Atlas. This was integrated with the cell
type distribution across brain regions to identify brain regions enriched for the
SNP-heritability of the traits. Finally, the regions suggested by cell-type-informed

SNP-heritability enrichment were used to explore brain region functional con-
nectivity that can differentiate schizophrenia from neurotypical controls in two
independent datasets. TDEP=top decile expression proportion, which were the
most specifically expressed genes in each cell type (supercluster or cluster).
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for both scz2022 and bip202 (Fig. 2A); and (e) the significant enrich-
ments were dominated by six complex psychiatric disorder/brain
traits. For the largest and most powerful GWAS traits (scz2022,
bip2021, mdd2019, neuroticism, education, and IQ), the same eight

neuronal superclusters had significant enrichment for all six traits. This
agrees with the observation that schizophrenia, bipolar disorder, and
MDD account for substantial morbidity and mortality and have con-
siderable clinical and pharmacotherapeutic overlap (especially for
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significance adjusted for multiple comparison at FDR ≤0.05. We interpret the sui-
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lencephalic. DL-IT: Deep-layer intratelencephalic. DL-NP: Deep-layer near-project-
ing. DL-CT/6b: Deep-layer corticothalamic and 6b. CA1-3: Hippocampal CA1-3. CA4:
Hippocampal CA4. HiDG: Hippocampal dentate gyrus. AmygExc: Amygdala exci-
tatory. ThalExc: Thalamic excitatory. MGE-IN: MGE interneuron. CGE-IN: CGE
interneuron. LLC-IN: LAMP5-LHX6 and Chandelier. MSN: Medium spiny neuron.
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B Conditional analysis of superclusters for enrichment of scz2022 SNP-heritability.
The y-axis is the supercluster of interest and the x-axis indicates the supercluster
conditioned upon. For convenience, the unconditional results are on the diagonal.
Full results are shown in Supplementary Data 4. C SNP-heritability enrichment for
MDD subtypes. Number of cases is shown in parenthesis in the x-axis label. Non-
neuronal superclusters did not have signals for any subtype and were therefore
omitted in the plot. Dot color and size are the same across panels A-C. (D) Ridge
plot showing the density of the evolutionary constraint for TDEP genes of each
supercluster. For each gene, the proportion of constraint 1 in its CDS bases was
used as the measure of evolutionary constraint. The vertical dashed line shows the
80th percentile for evolutionary constraint for all protein-coding genes. The right
column gives the proportion of TDEP genes above the 80th percentile of con-
straint. The plots were colored by the SNP-heritability enrichment for scz2022
(-log10FDR).
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severe and enduring forms of illness). Moreover, IQ, educational
attainment, and the “Big 5” personality trait of neuroticism are
important patient stratifiers and/or modifiers of clinical course39–41.
The neuronal superclusters were five excitatory (amygdala excitatory,
deep-layer intratelencephalic, hippocampal CA1-3, hippocampal CA4,
and upper-layer intratelencephalic) and three inhibitory (CGE inter-
neuron, eccentric medium spiny neuron, and LAMP5-LHX6 and
chandelier).

Excluding alternative explanations. We evaluated a set of potential
explanations for the observed overlap of eight superclusters with six
GWAS traits. First, the genome-wide genetic correlations between the
six traits were occasionally high but far from complete: for the 15
unique genetic correlations, the median |rg| was 0.22, IQR 0.15–0.39.
The largest rg values were 0.73 for educational attainment-IQ, 0.69 for
mdd2019-neuroticism, and 0.68 for bip2021-scz2022, and all other
values were < 0.5. Second, the significant GWAS loci for these six traits
only infrequently intersected with GWAS loci of more than one trait
(median Jaccard index 0.069, IQR 0.034–0.094). Third, TDEP genes
did not have fully explanatory overlap: of the 4812 TDEP genes for the
eight superclusters, 92.2% were TDEP for one (43.8%), two (24.7%),
three (14.3%), or four (9.4%) superclusters. Fourth, we identified
intersections of supercluster TDEP genes with GWAS loci, and found
that TDEP genes (± 50 kb around each gene) only infrequently inter-
sectedmore thanone GWAS locus (7.6%). Finally andmost directly, we
conducted conditional analyzes to evaluate the independence of the
signals across the superclusters (Fig. 2B and Supplementary Data 4–5)
and across the six traits (Supplementary Fig. 7). Briefly, we found
relatively consistent patterns of cross-cell-type independence: amyg-
dala excitatory, deep-layer intratelencephalic, hippocampal CA1-3,
CGE interneuron, and eccentric medium spiny neuron generally sur-
vived conditional analyzes. Superclusters shared cross-trait could
reflect both common and trait-specific mechanisms. For instance, the
schizophrenia relevant mechanism in the amygdala excitatory super-
cluster was shared with bipolar disorder but not the other four traits
(Supplementary Fig. 7). Although these analyzes depend on the sta-
tistical power of the GWAS, we could identify no alternative statistical
explanation or dataset redundancy to explain away the observed
overlaps in Fig. 2A.

Clinical subtyping. MDD has the advantage of large GWAS on its
clinical subtypes. For instance, SNP-heritability estimated from GWAS
where cases are people with severe MDD receiving electroconvulsive
therapy is greater than when estimated from GWAS where cases are
identified by self-report, community, or outpatient sampling42. We
compared the cell type enrichment between MDD subtypes viewed as
clinically important (e.g., recurrent) or with empirical demonstration
of greater heritability (e.g., highly severe MDD) with their
counterparts42–45, where the genetic difference between the subtypes
was not due to noise45. Categories with any significant superclusters
are presented in Fig. 2C, including recurrent MDD, MDD with func-
tional impairment, MDDwith suicidal thoughts, and postpartumMDD.
In general, more signals were found in the more severe subtypes.
Although theMDD subtypes largely overlapwithmdd2019, there were
indications of specificity; e.g., hippocampal superclusters are more
related to the severe/impaired MDD subtypes and neocortical super-
clusters are more related to MDD with suicidal thoughts. In Supple-
mentary Data 1 we provide the GWAS sample size and the number of
genome-wide significant loci (both benchmarks ofGWASpower) for all
traits, and note that the MDD subtype GWAS are relatively
underpowered.

Evolutionary constraint hasbeenof considerable interest given that
SNP-heritability is notably enriched for this SNP annotation1. Figure 2D
depicts thedistributionsof a gene-basedmeasureof constraint forTDEP
genes for superclusters (the fraction of all CDS bases under strong

constraint in 240 eutherian mammals). TDEP genes for inhibitory
superclusters are more constrained than those for excitatory super-
clusters (in line with previous reports)46,47. Schizophrenia has notable
enrichment in evolutionary constrained genomic loci1,14 (Fig. 2D).

Exome sequencing and neurodevelopmental disorders
Supplementary Data 6 presents analyzes of supercluster TDEP genes
where we evaluated gene annotations derived from LD-independent
methods (e.g., whole exome sequencing). As a check, we found that
TDEP genes for all superclusters were significantly less likely to be
“housekeeping” genes, as expected given the definitionof TDEP. There
were no significant associations of any supercluster TDEP genes with
genes implicated via whole exome sequencing for autism or
schizophrenia12,48, but there were many associations for develop-
mental delay and neurodevelopmental disorder (NDD)48. As the pat-
tern of results was similar, we focused on NDD. NDD was significantly
associated with TDEP genes for 15 of the 31 superclusters: (a) there
were negative associations with Ependymal, Microglia, and Vascular
superclusters (i.e., genes implicated inNDDwere less likely to be TDEP
genes); (b) there were eight significant associations with excitatory
neuron superclusters (Amygdala excitatory, Deep-layer corticotha-
lamic and 6b, Deep-layer intratelencephalic, Hippocampal CA1-3,
Hippocampal CA4, Hippocampal dentate gyrus, Miscellaneous, and
Upper-layer intratelencephalic); and (c) there were three significant
associations with inhibitory neurons (Eccentric medium spiny neuron,
LAMP5-LHX6 and Chandelier, and Midbrain-derived inhibitory).
Notably, there was strong overlap of the NDD exome findings with the
SNP-heritability enrichment for schizophrenia: of neuronal associa-
tions for NDD, 11 of 12 were also significant for schizophrenia and, of
the associations with schizophrenia but not NDD, three of four were
inhibitory neuronal superclusters. Clinically, a subset of people with
schizophrenia have earlier NDD, and these results suggested that the
two disorders may have important commonalities at a cell class level.

Brain cell types implicated for schizophrenia
Siletti et al.27 also identified 461 clusters of cells; superclusters con-
tained a median of 12 clusters (IQR 8-17, ranging from 1 for Bergman
glia to 92 for Splatter neurons). We conducted TDEP/S-LDSC analyzes
at the cluster level for schizophrenia (Supplementary Data 7, 8). The P-
value distribution again had modes near 0 and 1. Of the 461 clusters,
199 (43.2%) had significant (FDR <0.05) SNP-heritability enrichment
for schizophrenia. There was a strong relationship of the SNP-
heritability enrichment for schizophrenia in superclusters and their
component clusterswithmostof the significant clusters in a significant
supercluster (95.0%, 189/199). Of the 10 clusters not in a significant
supercluster, Splatter 403 (GABAergic cells expressing NOS1 from
amygdalar and paleocortical dissections) was exceptional (FDR
9.6e–5) and the rest had FDR values between 0.009–0.05 (eight neu-
ronal clusters andonenon-neuronal clusterwith FDR=0.04).We again
find little common-variant genetic support for non-neuronal cells in
schizophrenia.

In Fig. 3A, we visualized the supercluster and cluster findings for
schizophrenia in the tSNE projection from Siletti et al. (their Fig. 1B).
The uneven distribution of schizophrenia associations across super-
clusters is readily apparent. Most of the 25 strongest cluster associa-
tions (FDR < 5e-4) were from a few superclusters (Hippocampal CA1-3,
Amygdala excitatory, and Eccentric medium spiny neuron; Fig. 3B).
These clusters had a median of 1274 TDEP genes (IQR 1258–1286) but
with modest overlap between clusters (66.2% of unique genes were
TDEP for ≤ 5 clusters). Gene set analysis of the TDEP genes in these
clusters highlights synaptic function, cation channels, and neuron
projection (Fig. 3C, S8). Cross-trait conditional analysis at cell cluster
level shows a more prominent decrease in schizophrenia-specific sig-
nal when conditioned on bipolar disorder (Fig. 3D) than conditioned
on IQ (Fig. 3E). This suggests that the cell types shared by
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schizophrenia and bipolar disorder might contribute to the two dis-
orders through similar genetic mechanisms, whereas the cell types
shared by schizophrenia and IQ might implicate distinct mechanisms.

Analysis of anatomic regions shows distributed risk for schizo-
phrenia risk across the brain
Connecting genetic risk to specific brain regions is important for
imaging (structural or functional MRI or PET) and for identifying
empirical targets for Interventional Psychiatry therapeutics (e.g.,
transcranial magnetic stimulation). We evaluated the distributions of
cell clusters across 104 dissections (2 dissections removed, Methods)
from 10 broad brain regions (Fig. 4A)27. Neuronal clusters tended to be
dissection-specific whereas non-neuronal clusters were widely dis-
tributed. As we observed a lack of signal in non-neuronal cell classes
for psychiatric disorders (Supplementary Data 8), and to avoid bias
fromdifferent neuron/glia composition ratios,we focusedonneuronal
clusters. To evaluate SNP-heritability enrichment for anatomic regions,
we computed the neuronal cluster proportions per anatomical dis-
section as weights for the cluster-level enrichments; the sum of the
weighted cluster-level enrichment was the enrichment per anatomical
dissection (Methods). First, we observed general effects in the cerebral
cortex for scz2022, bip2021, educational attainment, IQ, and neuroti-
cism (Figure 4B). Hippocampal, amygdala, and striatal (Pu and CaB)
regions were also significantly enriched for the SNP-heritability of
these phenotypes but with greater variability. Regional differences in
hippocampal enrichment are consistent with analyzes in mouse
brain19. Basal forebrain, thalamic, hypothalamic, cerebellum, and pons
were enriched to lesser extents. To illustrate the distribution of genetic
risk for schizophrenia across the brain, wedepict the results using a 3D
brain model (Figure 4C, E). Hippocampus and amygdala showed the
highest significance of scz2022 SNP-heritability enrichment, with the
top signal in the tail of hippocampus and the cortical amygdala (CoA).
A detailed view of the neuronal cell type composition of the hippo-
campus and amygdala (Figure 4F, G) reveals that excitatory neuronal

signals were the primary contributor to the hippocampal results. For
amygdala, although the highest enrichment was found in the excita-
tory neurons, the inhibitory neurons had greater proportions and
more significant enrichments than in the hippocampus (i.e., eccentric
medium spiny neuron clusters).

Functional connectivity differences for hippocampus, amyg-
dala, and cerebral cortex in schizophrenia
Although the prefrontal cortex is the most studied brain region in
schizophrenia49, the entire cerebral cortex had consistently significant
SNP-heritability enrichment. This, together with the fact that the pre-
frontal cortex has extensive functional connectivity with amygdala and
hippocampus50, suggest that differences in the functional connectivity
between these regions could contribute to schizophrenia mechanism.
We directly assessed this hypothesis using resting-state fMRI data from
individuals with schizophrenia and neurotypical controls using two
independent data sets to directly replicate our results (Methods,
Fig. 5A)51,52. We initially prioritized 76 brain regions that were enriched in
schizophrenia SNP-heritability (FDR ≤0.01) (Supplementary Data 11,
Methods).

In each data set we applied a deep neural network classifier to
prioritize brain networks that distinguish cases from controls. Each set
was split intofiveportionswithbalanced lengths of the time series, and
we performed five folds of parallel recursive feature elimination, such
that the region with the lowest contribution to the classifier was
eliminated in the next iteration (Fig. 5A). In general, the data-driven
networks had comparable performance to previously established,
schizophrenia-relevant brain networks (i.e., the defaultmode and core
networks, Supplementary Fig. 9A, B)53. Hippocampal and amygdalar
regions were likely to be preserved until later runs and had significant
correlation between the two replications (correlation=0.62, p =0.03),
suggesting their importance in distinguishing between cases and
controls (Fig. 5B; Supplementary Fig. 9C, D). Connections involving
any hippocampal or amygdalar regions had significantly higher feature
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Fig. 3 | Cluster-level SNP-heritability enrichment for schizophrenia (scz2022).
A tSNE plot from Siletti et al. colored by the significance of cluster-level SNP-
heritability enrichment for scz2022. One-sided P value was calculated based on the
LDSC coefficient z-score, and we calculated FDR to account for multiple compar-
ison. Gray indicates non-significance (FDR>0.05). Abbreviations correspond to
neuronal supercluster names in Fig. 2A. B Top 25 most significant clusters with
enriched of scz2022 SNP-heritability out of 199 FDR significant clusters (Supple-
mentaryData 7), same P-value and color definitions as in Fig. 3A.CTreemapplot for
key GO-CC pathways in the top 25 scz2022 clusters. We evaluated gene set
enrichment for the TDEP genes in each of the top 25 significant clusters, using
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pathways (P ≤0.05) in all the explored clusters were integrated to highlight higher
level functions. The treemap for GO-BP and GO-MF for these clusters are shown in
Supplementary Fig. 7. D–E tSNE plot of clusters that remained significant for
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in Fig. 3A ; gray dots are cells of non-significance clusters (FDR>0.05). More cell
types became insignificant when conditioned on bipolar disorder compared to
when conditioned on IQ, suggesting the shared cell types might contribute via
similar mechanisms to schizophrenia and bipolar but contribute via distinct
mechanisms to schizophrenia and IQ.
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importance in both replications (Fig. 5C–F; Supplementary Fig. 9G–J).
The central and lateral nuclear groups of the amygdala (CEN and La),
the head and body of the hippocampus (HiH and HiB), the parietal
operculum (PaO), the middle frontal gyrus (MFG), the rostral gyrus
(RoG), and the anterior cingulate gyrus (CgGr) were independently
confirmed being in the top 1% connections in both data sets (Supple-
mentary Fig. 9E, F, K, L).

Discussion
Psychiatric genomics now has empirical data strongly supporting
polygenicity: multiple risk variants in “many genes” underlie the
inherited tendency of these psychiatric disorders to run in families.
The “genetic architectures”7 of schizophrenia, bipolar disorder, MDD,

and other major psychiatric disorders – causes of considerable human
suffering – are dominated by large numbers of common genetic var-
iants of small effect14,54,55. The neurobiological implications of these
secure and replicated genome findings are, however, unclear. In this
paper, we rigorously evaluated the hypothesis that the accumulated
findings implicate physically identifiable brain structures (i.e., cell
types and anatomical regions). By necessity, our prior work was based
on mouse brain atlases17,18 and here we extend our work using a
detailed and comprehensive human brain atlas27. Using fMRI as an
orthogonal modality, we show that a data-driven model trained to
classify schizophrenia cases from neurotypical controls prioritizes
connections involving subcortical structures, particularly the amyg-
dala and hippocampus. These findings provide support for
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convergence between different data-driven approaches on the brain
regions identified through our genomic analysis.

Human brain cell data with regional resolution
Consistent with previous reports17,18, neuronal cell types had sub-
stantially increased SNP-heritability for psychiatric disorders (schizo-
phrenia, bipolar disorder, and major depression) and brain traits
(educational attainment, iq, neuroticism, insomnia, alcohol consump-
tion, and smoking initiation). The anatomical data allowed detection of
trait-relevant brain regions. Regional signals were distributed across the
cerebral cortex and subcortical cerebral nuclei. While confirming pre-
vious results based on mouse scRNA-seq data for hippocampal and
neocortical excitatory neurons17,18, based on human data we have iden-
tified more relevant cell types, such as amygdala excitatory neurons,
which were the most significantly enriched cell type in the entire brain
as well as subcortical projecting GABAergic neurons for schizophrenia,
which were undistinguishable in previous mouse datasets. Our study
highlights neocortical interneurons derived from caudal ganglionic
eminence which mainly contact other interneurons rather than inter-
neurons expressing somatostatin or parvalbumin (although alterations
of both of the latter have been reported in schizophrenia cases56,57).

Cross-cell-type and cross-trait findings
Weobserved broad involvement of brain regions in several psychiatric
disorders and brain traits; at the same time, each phenotype had
multiple supercluster-level signals. The signalswere largely statistically
independent between the superclusters (Fig. 2B, Supplementary
Data 4, 5), suggesting cell type specificmechanisms contributing to the
same trait. Meanwhile, the same cell types shared between traitsmight
contribute to the traits through similar (e.g., schizophrenia and bipolar
disorder, Fig. 3D, S7) and also distinctmechanisms (e.g., schizophrenia
and IQ, Fig. 3E, S7). Interestingly, genes implicated by exome
sequencing in neurodevelopmental disorders largely pointed at the
same brain cell types. Combined with our analyzes of TDEP genes,
GWAS loci, and conditional analyzes, we believe that these results
support cell types as contributing to phenotypically diverse traits. This
suggests convergence, that these clinically distinctive phenotypes are
rooted in both shared and different functional aspects of the same
brain cell types.

With the available GWAS for MDD subtypes, we were able to infer
important cell types for clinical subtypes. We observed that more
superclusters were implicated for severer subtypes of MDD. It is pos-
sible that more severe subtypes convey higher genetic risk and
therefore greater statistical power in the GWAS. It is also possible that
the different subtypes had partially distinct etiologies, as suggested by
imperfect genetic correlations among subtypes45,58. More precise
interpretations of the cell types can be made when larger subtype
GWAS become available.

At the level of brain regions, the results pointed out the impor-
tance of subcortical structures, especially the hippocampus and
amygdala, underlying the mechanisms of pathological (e.g., schizo-
phrenia) and healthy (e.g., educational attainment) phenotypes. The
results in amygdala are in agreement with other findings that impli-
cates changes in its structure in psychiatric disorders59–61. From a
clinical perspective, amygdalar dysfunction agrees with decreased
ability to ascribe correct valence and attention to sensory inputs54.

Implications for schizophrenia
Neocortical regions presented similar enrichments across the brain
even though certain neocortical regions have been implicated in psy-
chiatric disorders (e.g., dorsolateral prefrontal cortex and
schizophrenia49). This is likely explained by the similar cell type com-
position across the neocortical regions62, and highlights the impor-
tance of functional connectivity in the underlying mechanisms of
schizophrenia63. The TDEP genes of the top scz2022 clusters high-
lighted synaptic functions and neuronal projection suggesting
mechanistic connectivity between cells.

Our findings from independent fMRI connectivity data sets con-
firmed the importance of cortical regions including the middle frontal
gyrus (BA 46 in the snRNA-seq dataset), rostral gyrus (BA 32, snRNA-
seq dataset), anterior cingulate gyrus, and the parietal operculum,
but also further highlighted the differential connectivity of the amyg-
dalar and hippocampal regions between schizophrenia cases and
controls. Hippocampus and amygdala are both involved in emotional
memory processing, and a directed influence from the amygdala on
the hippocampus has been suggested during fear processing in
response to emotionally salient information64,65. Our method thus
suggests plausible brain regions for schizophrenia etiology and calls
for further investigations into these areas and their functional con-
nectivity, which may hold new candidates for modulation using non-
invasive therapeutics.

These results need to be considered with limitations (see also the
Supplement of reference 66). First, brain regions were not equally sam-
pled (Supplementary Data 12), despite the snRNA-seq dataset having the
most comprehensive coverage of the adult human brain to date, and we
cannot rule out enrichments of trait heritabilities in other brain regions.
Second, the Human Brain Atlas is from a few adults and does not cap-
ture variability between neurotypical individuals or individuals with
severe and enduring mental disorders or variability across the lifespan
(especially during brain development). Finally, important limitations
need to be considered when interpreting the results from the fMRI
analysis. Themolecularmechanismbehind the fMRI blood oxygen level-
dependent (BOLD) signals is not fully understood, but recent techno-
logical advancements in measuring local neural activity, neurovascular
responses, and spatial transcriptomics will likely provide deeper
insights67,68. Our interpretation of the converging findings of the

Fig. 4 | Leveraging cluster-level SNP-heritability enrichment to brain regions.
A Heatmap of the scaled proportion of each cluster in each dissection. X-axis are
clusters grouped and colored by superclusters. Abbreviations of supercluster
names see Fig. 2A. Y-axis are brain dissections grouped to broader regions.
Abbreviations of regions: FrCx: frontal cortex, LimCx: limbic cortex, ParCx: parietal
cortex, TempCx: temporal cortex, OccCx: occipital cortex, PalCx: paleocortex, HC:
hippocampus, Amyg: amygdala, BasFB: basal forebrain, Thal: thalamus, HTH:
hypothalamus, CBL: cerebellum, MidB: midbrain, Medul: medulla, SC: spinal cord.
Nomenclature follows Siletti et al.27. Each cell represents the scaled proportion of a
cluster in a dissection (Methods and Supplementary Data 9).B Significance of SNP-
heritability enrichment for anatomical dissections, where one-sided P-value was
derived from cluster-level significance weighted by the proportion of clusters per
dissection (Methods). Dot color indicates significance reflected by -log10(P) with
darker blues indicating greater significance; dot size indicates the significance after
adjusting for multiple comparisons across dissections for each trait at FDR ≤0.05.
Only phenotypes and brain regions with any significant signal are shown (full

results in Supplementary Data 10). C–E Anatomic dissection results of scz2022
plotted on a 3D brain model (C-lateral view, D-sagittal view, E-enlargement of
hippocampus and amygdala; visualizing the 3D Allen Brain model in ITK_SNAP
v3.8.0, see “Methods”). Red indicates greater and yellow lesser significance at
FDR ≤0.05, and gray and transparent indicates non-significance. Unsampled cere-
bral cortical regions are colored per the sampled regions (as mean of the enrich-
ment Z-scores for sampled cerebral cortical regions). HiH: head of the
hippocampus; HiB: body of the hippocampus; HiT: tail of the hippocampus; CoA:
anterior cortical nucleus of the amygdala; La: lateral nucleus of the amygdala.
F–G Greater detail for hippocampus and amygdala. The outer layer indicates
clusters; the size is the proportion of the cluster, and the color indicates cluster-
level significance of scz2022 SNP-heritability enrichment (color scale and the one-
sided P-value are the same as in Fig. 3A). The middle layer is colored by super-
clusters, and the inner layer is colored by classes. Splatter and Miscellaneous have
both excitatory and inhibitory components and were categorized as “Mix”.
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importance of brain regions from genomic and fMRI analyzes does not
imply amechanistic link between the transcriptomic changes in neurons
themselves and changes in local BOLD signal, but rather emphasizes
changes in functional connectivity (i.e., coordination) between the brain
areas which perhaps suggest changes in synaptic function/targeting.
This interpretation is supported by the finding that schizophrenia
genetics implicates synaptic function14. Furthermore, the sample size of

the two independent fMRI data sets was limited given the case-control
setting, and thus our initial results will have to be confirmed in larger
data sets as they emerge. In addition, the stereotactic mapping of the
sampled brain regions in the transcriptomic atlas to the 3D brain model
was based on the detailed region information in the atlas and, we were
unable to account for bilaterality given that snRNA-seq data were from
the right hemisphere and the fMRI data were bilateral.
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Fig. 5 | Functional connectivity networks derived from brain regions enriched
for schizophrenia SNP-heritability distinguished cases and controls.
AWorkflowof the fMRI analysis in two independent data sets, detailed in “Method”
section. In each fMRI data set, five folds of recursive feature eliminations were
performed using the training set. In each run, themodel (network) was evaluated in
the independent testing set using the area under curve (AUC) of the receiver
operator characteristic curve (ROC). B Number of runs for which each region was
preserved in the recursive feature elimination in fMRI data set 1 (46 cases and 46
control) and data set 2 (54 cases and 54 controls). The dot indicates the mean runs
in each data set for the region (with standard deviation bars per data set); the color
indicates the broader areas each region belongs to. The Pearson’s product-moment
correlation between the runs in the two data sets was 0.02 (p =0.90) for all ROIs,

but 0.62 (p =0.03) for the amygdalar and hippocampal regions, and these regions
were also more likely to be preserved to later runs (also Fig S9 C, D). (C) Pairwise
connections between regions ranked by the feature importance (FI, y-axis) per
connection in data set 1. The color indicates connections involving any amygdalar
or hippocampal regions (red) or not (teal).D Density plot of the FI in amygdalar or
hippocampal connections (red) and other connections (teal) in data set 1. The FI of
amygdalar or hippocampal connections are significantly higher than the others
(two-sidedWelch two sample t-test,p = 2.2e-84).EConnections rankedbyFI in data
set 2. F Density plot of the FI in data set 2. The FI of amygdalar or hippocampal
connections are significantly higher than the others (two-sidedWelch two sample t-
test, p = 1.4e-9).

Article https://doi.org/10.1038/s41467-024-55611-1

Nature Communications |          (2025) 16:395 9

www.nature.com/naturecommunications


In conclusion, our findings extend prior work by showing the
human brain localization of genomic regions implicated in three psy-
chiatric disorders, three relevant brain traits, and in genes implicated
in neurodevelopmental disorders. The findings point at largely over-
lapping cell types and brain regions (albeit different subsets of genes).
These findings provide a framework for understanding the poly-
genicity of complex psychiatric disorders and brain traits as well as
suggesting hypotheses for future research, such as the transcriptomic
differences in subcortical regions for the mechanisms of severe psy-
chiatric disorders. Our findings underscore the value of single-cell
transcriptomics in decoding the polygenicity of psychiatric disorders
and provide the hope that the genomic, transcriptomic, and brain
imaging modalities can be integrated to offer a richer understanding
toward common biological targets.

Methods
Human Brain Atlas single-nucleus RNA-seq (snRNAseq)
We used the Human Brain Atlas snRNAseq data set from Siletti et al.27.
This atlas consists of 3.369 million nuclei successfully sequenced using
snRNAseq. The nuclei were from adult postmortem donors, and the
dissections focused on 106 anatomical locationswithin 10 brain regions.
Following quality control, the nuclear gene expression patterns allowed
the identification of a hierarchy of cell types that were organized into
31 superclusters and 461 clusters. In the current paper we use the same
naming system for the cell types and the brain regions as in Siletti et al.

Genome reference and gene models
The reference genome and genemodelswerewith respect to amodified
version27 of the GENCODE primary assembly (GRCh38.p13, v35, 3/2020,
hg38)69. As hg19 is typically used by GWAS, we also obtained GRCh37/
hg19 gene coordinates from GENCODE (v35). In these analyzes, we
focused on 18,090 genes with these characteristics: protein-coding,
mapped to canonical autosomes (chr1 to chr22), not in the extended
major histocompatibility (MHC) region (chr6:25-34mb), and expressed
in ≥ 1 of the 461 cell clusters. Explanations for these choices follow.

Protein-coding biotype. The modified GENCODE assembly used by
Siletti et al.27 contained N=51,263 genes with TPM> 1 in one or more
cluster cell types. In GENCODE, these genes are grouped into 30 bio-
types ranging from rare (“scRNA” and “vault_RNA”) to common (“pro-
tein_coding” (N= 19,153) and lncRNA (16,021)). Siletti et al. used the 10X
Genomics Chromium Next GEM Single Cell 3’ Reagent Kits (v3) whose
beads contain a 30 nt poly-dT tail and thus will most consistently cap-
ture 3’ poly-adenylated RNA transcripts (in humans, these include
mature protein-coding and lncRNA transcripts). For each biotype, we
summed the number of occurrences of any gene with TPM> 1 over all
superclusters and found that only protein-coding and lncRNAgenes had
appreciable transcript detection. For instance, 20 biotypes had < 100
detected transcripts and 28 had <8600 detected transcripts in any
supercluster. We chose to drop lncRNA genes and only include protein-
coding genes. First, although a small number of lncRNAs have been
shown to have biological functions, the annotation of most lncRNAs is
currently unknown. In these data, 81.4% of the lncRNAs had a generic
annotation (e.g., “novel transcript”). Second, the lncRNA were not
strongly expressed and/or were not well-captured by the 10X Genomics
kit: the largest median expression of lncRNAs in the superclusters was
only 0.20 TPM (compared to 11.5 TPM for protein-coding genes).

MHC. The extended MHC (eMHC) is the largest block (~8mb) of high
linkage disequilibrium (LD) in the genome (excluding pericentromeric
regions)70. For instance, of the 23,731 significant SNP associations with
schizophrenia, 4527 (19.1%) are in the eMHC region14. These generally
correspond to highly correlated genetic variants. We removed GWAS
SNPs and snRNAseq data in the eMHC as in our prior papers and

as recommended by the S-LDSC authors17,18,71. However, to evaluate
the impact of this choice, we recalculated the TDEP estimates
while including protein-coding eMHC expression data (N=259), and
found that a small number of eMHC genes had a TDEP flag in super-
clusters (median 10 genes, IQR 8–13). As the median number of TDEP
genes per superclusterwas 1287, the potential eMCH region contribution
to a TDEP list is 0.8% (10/1287). The impact is likely not consequential.

Autosome. Sex chromosome genes were removed. chrY is rarely
included in GWAS; in a recent build of the NHGRI/EBI GWAS Catalog72,
there were only 5 significant SNP associations to any trait whereas a
similarly sized chromosome (chr22) had > 3000 GWAS hits. In addi-
tion, chrX data are inconsistently included in the summary statistics
from GWAS papers73, and are under-represented in the GWAS catalog:
chrX has 1149 hits whereas the similarly sized chr7 and chr8 have 9438
and 9745 associations. In a sense, the choice to exclude sex chromo-
somes was made for us as, for the GWAS traits we analyzed (Supple-
mentary Data 1), none had chrY and a minority had chrX results. To
evaluate the impact of this choice, we recalculated the TDEP estimates
while including protein-coding chrX expression data (N= 779), and
found that some chrX genes had a TDEP flag in superclusters (median
49 genes, IQR 41–60). As the median number of TDEP genes per
supercluster was 1287, 49 genes (3.8%) may have had a small impact.
We are unable to address this issue given the data available, and this is
unquestionably a topic for future research.

GWAS summary statistics
We conducted multiple searches to identify potential GWAS (i.e.,
PubMed, Psychiatric Genomics Consortium downloads page, NHGRI/
EBI GWAS catalog). We previously have shown the importance of
genetic architecture on the informativeness of our approach (see
references 14,43. The number of loci (genomic regions harboring mul-
tiple correlated genome-wide significant SNPs, defined below) is par-
ticularly important. We required > 10 loci for inclusion (with a few
intentional exceptions). Supplementary Data 1 summarizes the GWAS
included in our analyzes. These 36 primary GWAS are the largest stu-
dies per trait that we could obtain as of 4/2023 and whose use was
compatible with our publication strategy (some prepublication GWAS
required submission delays and others were not freely available, e.g.,
23andMe).

• We included five psychiatric disorders (ADHD, bipolar disorder,
major depressive disorder, problematic alcohol use, and schizo-
phrenia). We did not include multiple important psychiatric dis-
orders due to lownumbers of loci (e.g., anorexia nervosa, autism).

• We included eight neurological diseases: Alzheimer’s disease,
amyotrophic lateral sclerosis, epilepsy, hearing loss, migraine,
multiple sclerosis, Parkinson’s disease, and stroke. For Parkinson’s
disease, weused the results of Nalls et al. 2019 excluding 23andMe
samples74.

• We included nine structural brain MRI measurements: brainstem
volume, caudate volume, neocortical surface area, and putamen
volume. Because these MRI measures describe important brain
features (and often the anatomic regions from Siletti et al.), we
also included accumbens volume, amygdala volume, neocortical
thickness, pallidum volume, and thalamus volume.

• We included nine trans-diagnostic brain traits of clinical salience
(alcohol use, smoking traits, and insomnia) or which may be
clinical stratifiers (educational attainment, IQ, neuroticism).
Suicide phenotypes were included due to their importance in
the current mental health crisis.

• Finally, we selected five control traits with large numbers of
loci but whose genetic architectures are not rooted in the
central nervous system: height, body mass index, hematocrit,
lymphocyte count, and neutrophil count.
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For MDD, we included 19 additional GWAS to assess within-
disorder questions (no requirement for minimum number of associa-
tions; Supplementary Data 1). As etiological heterogeneity is likely for
depressive disorders, we evaluated whether heterogeneity was asso-
ciated with different brain cellular enrichments. We focused on the
clinical contexts inwhich amajor depressive episode (MDE) can occur.
The classical delineation ofMDE is in the context of unipolar or bipolar
disorder. An MDE can occur as major depressive disorder (MDD, uni-
polarMDEwith no history ofmania or hypomania), MDEwith a history
of mania (bipolar disorder type 1), and MDE with a history of hypo-
mania (bipolar disorder type 2). These conditions have different
genetic correlationswithbipolar type 2beingmore similar toMDDand
bipolar type 1 beingmore similar to schizophrenia54. MDD can occur in
different ways clinically and across the lifespan. We evaluated MDD
subtypes viewed as clinically important (degree of severity, typical vs
atypical symptompattern, with or without comorbid anxiety disorder)
or with empirical demonstration of greater heritability: highly severe
MDD (people receiving electroconvulsive therapy for MDE), early-
onset MDD, recurrent MDD, and postpartum depression42–45.

Processing and quality control (QC). After we obtained GWAS results
from the primary sources, we conducted range checks for logistic or
multiple regression betas, standard errors, and P-values (removing SNPs
with highly unlikely values). We then processed all sumstats using the
cleansumstats pipeline (https://github.com/BioPsyk/cleansumstats):

• We determined genome build by comparing SNP positions to
dbSNP (build 151)75.

• Using UCSC::liftOver, we ensured we had sumstats in hg38/
GRCh38 and hg19/GRCh37 coordinates (GWAS tend to use hg19
and genome annotations tend to use hg38).

• We removed insertion/deletion polymorphisms, duplicate
entries, and chromosomal locations not in [chr1-chr22] andnoting
that sex chromosome data are inconsistently included in GWAS
summary statistics73.

• We required that each variantmatch dbSNP (build 151) by rsID and
that the GWAS sumstats SNP alleles (effect/other allele) matched
REF/ALT in dbSNP (flipping to + strand if required).

• We removed homozygous/monomorphic SNPs, SNPs with alleles
not in [ACGT], and strand-ambiguous SNPs (A/T or C/G; these are
also removed in LD score regression).

• Given our use of S-LDSC (below, and as typically done), we
excluded the extended MHC region (chr6:25-34mb) due to its
exceptionally high LD.

Genomic loci. We used the clumping algorithm in plink76 to identify
loci for the GWAS included in this report. The LD reference was the
European subset of the 1000 Genomes Project (phase 3)77 with para-
meters: p1 = 5e-8, p2 = 5e-6, r2 = 0.1, and window size of 3000 kb.
Overlapping loci and loci within 50 kb of each other were merged.

Description of the primary GWAS. We then conducted basic checks
including the number of SNPs after QC, the number of genome-wide
significant SNPs (P < 5e-8, after QC), inflation statistics (λ and LDSC
intercept), and SNP-heritability (Supplementary Data 1). For the pri-
mary GWAS traits, the numbers of significant loci were positively
correlated with sample size (Spearman p = 0.62, P = 4.9e-5) and the
number of cases (binary traits, Spearman p = 0.73, P = 0.0012). Sup-
plementary Fig. 1 illustrates somekey features of theGWAS included in
the primary analyzes.

Supplementary Fig. 2 provides more data about the primary
GWAS traits. The SNP-heritability estimates on the diagonal are con-
sistent with the primary reports (any differences are due to our use of
sample subsets like European subjects or after removing 23andMe
results). The off-diagonal elements show the interrelationships of the
primary GWAS traits via a heatmap of genetic correlations (rg from

LDSC). The pattern of genetic correlations are consistent with prior
reports3. In general, we note: (a) positive intercorrelations for psy-
chiatric disorders and brain traits, (b) transdiagnostic negative corre-
lations of educational attainment and IQ with multiple conditions, (c)
relatively weak correlations for neurological diseases, and (d) isolated
correlations for structural MRI measures.

Relative versus absolute gene expression
We use top decile of expression proportion (TDEP) to identify genes
whose expression typifies each supercluster (~1300 genes per super-
cluster). Li et al.35 determined that S-LDSC with TDEP had power and
false positive rates that, jointly, were equivalent or superior to 8 other
methods. See the Statistical analysis section below for definition of
TDEP, TPM, and the Li et al. results35).

Here,wecompare relative vs absolutemeasuresofgeneexpression.
TDEP is a relative measure, the expression of a gene in one cell type
divided by the total expression across all cell types. In contrast, TPM
(snRNAseq count data in a cell type normalized to molecule transcripts
per million) is more of an absolute method that reflects the number of
RNA molecules in specific cells. We thus contrasted TDEP and TPM.

First, as a basic data visualization, Supplementary Fig. 3 depicts
the relation between TDEP and TPM for each of the 31 superclusters.
For most superclusters, gene expression was greater in TDEP genes.
This was particularly notable for non-neuronal superclusters where the
median expression was far higher for TDEP genes (e.g., oligoden-
drocyte median 102.1 vs 18.9 TPM in TDEP genes vs all other genes).
The excitatory neuronal superclusters had similar appearances in
Supplementary Fig. 3 except for upper rhombic lip and lower rhombic
lip being somewhat different. Inhibitory neuronal superclusters
appeared relatively similar.

Second, we created two data matrices; rows were 18,090 auto-
somal, protein-coding genes, columns were 31 supercluster classes,
and the elements were either log2(TPM+ 1) or TDEP (1 = yes, 0 = no).
The TPM matrix is obviously far more nuanced and detailed than the
TDEP version). The results of UMAP/HDBSCAN are depicted in Sup-
plementary Fig. 4. In both instances, the high-dimensional data could
be visualized as 3 distinct clusters. Cluster positions are arbitrary but
the solutions are otherwise qualitatively similar, clusters containing:
(a) all non-neuronal cells; (b) all neocortical excitatory neurons plus
medium spiny neurons; and (c) all inhibitory neurons and non-cortical
excitatory neurons.

This is notable because TDEP faithfully recapitulates the multi-
variate structure of the supercluster data based on the more
information-rich and full gene expression matrix based on TPM. The
TDEP 0/1 flags efficiently capture the high-dimensional density struc-
ture of the TPM expression matrix.

Third, we contrasted gene set analyzes using GO37. The GO gene
set analyzes were based on TDEP genes and separately for top decile
TPM. As both variables are defined by the deciles and coded TRUE/
FALSE, similar numbers of genes are being compared. The background
was 18,090 autosomal, protein-coding genes.

These analyzes yielded 322,462 comparisons (31 superclusters x
10,422 GO sets). The correlation in hypergeometric P-values for TDEP
with top decile TPMwasmodest (Spearman p =0.414). For significance
at FDR <0.05, TDEP was more conservative than top decile TPM in
implicating GO gene sets (3.27% vs 8.40%). Of all pathways, the
two methods agreed for 92.2% (both non-significant for 291,094 or
90.30%, and both significant for 6228 or 1.93%). There were fewer
disagreements for TDEP = = TRUE and top decile TPM== FALSE (4329
or 1.34%) than the reverse (TDEP = = FALSE and top decile TPM= =
TRUE, 20,811 or 6.45%). Checks of disagreements with top decile TPM
FDR<0.05 and TDEP FDR>0.5 (larger FDR applied to avoid edge
cases) revealed some confusing results: e.g., synaptic genes sets with
non-neuronal supercluster classes including astrocyte, Berman glia,
oligodendrocyte, fibroblast, and vascular. These disagreements
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tended to be the same (i.e., about half of these pathways were impli-
cated in ≥ 5 superclusters). We believe that the differences were
strongly influenced by broadly (and often highly) expressed “house-
keeping genes” that are prevalent in top decile TPM but not in TDEP
(by definition). The top decile TPM gene set findings are in contrast to
those for TDEP (presented in Supplementary Data 2) that captured the
expected (if not canonical) biological processes, cellular compart-
ments, and molecular function of the 31 superclusters.

Taken together, these results support our use of TDEP as a means
to identify genes that are enriched for biological processes related to
the cellular identity and specific function of superclusters.

TDEP in human and mouse brain studies. Our prior papers were
basedon scRNA-seqmouseneural surveys17,18 with the key limitation of
a necessary reliance on protein-coding genes with a high confidence,
1:1 mouse-human ortholog. Of the 18,090 genes we evaluated (auto-
somal, protein-coding, not in eMHC, TPM> 1 in ≥ 1 cluster), 14,398
(79.7%) had a high confidence, 1:1 mouse-human ortholog. As a sanity
check, we compared TDEP genes for 23 mouse brain cell types used in
Skene et al.66 to the 31 Human Brain Atlas supercluster using hyper-
geometric gene set analysis. There was considerable consistency
across these datasets despite different technologies and organisms.
For example, therewas the greatest overlapof:mouse “pyramidalCA1”
with human hippocampal CA1-3 (fdr = 1e–140); mouse “pyramidal
somatosensory” with human upper-layer intratelencephalic (fdr =
1e–134); mouse “oligodendrocyte”with human oligodendrocyte (fdr =
1e–183); and mouse “endothelial mural” with human vascular (fdr
< 2e–208). As expected, the mouse signal for some cell types resolved
into more precise human superclusters: mouse “interneurons” was
associated with four human inhibitory neurons and the three mouse
hypothalamic cell types contained human ependymal as well as exci-
tatory and inhibitory neuronal TDEP genes.

Summary. Thus, we believe that TDEP is a defensible choice. Its rela-
tive nature can be a limitation in extreme instances, but it is a prin-
cipled and intentional choice that we evaluated extensively in this
section. Further support can be found in method comparison studies:
see discussion of Li et al.35 in the section titled “Choice of TDEP/S-
LDSC”. The similarities in Supplementary Fig. 4 are reassuring and
TDEP’s more conservative and the face-valid gene set results
strengthen its appeal.

Properties of Human Brain Atlas superclusters
We use TDEP to identify genes whose expression typifies each super-
cluster (~1300 genes per supercluster). Multiple choices that we made
in using TDEP are explained above, and the Statistical Analysis section
below provides definitions and further justification. We posit that
TDEP genes for a cell type are enriched for biological processes related
to cellular identity and function, and we evaluated this assumption in
multiple ways.

Traditional classification and gene set analysis. Supplementary
Data 2 characterizes the 31 supercluster cell classes: 10 non-neuronal
and 21 neuronal cell classes (13 excitatory, 7 inhibitory, and 1 mixed
neuronal class). Non-neuronal cell classes generally derived from dis-
sections across the brain: e.g., astrocyte, ependymal, fibroblast, oli-
godendrocyte, and vascular cells were identified in many anatomical
regions (with the exceptions of Bergmann glia and choroid plexus).
Neuronal cell classes usually had a predominant anatomical region:
e.g., deep-layer near-projecting and upper-layer intratelencephalic
excitatory neurons from neocortical dissections and the 3 hippo-
campal cell classeswere fromhippocampus (themain exceptionswere
the miscellaneous and splatter).

Supplementary Data 2 contains Gene Ontology (GO) gene set
analysis for TDEP genes37. Results for non-neuronal cells suggested a

markedly diverse range of significant GO terms that were consistent
with the supercluster labels: astrocyte/biological adhesion, choroid
plexus/cilium, microglia/immune response, oligodendrocyte/
ensheathment of neurons, oligodendrocyte precursor/gliogenesis,
and vascular/vasculature development. In contrast, for most neuronal
cell classes, GO terms focused directly on synaptic biology.

A small set of genes (215, 1.19%) had TDEP in 10–14 supercluster
classes. These genes contained multiple cadherins, calcium channel
subunits, muscarinic receptors, GABA receptors, glutamate ionotropic
and metabotropic receptors, potassium channel subunits, sodium
channel subunits, synaptotagmins, and transmembrane proteins.
Despite a small number of genes that usually limits gene set analysis,
these 215 genes were enriched for 38 SynGO78 synaptic cellular com-
partment and biological process annotations (e.g., presynapse
Phyper = 3.9e–11 and postsynapse Phyper = 4.1e–11).

We also addressed the inverse question, the 21.0% of genes that
were not in a TDEP gene list for any supercluster. These genes were
highly enriched for: (a) genes expressed at high and consistent levels
across tissues (Phyper < 2.2e–308, a definition of “housekeeping”
genes)36; (b) evolutionarily constrained genes (Phyper = 1.6e–108)1; (c) a
range of GO biological process annotations pertaining to RNA pro-
cessing, gene regulation, and cellular energetics (Phyper < 1e–40); and
(d) notably, no synaptic processes (Phyper = 1)78. As expected, genes
whose supercluster expression are non-specific were dominated by
fundamental processes common to most cells and which tend to be
highly constrained in placental mammals.

Gene expression. The Human Brain Atlas data27 consist of snRNAseq
on 3.369 million nuclei from adult postmortem donors and 106 ana-
tomical locationswithin 10 brain regions thatwere then organized into
31 supercluster classes. We made a data frame with columns for the
Ensembl gene identifier and each of the 31 superclusters along with
18,090 rows (for each autosomal, protein-coding gene expressed in ≥ 1
cluster). The elements are the expression of a gene in each cell class (as
TPM, molecule transcripts per million). Supplementary Fig. 3 shows
the relation between TPM and EP by supercluster class. At this level of
analysis, there is considerable diversity in terms of the gene repertoire
and expression level. Many of these genes will be responsible for core
physiological processes and are robustly expressed in most cells (e.g.,
“housekeeping” genes).

Genomic location and supercluster TDEP genes. Genes are not
randomly positioned in the human genome but rather show a marked
tendency to occur in clumps. For instance, we can divide the genome
into a regular set of 100 kb bins. After removing bins that were entirely
composed of “N” (unknown) bases and after excluding chrX, chrY, and
the extendedMHC region (as noted above), therewere 27,597 × 100 kb
bins. We assigned the transcription start site (TSS) of 18,090 protein
coding genes to these 100 kbbins, and tabulated the observed number
of bins with 0, 1, 2, … TSS. We created an expectation using random
sampling with replacement. In the human genome, we observed that
97.1% of all 100 kb bins have no TSS (i.e., 2.9% contain from 1-14 TSS).
The observation is markedly different from the random expectation:
the fraction of bins without a TSS ranged from 78.3–80.0% (1000
trials). As the observed fraction of bins with no TSS (97.1%) was never
approached, this implies that an empirical probability of this obser-
vation is far less than 0.001.

If protein-coding genes clump or cluster together in the genome,
then TDEP genes are likely to cluster as well, given that they are a
subset of all protein-coding genes. We thus assessed whether TDEP
genes co-occurred in excess of the fundamental clumping of protein-
coding genes. For each of the 10,027 × 100 kb bins containing a TSS for
a protein-coding gene, we tabulated the total number of protein-
coding TSS (nTss) and the number of these that were TDEP genes
(separately for each supercluster). We fit 31 linear regression models
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(nTdepi ~ nTss) and saved the studentized residuals (i.e., transformed
to mean 0 and standard deviation 1). The studentized residuals had
minimum values > −3 and the 75th percentiles were around −0.2.
However, for ~14% of the bins, there were far more TDEP TSS than
expected given the number of TSS (defined as studentized residuals
> 3). To visualize these relationships, we computed the Spearman
correlations for the studentized residuals of 31 supercluster cell classes
and depicted the correlation matrix as a heatmap following hier-
archical clustering (Supplementary Fig. 5). Note that: (a) non-neuronal
supercluster classes tend to correlate, specifically ependymal-choroid
plexus, Bergman glia-astrocyte, oligodendrocytes, and vascular-fibro-
blast; and (b) neuronal cells classes clump in 2 groupings.

The groupings in Supplementary Fig. 5 are strongly reminiscent of
those in Supplementary Fig. 4.Webelieve that this is notablegiven that
the input data come from different sources (the latter from genomic
location and the former from gene expression). This observation
implies a role for co-expression of genes in genomic regions and
supercluster identity.

Statistical analysis for SNP-heritability enrichment
Gene expression specificity/expression proportion. We calculated
gene expression specificity per cell type as expression proportions
(EP). The following steps were done for cell types at the supercluster
level (N = 31) and then at the cluster level (N= 461). For each cell type,
we normalized the Siletti et al.27 snRNAseq count data to molecule
transcripts per million (TPM, equation I). We then computed EP per
cell type as the normalized expression divided by the sum of normal-
ized expression across cell types for each gene (equation II).

Expg, c =
Rawg, c × 1e6
P

gRawg, c
ð1Þ

EPg, c =
Expg, cP
cExpg, c

ð2Þ

As in our prior papers, we selected genes in the top decile of
expression proportion (TDEP) per cell type with normalized expres-
sion > 1 TPM.

SNP-heritability enrichment in cell types. Stratified LD score
regression (S-LDSC) is widely used to evaluate whether a specific
genome annotation is enriched for GWAS findings that contribute a
greater proportion of SNP-heritability (also known as SNP-based her-
itability) to the common variant genetic architecture. It incorporates
an empirical approach to LD correction via LD scores (the sumsof local
r2 LD values) and includes multiple other genome features to increase
model stability71,79. We used S-LDSC71 to evaluate whether the set of
~1300 genes with top decile EP for each supercluster-level cell type
(N = 31) or cluster-level cell type (N = 461) had significant SNP-
heritability enrichment. Enrichment is calculated for the SNP-set rela-
tive to a null hypothesis that all SNP contribute equally to the SNP-
heritability. Gene boundaries were expanded by ± 100 kb. S-LDSC was
run for each combination of GWAS summary statistics and cell type (at
supercluster- and cluster-levels). We provide additional justification
for these methodological choices below. As recommended, enrich-
ment P-values were computed from the “Coefficient_z-score”79. For
each GWAS trait, we adjusted for multiple comparisons using false
discovery rate (FDR) using R::rstatix::adjust_pvalue(method = “fdr”).

Choice of TDEP/S-LDSC. Multiple groups have proposed algorithms
by which to connect GWAS results to specific cell types. In addition to
top-decile EP (TDEP)/S-LDSC, published methods include (in alpha-
betical order): CELLEX, DIALOGUE, EPIC, EWCE, MAGMA, RolyPoly,
sc-linker, and scDRS19–26. These methods evaluate the association of

GWAS signals with gene expression specificity in a given cell type as
measured by single-cell or single-nucleus RNAseq.

Co-authors Ang Li, Jian Zeng, and Naomi Wray (University of
Queensland andOxford University) have conducted a comparison of a
representative set of these methods (manuscript in preparation).
Broadly, the methods are based on SNP-level regression (e.g., LDSC),
gene-level regression (e.g., MAGMA-set), and cell scoring methods
(e.g., scDRS). Methods that use SNP-level or gene-level regression
methods differ in their specificity metrics to determine gene sets
per cell type from the RNAseq date before integration with GWAS
summary statistics. In contrast, scDRS takes a set of associated genes
for a trait from the GWAS summary statistics into analyzes of the
single-cell RNA-seq data. Li et al.35 compared the performance of 9
representative methods: the approach used here (TDEP/S-LDSC)17,18,
MAGMA-set + EP, scDRS (using MAGMA-gene to select the top 1000
genes), sc-linker, and 5CELLEX statistics (DET, GES, EPw, NSI, ESµ). They
evaluated these methods with respect to empirical data using the
default settings from each method: 18 GWAS trait/cell type pairs for
which no association was expected (e.g., proerythroblast cell type and
asthma) and 18 GWAS trait/cell type pairs for which there was inde-
pendent evidence for association (e.g., proerythroblast cell type
and red blood cell count). Application of these methods to empirical
data sets allowed estimation of false positive control and power in real-
world scenarios.

In brief, Li et al.35 found: (a) the method we use in this report
(TDEP/S-LDSC) had power and false positive rates as good as or better
than other methods; (b) MAGMA-set had somewhat higher power but
at the cost of high false positive rates (indeed, we observed that
MAGMA-set can yield markedly discrepant evidence for GWAS-cell
type linkages – e.g.,P-values 5–10 logs smaller thanTDEP/S-LDSC); and
(c) use of scDRS was constrained by computational burden – use of all
3.3 million cells for one GWAS trait took ~40 compute hours and 600
gb memory on a high-performance Linux cluster so that applying
scDRS to the 36 primary GWAS was infeasible without down-sampling
to a subset of nuclei. In addition, other authors have noted that TDEP
performs well with respect to other expression metrics (Appendix 2,
Fig. 3 in reference 26).

S-LDSC gene boundary expansion (±100kb). Expanding gene
boundaries by ± 100 kb is often done and is generally consistent with
the locations of promoters, enhancers, and eQTLs that impact gene
expression26,71. We compared gene boundaries of ± 100 kb and ± 50 kb.
For supercluster-level cell types and across the primary GWAS traits
(Supplementary Data 1), the correlation between log10(enrichment-P)
for ± 100 kb vs ± 50kbwas0.988.WealsocalculatedCohen’s kappa for
the significance of the results (FDR correction) between the two
choices of windows [using R::irr::kappa2()]. Even considering the
conservative impact of significance thresholding, Cohen’s kappa
between the two windows was as high as 0.93. Given the small differ-
ences for these two gene expansion windows and to remain consistent
with our prior papers17,18, we used gene boundaries ± 100 kb.

Conditional analysis of gene specificity overlap. An important
conceptual and practical issue is the degree of overlap in gene speci-
ficity between different cell types. We began by evaluating the overlap
for all pairs of supercluster-level cell types. For the 435 unique super-
cluster pairs, the overlap was low (Jaccard index, JI, median 0.049, IQR
0.022-0.099, range 0.01–0.467). The lowest overlaps were for Amyg-
dala excitatory-Vascular (JI = 0.01), Choroid plexus-Deep layer intra-
telencephalic (JI = 0.01), and Choroid plexus-Splatter (JI = 0.01). The
greatest overlaps were for Deep layer intratelencephalic-Upper layer
intratelencephalic (JI = 0.467), Eccentric medium spiny neuron-
Medium spiny neuron (JI = 0.372), and Astrocyte-Bergmann glia(JI =
0.370). As shown in Supplementary Fig. 6 there were a few instances
with a modest degree of clustering.
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Although the overlapswere generally notmarked over all pairs, all
supercluster classes had at least one other class with potentially
important overlap in specific genes; the maximum JI for each super-
cluster class had a median of 0.26 (IQR 0.19–0.33, range 0.12–0.47).

Therefore, the S-LDSC SNP-heritability enrichment of one super-
cluster class could be dependent on another class with overlapping
TDEP genes. To examine such dependency, we performed conditional
analyzes in a pairwise fashion. For each supercluster class, we added
the TDEP genes of another class into the S-LDSC model and evaluated
how that influenced the significance of enrichment for the super-
cluster of interest. If the result remained significant, it means that the
enrichment for the supercluster of interest is statistically independent
of the effect of the supercluster being conditioned upon. For instance,
the signal for the “Upper layer intratelencephalic” class became non-
significant after conditioning on the “Deep layer intratelencephalic”
class (Fig. 3A), suggesting that the signal from the former was statis-
tically dependent on the latter potentially due to overlap between
TDEP genes. On the other hand, the signal of “CGE interneuron”
supercluster was statistically independent from those of “MGE inter-
neuron” and “LAMP5-LHX6 and Chandelier” despite overlap in TDEP
genes (Supplementary Fig. 6).

Conditional analysis of trait genetic overlap. Another important
perspective is the overlap in genetic risk between different traits. We
started by evaluating the genetic correlations and the overlap between
GWAS significant loci. More directly, we performed the GWAS-by-
Subtraction analysis of genomicSEM80 where we evaluated the com-
mon genetic effects that are specific to schizophrenia, conditioned on
bipolar disorder, MDD, IQ, neuroticism, and educational attainment,
respectively. We then applied S-LDSC SNP-heritability enrichment
analysis at the supercluster level (Supplementary Fig. 7) for all five
schizophrenia-specific GWAS. We further applied the same analysis at
cluster levels for two schizophrenia-specific GWAS, conditioned on
bipolar disorder (Fig. 3D) and IQ separately (Fig. 3E) which showcased
the cell type signals shared between the two traits due to common
(schizophrenia and bipolar disorder) and distinct (schizophrenia and
IQ) mechanistic contributions.

Gene set analysis. Gene set analyzes were conducted using hyper-
geometric tests versus a background of 18,090 genes. Summarizing
text from the beginning of theMethods: the 18,090 genes are based on
the GENCODE primary assembly (GRCh38.p13, v35, 3/2020, hg38)27,69.
In these analyzes, we focused on 18,090 genes that were protein-
coding, mapped to canonical autosomes (chr1 to chr22), not in the
extendedMHC region (chr6:25-34mb), and expressed in ≥ 1 of the 461
cell clusters. Hypergeometric P-values were FDR-corrected. The gene
set analysis is performed for the TDEP genes of the 31 superclusters, as
well as the top 25 clusters for schizophrenia. Themajor GeneOntology
(GO) terms in the gene sets enriched for the top 25 clusters for schi-
zophrenia were summarized in treemaps using R::rrvgo. In addition to
the Cellular Component (GO-CC) category (Fig. 3C), Supplementary
Fig. 8present theBiological Processes (GO-BP) andMolecularFunction
(GO-MF) domains, respectively.

Density-based visualization of high-dimensional data. To improve
understanding of these high dimensional data, we applied UMAP to
visualize these data in two dimensions and HDBSCAN to identify
groupings within the UMAP projection81,82.

Analysis of brain anatomic dissections
The dissection “HTHso” (supraoptic region of hypothalamus) had a
high proportion of neocortical neurons, and “A35r” had a high pro-
portion of non-neuronal cells27, suggesting potential contamination or
technical issues with the dissection depth or margins. We therefore
excluded HTHso and A35r and focused on 104 anatomic dissections.

Anatomic dissections may contain highly heterogeneous cell type
compositions27, and the function of the same genes can differ between
cell types. Therefore, we deem that S-LDSC is most appropriate at cell
type levels (i.e., superclusters and clusters) and evaluate enrichment at
the level of dissections (or, detailed brain regions) by integrating the
cluster-level enrichment. For visualizing cell type components in Fig-
ure 4A, we calculated the proportion of each cell cluster per brain
dissectionas the number of cells in the cluster in the dissectiondivided
by the total number of cells in the dissection. This number was scaled
into deciles for plotting. Supplementary Data 9 presents the scaled
proportion and the range and mean of the actual proportion.

Of note, neuronal cell types are dominantly enriched for the SNP-
heritability of psychiatric disorders, we therefore focused on the
neuronal cells in calculating dissection-level enrichment. Specifically,
for each anatomic dissection, the proportion of each neuronal cluster
was calculated as the number of cells in the cluster in the dissection
divided by the total number of neuronal cells in the dissection. Next,
for each dissection, we weighted the cluster-level enrichment Z-score
(from S-LDSC) of each neuronal cluster by its proportion within the
dissection, and calculated the weighted sum as the Z-score of enrich-
ment for the dissection. Finally, P-value for each dissection was cal-
culated based on the weighted-summed Z-score.

Zdissection =
X

k

ðpctk � ZkÞ ð3Þ

where k is a cluster, and pctk is the percentage of cluster k in the
dissection.

Visualizing anatomic dissection results in a 3D human
brain model
The Allen Brain Atlas has a powerful 3D human brain model83. As the
snRNA-seqdissectionswereperformedaccording to the 2DAllenBrain
Atlas84, we had the opportunity to transfer the labels to the 3D map,
although the names of the dissections were not completely matched
between the 3D and 2D Atlas. We mapped 106 snRNA-seq dissections
to 84 regions in the 3D brain model via expert curation (Supplemen-
tary Data 12). The matched regions were used for visualizing
dissection-level SNP-heritability results of schizophrenia (Figure 4C, E)
and to obtain 3D coordinates in the fMRI analysis (Fig. 5). Each 3D label
was assigned a value as the -log10(P) of scz2022 SNP-heritability
enrichment of the corresponding anatomic dissection in the snRNA-
seq dataset. If a 3D label corresponded to multiple snRNA-seq ana-
tomic dissections, the most significant value was taken. Not all the
cerebral cortical regions in the 3D model were sampled in the snRNA-
seq dataset. Given our observation that the enrichment of scz2022
heritability was generally distributed across the cerebral dissections
(Figure 4B), we assigned the unsampled neocortical regions the mean
Z-score of all the sampled neocortical regions. For unsampled regions
not in the cerebral cortex, we did not make any specific assumption,
and their significance of enrichment was treated as missing. ITK_SNAP
(v3.8.0, www.itksnap.org) was used to visualize the 3D model85.

Functional magnetic resonance imaging (fMRI)
Data sets for independent replication. To evaluate our findings in the
context of intrinsic functional connectivity,we comparedpatientswith
schizophrenia to neurotypical controls in two independent data sets.
In data set 1, we included resting-state fMRI scans of 46 schizophrenia
cases and 46 age- and sex-matched controls from the UCLA Con-
sortium for Neuropsychiatric Phenomics LA5c Study (https://www.
openfmri.org/dataset/ds000030/)51. From thepublic data set, 50 cases
with schizophrenia and 127 healthy controls (age: 21–50 years) were
acquired. Functional scans were pre-processed, head motion-cor-
rected, and normalized to MNI space (resolution of 3 mm3)86. Frame-
wise displacement (measuring the head motion during scanning)
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showed significantly more head motion for cases than controls. To
minimize groupdifferences, participantswith framewise displacement
> 2mm were excluded. Next, we gradually excluded the healthy con-
trols with fewer head motions until the difference between the
groupswas no longer significant. In data set 2, the samequality control
procession was applied to 72 patients and 75 controls (age: 18–65
years) from the Center for Biomedical Research Excellence (COBRE,
https://fcon_1000.projects.nitrc.org/indi/retro/cobre.html), resulting
in 54 schizophrenia cases and 54 age- and sex-matched controls.

Define regions of interest (ROIs). To define an initial search space in
the fMRI imaging data, we started with 45 brain regions that were
mapped to the 3D brain model and showed significant schizophrenia
SNP-heritability enrichment at FDR ≤0.01 (Supplementary Data 13).
We specified spherical regions of interest (ROIs) centering on the MNI
coordinates (Supplementary Data 11) with a radius of 4mm. Regions
that were too small to be identified from the fMRI data were removed,
and overlapping ROIs were selected based on higher enrichment of
schizophrenia SNP-heritability. Specifically, substantial overlap was
found between the ROIs of the amygdala corticomedial nuclear group
(CMN), namely the medial nucleus (Me), the amygdalohippocampal
area (AHA), and the cortical amygdaloid nuclei (specifically the ante-
rior part, CoA); we used the CoA (highest significance of schizophrenia
SNP-heritability enrichment) to represent CMN. Likewise, the lateral
nucleus (La) of the amygdala was prioritized over the nearby, over-
lapping structures basolateral nucleus (BL) and basomedial nucleus
(BM), to represent the basolateral nuclear group (BLN). The ambiens
gyrus (AG), frontal agranular insular cortex (FI), and claustrum (Cla)
were too small for ROI identification and thus removed. This resulted
in 38 unique brain ROIs; taking laterality into account, we considered
76 regions (38 in each hemisphere) in the following analysis. The
resting-state fMRI time-series of all voxels within each ROI were then
averaged to obtain the regional time-series. We used Pearson’s corre-
lation of the functional time-series of the two ROIs as the connection,
which was used as input data for the analysis.

Prediction model (classifier) and key estimates. We used a deep
neural network classifier87, Braph288, to distinguish cases fromcontrols
in the twodata sets respectively.We randomly split the samples in each
data set into five portions with similar size and balanced length of time
series. In data set 1, we had 10 cases and 10 controls in portion 1, and 9
cases and 9 controls per portion in portions 2–5; and in data set 2, we
had 10 cases and 10 controls in portion 1, 10 cases and 11 controls in
portion 2, 11 cases and 11 controls in portions 3-4, and 12 cases and 11
controls in portion 5.We ran five folds of parallel analyzes in each data
set. Per fold, we took one portion as the testing set and the rest (non-
overlapping portions) as the training set to train the Braph2 classifier
to distinguish cases from controls. Per fold, we adopted a recursive
feature elimination strategy89 to reduce the number of ROIs in a
stepwise manner; in each run we obtained a network/model from the
classifier and ameasure to evaluate the contribution of each ROI to the
model (detailed in the next paragraph), and the least contributing ROI
was removed from the next run. In each run, we evaluated the trained
model using the independent testing set and acquired the area under
curve (AUC, of the receiver operating characteristic curve, ROC) as the
evaluationmeasure. Outside the recursive feature eliminationprocess,
we evaluated the Core and Default Mode Networks as reference 29.
ROIs included in these two networks are listed in Supplementary
Data 11.

Importantly, each model returned a feature importance (FI) per
connection. The FI of all connections per ROI were then aggregated as
the evaluation of the contribution of the ROI. The least contributing
ROI was removed from the next run to realize the recursive feature
elimination. Specifically, we used the cross-entropy loss function to
calculate the model error in the optimization of the neural network

classifier. In eachmodel, we performed 1000permutations to evaluate
the FI of all connections90, where a single connection value was ran-
domly shuffled 1000 times to establish the 95% confidence interval of
the model error. If the model error of the original loss model fell
outside the 95% confidence interval, the connection was considered
contributing to the model, and its FI was calculated as:

FI =mean e perm=e orig ð4Þ

where mean_e_perm is the averaged model error across the permuta-
tions, and e_orig is the original loss without any permutation.

Interpretations at region and connection levels. We used the runs
that an ROI was preserved in the recursive feature elimination to
evaluate the importance at region level, because more important ROIs
in differentiating cases and controls were removed later during the
process. As expected, hippocampal and amygdalar ROIs tend to be
preserved to later runs in both fMRI data sets (Supplementary
Figs. 9C, D), and the mean preserved runs of these regions had sig-
nificant correlation between the two data sets (Fig. 5B). At connection
level, we derived the aggregated FImatrix to evaluate the connections.
Specifically, we scaled the FI matrix per model by dividing it by the
maximumFI in themodel, weighted the scaled FImatrix by the AUC of
the model, and summed the processed FI matrices across models in
the two fMRI data sets respectively (Supplementary Figs. 9E, F). We
ranked and compared the connections by their FI (Fig. 5C–F) and
performed hypergeometric tests to evaluate if the amygdalar or hip-
pocampal connections were enriched in the top n connections (Sup-
plementary Figs. 9G–J), wherenwere the evennumbers from2 to 5776.
In total we ran 2888 hypergeometric tests to evaluate the enrichment
per data set. In each data set, the name of ROIs in the top 1% connec-
tions were marked in red in Supplementary Fig. 9E, F and these ROIs
were plotted on the dorsal view of the brain in Supplementary
Fig. 9K, L.

Cell type and evolutionary constraint
As described in Sullivan et al.1, we used the Zoonomia alignment of 241
placental mammals to create a gene constraint metric. In comparing
multiple different constraint metrics, the simplest metric appeared to
be the best (cdsFracCons, the number of constrained CDS bases divi-
ded by the total number of CDS bases). cdsFracCons does not have the
limitations of alternative measures (e.g., pLI is close to a dichotomy
and LOEUF has a strong residual correlation with CDS size)91,92.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The data generated in this
study are provided in the Supplementary Information and Source Data
files. Source data are provided with this paper.

Code availability
Code available at: https://github.com/Hjerling-Leffler-Lab/TDEP-sLDSC
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